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Abstract

Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-
Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning
(RL)-based large-scale training for automated theorem proving. Surprisingly,
we discover that even without any training, careful neuro-symbolic coordination
of existing off-the-shelf reasoning models and tactic step provers can achieve
comparable performance. This paper introduces DSP+, an improved version of
the Draft, Sketch, and Prove framework, featuring a fine-grained and integrated
neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt
reasoning models to generate concise natural-language subgoals to benefit the
sketch phase, removing thinking tokens and references to human-written proofs;
(2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the
proving phase, and sketch lines containing syntactic errors are masked according
to predefined rules; (3) In the proving phase, we tightly integrate symbolic search
methods like Aesop with step provers to establish proofs for the sketch subgoals.
Experimental results show that, without any additional model training or fine-
tuning, DSP+ solves 80.7%, 32.8%, and 24 out of 644 problems from miniF2F,
ProofNet, and PutnamBench, respectively, while requiring lower budget compared
to state-of-the-art methods. DSP+ proves imo_2019_p1, an IMO problem in
miniF2F that is not solved by any prior work. Additionally, DSP+ generates
proof patterns comprehensible by human experts, facilitating the identification of
formalization errors; For example, eight wrongly formalized statements in miniF2F
are discovered. Our results highlight the potential of classical reasoning patterns
besides the RL-based training. Code and results are here: https://github.com/
microsoft/DSP-Plus!
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Figure 1: The best achieved results and the inference tokens used of top solutions on miniF2F-test.
DSP+, with inference only, can achieve comparable accuracy using fewer tokens.
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1 Introduction

Recently, a trend has emerged to leverage reinforcement learning (RL)-based large-scale training
to improve the theorem proving capability of large language models (LLMs). Projects such as
AlphaProof [[1]], DeepSeek-Prover-V2 [2]], Kimina-Prover-Preview [3]], BFS-Prover [4], Goedel-
Prover [3]], STP-Prover [6l], and many others [7, 18, |9, [10, [11]] are all dedicated to collecting or
synthesizing large-scale formal statements and proofs, which are then used for RL-based LLM
training. Coupled with significant human effort and computational resources, remarkable progress
has been achieved in challenging benchmarks like miniF2F [12].

Unlike the current trend, the prior Draft, Sketch and Prove (DSP) [13] relies on an inference-only
framework with three phases to imitate the classical human reasoning patterns of informal-to-formal
[14], achieving state-of-the-art at its publication time. Despite the insight, DSP and its subsequent
development [[15} 5] were limited by the insufficiency of the frontier LLMs and the symbolic search,
thus being significantly outperformed by current top solutions, as shown in Figure [T}

In this work, we surprisingly find that by carefully coordinating existing reasoning models and
tactic step provers, the DSP framework can be revived as DSP+ to achieve notably higher proving
accuracy that is even comparable to current state-of-the-art models tailored for theorem proving.
DSP+ achieves this through fine-grained and integrated neuro-symbolic enhancements based on three
intuitions, which differ from the coarse-grained, phase-independent, and neural-symbolic workflow
in the original DSP: (1) Reasoning models generally have a stronger math reasoning capability than
non-reasoning models, which can be prompted to generate concise drafts to benefit the sketch phase,
with thinking tokens filtered; (2) LLMs can specify hypotheses in the sketch to benefit the proving
phase, and most sketch lines after autoformalization are syntactically correct while incorrect ones can
be “masked” by simple rules (e.g., replaced with sorry or removed directly) to sidestep obstacles in
the workflow; (3) Sketch subgoals can be completed using both symbolic search and a weaker step
prover like BFS-Prover [4] with an efficient built-in integration.

We instantiate DSP+ in Lean 4 (version v4.17.0-rc1) [16]. In the default setting, DSP+ uses three open-
sourced models, QwQ-32B [17], DeepSeek-V3-0324 [[18], and BFS-Prover [4]] for draft (without
human informal proof), sketch, and proving phases, respectively. And DSP+ can achieve comparable
accuracy on benchmarks of miniF2F-test (79.5%), ProofNet-test (32.8%), and PutnamBench (24/644),
under the search budget of 1024, 128, 128 workflow attempts, respectively. The miniF2F accuracy
increases to 80.7% when replacing QwQ-32B with DeepSeek-R1-671B [[19]], even with fewer total
inference tokens spent than those of Kimina-Prover-Preview-72B, as shown in Figure[I]

We also have ablation studies to show that with an ensemble setting of DSP+, namely with different
combinations of reasoning models, the accumulative accuracy can be further boosted as 83.6%,
33.9%, 25/644 for miniF2F, ProofNet, and PutnamBench, respectively, and from 40% to 45% for
miniF2F/IMO. As shown in Figure [T| and Table [T} the accuracy of DSP+ is either on par with or
outperforms prior arts [2} 13} 14} 5, 16| [7, 8| [10]], especially given the same search budget. Notably, DSP+
proves imo_2019_p1, an IMO problem in miniF2F which is not solved by any prior work (illustrative
DSP+ workflow in Appendix [H). Moreover, we independently find eight problem statements of
miniF2F are wrongly formalized by examining the inconsistent behaviors of DSP+ in subgoal proving
(details in Appendix [F). We ascribe the power of DSP+ to the synergy of reasoning models, step
provers, symbolic search, and the careful neuro-symbolic coordination. Our findings highlight the
overlooked potential of existing reasoning models and suggest an efficient, complementary approach
to the prevailing trend of RL-based training in theorem proving.

In summary, the contributions of the paper are: (1) We revisit the DSP framework, identifying its
underestimated potential and incorporating fine-grained and integrated neuro-symbolic enhancements
into its three phases; (2) We develop a system that facilitates flexible and efficient model coordination
and ensemble settings, boosting the performance of theorem proving; (3) We conduct comprehensive
experiments across various benchmarks to demonstrate the efficacy, efficiency, and synergy of DSP+.

2 Background and Related Work

Reasoning Models. Reasoning models, like OpenAl o-series, DeepSeek-R1 [19]], QwQ-32B [17],
are emerging LLMs to demonstrate strong reasoning capability with thinking tokens after a training
process of reinforcement learning. For competition-level mathematics such as AIME, which test for



math word problems, reasoning models are achieving scores comparable to top human competitors.
However, proving problems that require rigor are still challenging for reasoning models [20} 21]].

Theorem Proving with LL.Ms. LL.Ms’ limitation on proving problems necessitates another strand
of recent work, which focuses on the proving capability of LLMs with the automatic verification
of theorem provers such as Lean [[16]], Isabelle [22]], and Coq [23]]. In these approaches, LLMs are
required to generate a formal proof, which consists of factics resembling human-written proof steps.
The search space for a single tactic is infinite and the tactic is required to link to theorems or axioms
in the underlying library, both amplifying the challenges for theorem proving.

Much effort from the community focuses on the foundational setup for theorem proving [24} 25I],
such as statement and proof synthesis [26, 27, 28} 129,130} 1311 [32]], efficient framework and algorithms
(331134, 1351136} 137,138, 137, [15} [39], proof reuse and repair [40l 41]]. and library search [42,43]].

Based on these foundational work, recent projects such as AlphaProof [1], DeepSeek-Prover-V2 [2],
and Kimina-Prover-Preview [3], and many others [4} 15} 6} 819, [10L [11} 44] build or synthesize large-
scale formal corpora for expert iteration, train with large-scale methods such as Rejection Sampling
Fine-tuning (RFT) [45] and RL, and scale inference using techniques like Best First Search (BFS)
and MCTS, leading to strong results on miniF2F [12], ProofNet [46], and PutnamBench [47].

Symbolic Search. Symbolic search is an automatic mechanism widely used in theorem proving,
which relies on pattern matching of pre-defined rules. It aims to better leverage the theorem libraries
or tactics built upon axioms for vertical or even general domains. Symbolic search is especially useful
to close the trivially correct statements or subgoals (e.g., lemmas with have) without the tedious
effort for the axiom-level rigor. For example, tactics in Lean like 1inarith can generally prove
statements related to linear equations and norm_num for numeric calculations, while simp and rfl
can work for definitional conversions within a certain computation budget.

And one of the most universal tactics for symbolic search in Lean is aesop [43]. Aesop serves as a
white-box and highly customizable proof search engine, which allows fine-grained control over the
search space and the prioritization of tactics. In Aesop, each step of the search takes a proof state as
input and outputs a tactic, through a general tree-based search with the pre-defined prioritization of
theorem or tactic candidates. The search process can be configured with a maximum computation
budget for a valid proof, which is similar to the timeout in sledgehammer [48] of Isabelle.

Draft, Sketch and Prove (DSP). To address the challenges of theorem proving, the DSP framework
[13] is introduced by synergizing neural and symbolic patterns: (1) to leverage LLMs (i.e., the neural)
trained with extensive mathematics corpus for the “intuition” of proof draft; (2) to leverage the
symbolic search for bridging the rigor gap between the intuition and the formal proof. Correspond-
ingly, three phases are proposed in a course-grained and non-integrated setting, with first two as
neural and the last as symbolic while no cross-phase optimization: The draft phase is to generate
a natural language proof draft either by referring to human proof or by directly prompting LLMs,
which initiates a constrained search. The sketch phase is to generate a hierarchy of subgoals in
formal language (i.e., sketch) with omitted proving details, which is to leverage LLMs’ capability
of autoformalization [27]] that interprets the draft from informal to formal. The proving phase is to
fulfill the proving details omitted in the sketch by querying the symbolic search to automatically
assemble the underlying tactics and theorems. DSP has inspired a sequence of work [49] 50} 40] with
its intuitive neural-symbolic synergy. However, as shown in Figure [T} DSP has been surpassed by a
wide margin by all the current models, which represent the new era of RL-based large-scale training.

Interestingly, the performance of DSP can be degraded with different settings. As discussed in [15}15]],
their re-implementations of DSP in Lean 4 can respectively prove at most 28% and 31% problems of
miniF2F with LLMs like OpenAl-ol and DeepSeek Prover v1.5 [10], showing an accuracy drop w.r.t.
the DSP in Isabelle, due to the limited search capability of aesop compared to that of sledgehammer.

3 DSP+

In this section, we present DSP+, a DSP framework with fine-grained and integrated neuro-symbolic
enhancements, where each phase is optimized by both neural models and symbolic rules in considera-
tion of itself and other phases. This is different from the original DSP with draft and sketch phases as
neural and the proving phase as symbolic, and with no cross-phase optimizations. For convenience,
we use the draft model, the sketch model, and the proving model to represent the LLMs used in the
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Figure 2: The workflow of DSP+ consists of three phases. Every phase is enhanced with neural
models and symbolic rules in consideration of itself and other phases.

corresponding phases. Each of these can be instantiated with any suitable LLM. We provide one-shot
prompts for draft models and sketch models, as listed in Appendix |G} The workflow, as illustrated in
Figure[2] will be explained in the following paragraphs.

3.1 Draft Phase with Thinking and Conciseness

As input to DSP+, we directly provide the formal statement to the draft model, instantiated in our
work as a reasoning model (e.g., QwQ-32B, DeepSeek-R1). Reasoning models are widely considered
more powerful in math reasoning as they can perform deep reasoning, self-reflection, and advanced
pattern recognition within the <think> tokens, enabling more accurate outputs after thinking.

