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Abstract

Machine-learning based techniques like physics-informed neural networks (PINNs)1

and physics-informed neural operators (PINO) are becoming increasingly adept at2

solving even complex systems of partial differential equations (PDEs). Boundary3

conditions can be enforced either weakly by penalizing deviations in the loss4

function or strongly by training a solution structure that inherently matches the5

prescribed values and derivatives. The former approach is easy to implement but6

the latter can provide benefits with respect to accuracy and training times. However,7

previous approaches to strongly enforcing Neumann or Robin boundary conditions8

require a domain with a fully C1 boundary and, as we demonstrate, can lead to9

instability if those boundary conditions are posed on a segment of the boundary10

that is piecewise C1 but only C0 globally. We introduce a generalization of the11

approach by Sukumar, et al. (2021) and a new approach based on orthogonal12

projections that overcome this limitation. The performance of these new techniques13

is compared against weakly and semi-weakly enforced boundary conditions for the14

scalar Darcy flow equation and the stationary Navier-Stokes equations.15

1 Introduction and related work16

Various machine learning-based techniques have been applied successfully to solve systems of partial17

differential equations (PDEs). Most prominently, physics-informed neural networds Raissi, et al.18

(2019) and many variants and extensions Raissi, et al. (2024) learn the solution to a PDE. They19

use (often dense) neural networks combined with loss functions that include the PDE residuals to20

promote physically meaningful solutions and reduce the amount of training data required. Neural21

operators Li, et al. (2020a); Lu, et al. (2021a) were developed to learn solution operators of PDEs.22

Based on the Fourier neural operator (FNO) by Li, et al. (2020b), a physics-informed neural operator23

(PINO) was proposed by Li, et al. (2021). Similar to PINNs it was designed to approximate the24

solution operator of a parametric partial differential equation by minimizing a residual given by the25

differential equation instead of training solely on labeled training data. In the following we utilize the26

FNO framework even though it requires a rectangular domain with a uniform mesh to use the Fast27

Fourier Transform (FFT). To work on more complex geometries we follow the approach by Lu, et al.28

(2021c) and choose the minimum bounding box of the underlying domain as computational domain.29

Alternatively, for more efficient approaches one could utilize the geo-FNO framework proposed by Li,30

et al. (2022) or geometry-informed neural operators Li, et al. (2023).31

Boundary conditions. In physics-informed machine learning, boundary conditions can be enforced32

in two ways. One is to weakly enforce them by adding a residual term that punishes but does not33

prohibit differences to the prescribed values. An extension are penalty methods to treat boundary34

conditions as hard constraints in the optimization Lu, et al. (2021b). However, Toscano, et al.35

(2025); Zeinhofer, et al, (2024) show that these approaches weaken the decay of the generalization36
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error. The alternative is to strongly enforce boundary conditions by constructing the solution in37

a way that it exactly satisfies the boundary conditions. While this is straightforward for Dirichlet38

boundary conditions Berrone, et al. (2023); Toscano, et al. (2025), Neumann- or Robin boundary39

conditions are harder to treat. Techniques to do this include Fourier feature embeddings Straub,40

et al. (2025) or solution structures based on trial solutions using distance functions Manavi, et41

al. (2024); McFall, et al. (2009). Based on the latter idea, Sukumar, et al. (2021) introduce a42

flexible method to strongly enforce boundary conditions and observe that it can improve accuracy for43

PINNs. We will show that their approach is suitable for a certain class of boundary conditions but44

fails when Neumann conditions are prescribed on a boundary that is not C1. They utilize the theory45

of R-functions by Rvachev, et al. (1995) and approximate distance functions to train solutions to46

boundary value problems using PINNs. An approximate distance function satisfies two properties.47

Definition 1.1 (Distance function). Let Γ ⊂ ∂Ω be a boundary section. We call a function ϕ : Ω̄→ R48

a distance function to Γ if it is zero on Γ and positive in Ω̄ \ Γ.49

The other definition is according to Rvachev, et al. (1995).50

Definition 1.2 (Normalized function). Let Γ ⊂ ∂Ω be a boundary section. We call a function51

ϕ̄ : Ω̄→ R a normalized function with respect to Γ if it satisfies ϕ̄ ≡ 0 and ∂ϕ̄
∂ν ≡ 1 on Γ.52

Here, ν denotes the inward pointing normal vector on ∂Ω.53

Definition 1.3 (Approximate distance function). Let Γ ⊂ ∂Ω be a boundary section. We call a54

function ϕ : Ω̄→ R an approximate distance function to Γ, if ϕ is both a distance function to Γ in55

the sense of Definition 1.1 and normalized with respect to Γ in the sense of Definition 1.2.56

