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Abstract

Machine-learning based techniques like physics-informed neural networks (PINNs)
and physics-informed neural operators (PINO) are becoming increasingly adept at
solving even complex systems of partial differential equations (PDEs). Boundary
conditions can be enforced either weakly by penalizing deviations in the loss
function or strongly by training a solution structure that inherently matches the
prescribed values and derivatives. The former approach is easy to implement but
the latter can provide benefits with respect to accuracy and training times. However,
previous approaches to strongly enforcing Neumann or Robin boundary conditions
require a domain with a fully C! boundary and, as we demonstrate, can lead to
instability if those boundary conditions are posed on a segment of the boundary
that is piecewise C'' but only C° globally. We introduce a generalization of the
approach by Sukumar, et al. (2021) and a new approach based on orthogonal
projections that overcome this limitation. The performance of these new techniques
is compared against weakly and semi-weakly enforced boundary conditions for the
scalar Darcy flow equation and the stationary Navier-Stokes equations.

1 Introduction and related work

Various machine learning-based techniques have been applied successfully to solve systems of partial
differential equations (PDEs). Most prominently, physics-informed neural networds Raissi, et al.
(2019) and many variants and extensions Raissi, et al. (2024) learn the solution to a PDE. They
use (often dense) neural networks combined with loss functions that include the PDE residuals to
promote physically meaningful solutions and reduce the amount of training data required. Neural
operators Li, et al. (2020a); Lu, et al. (2021a) were developed to learn solution operators of PDEs.
Based on the Fourier neural operator (FNO) by Li, et al. (2020b), a physics-informed neural operator
(PINO) was proposed by Li, et al. (2021). Similar to PINNs it was designed to approximate the
solution operator of a parametric partial differential equation by minimizing a residual given by the
differential equation instead of training solely on labeled training data. In the following we utilize the
FNO framework even though it requires a rectangular domain with a uniform mesh to use the Fast
Fourier Transform (FFT). To work on more complex geometries we follow the approach by Lu, et al.
(2021c¢) and choose the minimum bounding box of the underlying domain as computational domain.
Alternatively, for more efficient approaches one could utilize the geo-FNO framework proposed by Li,
etal. (2022) or geometry-informed neural operators Li, et al. (2023).

Boundary conditions. In physics-informed machine learning, boundary conditions can be enforced
in two ways. One is to weakly enforce them by adding a residual term that punishes but does not
prohibit differences to the prescribed values. An extension are penalty methods to treat boundary
conditions as hard constraints in the optimization Lu, et al. (2021b). However, Toscano, et al.

(2025); Zeinhofer, et al, (2024) show that these approaches weaken the decay of the generalization
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error. The alternative is to strongly enforce boundary conditions by constructing the solution in
a way that it exactly satisfies the boundary conditions. While this is straightforward for Dirichlet
boundary conditions Berrone, et al. (2023); Toscano, et al. (2025), Neumann- or Robin boundary
conditions are harder to treat. Techniques to do this include Fourier feature embeddings Straub,
et al. (2025) or solution structures based on trial solutions using distance functions Manavi, et
al. (2024); McFall, et al. (2009). Based on the latter idea, Sukumar, et al. (2021) introduce a
flexible method to strongly enforce boundary conditions and observe that it can improve accuracy for
PINNs. We will show that their approach is suitable for a certain class of boundary conditions but
fails when Neumann conditions are prescribed on a boundary that is not C'!. They utilize the theory
of R-functions by Rvacheyv, et al. (1995) and approximate distance functions to train solutions to
boundary value problems using PINNs. An approximate distance function satisfies two properties.

Definition 1.1 (Distance function). Let ' C 952 be a boundary section. We call a function ¢ : Q — R
a distance function to T if it is zero on I" and positive in 2\ T".

The other definition is according to Rvacheyv, et al. (1995).
Definition 1.2 (Normalized function). Let I' C Jf2 be a boundary section. We call a function
¢ : Q — R a normalized function with respect to T if it satisfies ¢ = 0 and % =1lonl.