Besides filtering out the thinking tokens, we also prompt the draft model to produce concise outputs,
focusing only on the key formulas of proof steps. This prevents overloading the sketch phase, which
may otherwise suffer from the “lost in the middle” [51] effect. Furthermore, we find it even more
important to balance the format and flexibility of model output, as discussed in Section

3.2 Sketch Phase with LLM Hints and Error Line Masking

We instruct the sketch model to autoformalize [27]] the concise informal proof provided by the draft
model into a hierarchy of subgoals in formal language, but without the proof for any subgoal. The
sketch model is required to explicitly specify the potential supporting hypotheses for each subgoal
using a format like (prove_with [h2]), as shown in Figure[2] This format acts as structured hints
to the proving model. We define prove_with as a pseudonym for Lean’s sorry, which denotes that
a proposition has not yet been proved but is temporarily assumed to be true; in our implementation,
it is augmented with explicit hypothesis usage. The explicit hypothesis specification benefits the
proving phase, as we observe that both proving models and symbolic search degrade when faced with
overly cluttered subgoals. This is different from DeepSeek-Prover-V2 [2], which leverages either all
or none hypotheses in subgoal proving.

The sketch model may still fail to produce a syntactically valid sketch. To address this issue, we
introduce an automatic iterative repair process, named error line masking. This process first parses
the generated Lean code into a hierarchical tree structure based on indentation, after which the Lean
compiler identifies all erroneous lines. For each detected error, we prune the corresponding node and
its entire subtree from the code tree, optionally appending sorry at the original position. We aim to
sidestep the re-execution of the sketch phase and retain sketch lines as much as possible, which is
different from the proof truncation in DeepSeek-Prover-V1.5 [10].

3.3 Proving Phase with Step Prover and Tree Search

For the proving phase to fulfill subgoal proof, we further enhance the symbolic engine with a proving
model for a more heuristic search, as envisioned in [13]]. Especially, we leverage a step prover (e.g.,
BFS-Prover [4], InternLM2.5-StepProver [52]]), which predicts the next tactic given a proof state. We



tightly integrate the step prover with search-based approaches like tree search (e.g., Aesop), in which
each node in the tactic tree is generated either by the default symbolic engine or by the step prover.
This built-in integration can facilitate the independent search for the proof tactics to eliminate every
prove_with and sorry in the sketch given the corresponding proof state (details in Section [4).

4 Implementation

In this section, we briefly introduce how we instantiate DSP+, with further details in Appendix [A]
We choose Lean 4 (v4.17.0-rc1) as the formal language and Aesop [43] for the tree search. We use
QwQ-32B [17], DeepSeek-V3-0324 [18]], and BFS-Prover [4] as our default setting for the draft,
the sketch, and the proving models, respectively. To enable the interaction between BFS-Prover
and Aesop, we incorporate the Lean Copilot [34] framework, which enables a built-in integration of
LLM with Aesop’s internal logic and circumvents the tedious processes of converting proof states to
theorems or external parsing. We also configure Aesop’s search space to include tactics proposed by
BFS-Prover as well as a few common tactics (e.g., Linarith), similar to the configuration in [13]].

We set the configuration of QwQ-V3-BFS as default according to our observations in early toy
experiments, regarding the capability of math reasoning, instruction following, and subgoal proving.
In fact, through our later ablation studies (Section [6.3)), the default setting is not the optimal given
the output randomness and the vast design space. Therefore, for one problem, the workflow of
DSP+ can be executed for k times to fully explore the possibility of LLM generation for proving,
which contributes to the pass@k accuracy in this work. In addition, besides the default setting,
we introduce the ensemble setting where different model combinations are used one by one for
solving one problem until proven or timeout. For the setting of DSP+ ensemble, DSP+ with different
configurations of reasoning models and different pass@¥k (e.g., pass@ 1024, pass@128, pass@32)
are attached after the default setting for solving one problem. We find that with a moderate search
budget, the ensemble setting can further increase the accuracy for solving challenging problems (e.g.,
IMO, Putnam) given the diversity from different combinations.

We also optimize DSP+ regarding the modularity and the efficiency, which can benefit both the default
and the ensemble settings. For modularity, DSP+ guarantees easy replacement of reasoning models
where users only need to update a prompt template according to the LLM interface and serve the
model via vVLLM [53]]. Besides modularity, DSP+ also guarantees efficiency with a pipelined and
buffered process for theorem proving: each phase loads the results of the previous phase in the buffer
and sends processed results to the buffer for the next phase. And the buffered results are shared for
different model combinations to circumvent re-processing.

5 Evaluation

5.1 Experimental Setup

QwQ-32B, DeepSeek-V3-0324, and other models. We use the APIs provided by Microsoft Azure Al
Foundry. For QwQ-32B, parameters are set as temperature = 0.6, top-p = 0.95, and max_tokens
= 32,768. For DeepSeek-V3-0324, the temperature is set to 0.7 with other parameters left as
default. We use similar settings for other models.

BFS-Prover-7B. We deploy 8 x40GB A100 GPUs with one model per GPU using vLLM. The
sampling parameters are temperature = 1.1, max_tokens = 64, top-p=1,n=8.

Tree Search. Tree search is performed on a 96-core CPU hosted on Microsoft Azure, with constraints
including a beam width of 4 (selected from 8 sampled tactics) , a tree size limit of 64, and up to 8
search attempts for each subgoal. For details on the sample budget during tree search, please refer
to Appendix [B] Each proof search and verification process is limited to 2400 seconds. The search
process terminates if no available targets, search budget runs out, or the time limit is exceeded. All
proofs are verified using Lean 4 (v4.17.0-rc1) with the corresponding Mathlib4 [54]].

5.2 Benchmarks

miniF2F [12]]. The miniF2F benchmark assesses formal reasoning capabilities in high school mathe-
matics, featuring problems from competitions including AMC, AIME, and IMO. This benchmark



contains balanced splits of 244 validation and 244 test problems, with a curricular focus on algebraic
reasoning and number theory. We use the Lean 4 version of the dataset for evaluation.

ProofNet [46]. Designed for undergraduate-level theorem proving, ProofNet aggregates 371 prob-
lems (185 validation, 186 test) spanning core mathematical disciplines: real/complex analysis,
linear/abstract algebra, and topology. Similar to miniF2F, we use Lean 4 version for evaluation.

PutnamBench [47]. PutnamBench provides 1,709 theorem-proving challenges of Putnam Mathe-
matical Competition problems (1962-2023). This benchmark features cross-lingual formalizations
aggregated across multiple proof assistants, with our evaluation focusing on the Lean 4 subset, which
consists of 644 problems at the time of our evaluation and is extended to 658 problems later.

5.3 Results

Main Results. Table [T] summarizes the performance of top solutions on the miniF2F-test, ProofNet,
and PutnamBench. Due to page limit, we move details into Appendix [C} As shown in the table,
all top solutions, except DSP+, are models with RL-based large-scale training and categorized as
either whole-proof generation or tree search, which complete the proof with a single-pass and with
interactions between theorem provers, respectively. By contrast, DSP+ is a hybrid of whole-proof
(draft and sketch phases) and tree search (proving phase). With 1024 workflow attempts, DSP+
achieves performance comparable to Kimina-Prover-Preview-72B, which is the frontier model trained
extensively via RFT and RL, and evaluated at pass@8192 for miniF2F-test. DSP+ also spends fewer
inference tokens compared to Kimina-Prover-Preview-72B, as discussed in Section @

Results of DSP+ ensemble. Furthermore, the accumulative performance of DSP+ ensemble ap-
proaches the state-of-the-art accuracyﬂ achieved by DeepSeek-Prover-V2-671B for the three bench-
marks under the same sample budget, outperforming all other solutions. As detailed in Table 2] the
combination of configurations can prove miniF2F-test problems not found by the default configura-
tion, which contributes to the accumulative accuracy. For PutnamBench and ProofNet, our ensemble
setting only uses 32 additional workflow attempts, with DeepSeek-R1 as the draft model and other
phases intact, resulting in an improved performance on both benchmarks.

Results of miniF2F/IMO. As shown in Table[I} we also compare DSP+ and other solutions with
available results on the IMO subset of the miniF2F benchmark. Our solution, DSP+ and DSP+
ensemble, can respectively prove 40% and 45% IMO problems with a moderate search budget, on par
with Kimina-Prover-Preview-72B and DeepSeek-Prover-V2-671B of pass@8192. Our solution also
finds a proof for imo_2019_p1, an IMO problem not solved previously, as detailed in Appendix [H]

Case Studies. We have included the success cases in Appendix [Jj which show how DSP+ uses
Jensen’s inequality for a high school competition problem and solves the real analysis problem of
the Putnam exam, respectively. We also find the proofs of DSP+ different from those of DeepSeek-
Prover-V2, Kimina-Prover-Preview, and BFS-Prover, with details in Appendix [M]

6 Further Analysis

In this section, we will answer four research questions (RQs) with ablation and case studies:
RQ1 Synergy. Does DSP+ synergize reasoning models, step provers, and symbolic search?
RQ2 Effectiveness. Does DSP+ benefit from our neural-symbolic enhancements?

RQ3 Robustness. Does DSP+ apply to various settings of LLMs and configurations?

RQ4 Efficiency. Does DSP+ spend more inference tokens than those with large-scale training?

For the rest of the section, unless specified, we use the default setting as the baseline and set the
maximum workflow attempts as 128. And we focus on miniF2F-test for the ablation experiments. In
every curve graph, we plot the number of solved problems at different workflow attempts for a stable
comparison and include the pass@ 128 accuracies in the legends for clarity.

*Issues of Lean 4 v4.9.0-rc1 may negatively impact the accuracy of DeepSeek-Prover-V2 [56].



Table 1: Performance of top solutions across benchmarks (best results among the top 5 in bold). DSP+
achieves performance comparable to frontier models (e.g., Kimina-prover, DeepSeekProver-V2).

Type \ Solution (Model Size) Sample Budget miniF2F-test ProofNet PutnamBench miniF2F/IMO
32 57.6% 15.2% 6/644 -
Goedel-Prover-7B [3] 512 62.7% - 7/644 -
25600 64.7% - - -
3200 65.0% 23.9% 8/644 -
STP-TBI6] 25600 67.6% 26.9% - -
1 52.5% - - -
. . 32 63.1% - - -
B} Kimina-Prover-Preview-7B [3] 192 - _ 10/644[55] _
S 1024 70.8% - - -
<
g 1 52.9% - - -
3 8 65.2% - - -
5 Kimina-Prover-Preview-72B [3] 32 68.9% - - -
g, 1024 77.9% - - -
5 8192 80.7 % - - 40%
S
S 1 58.6% - - -
32 75.6% 23.0% 11/658 -
DeepSeek-Prover-V2-7B [2] 128 — 25.4% 15/658 -
1024 79.9% 29.6% 23/658 -
8192 82.0% - - -
1 61.9% - - -
32 82.4% 30.5% 22/658 -
DeepSeek-Prover-V2-671B [2] 128 - 33.6% 33/658 -
1024 86.6% 37.1% 49/658 -
8192 88.9% - - 50%
2 x 32 x 600 50.7% - 6/640 -
InternLM2.5-StepProver-7B [§] 256 % 32 % 600 65.9% 27.0% -~ B
= 4 x 6400 59.6% 25.3% - -
§ % DeepSeek-Prover-V1.5-RL-7B + RMaxTS [10] 32 % 6400 63.5% - B B
L
@ ‘ HunyuanProver-7B [7] 600 x 8 x 400 68.4% - - 20%
2048 x 2 x 600 70.8% - - 25%
‘ BFS-Prover-7B [4] accumulative 73.0% - - -
DSP (GPT-4o, Isabelle) 10 - - 4/640 [55] -
DSP (Minerva-540B, Isabelle) [13] 100 38.9% - - 5%
1 52.5% - - -
- DSP+ (QwQ-32B, V3-671B, BFS-Prover-7B) 8 68.4% _ _ _
5 (V3: shorthand for DeepSeek-V3-0324.) 32 71.3% 24.7% 15/644 -
% | (R1: shorthand for DeepSeek-R1.) 128 74.2% 32.8% 24/644 -
1024 79.5% - - 40%
DSP+ (QwQ-32B, QwQ-32B, BFS-Prover-7B) 1024 79.1% - - -
DSP+ (R1-671B, V3-671B, BFS-Prover-7B) 1024 80.7 % - - -
DSP+ (ensemble) accumulative 83.6% 33.9% 25/644 45%

6.1 The Synergy in DSP+

Ablation of Components. Figure[3|presents the results of different configurations, where one or more
components are removed from the DSP+ framework. All variants exhibit performance degradation
compared to the default “DSP+ (full)” setting. To further clarify each configuration, we take the
“Draft + Sketch” setting as an example. In this setup, the Sketch model is directly prompted to output
the final, complete Lean code directly given the natural language draft, which means it produces
tactic-level code without any "sorry" placeholders. The remaining ablation settings are constructed
in a similar manner. The “Sketch + Prove” setting shows a slight performance drop, benefiting
from DeepSeek-V3’s strong capability of one-step sketch generation. Interestingly, the “Draft +
Sketch” configuration solves fewer problems than “DeepSeek-V3 only”, highlighting the critical role
of step provers within DSP+. Finally, the “BFS-Prover with Aesop” variant achieves much lower
performance than reported in [4], primarily due to the constrained computational budget described in

Section[5.11

Synergy from Ensemble Setting. The synergy also manifests given the diversity of solved problems
with different configurations. As listed in Table[2] we choose three configurations of draft and sketch
models for pass@1024 and three others for pass@ 128, with the proving model fixed as BFS-Prover.
The sample budgets are allocated according to their potential in toy experiments. And we find that
different model combinations can cover different solved problems for the accumulative accuracy.