As pointed out by Sukumar, et al. (2021), suitable approximate distance functions should be C1.57

Otherwise, the Laplacian of the distance function is unbounded at points where the distance function58

is only C0, which causes issue when solving second-order differential equations. While the exact59

distance function d(x) := minx̃∈∂Ω ||x − x̃|| is an approximate distance function to ∂Ω, it is in60

general not C1. Sukumar, et al. (2021) discuss how to construct approximate distance functions to61

boundaries that consist of piecewise linear segments which are only C0 globally. Their approximate62

distance functions are C1 in the interior but not at the joining points of the segments. This is not63

problem for the Dirichlet conditions or Neumann boundary conditions on the annulus they consider,64

where the boundary is globally C1. However, as pointed out by Gladstone, et al. (2022), the65

non-differentiability of the approximate distance function becomes an issue for Neumann or Robin66

boundary value on boundaries that are not globally C1. We provide a summary of Sukumar, et al.67

(2021)’s approach in Appendix A.68

To illustrate the issue that can arise if ∂Ω /∈ C1, consider a simple Poisson problem with homogeneous69

Neumann boundary condition70

∀(x, y) ∈ (0, 1)2 : −∆u(x, y) = 2π2 cos(πx) cos(πy). (1)

Figure 1 shows resulting solution (middle) as well as the analytical solution (left) and the solution71

using our generalized approach presented in this paper (right) for comparison. The issue in the middle72

figure stems from the emergence of instabilities in the corner of the Laplacian of the approximate73

distance function, cf. Sukumar, et al. (2021, Figure 27).74

Contributions and structure of the paper. We propose two novel approaches to prescribe Robin75

or Neumann boundary conditions on boundaries that are piecewise C1 but only C0 globally. First we76

describe a generalization of the method by Sukumar, et al. (2021) called generalized local solution77

structures or GLSS. The second approach is based on orthogonal projections and we refer to it as OP.78

While it requires certain assumptions on the shape of the boundary, it has fewer unknown functions79

that need to be learned by the network. GLSS and OP are described in § 2.1 for scalar PDEs and in80

§ 2.2 for systems of PDEs. § 3.1 compares GLSS, OP as well as weakly and semi-weakly boundary81

conditions for a scalar PDE, the Darcy flow equation. Finally, § 3.2 compares their performance for a82

standard benchmark from computational fluid dynamics by Turek, et al. (1996) that requires solving83

the stationary Navier-Stokes equations to model flow around a cylinder.84

Limitations. The two new approaches come with some limitations and drawbacks. First, they in-85

crease complexity of implementation compared to weakly enforced boundary conditions, in particular86

if the number of C1-segments that form the boundary is high. Second, while the size of the network87
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(a) Analytical
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(b) Sukumar, et al. (2021)
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(c) GLSS (our approach)

Figure 1: Analytical solution (left) and solution with Sukumar, et al. (2021)’s (middle) and our
generalized approach (right) to strongly enforcing boundary conditions.

as well as training times change only marginally, we do see an increase of inference times of up88

to 30%. Third, the approaches are only tested for Ω ⊂ R2, although generalization to 3D should89

be possible. And lastly, the OP approach only works for boundaries that can be decomposed into90

segments where each of these segments lies in a hyperplane.91

2 Methodology92

Let Ω ⊂ R2 be a computational domain, U ,V Banach spaces, and let A ⊂ V be a set of parameter93

functions. For a a ∈ A we want to find the solution u ∈ U to the boundary value problem94

∀x ∈ Ω : P(u(x),a(x)) = 0, (2a)
∀x ∈ ∂Ω : B(u(x),a(x)) = 0, (2b)

where P is a differential operator and B is a boundary condition operator. The idea by Sukumar,95

et al. (2021) and Rvachev, et al. (1995) is to train suitable functions Ψi such that ũ(Ψ1, . . . ,ΨI)96

minimizes the PDE-loss from (2a) and, by construction, satisfies the boundary condition exactly.97

Definition 2.1 (Solution structure). We call ũ : {Ω̄ → RI} → {Ω̄ → Rn} a solution structure, if98

ũ(Ψ1, . . . ,ΨI) satisfies (2b) for any differentiable functions Ψ1, . . . ,ΨI : Ω̄→ R.99

Physics-informed neural networks (PINNs) and physics-informed neural operators (PINO).100

For a PINO, the aim is to learn the solution operator Gθ : A → U with Gθ(a) = u using a set of101

training parameters Atrain ⊂ A. We denote the trainable parameters of the neural operator as θ. Note102

that Sukumar, et al. (2021) present their approach in the context of physics-informed neural network103