Here, v denotes the inward pointing normal vector on 0f).

Definition 1.3 (Approximate distance function). Let I' C J{) be a boundary section. We call a
function ¢ : 2 — R an approximate distance function to T, if ¢ is both a distance function to I' in
the sense of Definition 1.1 and normalized with respect to I in the sense of Definition 1.2.

As pointed out by Sukumar, et al. (2021), suitable approximate distance functions should be C!.
Otherwise, the Laplacian of the distance function is unbounded at points where the distance function
is only C?, which causes issue when solving second-order differential equations. While the exact
distance function d(z) := mingesq || — &|| is an approximate distance function to 052, it is in
general not C''. Sukumar, et al. (2021) discuss how to construct approximate distance functions to
boundaries that consist of piecewise linear segments which are only C globally. Their approximate
distance functions are C'! in the interior but not at the joining points of the segments. This is not
problem for the Dirichlet conditions or Neumann boundary conditions on the annulus they consider,
where the boundary is globally C'. However, as pointed out by Gladstone, et al. (2022), the
non-differentiability of the approximate distance function becomes an issue for Neumann or Robin
boundary value on boundaries that are not globally C''. We provide a summary of Sukumar, et al.
(2021)’s approach in Appendix A.

To illustrate the issue that can arise if 9 ¢ C*, consider a simple Poisson problem with homogeneous
Neumann boundary condition

Y(z,y) € (0,1)?: —Au(z,y) = 272 cos(mz) cos(ry). (1)

Figure 1 shows resulting solution (middle) as well as the analytical solution (left) and the solution
using our generalized approach presented in this paper (right) for comparison. The issue in the middle
figure stems from the emergence of instabilities in the corner of the Laplacian of the approximate
distance function, cf. Sukumar, et al. (2021, Figure 27).

Contributions and structure of the paper. We propose two novel approaches to prescribe Robin
or Neumann boundary conditions on boundaries that are piecewise C'* but only C° globally. First we
describe a generalization of the method by Sukumar, et al. (2021) called generalized local solution
structures or GLSS. The second approach is based on orthogonal projections and we refer to it as OP.
While it requires certain assumptions on the shape of the boundary, it has fewer unknown functions
that need to be learned by the network. GLSS and OP are described in § 2.1 for scalar PDEs and in
§ 2.2 for systems of PDEs. § 3.1 compares GLSS, OP as well as weakly and semi-weakly boundary
conditions for a scalar PDE, the Darcy flow equation. Finally, § 3.2 compares their performance for a
standard benchmark from computational fluid dynamics by Turek, et al. (1996) that requires solving
the stationary Navier-Stokes equations to model flow around a cylinder.

Limitations. The two new approaches come with some limitations and drawbacks. First, they in-
crease complexity of implementation compared to weakly enforced boundary conditions, in particular
if the number of C''-segments that form the boundary is high. Second, while the size of the network



88
89
90
91

92

93
94

95
96
97

98
99

100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117

118
119

08 . :
x r 0.
o 0.0 0 0.0

(a) Analytical (b) Sukumar, et al. (2021) (c) GLSS (our approach)

Figure 1: Analytical solution (left) and solution with Sukumar, et al. (2021)’s (middle) and our
generalized approach (right) to strongly enforcing boundary conditions.

as well as training times change only marginally, we do see an increase of inference times of up
to 30%. Third, the approaches are only tested for Q@ C R?, although generalization to 3D should
be possible. And lastly, the OP approach only works for boundaries that can be decomposed into
segments where each of these segments lies in a hyperplane.

2 Methodology

Let Q C R? be a computational domain, I/, ) Banach spaces, and let A C V be a set of parameter
functions. For a a € A we want to find the solution u € U to the boundary value problem

(2a)
(2b)

Ve e Q: P(u(x),a(x)) =0,
Va € 00 : B(u(x),a(x)) =0,
where P is a differential operator and B is a boundary condition operator. The idea by Sukumar,
etal. (2021) and Rvachey, et al. (1995) is to train suitable functions ¥, such that @w(¥y,..., ¥ )
minimizes the PDE-loss from (2a) and, by construction, satisfies the boundary condition exactly.