Unique Proofs and Synergized Applications. Besides the accuracy results, we also investigate the
output of every phase. As discussed in Appendix [M] the proofs generated by DSP+ differ from those
by BFS-Prover for the same problems, with both improved readability and controllability. As a direct
consequence of the synergy, DSP+ has facilitated us to analyze the unfinished subgoals after the
proving phase and find eight wrongly formalized statements, which are detailed in Appendix [F]

Minif2f Test Problems Solved (out of 244) Draft-Sketch, Pass@n #Solved #Accum.

160 QwQ-V3@1024 - +194
/ﬁ R1-V3@1024 +5,-2 +5
120 QwQ-QwQ@1024 +4,-5 +2
None-V3@128 +1, -20 +1

| —— DSP+ full (74.2%)
—— Draft + Sketch (22.5%)
80 Sketch + Prove (71.7%) QwQ(No format)-V3@128 +1,-11 +1
| — QwQ-32B only (27.9%) R1-QwQ@128 +3,-11 +1
—— DeepSeek-V3-0324 only (26.6%) .
40 —— BFS-Prover with Aesop (49.6%) Total: 204
Aesop only (35.2%)
0

0 Byl o % 33 Table 2: Configurations of DSP+ ensemble for

#Workflow Attempts Per Problem miniF2F. (+x, -y) indicates the setting solves x new
problems but with y unsolved w.r.t. the default
setting. The accumulative solved problems (#Ac-
cum.) show the synergy of configurations.

#Successful Proofs

Figure 3: Ablation of DSP+ components,
which shows the synergy in DSP+.

6.2 The Effectiveness of Neuro-Symbolic Enhancements

Conciseness of Draft. We observe that removing the prompting for conciseness slightly improves
performance with larger pass@k as shown in Figure[d] In fact, as in the case study of Appendix [K] an
unconstrained draft can be more informative with comparable length, which is acceptable for strong
sketch models. Another interesting observation is that DSP+ shows higher accuracy without human
informal proof, which is different from [13]] and detailed in Figure [I0] of Appendix

Optimizations in Sketch. In Figure[5] we conduct ablation studies on the two optimizations in the
sketch phase: (1) the explicit specification of subgoal hypotheses, and (2) the error line masking.
Removing either optimization leads to a significant drop in accuracy and sample efficiency.

Symbolic Search with Proving Models. This is studied in Figure[3|and Section [6.3]

Minif2f Test Problems Solved (out of 244) Minif2f Test Problems Solved (out of 244)

& 180 @ 180
=} =]
2 e
A~ 160 ~ 160
£ 2
2 140 7 140
3 15 —— Both Optimizations (74.2%)
— 1 0,
@ 120 Concise Steps (74.2%) & 120 —— No Error Masking (71.3%)
** —— No Format (75.4%) ** “ No Hypothesis Specification (71.3%)
100 0 32 64 96 128 100 0 32 64 96 128

#Workflow Attempts Per Problem

Figure 4: Ablation of Draft Formats. Free
formatting is better as more informative.

#Workflow Attempts Per Problem

Figure 5: Ablation of Sketch Optimizations.
Both optimizations are effective.

6.3 The Robustness of DSP+

Different Draft Models. As shown in Figure[6] DeepSeek-R1 achieves higher accuracy than QwQ-
32B, indicating our default setting may not be optimal. We also observe that QwQ-32B exhibits
stronger instruction following capability than DeepSeek-R1, which can bring higher sample efficiency
(details in Appendix [[). We also provide details about output tokens in Appendix

Different Sketch Models. As shown in Figure[7] we find QwQ-32B, despite being primarily designed
for natural language reasoning, achieves results comparable to DeepSeek-V3, including solving some
previously unsolved problems. This suggests the potential of QwQ-32B as the sketch model. We also
provide more quantified metrics about them in Appendix [D]



Minif2f Test Problems Solved (out of 244) Minif2f Test Problems Solved (out of 244)

& 180 i S W 2 180
o o
= 2
A 160 & 160
= QwQ-32B (74.2%) =
Z 140 —— DeepSeck-R1 (75.8%) G 140 —— DeepSeck-V3-0324 (74.2%)
3 GPT-4o (71.7%) 8 —— GPT-4o (71.3%)
2 120 —— DeepSeek-V3-0324 (73.0%) & 120 Qwen2.5-32B-Instruct (71.7%)
* —— None (71.7%) * —— QWwQ-32B (74.6%)
1005 32 64 96 128 10075 32 64 96 128
#Workflow Attempts Per Problem #Workflow Attempts Per Problem
Figure 6: Comparing Different Draft Models. Figure 7: Comparing Different Sketch Mod-
Reasoning models are optimal. els. DeepSeek-V3 and QwQ-32B are optimal.

w/ and w/o Proving Models. We study two configurations for the proving phase: the default setting
with BFS-Prover and another with common tactics (Appendix [A.T), which show pass@ 128 accuracy
of 74.2% and 47.5%, respectively. We plan to integrate models like DeepSeek-Prover-V1.5-RL [10]]
and InternLM?2.5-StepProver [52] in the future for more diversified capabilities (see Appendix [l)).

6.4 The Efficiency of DSP+

We collect the token statistics from [2]] and [3]. As listed in Table [3] DSP+ can use fewer total
inference tokens, which are #Average tokens per pass x #Passes, compared to Kimina-Prover-Preview,
even for the same accuracy. And the most balanced configuration is our default configuration given
the token efficiency and the dataset accuracy.

Table 3: Average inference cost of different solutions in miniF2F-test. DSP+ (R1-V3-BFES) can
achieve the same accuracy with less total inference tokens w.r.t. Kimina-Prover Preview.

Average tokens used per pass

Solution 7B 328 7B 671B Accuracy

DSP+ (QwQ-V3-BFS) 12k 6.3k - 0.8k 79.5 @ 1024 Pass
DSP+ (R1-V3-BFS) 12k - - 3.6k +0.8k  80.7 @ 1024 Pass
DSP+ (QwQ-QwQ-BFS) 12k 6.3k + 10k - - 79.1 @ 1024 Pass
Kimina-Prover Preview [3] - - 10k - 80.7 @ 8192 Pass
DeepSeek-Prover-V2 [2] - - - 6.75k 88.9 @ 8192 Pass

7 The Limitation of DSP+

Underexplored Design Space. Due to the vast design space of DSP+, we did not fully explore and
set the optimal configuration as the default. And there are also opportunities to find the optimal
configuration for the DSP ensemble given the differences in model capabilities and token efficiency.
In addition, the DSP+ itself can be optimized to circumvent duplicated searches. All these can
contribute to a more powerful and efficient search, which we leave as future work.

Failure Cases. We detail failure cases in Appendix [E} In summary, we have identified challenges
in every phase of DSP+, such as the proof of novelty for the draft, vague abstraction for the sketch,
and misaligned difficulty for the proving. Interestingly, even different Lean 4 versions affect DSP+
accuracy. We regard both model training and better proof assistant support as essential to address
these challenges, which require more computing resources and more expert effort, respectively.

8 Conclusion

In this work, we revisit the DSP framework, which resembles the human reasoning pattern from
informal to formal. We find DSP is underestimated and can be revived as DSP+, which is as powerful
as cutting-edge models for theorem proving. The key is our neuro-symbolic enhancement, which
carefully coordinates reasoning models, symbolic search, and step provers in three phases.

With our comprehensive evaluations on benchmarks, we find DSP+ a universally applicable frame-
work with high proving accuracy and token efficiency, which can potentially benefit the deployment



and the re-development from the theorem proving community. DSP+ can also serve in the pipeline
for generating high-quality cold-start data for model training, as indicated in DeepSeekProver-V2.

We hope that, through our results and code, the community can have more diversified and synergized
approaches for advanced theorem proving, besides the prevailing trend of large-scale training.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading “NeurIPS paper checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state our claims.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitation is thoroughly discussed in Section
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details of our proposed framework are provided in Section 4]
We will open-source the code and data for reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code of our theorem proving framework, as well as a small
part of derived results, in the supplementary material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The evaluation details are carefully discussed in Section[5.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We cannot provide statistical significance of the experiments due to the
extensive evaluation cost.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details are discussed in Section[3.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We check and confirm our paper conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Code packages and datasets are properly cited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper has not released new assets up to now.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Implementation Details

A.1 The Configuration of Aesop

We configure Aesop’s search space to be either tactics proposed by the step prover, or be with a
few commonly used and efficient proof strategies (rfl, linarith, nlinarith, ring,
positivity, omega, ring nf, ring nf at *, simp, simp_all, field_simp,
field_simp [*] at *, norm_num, norm_num [*] at *, norm_cast, norm_cast

at x). Furthermore, we modify Aesop’s internal search prioritization to adopt the length-normalized
scoring heuristic introduced in BFS-Prover [4]].

In addition, the hypotheses specified by the sketch model are sometimes inaccurate. Therefore, during
the proving phase, we split the budget into two strategies: one using only the hypotheses hinted with
tactics (clear * - ...) (exemplified in Figure ), and another using all available hypotheses. If
either attempt succeeds, we consider the proof successful.

A.2 The Motivation for the Built-in Integration of Step Provers

There are two common approaches to leverage the neural models in the proving phase: one is the
state-to-theorem approach so that the converted theorems can be proved by models; the other is to
externally parse and extract the state so that the step provers can help. However, both approaches are
nontrivial with challenges, which motivate our built-in integration:

For the state-to-theorem approach, an example to demonstrate the challenge is shown in the figure
below. The subgoal of step4b can be correctly proved within the original test theorem shown in
the left. However, if the state corresponding to step4b is converted into a theorem, as shown in
the right, the same proof fails due to the change of variable types. Similar issues are common—for
instance, missing numbers or variable types often lead to incorrect converted theorems given Lean’s
foundation on the dependent type theory. We suspect the Lean state contains more information than
what is visible at the string level. In VSCode’s InfoView window, all numbers and variables can be
queried for their specific types, but these details are not explicitly reflected in the string representation,
leading to a loss of information. For parsing and extracting Lean proof state (e.g., using external
Python), it is also challenging, as Lean code may involve complex tree structure, which is difficult to
parse purely from code strings.