(PINNs) whereas we consider physics-informed neural operators (PINO). However, in the notation104

above, a PINN learns uθ(a
⋆) = Gθ(a

⋆) for a fixed parameter a⋆. That is, it learns one specific105

instance Gθ(a
⋆) solving the boundary problem (2a). By contrast, a PINO trains on a large set of106

parameters to learn to mapping a 7→ Gθ(a). The learned solution operator can be further refined to107

compute the solution for a specific a⋆ through continued training only on this parameter (finetuning).108

In the following, we use the FNO-PINO architecture to learn not a mapping to the PDE solution109

directly, but to the unknown functions in the solution structure (Def. 2.1). With slight abuse of110

notation we will refer to the output of the neural networks still as Gθ(a). Our approaches to enforce111

boundary conditions can be used for either PINN or PINO. To illustrate applicability to PINNs, in112

addition to the regular training and finetuning of the PINO, we consider PINN-like training, i. e.113

learning the solution structure for a specific parameter a⋆ without training the solution operator first.114

This approach is essentially a PINN that uses the FNO architecture instead of dense layers. As we115

focus on boundary conditions, we do not consider data mismatch terms in the loss, but only physics116

losses. There are three ways to ensure that the trained solution u satisfies the boundary condition (2).117

Weak boundary conditions. Here, the neural operator outputs the solution directly, that is u =118

Gθ(a), and satisfying the boundary conditions has to be learned during training. This corresponds to119
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solving the minimization problem120

min
θ

∑
a∈Atrain

(∫
Ω

P((Gθ(a))(x),a(x))2dx+

∫
∂Ω

B((Gθ(a))(x),a(x))2dS(x)
)
. (3)

Exact boundary conditions. Here we construct a solution structure in the sense of Definition 2.1121

and train the functions Ψi such that the parameters satisfy122

min
θ

∑
a∈Atrain

∫
Ω

P(ũ(Gθ(a))(x),a(x))2dx. (4)

for the resulting ũ(Ψ1, . . . ,ΨI).123

Semi-weak / semi-exact boundary conditions. Lastly we consider a solution structure that satisfies124

some boundary conditions but not all. Let B̃ represent the boundary conditions that ũ(Ψ1, . . . ,ΨI)125

does not autoamtically satisfy. The minimization problem solved in training is then posed as a126

combination of the two previous ones127

min
θ

∑
a∈Atrain

(∫
Ω

P(ũ(Gθ(a))(x),a(x))2dx+

∫
∂Ω

B̃((Gθ(a))(x),a(x))2dS(x)
)
. (5)

We use this approach to enforce Dirichlet boundary conditions exactly and Robin conditions weakly.128

2.1 Exact boundary conditions for scalar differential equations129

Starting from Sukumar, et al. (2021)’s approach, the solution consists of two parts, the transfinite130

interpolant by Rvachev, et al. (2001) for the boundary and a remainder term in the domain131

u(x) =

M∑
i=1

wi(x)ui(x)︸ ︷︷ ︸
boundary

+ Ψ(x)

M∏
i=1

ϕi(x)
µi

︸ ︷︷ ︸
domain

, (6)

∀i ∈ {1, . . . ,M} : wi(x) =

∏M
j=1,j ̸=i ϕj(x)

µj∑M
k=1

∏M
j=1,j ̸=i ϕj(x)µj

, (7)

where ϕi is the distance function to Γi. We set µi = 1 if i ∈ ID and µi = 2 if i ∈ IR, where132

ID ∪ IR = {1, . . . ,M} are index sets indicating on which segments Dirichlet or Robin boundary133

conditions are prescribed.134

Sukumar, et al. (2021) require an approximate distance function ϕi in (6), (7) that is both a distance135

function to Γi in the sense of Definition 1.1 and normalized with respect to Γi in the sense of136

Definition 1.2. However, it is not always possible to find such a function ϕi that is C1 everywhere.137

Therefore, we propose to use two different functions instead. The function in (6) and (7), which we138

still denote as ϕi, is only required to be a distance function to Γi. The function in the local solution139

structures ui, which we now denote as ϕ̄i, only needs to be a normalized function with respect to140

Γi. Below, we show two ways to choose the local solution structures ui. For comparison, (35) in141

Appendix A shows Sukumar, et al. (2021)’s choice.142

2.1.1 Generalized local solution structure (GLSS) for piecewise C1 boundary143

For pairwise disjoint boundary segments Γ1, . . . ,ΓM we use the local solution structure144

∀i ∈ ID : ui(x) =

{
gi(x) + ϕ̄i(x)Ψ̃i(x), ϕi has a vanishing gradient,
gi(x), else,

(8)