Definition 2.1 (Solution structure). We call @ : {Q — R’} — { — R"} a solution structure, if
a(Pq,..., ) satisfies (2b) for any differentiable functions ¥y,..., U7 : Q — R.

Physics-informed neural networks (PINNs) and physics-informed neural operators (PINO).
For a PINO, the aim is to learn the solution operator Gg : A — U with Gg(a) = w using a set of
training parameters A, C A. We denote the trainable parameters of the neural operator as 8. Note
that Sukumar, et al. (2021) present their approach in the context of physics-informed neural network
(PINNs) whereas we consider physics-informed neural operators (PINO). However, in the notation
above, a PINN learns ug(a*) = Gy(a*) for a fixed parameter a*. That is, it learns one specific
instance Ggy(a*) solving the boundary problem (2a). By contrast, a PINO trains on a large set of
parameters to learn to mapping a — Gg(a). The learned solution operator can be further refined to
compute the solution for a specific a* through continued training only on this parameter (finetuning).

In the following, we use the FNO-PINO architecture to learn not a mapping to the PDE solution
directly, but to the unknown functions in the solution structure (Def. 2.1). With slight abuse of
notation we will refer to the output of the neural networks still as Gg(a). Our approaches to enforce
boundary conditions can be used for either PINN or PINO. To illustrate applicability to PINNs, in
addition to the regular training and finetuning of the PINO, we consider PINN-like training, i.e.
learning the solution structure for a specific parameter a* without training the solution operator first.
This approach is essentially a PINN that uses the FNO architecture instead of dense layers. As we
focus on boundary conditions, we do not consider data mismatch terms in the loss, but only physics
losses. There are three ways to ensure that the trained solution u satisfies the boundary condition (2).

Weak boundary conditions. Here, the neural operator outputs the solution directly, that is u =
Ge(a), and satisfying the boundary conditions has to be learned during training. This corresponds to
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solving the minimization problem

apn 3 ([ P(Gofa) (@), atw)ae +

a € Apain

B((gem))(w),a(m)de(w)). 3

o0

Exact boundary conditions. Here we construct a solution structure in the sense of Definition 2.1
and train the functions ¥; such that the parameters satisfy

min / P(it(Go(a)) (@), a(z))da. @)

for the resulting @(W+, ..., ¥y).

Semi-weak / semi-exact boundary conditions. Lastly we consider a solution structure that satisfies

some boundary conditions but not all. Let B represent the boundary conditions that w(¥q,..., ¥ )
does not autoamtically satisfy. The minimization problem solved in training is then posed as a
combination of the two previous ones

wn 3 ([ Paola)@).ate) iz +

a € Apain

é<<g0<a>><:c>,a(w))?dS(:z)). )

o0

We use this approach to enforce Dirichlet boundary conditions exactly and Robin conditions weakly.

2.1 Exact boundary conditions for scalar differential equations

Starting from Sukumar, et al. (2021)’s approach, the solution consists of two parts, the transfinite
interpolant by Rvachev, et al. (2001) for the boundary and a remainder term in the domain

M M
u@) =Y wi@)u(x) + V() []oi(2)", (6)
i=1 i=1
boundary domain
M ,
()
Vie{l,...,M}: wix)= Al;J*l;{f’ ¢5(®) . 7)
D k=1 Hj:l,j;éi ()i
where ¢; is the distance function to I';. We set u; = 1if ¢ € Ip and p; = 2 if ¢ € Ig, where
IpUIRp ={1,..., M} are index sets indicating on which segments Dirichlet or Robin boundary

conditions are prescribed.

Sukumar, et al. (2021) require an approximate distance function ¢; in (6), (7) that is both a distance
function to I'; in the sense of Definition 1.1 and normalized with respect to I'; in the sense of
Definition 1.2. However, it is not always possible to find such a function ¢; that is C' everywhere.
Therefore, we propose to use two different functions instead. The function in (6) and (7), which we
still denote as ¢;, is only required to be a distance function to I';. The function in the local solution
structures u;, which we now denote as ¢;, only needs to be a normalized function with respect to
T';. Below, we show two ways to choose the local solution structures w,;. For comparison, (35) in
Appendix A shows Sukumar, et al. (2021)’s choice.