7

theorem test (mn : N) (hp : m.gcd
n=26) (hy : m.lemn = 126) : 60 <
m + n := by
let b :=n / 6
have step4b : n = 6 * b := by
/- State:
mn : N
ho : m.gcd n = 6
hi : m.lcm n = 126
b: N:=n/6

-- Convert step 4b to theorem:

theorem step4db (m n : N) (hg
m.gcd n = 6) (h; : m.lcm n = 126)
(b : N:=n/6): (n=6*Db) :=
by
/- State:

mn : N

hp : m.gcd n = 6

hi : m.lcm n = 126

Fn=6x*b b : optParam N (n / 6)
-/ Fn=6%*hb
rw [Nat.mul_div_cancel’] -/
have h’> := Nat.gcd_dvd_right m n rw [Nat.mul_div_cancel’]
simp_all ‘ tactic 'rewrite’ failed

have h’ := Nat.gcd_dvd_right m n
simp_all

. J

Fortunately, at the Lean level—such as with aesop—it is possible to directly access Lean’s internal
structural information and run tactics based on a state, which can significantly improves efficiency.

Another independent approach in DeepSeekProver-V2 [2]] demonstrates to reconstruct subgoals as
theorems by purely syntactic parsing without referring to the Lean state, and therefore sidesteps the
challenges we mention here. However, this approach can only work for the well-formatted sketch,
not as generic and flexible as the built-in integration in DSP+.
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A.3 Lean Server Speedup

Even we have leveraged the built-in integration of tree search in Lean, which greatly reduces the
need to recompile proven code, the verification process is still slow. The main timing bottleneck
occurs during the header import (i.e., import Mathlib). Therefore, using the LeanREPL-based
multi-process verification scheduler framework of DeepSeek-Prover-V1.5 [[10], we support the reuse
of the (import Mathlib) as a header, while still allowing different namespaces to be opened during
verification. This results in a reduction of approximately 10 seconds in average for each verification.

A.4 The Workflow of DSP+ and DSP+ Ensemble

Following Section[3] the entire DSP+ process with our default setting is as follows: a formal statement
is first sent to QwQ-32B, which generates a draft. This draft is then passed to DeepSeek-V3-0324,
which produces the initial sketch. Then, the sketch is processed with error line masking by interacting
with the Lean environment via REPL [S7]]. Finally, the subgoals in the sketch are filled respectively
with Aesop and BFS-Prover given the feedback from Lean. The DSP+ process terminates when
the statement is proved, when resource parameters are exceeded, or when a timeout occurs. In this
work, we try 6 combinations for DSP ensemble in miniF2F-test as listed in Table@ And we only
try R1-V3-BFS with pass@32 as the additional combination after default setting for ProofNet and
PutnamBench.

B Sample Budget Configuration of Proving Phase

For the proving phase, we use A x W x T for the maximum sample budget per subgoal, where A
denotes the number of search attempts, W denotes the number of tactics generated for each expansion,
T denotes the number of expansion iterations, namely tree size. If not specified, A = 8, W = 8, and
T = 64. However, few proving phases can actually use up its entire budget. The reasons are listed
below:

For parameter A. Not every subgoal is difficult—many can be solved directly by symbolic search or
resolved by a single BFS-Prover expansion.

For parameter T. In tree search, if no expandable nodes remain, the process terminates early. Since
each node expands only to a width of 4 (by sampling 8 times and retaining at most 4 deduplicated
expansions), this occurs frequently for hard problems.

For timeout. Additionally, a maximum verification time limit of 2400 seconds is set for each proving
phase, resulting in the process often being terminated before the full budget is utilized.

We observe that under evaluation on miniF2F-test with Pass@32, each attempt of the DSP+ workflow
samples the BFS-Prover for about 1500 times on average during the proving phase, and generated
about 8 tokens per sample, far below the upper-bound A x W x T per subgoal. This is well within
acceptable limits for the relatively small BFS-Prover-7B model.

C Detailed Evaluation Results

Table [ presents all recent top solutions on miniF2F. We also include the results of miniF2F subsets
like miniF2F/IMO, miniF2F/AIME, and miniF2F/AMC in Table[5} The results are consistent with
the overall trend observed in the main table.

As our independent interest, Table [6] presents DSP+ performance on ProverBench [2], which is
introduced recently with little probability of data contamination. We can see DSP+ approaches the
performance of DeepSeek-Prover-V2-671B, showing the generalization of our method.

D More Ablation Studies

Detailed Ablation Studies of Draft Models. Besides the accuracy of different models, we also
investigate the average number of tokens in the generated proofs and the average number of tokens
in the thinking process. The results are shown in Figure [§] We find that the QwQ model has a
lower average number of answer tokens (AAT) and a higher average number of thinking tokens
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Table 4: A collection of top solutions across three benchmarks (best results among the top 5 in bold).
DSP+ and DSP+ ensemble are comparable to Kimina-Prover-Preview and DeepSeekProver-V2,
outperforming all others.

Type Solution (Model Size) Sample Budget miniF2F-test ProofNet-test PutnamBench
InternLM2-StepProver-7B [31] 1 x 32 x 100 48.8% 18.1%" 4/640 [S5]
Leanabell-Prover-7B [44] 128 61.1% - -
DeepSeek-Prover-V1.5-RL-7B [10] 4> 6400 38.:4% 23.7% B

16 x 6400 60.2% - -
32 57.6% 15.2% 6/644
Goedel-Prover-7B [3] 512 62.7% - 7/644
25600 64.7% - -
STP-7B [6] 3200 65.0% 23.9% 8/644
25600 67.6% 26.9% -
1 52.5% - -
Kimina-Prover-Preview-7B [3] 32 63.1% B -
192 - - 10/644 [55]
1024 70.8% - -
£ 1 52.9% - -
g 8 65.2% - -
g Kimina-Prover-Preview-72B [3] 32 68.9% - -
g 1024 77.9% - -
g, 8192 80.7% - -
2 1 58.6% - -
§ 32 75.6% 23.0% 11/658
DeepSeek-Prover-V2-7B [2] 128 - 25.4% 15/658
1024 79.9% 29.6% 23/658
8192 82.0% - -
1 61.9% - -
32 82.4% 30.5% 22/658
DeepSeek-Prover-V2-671B [2] 128 - 33.6% 33/658
1024 86.6% 37.1% 49/658
8192 88.9% - -
OpenAl 03-mini 32 24.6% (3] - -
gemini-2.5-pro-preview-03-25 32 37.7% (3] - -
ReProver-229M [33] - 26.5% 13.8%" 0/640
GPT-40 10 - - 1/644 [55])
DeepSeek-R1-671B 1 - - 1/644 [55]
DeepSeek-V3-0324-671B ! - N 0/644 B2l
32 25.0%
InternLM2.5-StepProver-7B [8] 2 %32 > 600 30.7% . 6/640
256 x 32 x 600 65.9% 27.0% -
DeepSeek-Prover-V1.5-RL-7B + RMaxTS [10] 4 > 6400 39.6% 25:3% -
= 32 x 6400 63.5% - -
E % HunyuanProver-7B [7] 600 x 8 x 400 68.4% - -
@ BFS-Prover-7B [4] 2048 x 2 ><. 600 70.8% - -
accumulative 73.0% - -
ABEL 8B [0] 596 - - 7/640
1 x 128 x 64 41.3% - -
DSP (GPT-40, Isabelle) 10 - - 4/640 53]
DSP (Minerva-540B, Isabelle) [[13] 100 38.9% - -
1 52.5% - -
DSP+ (QwQ-32B, V3-671B, BFS-Prover-7B) 8 68.4% - -
-','é (V3: shorthand for DeepSeek-V3-0324.) 32 71.3% 24.7% 15/644
E» (R1: shorthand for DeepSeek-R1.) 128 74.2% 32.8% 24/644
1024 79.5% - -
DSP+ (QwQ-32B, QwQ-32B, BFS-Prover-7B) 1024 79.1% - -
DSP+ (R1-671B, V3-671B, BFS-Prover-7B) 1024 80.7 % - -
DSP+ (ensemble) accumulative 83.6% 33.9% 25/644

* ProofNet-all results are used due to unavailable ProofNet-test data.
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Table 5: Performance of top solutions on IMO, AIME and AMC problems of miniF2F-test. DSP+
and DSP+ ensemble are comparable to Kimina-Prover-Preview and DeepSeekProver-V2.

Solution Sample budget miniF2F-test ~ miniF2F/IMO  miniF2F/AIME ~ miniF2F/AMC
Hunyuan-Prover-7B 600 x 8 x 400 68.4% 20.0% - -
BFS-Prover-7B 2048 x 2 x 600 70.8% 25.0% - -
Kimina-Prover-Preview-72B 8192 80.7% 40.0% 86.7% 66.7%
DeepSeek-Prover-V2-671B 8192 88.9% 50.0% 93.3% 77.8%
DSP+ (QwQ-V3-BES) 1024 79.5% 40.0% 86.7% 64.4%
DSP+ (ensemble) accumulative 83.6% 45.0% 86.7% 71.1%

Table 6: Performance of top solutions on ProverBench. DSP+ and DSP+ ensemble are comparable to
DeepSeekProver-V2.

Solution Sample Budget  ProverBench
32 27.5%
STP-7B 128 31.4%
512 36.3%
32 49.0%
DeepSeek-Prover-V2-7B 128 50.8%
512 51.7%
32 52.9%
DeepSeek-Prover-V2-671B 128 56.5%
512 59.1%
32 46.77%
DSP+ (QwQ-V3-BES) 128 52.92%
DSP+ (ensemble) accumulative 55.69 %

(ATT) compared to DeepSeek-R1. Interestingly, reasoning models show a lower AAT compared to
non-reasoning models, which demonstrate that the thinking tokens can benefit the conciseness of the
draft.

Detailed Ablation Studies of Sketch Models. Besides the accuracy, we also investigate the average
translation rate (ATR) and median translation rate (MTR) of different sketch models. The results are
shown in Figure[9] We find that the DeepSeek-V3-0324 model has a higher ATR and MTR compared
to other models, indicating that it is more effective in generating correct code lines. This suggests
that the DeepSeek-V3-0324 model is better suited for the sketch phase of DSP+.

Ablation Studies of Human Informal Proof. We also investigate whether human-written proofs
help improve accuracy, by providing them to the draft and sketch phases respectively, and comparing
the results with counterparts that do not include human proofs as shown in Figure[I0] We find that
incorporating informal proofs does not lead to an overall improvement in performance, which is
different from the original DSP [13].

E Failure Cases of DSP+

We observe a wide range of failure modes, with most attributed to the following categories.

Minif2f Test Problems Solved (out of 244)

Model AAT]  ATT]|
£ 180 i T——— S———
'g QwQ-32B 575 5682
& 160 Qa2 2% DeepSeek-R1 693 2888
=1 wQ- 2%
2 140 —— DeepSeck-R1 (75.8%) GPT-40-2024-11-20 748 -
8 GPT-40 (71.7%) DeepSeek-V3-0324 948 -
& 120 —— DeepSeek-V3-0324 (73.0%) None - -
* —— None (71.7%)

100 “AAT: Average Answer Token

0 32 64 96 128

b . -
#Workflow Attempts Per Problem ATT: Average Thinking Token

Figure 8: The Performance of DSP+ with Different Draft Models. Reasoning models are better than
non-reasoning models with the help of the thinking tokens.
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Model AT MTRE|

Minif2f Test Problems Solved (out of 244)

DeepSeek-V3-0324 84.2% 100.0%
@ 180 QwQ-32B 63.2% 70.0%
3 Qwen2.5-32B-Instruct  71.0%  80.0%
= 160 GPT-40-2024-11-20 77.6% 89.2%
& 140 —— DeepSeck-V3-0324 (74.2%)
8 —— GPT-4o0 (71.3%) “ATR: Average Translation Rate. During the Sketch
é’ 120 Qwen2.5-32B-Instruct (71.7%) phase, erroneous co.de lines are iteratively remO\{ed until
3+ QWQ-32B (74.6% the code is syntactically correct. The translation rate
- .6%) X R .
100 is defined as the percentage of code lines (excluding
0 32 64 96 128 headers, comments, and blank lines) that remains after
#Workflow Attempts Per Problem removal.