∀i ∈ IR : ui(x) = Ψi(x)− ϕ̄i(x)∇ϕ̄i(x) · ∇Ψi(x) + ϕ̄i(x) (ci(x)Ψi(x)− hi(x)) , (9)

where the ϕ̄i are normalized with respect to Γi and the Ψ̃i and Ψi are unknown functions to be145

learned. The difference between (8) and (35) is the term ϕ̄i(x)Ψ̃i(x). Without it, if ϕi has a vanishing146

gradient, we would prescribe both ui = gi on Γi and ∂u
∂n = ∂gi

∂n on Γi, which would overdetermine147
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Figure 2: Sketch of intersecting boundary segments.

the problem. The additional term ϕ̄i(x)Ψ̃i(x) avoids that by introducing another unknown function148

to be trained. In Sukumar, et al. (2021)’s approach, the ϕi were required to be normalized with149

respect to Γi and thus could not have a vanishing gradient, therefore this problem did not arise.150

Intersecting boundary segments as sketched in Figure 2 require further modifications to (9), see151

Appendix B for the reasons. Let Γi be a boundary segment with neighbors Γa and Γb, where A and152

B are the intersection points. If Γi is a Robin segment, we define the function Ψi as153

Ψi(x) =
ϕB(x)

ϕA(x) + ϕB(x)
uA(x) +

ϕA(x)

ϕA(x) + ϕB(x)
uB(x) + ϕA(x)ϕB(x)Ψ̄i(x), (10)

where ϕA and ϕB are distance functions to A and B. The functions uA and uB have to be choosen154

according to type of boundary conditions prescribed on Γa and Γb. If Γa or Γb is a Dirichlet segment,155

we set uA = ga or uB = gb. In case of a Robin segment, we introduce a new unknown function ΨA156

or ΨB and define uA = ΨA or uB = ΨB . The term ϕA(x)ϕB(x)Ψ̄i(x) only needs to be included157

if both Γa and Γb are Dirichlet segments. Function Ψ̄i is another unknown to be approximated. We158

show the algorithm for determining local solution structures in the Appendix C].159

2.1.2 Orthogonal projections (OP)160

If all boundary sections with Robin conditions lie in hyperplanes, i.e., for every x ∈ Γi the normal161

vectors n(x) are identical, we can use a simpler approach. We choose the normalized functions ϕ̄i to162

be the exact signed distance function to the hyperplane containing Γi. The local solution structures163

for Robin conditions are set to164

∀i ∈ IR : ui(x) = Ψi(N (x; ϕ̄i))︸ ︷︷ ︸
boundary value

+ ϕ̄i(x)fi(N (x; ϕ̄i))︸ ︷︷ ︸
boundary derivative

, (11)

∀i ∈ IR : fi(x) = ci(x)Ψi(x)− hi(x) with N (x; ϕ̄) := x− ϕ̄(x)∇ϕ̄(x) (12)

The ansatz uses as a generalized Taylor polynomial expansion by Rvachev, et al. (1995). Here, Ψi165

represents the value and fi the normal derivative of ui on Γi. The concatenations Ψi ◦ N ( · ; ϕ̄i) and166

fi ◦ N ( · ; ϕ̄i) are the so called normalizers of Ψi and fi, see Appendix D.167

The first term in (11) determines the value on Γi but has zero derivative whilst the second term is168

zero on Γi but has non-zero derivative equal to the Robin condition. Because ϕ̄i is the exact signed169

distance function,N ( · ; ϕ̄i) is an orthogonal projection mapping its argument onto the corresponding170

hyperplane. Therefore, each Ψi is only evaluated on its corresponding hyperplane and we can set171

∀i ∈ IR : Ψi(x) = g(x) + Ψ̃(x)
∏
k∈ID

ϕk(x), (13)

where g is a function satisfying all Dirichlet conditions. This avoids discontinuities of the transfinite172

interpolant at intersection points since only the single function Ψ̃ needs to be trained.173

2.2 Exact boundary conditions for systems of partial differential equations174

Consider a system of differential equations with solution u : R2 ⊃ Ω→ Rn and boundary conditions175

prescribed on segments Γ1, . . . ,ΓM ⊂ ∂Ω with each Γi being C1. For i ∈ {1, . . . ,M} and x ∈ Γi176

let b(1)i (x), . . . , b
(n)
i (x) be a basis of Rn. Let IJD, IJR ⊂ I × J := {1, . . . ,M} × {1, . . . , n} be177

index sets such that178

∀(i, j) ∈ IJD : ∀x ∈ Γi : b
(j)
i (x) · u(x) = g

(j)
i (x), (14)