2.1.1 Generalized local solution structure (GLSS) for piecewise C'! boundary
For pairwise disjoint boundary segments I';, ..., 'y, we use the local solution structure

gi(x) + ¢;(x)T;(x), ¢, has a vanishing gradient,

gi(x), else, ®)

Vielg: ui(z)=Vi(x) - ¢i(x)Vei(x) - V;(x) + ¢i(x) (c;(x)Vi(x) — hi(x)), (9)

Vi€ lIp: ui(m){

where the él are normalized with respect to I'; and th_e \ifi ~and W, are unknown functions to be
learned. The difference between (8) and (35) is the term ¢; () ¥, (x). Without it, if ¢; has a vanishing

gradient, we would prescribe both u; = g; on I'; and g—:‘l = ‘?dfi on I';, which would overdetermine
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Figure 2: Sketch of intersecting boundary segments.

the problem. The additional term ¢;(2)¥; () avoids that by introducing another unknown function
to be trained. In Sukumar, et al. (2021)’s approach, the ¢; were required to be normalized with
respect to I'; and thus could not have a vanishing gradient, therefore this problem did not arise.

Intersecting boundary segments as sketched in Figure 2 require further modifications to (9), see
Appendix B for the reasons. Let I'; be a boundary segment with neighbors I', and I',, where A and
B are the intersection points. If I'; is a Robin segment, we define the function W, as

¢5(x) pa(z)

Y = 5@+ os@ " T Ga@) + os@)
where ¢ 4 and ¢p are distance functions to A and B. The functions u4 and up have to be choosen
according to type of boundary conditions prescribed on I', and I'y,. If ', or I'y, is a Dirichlet segment,
we set uy = g, Or up = gp. In case of a Robin segment, we introduce a new unknown function ¥ 4
or Up and define uy = ¥4 orup = ¥p. The term ¢4 (x)¢pp(x)¥;(x) only needs to be included
if both ', and T, are Dirichlet segments. Function ¥; is another unknown to be approximated. We
show the algorithm for determining local solution structures in the Appendix C].

up(x) + ¢a(x)pp(x)V;(x),  (10)

2.1.2 Orthogonal projections (OP)

If all boundary sections with Robin conditions lie in hyperplanes, i.e., for every & € I'; the normal
vectors n(x) are identical, we can use a simpler approach. We choose the normalized functions ¢; to
be the exact signed distance function to the hyperplane containing I';. The local solution structures
for Robin conditions are set to

Vielg: ui(z)=V;(N(x;0:) + ¢i() fi(N (x5 04)), (11
boundary value boundary derivative
VieIr: fi(x)=ci(x)V;(x) — hi(x) with N(x;0) =z — ¢(z)Vo(z) (12)

The ansatz uses as a generalized Taylor polynomial expansion by Rvachev, et al. (1995). Here, ¥,
represents the value and f; the normal derivative of u; on I';. The concatenations ¥; o N'( -; ¢;) and
fi o N(-; ;) are the so called normalizers of ¥; and f;, see Appendix D.

The first term in (11) determines the value on I'; but has zero derivative whilst the second term is
zero on I'; but has non-zero derivative equal to the Robin condition. Because ¢; is the exact signed
distance function, N'( - ; ¢;) is an orthogonal projection mapping its argument onto the corresponding
hyperplane. Therefore, each U, is only evaluated on its corresponding hyperplane and we can set

Vielp: Wix)=g(@)+¥(z) [] énl), (13)
kelp

where ¢ is a function satisfying all Dirichlet conditions. This avoids discontinuities of the transfinite
interpolant at intersection points since only the single function ¥ needs to be trained.