PMTR: Median Translation Rate

Figure 9: The Performance of DSP+ with Different Sketch Models. DeepSeek-V3 shows strong
capability of autoformalization with high translation rate.

Minif2f Test Problems Solved (out of 244)

180
A2
=]
=
A 160
=
G
» 140
8 —— Draft without Human proof (74.2%)
g 120 —— Draft with Human Proof (70.9%)
% Sketch without Human proof (No Draft) (71.7%)
—— Sketch with Human Proof (No Draft) (67.6%)
100
0 32 64 96 128

#Workflow Attempts Per Problem

Figure 10: Ablation of Human Informal Proof. Human informal proof offers no help for reasoning
models to generate good draft in miniF2F.

E.1 Limitations in Draft Phase

Many IMO problems involve very long natural language proofs, such as imo_1977_p6
(Reference Solution: https://artofproblemsolving.com/wiki/index.php/1977_IMO_
Problems/Problem_6). These problems and their solutions are challenging even for humans
to come up with, and thus the same for the reasoning models. Once the draft is incorrect for the
intuition, DSP+ workflow struggles to produce a correct proof, because the sketch and proving phases
are faithful translators and executors. Here is an example of unsuccessful attempt:

Informal Statement: Let f(n) be a function f : N* — N*. Prove that if f(n + 1) > f(f(n)) for
each positive integer n, then f(n) =n
<think>...</think>

Step1: f(1)=1

Step 2: Assume f(k) = kforallk <n

Step 3: f(n) =n

Step 4: 1(f(n)) = f(n) = n

Step5: n < f(n+1)

Step6: f(n+1)>n+1

Step 7: Suppose f(n+1) =n+ 1+ kwithk > 1
Step8: f(n+1+k)< f(n+2)

Step9: n+1+k>n+2

Step10: f(n+1+k) > f(n+2)

Step 11: Contradiction implies k£ = 0

Step12: f(n+1)=n+1

Step 13: f(n) =nforalln € N
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E.2 Limitations in Sketch Phase

Difficulty of Formalization. Some solutions are inherently difficult to formalize in Lean. For instance,
the standard solution to amc12a_2020_p9 (Reference Solution: https://artofproblemsolving.
com/wiki/index.php/2020_AMC_12A_Problems/Problem_9) requires the use of the function
graph to solve the problem, which could be hard to interpret in Lean. Moreover, since this is originally
a multiple-choice problem, even the standard solution lacks full formal rigor, making it still some
distance away from being accepted in Lean.

AoPS’s Solution to 2020 AMC 12A Problem 9

Y

v=cos(3)

)

¥ '
=T
=
=

. J

Challenge of Lean’s Syntax. Lean’s syntax requires much higher level of rigor and delicateness than
natural language, and it can sometimes produce unexpected errors. This poses a serious challenge for
the sketch model, which does not have access to real-time Lean feedback. For example, the type of a
number is often inferred from the context, and if the context is unclear or inconsistent, the system
may raise obscure type errors. Below, we present an example to illustrate such a challenging issue:

import Mathlib

example (x : R) (ho: x = 2
sq_eq_one_iff.mp hg
example (x : R) (hp: 2 =~ x =1) : x

1)

o]
1]

1V x=-1:= Dby exact

0 := by sorry

In Lean, the first expression compiles correctly, while the second one raises the error: failed to
synthesize HPow N R ?m.xxx, because 2 is treated as a natural number, and the operation of
automatically converting a natural number to a real power is undefined. These nuances are not
convenient to humans, which also applies to LLM.

Misalignment of Function Definitions. The definitions of functions in Lean does not always align
with human intuition, especially those learned from the standard curriculum. As mentioned in the
Appendix [F the domain of the Real.log() function in Lean is all real numbers. Similarly, functions
defined on the entire real number domain, such as HDiv.hDiv, Real.sqrt, Real.arcsin, etc., may
have values outside their domains that appear illegal to humans, yet they can still significantly impact
the proof of theorems. The above findings can be demonstrated with the following code, which holds
true in Lean 4:v4.17.0-rcl:

import Mathlib

example : 1 / 0 = 0 := by simp

example : 1 - 2 = 0 := by simp

example : Real.log O = 0 := by simp

example : Real.arcsin 2 = Real.pi / 2 := by simp
example : Real.sqrt (-1) = 0 := by simp [Real.sqrt]

That is to say, while 1 — 2 = —1 holds in the integers, the value —1 does not exist in the natural
number domain. As a result, in Lean’s definition over natural numbers, we have 1 — 2 = (. This
means that subtraction on natural numbers often fails to satisfy the commutative law.

E.3 Limitations in Proving Phase

Some statements may appear trivial in natural language but are counter-intuitively difficult to verify
formally. For example, showing that m > 3.1415, proving that the positive divisors of 81 are exactly

{1,3,9,27,81}, or deducing a = 7, b = 11 from the equation a + v/b = 7 4+ /11 when @ and b are
integers, all seem straightforward, yet constructing a rigorous proof can be unexpectedly challenging.
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import Mathlib

example : Real.pi > 3.141 := by sorry

example (x y : N) (h: x x y = 81): x € ({1,3,9,27,81} : Finset N) := by
sorry

example (a b : Z) (h: a + Real.sqrt b = 7 + Real.sqrt 11): a =7 A b = 11 :=
by sorry

E.4 The Impact of Lean Versions

We use the miniF2F dataset from DeepSeek-Prover-V1.5 [[1L1]], which employs Lean 4:v4.9.0-rcl.
Our experiments reveal that the rfl tactic can be used to solve some problems in this version, but
the same proofs fail in Lean 4:v4.17.0-rc1, suggesting behavioral differences in the tactic’s
implementation across versions. Below is an example that is affected by the Lean version:

open BigOperators Real Nat Topology Rat
theorem mathd_numbertheory_233 (b : ZMod (11 ~ 2)) (hy : b = 2471 : b = 116

:= by
subst hg
simp_all only [reducePow]
rfl

F Identified Errors in the miniF2F-test Dataset

With DSP+, we identify 8 incorrect problems in the miniF2F-test datasetﬂ The discovered
problems are: amcl2a_2020_p7, amcl2a_2020_pl10, amcl2a_2021_p9, imo_1968_p5_1,
induction_prodlplonk3le3mlonn, mathd_algebra_158, mathd_algebra_342,
mathd_numbertheory_343. These problems are either unprovable or contain translation
errors, causing a mismatch between the Lean formalization and the natural language description.

Example: amc12a_2020_p10

The original Lean theorem is stated as:

theorem amcl12a_2020_p10 (n : N) (hgp : 0 < n) (h; : Real.logb 2 (Real.logb 16
n) = Real.logb 4 (Real.logb 4 n)) : (List.sum (Nat.digits 10 n)) = 13 := by

Since our workflow allows partial proofs containing sorry, we find that 2 out of the 12 generated
subgoals could not be proven in one attempt. The details of the proof attempt are shown below.

theorem amcl12a_2020_p10 (n : N) (hp : 0 < n) (h; : Real.logb 2 (Real.logb 16
n) = Real.logb 4 (Real.logb 4 n)) : (List.sum (Nat.digits 10 n)) = 13 := by

-- Step 3: Substitute into original equation
have step3 : Real.logb 2 ((Real.logb 4 n) / 2) = Real.logb 4 (Real.logb 4
n) := by ...
-- Step 4: Split log of quotient
have step4 : Real.logb 2 (Real.logb 4 n) - Real.logb 2 2 = Real.logb 4
(Real.logb 4 n) := by
sorry

-- Step 8: Solve for logs(logan)
have step8 : Real.logb 2 (Real.logb 4 n) = 2 := by ...
-- Step 9: Ezponentiate to solwve for logan
have step9 : Real.logb 4 n = 4 := by
sorry

J

SKimina-Prover Preview project identifies 5 incorrect problems in miniF2F-test, 2 of which—aime_1994_p3
and mathd_numbertheory_618—are not discovered by us. We use their corrected versions in our experiments.
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From Step 3 to Step 4, the LLM applies the logarithm quotient rule, i.e.,
logy,(z/y) = log, © — logy y.

We can use tools such as loogle, mathlib4 docs, or leansearch to find how this theorem is defined in
Lean. In Lean, it is stated as:

theorem Real.logb_div (hx : x # 0) (hy : y # 0) : logb b (x / y) = logb b x
- logb by

Therefore, if we want to apply the logarithm quotient rule, we also need to prove that Real.logb 4
n # 0. One might assume that since Real.logb 4 n appears as the argument of a logarithm in the
original problem, it must be nonzero. Unfortunately, this cannot be proven in Lean, because in Lean,
the definition of Real.logb is:

As with the natural logarithm, we define 1logb b x to be logb b [x| for z < 0,
and 0 for x = 0.

In this definition, Real.logb 4 n can be zero even though it appears as the argument of another
Real.logb. We now verify whether it is provable that Real.logb 4 n # 0 under the assumption
that n > 0.

Unfortunately, the whole equation still holds when n = 1, which can be verified in Lean with:

theorem amc12a_2020_p10 (n : N) (hp : n = 1) : Real.logb 2 (Real.logb 16 n) =
Real.logb 4 (Real.logb 4 n) := by simp_all

So we are unable to establish that Real.logb 4 n # 0, which prevents the application of the
logarithm quotient rule in Step 4.

Furthermore, Step 8 to Step 9 also presents difficulties. Although it may appear straightforward
for humans, Real.logb 4 n could potentially be —4, and this case must be explicitly ruled out to
ensure correctness.

In our revised version of the miniF2F dataset, we modify the condition (h¢ : 1 < n) to ensure that
all arguments passed to Real.logb are strictly positive, consistent with the domain of the logarithm
function over real numbers as understood by humans. We also make adjustments to some other
problems with domain definitions inconsistent with human interpretations, although in some cases,
the parts outside the commonly accepted domain could be ruled out by contradiction.

G Prompts Used in This Work

Prompt for Draft Model

formal_statement:

{formal_statement}

Please provide an extremely detailed mathematical calculation following your thinking. Each step
can only contain **one** equation without any explanation.

Here is an example:

### Step 1:

\[x+y+xy=80\]

### Step 5:
\[x+y+xy+1=81\]

Prompt for Sketch Model

informal_proof:

{detailed_informal_proof}

Prove the theorem in Lean 4 code. You should translate steps in the informal proof in a series of
“have’/’let’/’induction’/’match’/’suffices’ statements, but you do not need to prove them. You only
need to use placeholder ‘by{{new_line} }prove_with[hl, step3, .. .{{hypothesises used here which
are proposed ahead} }]‘. We want to have as many lemmas as possible, and every lemma must be
easy to proof.




When using a / b, you must specify **a’s or b’s type**, because (1:R) /2 is 0.5, but (1:Z) / 2 is 0.
When using a — b, you must specify **a’s or b’s type**, because (1:Z) — 2 is —1, but (1:N) — 2 is 0.
n! is incorrect, you should use (n)!.