∀(i, j) ∈ IJR : ∀x ∈ Γi :
∂
(
b
(j)
i (x) · u(x)

)
∂n

+ c
(j)
i (x) · u(x) = h

(j)
i (x), (15)
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Without loss of generality, we assume that for every (i, j) ∈ IJR and x ∈ Γi the c
(j)
i (x) lies in179

span({b(k)i (x) | (i, k) ̸∈ IJD}). The generic solution structure now becomes180

u(x) =

M∑
i=1

wi(x)ui(x) + [Ψ(1)(x), . . . ,Ψ(n)(x)]T
M∏
i=1

ϕi(x)
µi , (16)

µi =

{
2, ∃j : (i, j) ∈ IJR,

1, else,
(17)

with weights given in (7). Functions ui are expressed as a linear combination of the basis functions181

∀i ∈ I : ui(x) =

n∑
j=1

b
(j)
i (x)u

(j)
i (x). (18)

Proposition 2.2. If the vectors b(1)i (x), . . . , b
(n)
i (x) form a basis of Rn for every x ∈ N(Γi) where182

N(Γi) is an open neighborhood of Γi, we have183

∀(i, j) ∈ I × J : ∀x ∈ Γi : b
(j)
i (x) · u(x) = u

(j)
i (x), (19)

∀(i, j) ∈ I × J
with ϕµi

i having
a vanishing gradient : ∀x ∈ Γi :

∂
(
b
(j)
i (x) · u(x)

)
∂n

=
∂u

(j)
i (x)

∂n
. (20)

Proof. The proof is shown in Appendix E.184

Therefore, every u
(j)
i has to satisfy the corresponding boundary condition. For Dirichlet conditions185

this is achieved by setting186

∀(i, j) ∈ IJD : u
(j)
i (x) =

{
g
(j)
i (x) + ϕ̄i(x)Ψ̃

(j)
i (x), ϕµi

i has a vanishing gradient,
g
(j)
i (x), else,

(21)

for both GLSS and OP. However, the two approaches differ in their treatment of Robin conditions.187

2.2.1 GLSS188

If all boundary segments Γ1, . . . ,ΓM are pairwise disjoint, we set189

u
(j)
i (x) = Ψ

(j)
i (x)− ϕ̄i(x)∇ϕ̄i(x) · ∇Ψ(j)

i (x) + ϕ̄i(x)f
(j)
i (x), (22)

f
(j)
i (x) = c

(j)
i (x) ·

n∑
k=1,(i,k)̸∈IJD

b
(k)
i (x)Ψ

(k)
i (x) − h

(j)
i (x). (23)

for (i, j) ∈ IJR. For (i, j) ∈ I × J \ (IJD ∪ IJR), we define u
(j)
i (x) = Ψ

(j)
i (x). As above, the190

functions Ψ(j)
i have to be modified, if Γi has intersection points with other segments.191

Intersecting boundary segments. We generalize our approach to the system case and let192

Ψ
(j)
i (x) = b

(j)
i (x)·

(
ϕB(x)

ϕA(x) + ϕB(x)
uA(x) +

ϕA(x)

ϕA(x) + ϕB(x)
uB(x)

)
+ϕA(x)ϕB(x)Ψ̄

(j)
i (x).

(24)
The construction of the functions uA and uB is more difficult than in the scalar case. We demonstrate193

how to do this with an example. Consider two segments Γ1 and Γ2 with intersection point P and194

assume for simplicity that u ∈ R3. Let Dirichlet conditions be prescribed on Γ1 with respect to195

the basis vectors b
(1)
1 (P ) = (1, 0, 0)T and b

(2)
1 (P ) = (0, 1, 0)T and on Γ2 with respect to the196

vector b(1)2 (P ) = (1, 1, 0)T . These three basis vectors span a two-dimensional subspace with basis197

(1, 0, 0)T , (0, 1, 0)T . We define uP as a linear combination of this basis and an unknown component198

acting on the orthogonal complement, i.e.199

uP (x) = g
(1)
P

(
1
0
0

)
+ g

(2)
P

(
0
1
0

)
+Ψ

(3)
P (x)

(
0
0
1

)
. (25)

Note that the constants g(1)P and g
(2)
P have to be chosen such that uP satisfies all Dirichlet conditions200

prescribed in P . A complete algorithm can be found in the Appendix C.201
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Table 1: Size, training and inference times of the FNO for the four different approaches to enforce
boundary conditions for the Darcy flow and Navier-Stokes equations.