2.2 Exact boundary conditions for systems of partial differential equations

Consider a system of differential equations with solution  : R? > Q0 — R™ and boundary conditions
prescribed on segments 'y, ..., 'yy C O with each I'; being C*. Fori € {1,...,M}and z € T;
let b (), ..., b\ () be a basis of R™. Let I/ p, IJ C I x J :={1,..., M} x {1,...,n} be
index sets such that

V(i,j) € IJp :Vx €T, : bgj)(w) cu(x) = ggj)(ac), (14)

0 (bgj)(w) . u(w))

(4) . _ 1
(@) ulw) = 1P (@), (15)

V(i,j) € IJgr: Ve €Ty :
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Without loss of generality, we assume that for every (¢,j) € IJg and € T'; the cZ(-j )(a:) lies in
span({bgk)(az) | (i,k) ¢ IJp}). The generic solution structure now becomes

M M
u(w) =Y wil@ui(z) + [ (@),..., v (@) ] (=), (16)

i=1 i=1
L (i,4) € IJ R, 17

1, else,
with weights given in (7). Functions u; are expressed as a linear combination of the basis functions
Viel: wx)=Y b (@)u (x) (18)
j=1

Proposition 2.2. If the vectors bgl) (x),..., bg")

N(T';) is an open neighborhood of I';, we have

() form a basis of R™ for every & € N (I';) where

V(i,j) € I x J : Ve el : b (@) - u(x) = v (@),  (19)
. . . 0 b(.j)(:c) ~u(x) (4)
o with ¢! having ) ( i _ Ou ()
v, j) e IxJ a vanishing gradient Ve el: on T on (20)
Proof. The proof is shown in Appendix E. O

Therefore, every uz(-j ) has to satisfy the corresponding boundary condition. For Dirichlet conditions
this is achieved by setting

V(i,j) e lJp: uY (21)

g, (), else,
for both GLSS and OP. However, the two approaches differ in their treatment of Robin conditions.

2.2.1 GLSS

If all boundary segments I'y, ..., I"; are pairwise disjoint, we set
! (@) = v (@) = 6:(@)Véi(@) - VI (@) + 6i(2) [ (=), (22)
P@=c’@- > @@ — h). (23)

k=1,(i,k)¢1J p
for (i,§) € IJ k. For (i,5) € I x J\ (I/p U L] ), we define u'”) (z) = ¥/ (z). As above, the
functions \I/EJ ) have to be modified, if I'; has intersection points with other segments.

Intersecting boundary segments. We generalize our approach to the system case and let

D () = b (). [ 08 L ——— 2)pp(x) 0 (a
W@ =0 (5 e ST (e @) Foa@on @] ((23)

The construction of the functions u 4 and u g is more difficult than in the scalar case. We demonstrate
how to do this with an example. Consider two segments I'; and I'; with intersection point P and
assume for simplicity that u € R3. Let Dirichlet conditions be prescribed on I'; with respect to
the basis vectors b (P) = (1,0,0)T and b{*(P) = (0,1,0)7 and on T'5 with respect to the
vector bgl) (P) = (1,1,0)7. These three basis vectors span a two-dimensional subspace with basis
(1,0,0)7,(0,1,0)”. We define up as a linear combination of this basis and an unknown component
acting on the orthogonal complement, i.e.

1 0 0
up(z) = g (8) +g% <(1)> + 09 () (g) : (25)

Note that the constants gg) and gg) have to be chosen such that up satisfies all Dirichlet conditions

prescribed in P. A complete algorithm can be found in the Appendix C.

ua(x) +
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Table 1: Size, training and inference times of the FNO for the four different approaches to enforce
boundary conditions for the Darcy flow and Navier-Stokes equations.
Trainable parameters Checkpoint size  Training time Inference time

(MByte) (min) (sec)
Darcy flow
GLSS 13,132,932 105 182.35 0.0130
0) 13,132,674 105 181.68 0.0120
Semi-weak 13,132,545 105 180.79 0.0104
Weak 13,132,545 105 181.44 0.0101
Navier-Stokes equations
GLSS 13,133,706 105 9.79 0.0298
0) 13,133,190 105 9.76 0.0285
Semi-weak 13,132,803 105 9.49 0.0248
Weak 13,132,803 105 9.62 0.0238
222 OP
If all boundary segments I'; lie in hyperplanes and b\ = bgj )= ... = bg{} holds for every
7 =1,...,n, the global solution structure, given by (16) and (18), simplifies to

n M M
u(a:):Zb(j)(w)Zwi(a:)ugj)(a:) 1 [\11<1>(a:),...,q/(")(w)]TH@(m)w. (26)