Here is an example:

import Mathlib
example (x y : R) (h1 : x < 1/ 2) (h2 : x > 0) (t: y < Real.sin
(x)): y<1/2:=by
-- Step 1
have h3 : y < (1:R) / 2 := by
-- Step 2
have h4 : Real.sin x < x := by
prove_with[h2]
-- Step 3
have h5 : y < x := by
prove_with[h4, t]
prove_with[h1l, h5]
exact h3

formal_statement:
‘“‘lean4

{header}
{formal_statement}

H Ilustration of DSP+ Workflow with an IMO Problem

Our method successfully proves imo_2019_p1, whereas all prior arts have failed to solve this
problem. Here we present its entire trace. However, due to the extensive length of QwQ’s reasoning,
we are unable to display the thinking part of draft phase here. In this problem, we can find all the
techniques introduced by our fine-grained and integrated neuro-symbolic enhancements. To clarify
the effect of enhancements, we use *Comment* to highlight our observations, which is not generated
by the sketch model.

Formal Statement

open BigOperators Real Nat Topology Rat
theorem imo_2019_pl (f : Z — Z) :

(Wab, f(2*xa)+2*«xfb=f(( @+Db))«—Vz, fz=0Vddc,V z,
fz=2x%x2z+c :=by

<think>...</think>

Step 1: f(2a) +2f(b) = f(f(a+b)) Va,beZ

Step 2: f(0) +2/(b) = f(/(8)) VbeZ

Step 3: f(2a) +2f(0) = f(f(a)) Va€eZ

Step 4: f(0) + 2f(a) = f(2a) +2f(0) Va€eZ

Step 5: f(2a) = 2f(a) — f(0) Va€Z

Step 6: f(2) +2f(b) = f(f(b+1)) VbeZ

Step7: f(f(b+1))=f(0)+2f(b+1) VbeZ

Step 8: £(2) +2f(b) = f(0) + 2f(b+1) WbeZ

Step 9: 2f(b+ 1) = f(2) — f(0) +2f(b) VbELZ

Step 10: f(b+ 1) = LSO | ) whez

Step 11: f(b+1) — f(b) = L2510 wpe 7

Step 12: f(z) = mz+ ¢ where m = wandc:f(O)
Step 13: 2m(a +b) + 3c=m (a+b)+(m+1)c Ya,b e Z
Step 14: m?> —2m =0=m(m —2) =0

Step 15: 2c = (m + 1)c = (2 — m)c =0
Step 16: m = 0 = ¢ = 0 or m = 2 and c is arbitrary
Step 17: f(z) =0or f(2) =2z+c¢ Vz€Z




Corresponding draft steps in comment, sketch on the red left, proof on the green right

open BigOperators Real Nat Topology Rat 1 -- Step 11
theorem imo_2019_pl (f : Z — Z) : (V a b, £ (2 * : have hil : Vb, f (b +1) -fb=(2-£f0)/
a) +2*xfb=f( (@a+Db))) <Vz, fz=0V 33 (2:7Z) :=by
C::o:s:;u:t:r_ AT BY 6 85y : prove_with [h10] cle.aar * - h10 ]l
+ -- Forward direction: assume equation holds, : (simp_all)
show f is 0 or linear L letm:Z:=(2-£0)/(Q2:7)
intro h I letc: Z :=£f0
-- Step 2 | -- Step 12
have h2 : Vb, £ 0+ 2 * fb=1f (f b) := by | have h12 : V z, fz=m * z + ¢ := by
intro b I
|[ -- exact h (0 : Z) b have hl1 :=h O b : prove_with [h10] c.:lear © = e
A | intro z
SOrry simp_all ! induction’ z using
-~ Step 3 : Int.induction_on with z ih z ih
have h3 : V a, f (2 *a) +2 x £ 0 =f (f a) := by ° EN
intro a : - rw [h10]
| linarith
-- ezact h a (0 : Z) (simp_all) | - have hl := h10 (-2)
sorry : have h2 := h10 (-z - 1)
I simp_all
== Sap § ! linarith
have h4 : Vb, £ (2 *b) =2 * fb-£f 0 :=by :
| -- Step 13
prove_with [h2, h3] clear * - h2 h3 ' have h13 : V ab, (m* (2 *a) +c) +2 * (m *x b +
intro b lc)=m* (m=*(a+b)+c)+c :=by
have h := h3 b )
linarith [h2 b, h3 bl \[ prove_with [h12]  (simp_all) )
I
-- *Comment*: hb is missing given LLM’s : -- Step 14
unezplainable interpretation. i have h14 : m * (m - 2) = 0 := by
-- Step 6 0
have h6 : V b, £ 2+ 2 % £ b =f (f (b + 1)) := by|| Provewith [hi3]  clear * - hi3
intro b ] have h14 := h13 1 0
I ring_nf at hi4
-- ezact h (1 : Z) b have h5 :=h 1 b : linarith [h13 2 0, hi14]
sorry rw [add_comm] at h5 |
rw [add_comm] at h5 1 -- Step 15
rw [add_comm] at h5 : have h15 : (2 - m) * ¢ = 0 := by
-- *Comment*: Tree rw [add_comm] at h5 : T (e clear * - hi3
search may ZPTaz? to rw [add_comm] at h5 ‘ have hi4 := hi3 1 0
looped transitions rw [add_comm] at h5 : ring nf at hid b
be.tween two stm%es._ We rw [add_comm] at h5 i linarith [hi3 0 2, hi4]
will address this issue rw [add_comm] at h5 |
in the future. rw [add_comm] at h5 | _- Step 16
simpa [add_comm, : have h.m_eq0_or_2 : m = 0 V m = 2 := by
mul_comm] using h5 |
I prove_with [h14] clear * - hi4
-- Step 7 : (simp_all) ]
have h7 : Vb, £ (f (b+ 1)) =f 0+ 2 xf (b+ (omega)
1) := by I
intro b : cases h_m_eqO_or_2 with -- Step 16
;| inl h_m0 =>
|[ -- exact h2 (b + 1) (simp_all) I have h_cO : ¢ = 0 := by
sorry :
| prove_with clear * - h15 h_mO
-- Step 8 f[h15, h_moO] (nlinarith) |
have h8 : Vb, f2+2*x fb=Ff0+2xxf (b+ !
1) := by : have h_f_zero : V z, £ z = 0 := by
prove_with [h6, h7] clear * - h6é h7 : prove_with clear * - h12 h_mO0 h_cO |
(simp_all) : [h12, h_mO, h_c0] (simp_all)
-~ Step 9 : exact fun z => Or.inl (h_f_zero z)
have h9 : Vb, 2 x f (b + 1) = (£2 - £0) +2 % | | inr hm2 =>
f b := by : have h_exists_c : 3 c¢’, Vz, fz=2%2z+c’ :=
1)
prove_with [h8] clear * - h8 I v use ¢
exact fun b — by linarith : intro z
[h8 bl I have eq : £ z=m * z + ¢ := h12 z
0 rw [h_m2] at eq
-~ Step 10 : exact eq
have h10 : Vb, £ (b + 1) = ((£ 2-£0) / (2 : Z |
)) + £ b :=by | -- ezact fun z => (simp_all)
- *: Or.inr (c, h_ezists_c)
prove_with [h9] clear * - h9 ‘ sorry
intro b I
have h10 := h9 (b + 1) I
have hil := h9 (b + 1) }
have h12 := h9 b I
omega :
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(Continuation of the previous figure)

- -- Reverse direction: assume f is 0 or linear, show equation holds
intro h_rev
have h_rev_split : (Vz, £z=0) V (3¢, Vz, fz=2%z+c) :=Dby

prove_with [h_rev] clear * - h_rev
by casesh : 3¢ : Z, Vz:Z, fz=2%z+c
-- cases h_rev_split with - right
-- | inl h_all_zero => exact h
intro a b - left
simp [h_all_zero, f] exact fun z +— (h_rev z).resolve_right h
inr (c, h_f_eq) =>
intro a b
have lhs_wval : f (2 # a) + 2 * f b = 4 * (a + cases h_rev_split with
+3 % ¢ := by | inl h => (simp_all)
rw [h_f_eq (2 * a), h_f_eq b] | inr h_1 =>
ring_nf obtain (w, h) := h_1
have rhs_val : f (f (a + b)) = 4 * (a + b) + (norm_num [*] at *)
:= by (linarith)
rw [h_f_eq (a +b), h_f_eq (2 *# (a + b) +
-- *%Comment*: The left part has some errors, and
ring_nf the Error Line Masking technique successfully
rw [lhs_val, Ths_val] replaces the corresponding code with tactic sorry.
This is proved later by BFS-Prover.

I Capability Comparison of DeepSeek-Prover-V1.5-RL and BFS-Prover

Although BFS-Prover is a powerful prover, we use it more because its input is solely state, which fits
our framework. This offers benefit given InternLM2.5-StepProver and DeepSeekProver-v1.5 both
require chain-of-thought prefix, which is incompatible to our current framework. However, in terms
of performance, BFS-Prover cannot outpace all current provers. Here is an example:

example (b : R) (step6 : b ~ 9 =(2/3) ~9): (b=2/3) := by

apply Eq.symm

nlinarith [step6, sq_nonneg (b =~ 2 - (2 / 3) = 2), sq_nonneg (b ~ 3 - (2 /
3) = 3), sq_nonneg (b ~ 4 - (2 / 3) ~ 4), sq_nonneg (b ~ 5 - (2 / 3) ~ 5),
sq_nonneg (b ~ 6 - (2 / 3) ~ 6), sq_nonneg (b ~ 7 - (2 / 3) ~ 7), sq_nonneg
(b~8-(2/3) "~ 8), sqg_nonneg (b ~ 9 - (2 / 3) =~ 9]

This statement appears as a subgoal. Unfortunately, under our configuration, BFS-Prover cannot solve
it. By contrast, we find DeepSeek-Prover-V1.5-RL can provide the correct proof given moderate
search budget. This indicates the diversified capabilities of different models.

J Success Cases of DSP+
J.1 Using Jensen’s Inequality to Solve an Inequality

Statement

open BigOperators Real Nat Topology Rat
theorem algebra_apbon2pownleqapownpbpowon2 (a b : R) (n : N) (hp : 0 < a A
0<b) (hy : 0<mn) : ((@a+b)/2) "~ n<(a"n+b~"n) /2 :=hby

<think>...</thir}1k> o
Step 11 (452)" < a2
Step 2: Let f(z) =" forx > 0andn € N
Step 3: Since f”(z) = n(n — 1)z"~2 > 0 forz > 0, f is convex.