Trainable parameters Checkpoint size Training time Inference time
(MByte) (min) (sec)

Darcy flow
GLSS 13,132,932 105 182.35 0.0130

OP 13,132,674 105 181.68 0.0120
Semi-weak 13,132,545 105 180.79 0.0104

Weak 13,132,545 105 181.44 0.0101
Navier-Stokes equations

GLSS 13,133,706 105 9.79 0.0298
OP 13,133,190 105 9.76 0.0285

Semi-weak 13,132,803 105 9.49 0.0248
Weak 13,132,803 105 9.62 0.0238

2.2.2 OP202

If all boundary segments Γi lie in hyperplanes and b(j) := b
(j)
1 = · · · = b

(j)
M holds for every203

j = 1, . . . , n, the global solution structure, given by (16) and (18), simplifies to204

u(x) =

n∑
j=1

b(j)(x)

M∑
i=1

wi(x)u
(j)
i (x) + [Ψ(1)(x), . . . ,Ψ(n)(x)]T

M∏
i=1

ϕi(x)
µi . (26)

We choose the local solution structures as205

u
(j)
i (x) =


{
g
(j)
i (x) + ϕ̄i(x)Ψ̃i(x), ϕi has a vanishing gradient
g
(j)
i (x), else

, (i, j) ∈ IJD,

Ψ̄(j)(N (x; ϕ̄i)) + ϕ̄i(x)f
(j)
i (N (x; ϕ̄i)), (i, j) ∈ IJR,

Ψ̄(j)(x), else

(27)

The functions f (j)
i are defined as206

f
(j)
i (x) = c

(j)
i (x) ·

n∑
k=1,(i,k)̸∈IJD

Ψ̄(k)(x)b(k)(x) − h
(j)
i (x), (28)

and the Ψ̄(j) are defined as207

Ψ̄(j)(x) = g(j)(x) + Ψ̃(j)(x)

M∏
i=1,(i,j)∈IJD

ϕi(x). (29)

Each function g(j) is chosen in a way that it satisfies all Dirichlet conditions prescribed with respect208

to the basis vector b(j) and Ψ̃(j) is an unknown function to be approximated.209

Theorem 2.3. The derived solution structure satisfies the boundary conditions (14) and (15) for both210

the GLSS and OP approach.211

Proof. The proof is in Appendix F.212

3 Numerical results213

Details regarding the architecture and training of the network can be found in Appendix G. Table 1214

shows different training-related parameters of the networks arising from the four approaches for the215

two benchmarks. Because the size of the network is dominated by the size of the four convolution216

layers, the number of trainable parameters varies only very slightly. There is no discernible impact217

on the size of the checkpoint files. Training times are stable, with semi-weak boundary conditions218

training the fastest in both cases but the difference to the slowest GLSS is below 3%. Inference219

times increase for GLSS and OP compared to weakly enforced boundary conditions. We see the220

largest increase by about 29% for GLSS for the Darcy flow. Note that training for the Navier-Stokes221

equations is much faster because we train only solutions and no solution operator.222
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Figure 3: Training progress and errors on the validation set for different ways to enforce boundary
conditions for the Darcy flow.

3.1 Darcy Flow223

As scalar test problem, we consider the Darcy flow equation governing fluid flow in porous me-224

dia Darcy (1856). The detailed numerical setup can be found in Appendix H, including the precise225

local solution structures used for GLSS and OP. Figure 3 shows training loss (upper) and validation226

error (lower). The left column shows the loss and error curve for the PINN-like training. Both227

these curves are the average loss and l2-error over the 100 parameters that the PINO was trained on228

individually in PINN-style. The middle column shows the loss and error curve for PINO trained on229

400 parameters. The right column shows the loss and error curve for finetuning, Dotted lines indicate230

the loss and error value at the very beginning of the finetuning.231

All cases train reasonably well, reducing the loss function by at least one order of magnitude (OP232

for PINN-like training) and two or more orders in most cases. Losses are not indicative of achieved233

validation errors. For the PINN-style training, OP and GLSS are more accurate than weak or semi-234

weak boundary conditions. The same holds true for finetuning, where OP is slightly more accurate235

than GLSS. For operator training, OP is more accurate than GLSS which performs on par with236

semi-weak and better than weak boundary conditions. In summary, for the Darcy flow, even though237

losses do not necessarily decay faster, OP and GLSS in almost all cases produces more accurate238

solutions than weak or semi-weak boundary conditions. Table 2 shows the average l2-error plus239

standard deviation (left column), best case l2-error (middle column) and worst case l2-error (right240

column). For operator training and finetuning, OP is the most accurate approach whilst GLSS is the241

most accurate for PINN-like training. For best case errors, shown in the middle column, there is no242

clear benefit from the two new approaches However, there are substantial gains in accuracy from OP243

and GLSS for the worst case in PINN-like training and finetuning and from OP in operator training.244

Plots of the median, best- and worst-case solutions can be found in Appendix I.

