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ABSTRACT

Multimodal conditional motion generation enables the creation of precise and di-
verse human motions by combining complementary control signals such as text
descriptions and trajectory hints. However, existing methods often rely on static
or simplistic fusion strategies, overlooking the fact that the semantic and spatial
information of the inputs varies over time. This variation can lead to modality
conflicts in which one signal dominates, causing trajectory deviations or semantic
drift. Our key insight is that the information density of textual and trajectory sig-
nals can serve as a reliable indicator for dynamically balancing their influence dur-
ing motion generation. Building on this insight, we propose the Signal-Balanced
Motion Generator (SBMG), which dynamically measures and leverages the tem-
poral variation of information density to adaptively regulate the relative impor-
tance of textual and trajectory signals throughout generation. Experiments on
benchmark datasets demonstrate that SBMG significantly enhances both seman-
tic alignment and motion control accuracy, reducing FID by 60.5% and trajectory
error by 4.3%, thereby achieving substantial improvements over prior methods in
dynamic multimodal motion generation.

1 INTRODUCTION

Human pose generation is essential for a variety of applications such as virtual character anima-
tion, human–computer interaction, virtual reality and robotic motion planning. It has become one
of the most active research topics in computer vision. With the growing demand for realistic and
controllable digital humans and embodied agents, generating natural and coherent human motion se-
quences that accurately follow user intentions has attracted increasing attention from both academia
and industry.

Recently, diffusion model-based motion generation approaches (Xie et al., 2023; Pinyoanuntapong
et al., 2024a; Wan et al., 2024) have attracted increasing attention. These approaches typically
take textual descriptions as the sole input and iteratively denoise a motion sequence to satisfy the
semantic constraints. To achieve finer control, some works introduce additional guidance signals
during the generation process, such as motion trajectories of specific human body keypoints. It is
important to note that although the input modality remains text-only, the generation process fuses
textual semantics and trajectory signals, which respectively ensure semantic guidance and detailed
motion constraints, thereby improving both interpretability and precision.

In these approaches, the explicit input to the model is text only, while an additional trajectory sig-
nal is introduced during the generation process as auxiliary guidance. The text provides high-level
semantic constraints throughout the denoising steps, whereas the trajectory focuses on controlling
fine-grained spatial movements. In this setting, a key challenge is to dynamically balance the in-
fluence of the two guidance signals during motion generation, as the model must simultaneously
handle information from both the textual and trajectory signals.

Existing works (Shafir et al., 2023; Wan et al., 2024; Xie et al., 2023) typically adopt straightfor-
ward fusion or weighting strategies during the generation process to combine two types of guidance
signals: semantic constraints from text and spatial constraints from the trajectory. For instance, Pri-
orMDM integrates these signals by concatenating their features, while OmniControl employs static
weights to blend them smoothly during generation. However, these methods often assume that both
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Figure 1: Issues with existing methods include deviation from the intended trajectory and mismatch
with the text. Our approach dynamically adjusts the generated motion by balancing guidance from
text and trajectory signals.

guidance signals remain equally reliable throughout the sequence, which is rarely true in practice,
especially when their information density varies over time or even conflicts.

In diffusion-based motion generation, the text signal consistently serves as the primary driver for
denoising, while the trajectory signal plays a stronger constraining role at specific steps. When the
text semantics contains compound action instructions and fine-grained trajectory control is injected
at certain points in the process, the model may encounter competing directives at the same time
step, leading to motion inconsistency or semantic misalignment. For example, in the middle of
diffusion generation, if the text instructs “walk forward and then sit down” but the trajectory still
corresponds to the walking phase, the model may prematurely generate the sitting motion, resulting
in unnatural action transitions. Our analysis shows that in semantically dense periods, the model
tends to overemphasize text guidance while neglecting the trajectory, whereas in semantically sparse
periods, the reverse occurs — over-reliance on the trajectory reduces semantic expressiveness.

To address these issues, we propose a simple yet effective Signal-Balanced Motion Generator
(SBMG). As illustrated in Figure 1, our approach dynamically adjusts the relative influence of
two guidance signals during the generation process, namely the semantic guidance from text and
the spatial constraints from trajectory, based on the temporal variation of their information density.
Specifically, we first compute the guidance strength of each modality by matching control signals
with motion features at each time step, enabling us to estimate which modality primarily influ-
ences action generation at different points in time. Then, conditioned on the temporal distribution
of information density, the model generates a set of dynamic weights for each modality, facilitat-
ing cross-modal semantic alignment and harmonization over time. Ultimately, SBMG effectively
mitigates action inconsistency and semantic distortion caused by modality conflicts.

We conduct extensive experiments on two benchmark datasets and across three backbone models to
validate the effectiveness and generalizability of our method. Results demonstrate that our approach
substantially reduces trajectory deviation and semantic misalignment. Notably, on the HumanML3D
dataset, our method achieves a 60.5% reduction in FID and a 4.3% decrease in trajectory error,
outperforming existing approaches across multiple metrics.