) s : L fla4b)  Fa) i
Step 4: By Jensen s 13eq2ahty for convex functions: f (%tt) < J(@F/(®)
Step 5: (+£2)" < 52"

Step 6: Alternatively, consider using induction...




open BigOperators Real Nat Topology Rat
theorem algebra_apbon2pownleqapownpbpowon2 (a b : R) (n : N) (hp : 0 < a A
0<b) (hy :0<mn) : ((@+b) /2 "n<(a~"n+b~n)/2:=hby
-- Step 1: Define the function f(z) = z°n
let £ : R > R := fun x => x " n
-- Step 2: Show that f is convezx
have h2 : ConvexOn R (Set.Ioi 0) f := by
prove_with[]
-- Step 3: Apply Jensen’s inequality to f
have h3 : £ ((a + b)/2) < (f a + £ b)/2 := by
have h4 : a € Set.Joi 0 A b € Set.Ioi O := by
prove_with[ho]
have h5 : (a + b)/2 € Set.Ioi 0 := by
prove_with[hg]
have h6 : (1/2 : R) + (1/2 : R) =1 := by
prove_with[]
prove_with[h2, h4, h5, h6]
-- Step 4: Rewrite using definition of f
have h7 : ((@a +1b)/2) "n < (a~n+ b "~ n)/2 := by
prove_with[h3]
-- Final conclusion
exact h7

theorem algebra_apbon2pownleqapownpbpowon2 (a b : R) (n : N) (hgp : 0 < a A
0<b) (hy : 0<mn) : ((@a+b)/2) "~ n<(a"n+b~"n) /2 :=hby
-- Step 1: Define the function f(z) = z°n
let £ : R - R := fun x => x ~ n
-- Step 2: Show that f is convez
have h2 : ConvexOn R (Set.Ioi 0) f := by
apply ConvexOn.pow
- exact convexOn_id (convex_Ioi (0 : R))
- exact fun x hx => le_of_1t hx
-- Step 3: Apply Jensen’s inequality to f
have h3 : £ ((a + b)/2) < (f a + £ b)/2 := by
have h4 : a € Set.Ioi O A b € Set.Ioi O := by
clear * - hg
obtain (left, right) := ho
apply And.intro
- exact left
- exact right
have h6 : (a + b)/2 € Set.Ioi 0 := by
clear * - hg
obtain (left, right) := hg
(field_simp)
have h6 : (1/2 : R) + (1/2 : R) =1 := by
clear * -
(linarith)
clear * - h2 h4 h5 h6
rw [ConvexOn] at h2
have h7 := h2.2 h4.1 h4.2 (by positivity) (by positivity) h6é
simp only [smul_eq_mul] at h7
convert h7 using 1
- ring_nf
- ring
-- Step 4: Rewrite using definition of f
have h7 : ((@ +b)/2) "n < (a~n+b "~ n)/2 := Dby
clear * - h3
exact h3
-- Final conclusion
exact h7
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J.2 Solving a Putnam Problem on Real Analysis

DSP+ successfully solves a real analysis problem from the PutnamBench. We include it here as
part of our results. This suggests that all three LLMs we employed demonstrate a genuine grasp of
the subject beyond high school level. Furthermore, this highlights the general applicability of our
framework.

Statement

open Metric Set EuclideanGeometry Filter Topology

theorem putnam_1970_b3 (S : Set (R x R)) (ab : R) (hab : a <b) (hS : V s
€ S, s.1 € Ioo a b) (hSclosed : IsClosed S) : IsClosed {y | 3 x : R, (x,y) €
S} := by

Draft

| '

<think>...</think>

Step 1: Let (y») be a sequence in T’ converging to yo.

Step 2: For each n, there exists z,, € (a, b) such that (zn, yn) € S.
Step 3: The sequence () is bounded since z,, € (a,b) C [a, b].
Step 4: By the Bolzano-Weierstrass theorem, there exists a subsequence (zn, , Yn, ) converging to
some (o, Yo).

Step 5: x¢ € [a, b] because x,, isin [a, b].

Step 6: Since S is closed, (zo,y0) € S.

Step 7: By hypothesis, (z,y) € S implies z € (a, b), so zo € (a,b).
Step 8: Thus, (zo,y0) € S,so0yo € T

Step 9: Therefore, 1" contains all its limit points, hence 7" is closed.

Proof

open Metric Set EuclideanGeometry Filter
Topology

theorem putnam_1970_b3 (S : Set (R x R)) (a
b: R) (hab : a<b) (S : Vs € 8, s.1 €

-- Step 4: By Bolzano-Weierstrass, there
ezists a convergent subsequence

have h4 : 3 (¢ : N = N) (x0 : R),
StrictMono ¢ A Tendsto (x o ¢) atTop (N

Ioo a b) (hSclosed : IsClosed S) : IsClosed Xg) := by

{y | 3x: R, (x,y) € S} := by have h4 := isCompact_Icc.tendsto_subseq
-- Step 1: Let (y,) be a sequence in T h3

converging to yo rcases h4 with (xo, hxp, ¢, hepmono,
rw [isClosed_iff_clusterPt] hgolim)

intro yo h

-- simp only [mem_setOf] at h

have hi1 : 3 (u : N - R), (Vn, 3 x : R,
(x, un) € S) A Tendsto u atTop (N yg) :=
by

exact (¢, X0, hypmono, heplim)
-- Step 5: ¢y € [a,b] because z_{n_k} is
in [a,b]
rcases h4 with (¢, xo, he, hxp)
have h5 : x9 € Icc a b := by
have : V n, x (¢ n) € Icc ab := by
intro n
exact h3 (¢ n)
clear * - hxp this
apply isClosed_Icc.mem_of_tendsto hxy
exact eventually_of_forall this
-- Step 6: Since S is closed, (zp,y0) € S
have h6 : (x0, yo) € S := by
have : Tendsto (fun n — (x (¢ n), u (p
n))) atTop (N (x0, yo)) := by
rw [nhds_prod_eq, tendsto_prod_iff’]
constructor
- exact hxyp
- apply hu_tendsto.comp

simp only
[clusterPt_principal_iff_frequently,
mem_set0f_eq] at h
obtain (u, hu) : 3u: N - R, (Vn : N
, 3x : R, (x, un) € 8) A Tendsto u atTop
N yo)
- rcases exists_seq_forall_of_frequently
h with (u, hu)
exact (u, hu.2, hu.1)
- exact (u, hu)
-- Step 2: For each n, there ezists z, €
(a,b) such that (z,, yn) € S
rcases hl with (u, hu, hu_tendsto)
have h2 : Vn, 3 x € Ioo ab, (x, un) €

S := by exact hy.tendsto_atTop
intro n have : V n, (x (¢ n), u (p n)) € S :=
rcases hu n with (x, hx) by
exists x intro n

exact (hS (x, u n) hx, hx)
-- Step 3: The sequence (z,) %is bounded
since z, € (a,b) C [a,b]
choose x hx using h2
have h3 : Vn, x n € Icc ab := by
intro n
exact Ioo_subset_Icc_self (hx n).1

exact (hx (¢ n)).2
rename_i this_1
apply hSclosed.mem_of_tendsto this_1
simp [this]
-- Step 7: By hypothesis, zp € (a,b)
have h7 : x9 € Ioo a b := by
clear * - hS h6
exact hS _ hé
-- Step 8: Thus yo € T
exact (xg, h6)




K Draft Comparison of Concise Steps and No Format

“Concise Steps” on the left, “No Format™ on the right

Step 1: ' To prove that (29'® — 5'%) mod 7 = 3, we use modular
29 mod 7 =1 ' arithmetic and Fermat’s Little Theorem.
Step 2: 1. Simplify 29 mod 7:
5 mod 7=5 \ .
Step 3: l 29 -+ 7=4remainder] = 29=1 mod 7
13 13 !
292 mod 7=1" mod 7 ' Therefore:
Step 4: |
1% =1 : 29" mod 7=1" mod 7=1 mod 7
Step 5: : N
56 pmod 7—1 ' 2. Simplify 5 mod 7:
Step 6: : 5<7 = 5=5 mod?7
13=6x2+1 1 13 ;
Step 7: i To compute 5°° mod 7, apply Fermat’s Little Theorem:
13 _ (£6)2 1 !
gtep gl.Od 7=(5")" x5 mod7 . Since 7 is prime and 50t =0 mod 7, 5°=1 mod 7
(1)* x5 mod 7=5 mod 7 . Express 13as 6 x 2 + 1:
Step 9: : 13 612 _ gl 2
(2913 — 513) mod7 = (1 —5) | 5°=(5")"x5 =(1)"x5=5 mod 7
g;‘;s 170: 3 3. Compute the difference modulo 7:
1-5=—4 © (29" -5") mod7=(1-5) mod7=-4 mod7
Step 11: : . e
4 mod7=3 ' Convert —4 to a positive residue:
~4+47=3 = —-4=3 mod7
. Conclusion:
3
' Thus, (29'* —5'%) mod 7 =3.

L Draft Comparison of QwQ-32B and DeepSeek-R1

In our early toy experiments, we provide the same draft prompt to both QwQ-32B and DeepSeek-R1,
and compare their final outputs after thinking session. To exemplify, the prompt is attached below:

Draft Prompt

formal_statement:
theorem aime_1983_p2 xp:R) f: R - R)(ho: 0<p Ap<15)(hi:p<xAx<15)(he:fx=
abs (x —p)+abs (x —15) +abs (x —p—15)) : 15 < fx :=by

Please provide an extremely detailed mathematical calculation following your thinking. Each step
can only contain **one** equation without any explanation.

Here is an example:
#i## Step 1:
\[x+y+xy=280\]

### Step 5:
\[x+y+xy+1=81}\]

QwQ consistently produces responses that follow the instructions, as shown below:
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Output of QwQ-32B

#i## Step 1: | ### Step 6:
\[fx)=Ix —pl+Ix =151 + Ix = (p + 15)I'\] ) =x=-p+A5-x)+(p+15-x)\]
#i## Step 2: i #i## Step 7:
\[ \text{Given } p \leq x \leq 15 \implies Ix — DN fx)=x-p+15-x+p+15-x\]
pl=x-p\] | ### Step 8:
### Step 3: DA =(x=x)+(=p+p)+(15+15) - x\]
\[ \text{Given } x \leq 15 \implies Ix — 15| = I ### Step 9:
15-x\] L \fx)=0+0+30-x\]
### Step 4: | ##H# Step 10:
\[ \text{Given } x \leq 15 \text{ and } p>0 bOAf(x) =30 -x\]
\implies x \leq 15 < p + 15 \implies Ix — (p + I ### Step 11:
15I=({p+15) -x\] i \[\text{Given } x \leq 15 \implies —x \geq
#i#t# Step 5: i —15\implies 30 — x \geq 15\]
\[fX)=x-p)+(15-x)+(p+15-x)\] ! ###F Step 12:

| \[ f(x) \geq 15\]

By contrast, the output of DeepSeek-R1 does not strictly adhere to the instructions and fails to follow
the one-shot formatting. Additionally, DeepSeek-R1 sometimes includes its own Lean proof, which
is often incorrect, as demonstrated below:

Output of DeepSeek-R1

Step 1: Step 9:
\[{x) =Ix —pl+Ix =151+ Ix —p — 151\] Therefore, for \( p \leq x \leq 15 ),
Step 2: \[ f(x) \geq 15\]

For \( p \leq x \leq 15 ),
\[Ix-pl=x-p\]

““‘lean4
theorem aime_1983_p2 (xp: R) (f: R — R)

Step 3: (ho:0<pAp<1S)(hi:p<xAx<L15)
\[Ix = 151=15 -x\] (ha : f x = abs (x — p) + abs (x — 15) + abs (x
Step 4: -p-15):15<fx:=by
\[Ix=p-15I=p+15-x\] have hs : p < x := by linarith

Step 5: have hy : x < 15 := by linarith

Combine terms: : have hs : 0 < p := by linarith
\[fx)=x-p+A5-x)+(P+15-x)\] : have he : p < 15 := by linarith
Step 6: l simp_all only [abs_of _nonneg,

Simplify: abs_of_nonpos, sub_nonneg, sub_nonpos, hs,
\[fx)=x-p+15—-x+p+15-x\] hy, hs, hg]

Step 7: —— For p < x < 15, simplify the absolute

\[ f(x) =—=x+301\] values to linear expressions

Step 8: —Ix-pl=x-p,Ix-15I=15-x,Ix—p —

Since \( f(x) =30 — x ) is decreasing on \( [p,
15]\), the minimum occurs at \( x = 15 \):
\[f(15)=30-15=151\]

ISI=p+15-x
—— Combine these to get f(x) = —x + 30
—— Since f(x) = 30 — x is decreasing on [p,
15], the minimum occurs at x = 15
—f(15)=30-15=15
linarith

I3

Therefore, we do not use DeepSeek-R1 as the sketch model at first, as this phase requires strong
instruction-following capabilities.