Table 2: l2-errors of the predicted u against the analytical solution for the four different approaches
to enforce boundary conditions for the Darcy flow problem.

Operator training Finetuning PINN-like training

Average Best Worst Average Best Worst Average Best Worst

GLSS 0.03±0.04 0.004 0.27 0.01±0.01 0.003 0.06 0.02±0.02 0.005 0.08
OP 0.02±0.01 0.003 0.06 0.01±0.01 0.002 0.04 0.04±0.02 0.006 0.11
S-Weak 0.03±0.03 0.002 0.17 0.03±0.02 0.003 0.10 0.09±0.03 0.021 0.17
Weak 0.05±0.05 0.008 0.28 0.04±0.05 0.003 0.26 0.13±0.14 0.008 0.64

245
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Figure 4: Training loss (upper) and validation error in the u (upper middle) and v (lower middle)
velocity component and pressure p (lower) for the Navier-Stokes equations.

3.2 Navier-Stokes equations246

We use the standard benchmark by Turek, et al. (1996), simulating 2D stationary flow through a247

channel and across a cylinder. The details of the problem setup can be found in Appendix J, including248

the precise form of the local solution structures used for GLSS and OP.249

Figure 4 shows the training losses in the upper figure and the errors in the velocity components u250

and v and the pressure p against the numerically computed reference solution. After 4000 epochs,251

losses for GLSS, OP and weak boundary conditions are similar but the loss for semi-weak remains252

somewhat higher. In terms of errors, we again see a clear benefit in terms of accuracy from GLSS and253

OP as they outperform weak and semi-weak boundary conditions in all three solution components.254

To further assess accuracy we consider three practically relevant diagnostic quantities: pressure255

difference, drag coefficient and lift coefficient, see Turek, et al. (1996) for their definition. Table 3256

shows the values computed from the PINO using the four different ways to enforce boundary257

conditions and, in brackets, the relative error against the reference values by Nabh (1998). We258

again see a noticeable increase in accuracy from GLSS and OP over weak or semi-weak boundary259

conditions. Pressure difference and drag coefficient are predicted with high accuracy. While relative260

errors for the lift coefficient are large, they are still orders of magnitude smaller than for the weak or261

semi-weak approach.

Table 3: Physically important parameters computed from the Navier-Stokes solution. The reference
values are provided by Nabh (1998) with 9 digit accuracy and we rounded them to 4 digits. The
relative error against those reference values is shown in brackets.

Pressure difference Drag coefficient Lift coefficient

GLSS 0.1150 ( 2.1%) 5.5336 ( 0.8%) -0.0058 ( 155%)
OP 0.1145 ( 2.6%) 5.5366 ( 0.8%) 0.0024 ( 77%)
Semi-weak 0.0678 (42.3%) 3.8221 (31.5%) -0.3759 (3646%)
Weak 0.0902 (23.2%). 4.6633 (16.4%) 0.3849 (3531%)

Reference values 0.1175 5.5795 0.0106

262
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• If the authors answer NA or No, they should explain why their work has no societal566

impact or why the paper does not address societal impact.567

• Examples of negative societal impacts include potential malicious or unintended uses568

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations569

(e.g., deployment of technologies that could make decisions that unfairly impact specific570

groups), privacy considerations, and security considerations.571

• The conference expects that many papers will be foundational research and not tied572

to particular applications, let alone deployments. However, if there is a direct path to573

any negative applications, the authors should point it out. For example, it is legitimate574

to point out that an improvement in the quality of generative models could be used to575

generate deepfakes for disinformation. On the other hand, it is not needed to point out576

that a generic algorithm for optimizing neural networks could enable people to train577

models that generate Deepfakes faster.578

• The authors should consider possible harms that could arise when the technology is579

being used as intended and functioning correctly, harms that could arise when the580

technology is being used as intended but gives incorrect results, and harms following581

from (intentional or unintentional) misuse of the technology.582

• If there are negative societal impacts, the authors could also discuss possible mitigation583

strategies (e.g., gated release of models, providing defenses in addition to attacks,584