‘We choose the local solution structures as

(4) Y T o .
() + oi(x) Vi), ; has a vanishing gradient ..
| g(j)( )+ ¢i(@)Vi(x), ¢ gg (d) € Lp,
’U,(j)(IB) — gz (CE), B B .else B (27)
VO (N (w5 64)) + 61 (@) [ (N (23 64), (i,5) € 1T R,
VO (z), else
The functions fi(j ) are defined as
1@ =cl@ 3 W0@p@) - h @), 28)
k=1,(i,k)21] p
and the U9 are defined as
M
(@) =gV (@) + ¥ (@)  J[ i) (29)

i=1,(5,5)€lJ p

Each function g%) is chosen in a way that it satisfies all Dirichlet conditions prescribed with respect
to the basis vector b) and U is an unknown function to be approximated.

Theorem 2.3. The derived solution structure satisfies the boundary conditions (14) and (15) for both
the GLSS and OP approach.

Proof. The proof is in Appendix F. O

3 Numerical results

Details regarding the architecture and training of the network can be found in Appendix G. Table 1
shows different training-related parameters of the networks arising from the four approaches for the
two benchmarks. Because the size of the network is dominated by the size of the four convolution
layers, the number of trainable parameters varies only very slightly. There is no discernible impact
on the size of the checkpoint files. Training times are stable, with semi-weak boundary conditions
training the fastest in both cases but the difference to the slowest GLSS is below 3%. Inference
times increase for GLSS and OP compared to weakly enforced boundary conditions. We see the
largest increase by about 29% for GLSS for the Darcy flow. Note that training for the Navier-Stokes
equations is much faster because we train only solutions and no solution operator.



223

224
225
226
227
228
229

231

232

234
235
236
237
238
239
240
241
242
243
244

245

PINN-like training Operator training Finetuning

- GLSS

10" 5 4 — opP
Semi-weak
‘Weak

10-1 4

100 4

10-1 4

Relative L2-error

/
i

1072 4
T T T T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
Epochs Epochs Epochs

Figure 3: Training progress and errors on the validation set for different ways to enforce boundary
conditions for the Darcy flow.

3.1 Darcy Flow

As scalar test problem, we consider the Darcy flow equation governing fluid flow in porous me-
dia Darcy (1856). The detailed numerical setup can be found in Appendix H, including the precise
local solution structures used for GLSS and OP. Figure 3 shows training loss (upper) and validation
error (lower). The left column shows the loss and error curve for the PINN-like training. Both
these curves are the average loss and [?-error over the 100 parameters that the PINO was trained on
individually in PINN-style. The middle column shows the loss and error curve for PINO trained on
400 parameters. The right column shows the loss and error curve for finetuning, Dotted lines indicate
the loss and error value at the very beginning of the finetuning.

All cases train reasonably well, reducing the loss function by at least one order of magnitude (OP
for PINN-like training) and two or more orders in most cases. Losses are not indicative of achieved
validation errors. For the PINN-style training, OP and GLSS are more accurate than weak or semi-
weak boundary conditions. The same holds true for finetuning, where OP is slightly more accurate
than GLSS. For operator training, OP is more accurate than GLSS which performs on par with
semi-weak and better than weak boundary conditions. In summary, for the Darcy flow, even though
losses do not necessarily decay faster, OP and GLSS in almost all cases produces more accurate
solutions than weak or semi-weak boundary conditions. Table 2 shows the average ls-error plus
standard deviation (left column), best case l-error (middle column) and worst case ly-error (right
column). For operator training and finetuning, OP is the most accurate approach whilst GLSS is the
most accurate for PINN-like training. For best case errors, shown in the middle column, there is no
clear benefit from the two new approaches However, there are substantial gains in accuracy from OP
and GLSS for the worst case in PINN-like training and finetuning and from OP in operator training.
Plots of the median, best- and worst-case solutions can be found in Appendix I.