M Proof Comparison of Different Solutions

Since Kimina-Prover-Preview uses the problem imo_1962_p2, to compare with BFS-Prover, we also
present DSP+ proof for this problem. As can be seen, our generated proof well follows human proof
conventions at the have statement level, resulting in higher readability. Only during the subgoal
proving phase, the BFS-style and symbolic interaction with Lean slightly reduces the readability.
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Proof of IMO-1962-P2 found by DSP+.

theorem imo_1962_p2 (x : R) (hp : 0 < 3 -x%x) (hy : 0 < x+ 1) (hy : 1/ 2K
Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x <1 - Real.sqrt 31 / 8
:= by
-- Step 1: Domain conditions
have h3 : x < 3 := by
clear * - hg
(linarith)
have hy : -1 < x := by
clear * - h;
(linarith)
-- Step 2: Original inequality
have hs : Real.sqrt (x + 1) + (1 : R) / 2 < Real.sqrt (3 - x) := by
clear * - ho
(linarith)
-- Step 3: Squaring both sides
have hg : (Real.sqrt (3 - x))~2 > (Real.sqrt (x + 1) + (1 : R) / 2)°2 := by
clear * - hj
ring_nf
ring nf at hs
nlinarith [Real.sqrt_nonneg (3 - x), Real.sqrt_nonneg (1 + x)]
-- Step 4: Ezpand squared terms
have hy : 3 - x > (x + 1) + Real.sqrt (x + 1) + (1 : R) / 4 := by
nlinarith [Real.sq_sqrt h;, Real.sq_sqrt hg]
-- Step 5: Simplify inequality
have hg : (7 : R) / 4 - 2 *x x > Real.sqrt (x + 1) := by
clear * - hr
(linarith)
-- Step 6: Square again
have hg : ((7 : R) / 4 - 2 * x)72 > x + 1 := by
clear * - hg
norm_num at hg
rw [+ sub_pos] at hg
contrapose hg
rw [sub_pos]
rw [not_1t] at hg F
apply le_sqrt_of_sq_le
exact hg
-- Step 7: Ezpand and rTearrange
have hijg : 4 * x°2 - 8 *x x + (33 : R) / 16 > 0 := by
clear * - hg
(linarith)
-- Step 8: Multiply by 16 to clear denominators
have hi; : 64 * x72 - 128 * x + 33 > 0 := by
clear * - hjg
(linarith)
-- Step 9: Find roots of quadratic
have hi2 : x < (8 - Real.sqrt 31) / 8 V x > (8 + Real.sqrt 31) / 8 := by
clear * - hy
refine’ or_iff _not_imp_left.2 fun h =>
contrapose! h
contrapose! hj;
nlinarith [hi1, h, Real.sq_sqrt (by norm_num : (0 : R) < 31)]
-- Step 10: Eliminate impossible case due to domain
have hi3 : x < (8 - Real.sqrt 31) / 8 := by
contrapose! hjo
refine’
(by linarith [Real.sqrt_nonneg (x + 1), Real.sqrt_nonneg (3 - x)], by
linarith [Real.sqrt_nonneg (x + 1), Real.sqrt_nonneg (3 - x)])
-- Final conclusion
have hi4 : x < 1 - Real.sqrt 31 / 8 := by
clear * - hi3
(linarith)
exact (hs, hi4)

36



Proof of IMO-1962-P2 found by BFS-Prover.

theorem imo_1962_p2 (x : R) (hp : 0 < 3 -x%x) (hy : 0 < x+ 1) (hy : 1/ 2K
Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x <1 - Real.sqrt 31 / 8
:= by

constructor

linarith

rw [+ sub_pos]

field_simp [Real.sqrt_1t] at hy F

apply 1lt_of_le_of_1t

rw [mul_comm]

rw [sub_eq_add_neg]

apply 1lt_of_le_of_1t

rw [« 1lt_sub_iff_add_1t]

ring_nf

rw [« 1lt_sub_iff_add_1t]

linarith [Real.sq_sqrt (by linarith : 0 < 1 + x)]

rw [Real.sqrt_lt (by norm_num)]

rw [Real.sqrt_1t] <;> nlinarith

norm_num at this

Proof of IMO-1962-P2 found by Kimina-Prover Preview.

theorem imo_1962_p2 (x : R) (o : 0 < 3 -x) (hy : 0 < x+ 1) (hy : 1/ 2K
Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x <1 - Real.sqrt 31 / 8
:= by
have h3 : -1 < x := by
nlinarith
have h4 : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by linarith
have h5 : Real.sqrt (x + 1) > 0 := Real.sqrt_nonneg (x + 1)
have h6 : (7 / 4 - 2 * x) > Real.sqrt (x + 1) := by
nlinarith [Real.sq_sqrt (show (0 : R) < 3 - x by linarith),
Real.sq_sqrt (show (0 : R) < x + 1 by linarith),
Real.sqrt_nonneg (3 - x), Real.sqrt_nonneg (x + 1)]
have h7 : (7 / 4 - 2 * x) = 2 > (Real.sqrt (x + 1)) =~ 2 := by
nlinarith [h6, Real.sqrt_nonneg (x + 1)]
have h8 : (7 / 4 - 2% x) ~ 2> x+ 1 :=by
have h10 : (Real.sqrt (x + 1)) -~ 2 =x + 1 := by
rw [Real.sq_sqrt]
linarith
nlinarith [h7, hi0]
have h9 : 64 * x = 2 - 128 * x + 33 > 0 := by
nlinarith [h8]
have h10 : x < 1 - Real.sqrt 31 / 8 := by
by_contra hx
push_neg at hx
have h12 : Real.sqrt 31 > 0 := by
apply Real.sqrt_pos.mpr
norm_num
nlinarith [sq_nonneg (x - (1 - Real.sqrt 31 / 8)), sq_nonneg (Real.sqrt
31), Real.sq_sqrt (show (0 : R) < 31 by norm_num),
h12]
exact (h3, h10)

Proof of IMO-1962-P2 found by DeepSeek-Prover-V2.

theorem imo_1962_p2 (x : R) (o : 0 < 3 -x) (hy : 0 < x+ 1) (he : 1/ 2K
Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x < 1 - Real.sqrt 31 / 8

= by
have hy : -1 < x := by
linarith
have hy : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by
linarith
have hs : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := by
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linarith
have hg : 3 - x > x + 1 + Real.sqrt (x + 1) + 1 / 4 := by
have hg; : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := hg

have hgo : 0 < Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
have hgs : 0 < Real.sqrt (3 - x) := Real.sqrt_nonneg (3 - x)
have hgs : 0 < Real.sqrt (x + 1) * (1 / 2) := by positivity
have hes : 0 < Real.sqrt (3 - x) := Real.sqrt_nonneg (3 - x)
have hgg : 0 < Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)

have he7 : (Real.sqrt (x + 1) + 1 / 2) > 0 := by positivity
have hgg : Real.sqrt (3 - x) > Real.sqrt (x + 1) + 1 / 2 := hj
have hgg : (Real.sqrt (x + 1) + 1 / 2) =~ 2 < (Real.sqrt (3 - x)) ~ 2 :=
by
gecongr
<;> nlinarith [Real.sq_sqrt (show 0 < x + 1 by linarith),
Real.sq_sqrt (show 0 < 3 - x by linarith)]
have hgio : (Real.sqrt (x + 1) +1 / 2) =~ 2= (x + 1) + Real.sqrt (x +
1) +1/ 4 :=by
nlinarith [Real.sq_sqrt (show O < x + 1 by linarith), Real.sq_sqrt
(show 0 < 3 - x by linarith),
sq_nonneg (Real.sqrt (x + 1) - 1 / 2)]
have he11 : (Real.sqrt (3 - x)) =~ 2 =3 - x := by
rw [Real.sq_sqrt] <;> linarith
nlinarith [Real.sq_sqrt (show 0 < x + 1 by linarith), Real.sq_sqrt
(show 0 < 3 - x by linarith)]
have h7 : 7 - 8 * x > 4 * Real.sqrt (x + 1) := by
have h7; : 3 - x > x + 1 + Real.sqrt (x + 1) + 1 / 4 := hg
have h7z : 0 < Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)
nlinarith [Real.sqrt_nonneg (x + 1)]
have hg : x <7 / 8 := by
by_contra h

have hgi x > 7 / 8 := by linarith
have hgo : 7 - 8 *x x < 0 := by
linarith
have hgs : 4 * Real.sqrt (x + 1) > 0 := by positivity
linarith

have hg : 0 < Real.sqrt 31 := by positivity
have hig : 64 * x = 2 - 128 * x + 33 > 0 := by
have hig1 7 -8 % x >4 x Real.sqrt (x + 1) := hy

have hig2 0 < Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)

have higz : 0 < 7 - 8 * x := by linarith

have hips : 0 < Real.sqrt (x + 1) := Real.sqrt_nonneg (x + 1)

have higs : 0 < 7 - 8 * x := by linarith

have hige : (7 - 8 * x) =~ 2 > (4 * Real.sqrt (x + 1)) =~ 2 := by
gecongr

have hig7 : (4 * Real.sqrt (x + 1)) ~ 2 =16 * (x + 1) := by
nlinarith [Real.sq_sqrt (show O < x + 1 by linarith), sq_nonneg
(Real.sqrt (x + 1) - 2)]
have higg : (7 - 8 * x) ~ 2> 16 * (x + 1) := by
linarith
nlinarith [Real.sq_sqrt (show O
have hi; : x < 1 - Real.sqrt 31 /
by_contra h
have hi1; : x > 1 - Real.sqrt 31 / 8 :
linarith
have hi12 : 64 * x = 2 - 128 * x + 33 < 0 := by
have hi13 : x > 1 - Real.sqrt 31 / 8 := hi11
have hi14 : x < 1 + Real.sqrt 31 / 8 := by
by_contra hiig
have hi15 : ¥ > 1 + Real.sqrt 31 / 8 := by linarith
have hi16 : 64 * x = 2 - 128 * x + 33 > 0 := hjg
have hi17 : x <7 / 8 := hg
nlinarith [Real.sqrt_nonneg 31, Real.sq_sqrt (show 0 < 31 by
norm_num) ]
nlinarith [Real.sqrt_nonneg 31, Real.sq_sqrt (show 0 < 31 by
norm_num) ,

< x + 1 by linarith), sq_nonneg (x - 1)]
8 :=

+
by

by
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sq_nonneg (x - (1 - Real.sqrt 31 / 8)), sq_nonneg (x - (1 +
Real.sqrt 31 / 8))]
linarith [hig]
exact (hs, hi1)

Comparison with BFS-Prover. Our observations are consistent with Kimina-Prover Preview: the
proof generated by BFS is very difficult to understand, while both our code and Kimina-Prover
Preview are relatively more aligned with human proof writing habits.

Comparison with Kimina-Prover Preview. A comparison between Kimina-Prover-Preview’s open-
source solutions and our solutions reveals a non-overlapping subset of solved problems. Specifically,
Kimina-Prover-Preview’s solutions include 4 problems that DSP+ does not solve, while our ensemble
setting solves 11 problems unsolved by Kimina-Prover-Preview. This suggests a notable difference in
problem-solving styles between the two approaches. Below, we present one example of a problem
solved by Kimina-Prover Preview but not by our method.

theorem amcl12a_2020_p4 (S : Finset N) (hp : Vn : N, n € S <> 1000 < n A n
< 9999 A (Vd : N, d € Nat.digits 10 n — Even d) A 5 | n) : S.card = 100 :=
by
have hl : S = Finset.filter (fun n => 1000 < n A n < 9999 A (VW d : N, d €
Nat.digits 10 n — Even d) A 5 | n) (Finset.Icc 0 9999) := by
ext n
simp [ho]
<;> tauto
rw [hi]
native_decide

Comparison with DeepSeek-Prover-V2. Our method fails to solve 16 problems that DeepSeek-
Prover-V2 solves, but also succeeds on 3 problems that DeepSeek-Prover-V2 does not. One of the 3
problems is imo_2019_p1 in Appendix[H]
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