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from585

feedback over time, improving the efficiency and accessibility of ML).586

11. Safeguards587

Question: Does the paper describe safeguards that have been put in place for responsible588

release of data or models that have a high risk for misuse (e.g., pretrained language models,589

image generators, or scraped datasets)?590

Answer: [NA]591

Justification: Because we do not expect any harmful impact of our research, we have not put592

any safeguards in place but opted to publish the fully trained models together with all the593

code necessary to reproduce our experiments.594

Guidelines:595

• The answer NA means that the paper poses no such risks.596

• Released models that have a high risk for misuse or dual-use should be released with597

necessary safeguards to allow for controlled use of the model, for example by requiring598

that users adhere to usage guidelines or restrictions to access the model or implementing599

safety filters.600

• Datasets that have been scraped from the Internet could pose safety risks. The authors601

should describe how they avoided releasing unsafe images.602
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• We recognize that providing effective safeguards is challenging, and many papers do603

not require this, but we encourage authors to take this into account and make a best604

faith effort.605

12. Licenses for existing assets606

Question: Are the creators or original owners of assets (e.g., code, data, models), used in607

the paper, properly credited and are the license and terms of use explicitly mentioned and608

properly respected?609

Answer: [Yes]610

Justification: Or code uses three other software packages, pyTorch (https:611

//github.com/pytorch/pytorch), the FNO code by Li et al. (https://612

github.com/neuraloperator/physics_informed) and FEnICSx (https://docs.613

fenicsproject.org/). Our usage complies with their licenses: a bespoke license for614

pyTorch (https://github.com/pytorch/pytorch/blob/main/LICENSE), Apache-2615

for FNO and MIT license for FEnICSx.616

Guidelines:617

• The answer NA means that the paper does not use existing assets.618

• The authors should cite the original paper that produced the code package or dataset.619

• The authors should state which version of the asset is used and, if possible, include a620

URL.621

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.622

• For scraped data from a particular source (e.g., website), the copyright and terms of623

service of that source should be provided.624

• If assets are released, the license, copyright information, and terms of use in the625

package should be provided. For popular datasets, paperswithcode.com/datasets626

has curated licenses for some datasets. Their licensing guide can help determine the627

license of a dataset.628

• For existing datasets that are re-packaged, both the original license and the license of629

the derived asset (if it has changed) should be provided.630

• If this information is not available online, the authors are encouraged to reach out to631

the asset’s creators.632

13. New assets633

Question: Are new assets introduced in the paper well documented and is the documentation634

provided alongside the assets?635

Answer: [Yes]636

Justification: The provided code comes with in-code comments as well as a README that637

provides guidance how to reproduce the results shown in the paper.638

Guidelines:639

• The answer NA means that the paper does not release new assets.640

• Researchers should communicate the details of the dataset/code/model as part of their641

submissions via structured templates. This includes details about training, license,642

limitations, etc.643

• The paper should discuss whether and how consent was obtained from people whose644

asset is used.645

• At submission time, remember to anonymize your assets (if applicable). You can either646

create an anonymized URL or include an anonymized zip file.647

14. Crowdsourcing and research with human subjects648

Question: For crowdsourcing experiments and research with human subjects, does the paper649

include the full text of instructions given to participants and screenshots, if applicable, as650

well as details about compensation (if any)?651

Answer: [NA]652

Justification: Neither crowdsourcing nor human subjects played any role in this research.653

Guidelines:654
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• The answer NA means that the paper does not involve crowdsourcing nor research with655

human subjects.656

• Including this information in the supplemental material is fine, but if the main contribu-657

tion of the paper involves human subjects, then as much detail as possible should be658

included in the main paper.659

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,660

or other labor should be paid at least the minimum wage in the country of the data661

collector.662

15. Institutional review board (IRB) approvals or equivalent for research with human663

subjects664

Question: Does the paper describe potential risks incurred by study participants, whether665

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)666

approvals (or an equivalent approval/review based on the requirements of your country or667

institution) were obtained?668

Answer: [NA]669

Justification: Neither crowdsourcing nor human subjects played any role in this research.670

Guidelines:671

• The answer NA means that the paper does not involve crowdsourcing nor research with672

human subjects.673

• Depending on the country in which research is conducted, IRB approval (or equivalent)674

may be required for any human subjects research. If you obtained IRB approval, you675

should clearly state this in the paper.676

• We recognize that the procedures for this may vary significantly between institutions677

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the678

guidelines for their institution.679

• For initial submissions, do not include any information that would break anonymity (if680

applicable), such as the institution conducting the review.681

16. Declaration of LLM usage682

Question: Does the paper describe the usage of LLMs if it is an important, original, or683

non-standard component of the core methods in this research? Note that if the LLM is used684

only for writing, editing, or formatting purposes and does not impact the core methodology,685

scientific rigorousness, or originality of the research, declaration is not required.686

Answer: [NA]687

Justification: LMMs played no role in the development of the presented methodology.688

Guidelines:689

• The answer NA means that the core method development in this research does not690

involve LLMs as any important, original, or non-standard components.691

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)692

for what should or should not be described.693
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