Table 2: ly-errors of the predicted u against the analytical solution for the four different approaches
to enforce boundary conditions for the Darcy flow problem.

\ | Operator training | Finetuning | PINN-like training

\ | Average Best  Worst | Average Best ~ Worst | Average Best ~ Worst |

GLSS 0.03£0.04 0.004 0.27 0.01£0.01 0.003 0.06 | 0.02+0.02 0.005 0.08
OP 0.02£0.01 0.003 0.06 | 0.01+0.01 0.002 0.04 | 0.04£0.02 0.006 0.11
S-Weak | 0.03+£0.03 0.002 0.17 0.03£0.02 0.003 0.10 | 0.09£0.03 0.021 0.17
Weak 0.05£0.05 0.008 0.28 0.04£0.05 0.003 0.26 | 0.13+0.14 0.008 0.64
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3.2 Navier-Stokes equations

We use the standard benchmark by Turek, et al. (1996), simulating 2D stationary flow through a
channel and across a cylinder. The details of the problem setup can be found in Appendix J, including
the precise form of the local solution structures used for GLSS and OP.

Figure 4 shows the training losses in the upper figure and the errors in the velocity components
and v and the pressure p against the numerically computed reference solution. After 4000 epochs,
losses for GLSS, OP and weak boundary conditions are similar but the loss for semi-weak remains
somewhat higher. In terms of errors, we again see a clear benefit in terms of accuracy from GLSS and
OP as they outperform weak and semi-weak boundary conditions in all three solution components.

To further assess accuracy we consider three practically relevant diagnostic quantities: pressure
difference, drag coefficient and lift coefficient, see Turek, et al. (1996) for their definition. Table 3
shows the values computed from the PINO using the four different ways to enforce boundary
conditions and, in brackets, the relative error against the reference values by Nabh (1998). We
again see a noticeable increase in accuracy from GLSS and OP over weak or semi-weak boundary
conditions. Pressure difference and drag coefficient are predicted with high accuracy. While relative
errors for the lift coefficient are large, they are still orders of magnitude smaller than for the weak or
semi-weak approach.

Table 3: Physically important parameters computed from the Navier-Stokes solution. The reference
values are provided by Nabh (1998) with 9 digit accuracy and we rounded them to 4 digits. The
relative error against those reference values is shown in brackets.

Pressure difference  Drag coefficient Lift coefficient

GLSS 0.1150 ( 2.1%) 5.5336 ( 0.8%) -0.0058 ( 155%)
OP 0.1145 ( 2.6%) 5.5366 ( 0.8%) 0.0024 ( 77%)
Semi-weak 0.0678 (42.3%) 3.8221 (31.5%) -0.3759 (3646%)
Weak 0.0902 (23.2%). 4.6633 (16.4%) 0.3849 (3531%)
Reference values 0.1175 5.5795 0.0106
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The central claim of our paper is that the two new proposed approaches
can overcome the stability issues for non-C'! boundaries that previous ways to prescribe
boundary conditions suffer from. We provide numerical evidence for two challenging
benchmarks that this is the case.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations of the two new approaches are concisely summarized at the end of
the introduction, right after stating the contributions of the paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All propositions are either proved in the paper or we cite proofs from the
literature.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we strive to provide all required parameters to reproduce the studied
setups in either the paper or the supplementary appendix. Should it turn out that we missed
some parameter, the code is made available for reference.

Guidelines: All experimental results in the paper come from numerical experiments and can
be reproduced using the provided code, see the answer to the next question.

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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447 (d) We recognize that reproducibility may be tricky in some cases, in which case

448 authors are welcome to describe the particular way they provide for reproducibility.
449 In the case of closed-source models, it may be that access to the model is limited in
450 some way (e.g., to registered users), but it should be possible for other researchers
451 to have some path to reproducing or verifying the results.

452 5. Open access to data and code

453 Question: Does the paper provide open access to the data and code, with sufficient instruc-
454 tions to faithfully reproduce the main experimental results, as described in supplemental
455 material?

456 Answer: [Yes]

457 Justification: The reviewers can access all the code required to reproduce the presented
458 results via FigShare: https://figshare.com/s/6332d1c1e782304fb264. In case of
459 publication, the code will be provided via GitHub and a Zenodo-provided DOI and cited in
460 the camera-ready version of the paper. The trained model parameters will be made freely
461 available via an institutional repository and be cross-linked with the paper and the code.
462 Guidelines:

463 » The answer NA means that paper does not include experiments requiring code.

464 ¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
465 public/guides/CodeSubmissionPolicy) for more details.

466 * While we encourage the release of code and data, we understand that this might not be
467 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
468 including code, unless this is central to the contribution (e.g., for a new open-source
469 benchmark).

470 * The instructions should contain the exact command and environment needed to run to
471 reproduce the results. See the NeurIPS code and data submission guidelines (https:
472 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

473 * The authors should provide instructions on data access and preparation, including how
474 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
475 * The authors should provide scripts to reproduce all experimental results for the new
476 proposed method and baselines. If only a subset of experiments are reproducible, they
477 should state which ones are omitted from the script and why.

478 * At submission time, to preserve anonymity, the authors should release anonymized
479 versions (if applicable).

480 * Providing as much information as possible in supplemental material (appended to the
481 paper) is recommended, but including URLSs to data and code is permitted.

482 6. Experimental setting/details

483 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
484 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
485 results?

486 Answer: [Yes]

487 Justification: We carefully included all the settings used for training so that readers can
488 understand and reproduce the results. In case we missed some crucial piece of information,
489 the full code is available for reference.

490 Guidelines:

491 » The answer NA means that the paper does not include experiments.

492 * The experimental setting should be presented in the core of the paper to a level of detail
493 that is necessary to appreciate the results and make sense of them.

494 * The full details can be provided either with the code, in appendix, or as supplemental
495 material.

496 7. Experiment statistical significance

497 Question: Does the paper report error bars suitably and correctly defined or other appropriate
498 information about the statistical significance of the experiments?

14



499

500
501
502
503
504

505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

526

527
528
529

530

532
533

534

535

536
537
538
539
540
541
542

544
545

546

547
548
549

550

Answer: [NA] .

Justification: The results in the paper are not statistical in nature and we do not rely on
statistical significant to evidence our claims. While we show solutions for a randomly
generated set of parameters, we present and discuss average results as well as best and
worst case results, thus providing a complete picture of the spread of results obtained by our
method.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Training and inference times as well as the number of trainable parameters
of the used networks is stated in the paper. Details on the hardware used for training (a
standard commodity desktop PC) are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects or uses any data that could
raise privacy concerns. Given its fairly theoretical and fundamental nature, we also cannot
envision any scenario in which it could cause societal harm.

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research is foundational and addresses the solution of partial differential
equations via machine learning. While we use two benchmarks from computational fluid
dynamics to assess performance, these are not tied to any specific application. We therefore
cannot see any direct pathways how our research could lead to any form of harm.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Because we do not expect any harmful impact of our research, we have not put
any safeguards in place but opted to publish the fully trained models together with all the
code necessary to reproduce our experiments.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:  Or code uses three other software packages, pyTorch (https:
//github.com/pytorch/pytorch), the FNO code by Li et al. (https://
github.com/neuraloperator/physics_informed) and FEnICSx (https://docs.
fenicsproject.org/). Our usage complies with their licenses: a bespoke license for

pyTorch (https://github.com/pytorch/pytorch/blob/main/LICENSE), Apache-2
for FNO and MIT license for FEnICSx.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The provided code comes with in-code comments as well as a README that
provides guidance how to reproduce the results shown in the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Neither crowdsourcing nor human subjects played any role in this research.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Neither crowdsourcing nor human subjects played any role in this research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LMMs played no role in the development of the presented methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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