Our main contributions are summarized as follows:

• We provide a systematic analysis of how signal density impacts control effectiveness in
multimodal motion planning, and propose a dynamic weighting mechanism to adjust the
importance of each modality over time.

• We introduce SBMG, a signal-balanced motion generator that models information density
to dynamically regulate the influence of textual and trajectory signals, effectively alleviat-
ing issues such as action inconsistency and semantic distortion.
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• We perform comprehensive evaluations across multiple datasets and architectures, demon-
strating the effectiveness and generalizability of SBMG and establishing a strong technical
baseline for future multimodal motion planning research.

2 RELATED WORK

2.1 CONDITIONAL MOTION SYNTHESIS

In recent years, significant progress has been made in human motion generation techniques under
conditional control Conditional motion synthesis typically leverages multimodal inputs and encom-
passes various control modalities, such as text (Guo et al., 2022; Kim et al., 2023; Lu et al., 2023;
Petrovich et al., 2022; Zhou & Wang, 2023), audio (Wang et al., 2025; Kucherenko et al., 2019; Li
et al., 2021), music (Li et al., 2024; Tseng et al., 2023), objects (Ghosh et al., 2023; Kulkarni et al.,
2024; Li et al., 2023; Pi et al., 2023; Xu et al., 2023), and trajectories (Dai et al., 2024; Huang
et al., 2024; Karunratanakul et al., 2024; Pinyoanuntapong et al., 2024a; Wan et al., 2024; Xie et al.,
2023). These methods focus on creating realistic, context-specific motions by mapping inputs to
motion parameters.

For trajectory control, methods like PriorMDM (Shafir et al., 2023) refine the MDM (Tevet et al.,
2022b) model to achieve end-effector position control, while GMD (Karunratanakul et al., 2023) and
Trace and Pace (Rempe et al., 2023) enable spatial control during diffusion by guiding the root joint
positions. OmniControl (Xie et al., 2023) extends control to arbitrary joints, and MotionLCM (Dai
et al., 2024) incorporates this control into latent spaces using ControlNet (Zhang et al., 2023a).
Additionally, DNO (Karunratanakul et al., 2024) optimizes the diffusion noise process to generate
motions aligning with differentiable objective functions.

2.2 TEXT-DRIVEN MOTION GENERATION

Text-driven motion generation in its early stages relied primarily on aligning latent distributions
between motion and language, often implemented using loss functions like Kullback-Leibler (KL)
divergence and contrastive loss. Representative works include Language2Pose (Ahuja & Morency,
2019), TEMOS (Petrovich et al., 2022), and MotionCLIP (Tevet et al., 2022a). However, due to
inherent differencesbetween text and motion distributions, such latent space alignment methods are
constrained in their ability to generate high-quality outputs.

Diffusion models have recently emerged as the dominant approach for text-to-motion generation,
allowing researchers to denoise and synthesize complete motion sequences in motion spaces (Tevet
et al., 2022a; Zhang et al., 2024), and quantized spaces (Lou et al., 2023). Additionally, token-based
autoregressive models, such as GPT-inspired frameworks (Guo et al., 2022) and masked motion
modeling (Guo et al., 2024; Hosseyni et al., 2025; Pinyoanuntapong et al., 2024c; Guo et al., 2025),
have shown notable progress by learning to generate discrete motion token sequences with pretrained
motion VQVAE (Williams et al., 2021; Esser et al., 2021; Williams et al., 2020).

Despite significant advances in conditional and text-driven motion generation, language-based con-
trol often remains coarse-grained, and multimodal models may produce inconsistent motions when
input conflicts or is ambiguous. In this work, we investigate the misalignment between textual in-
puts and trajectory controls, particularly under conditions of dense or sparse semantics in the text,
and we propose a novel modulation framework to enhance alignment in motion synthesis, yielding
results that better satisfy user expectations.

3 METHOD

3.1 SIGNAL DENSITY MEASURING MODULE

3.1.1 BASIC INFORMATION DENSITY

We approach from the perspective of temporal representations of signals, aiming to quantify the
semantic information density of multimodal signals at each time step and provide effective guid-
ance for motion generation through dynamic adjustment strategies. SDM extracts the information
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Figure 2: Overview of the SBMG Model. Input text description is first processed by our SDM
module, generating dense and sparse semantic signals. These signals are then passed to the TSB
module, which dynamically adjusts the intermediate motion feature F to produce the modulated
feature F ′, resulting in the desired motion sequence.

density distribution across multiple time points by analyzing the alignment degree between differ-
ent semantic signals and motion features, to provide precise adjustment signals for the subsequent
generation process. Specifically, the input text description is first tokenized into a vocabulary se-
quence {v1, v2, . . . , vn}, and then, for each time step t, we compute the attention score s between
each token feature and the motion feature, which measures the degree of matching between the word
features and motion features at each time step, as shown below:

s = softmax

(
EXT

√
dk

)
X (1)

where E represents the encoded text embedding, X represents the motion features, and dk represents
the feature dimension of X .

To detect dense and sparse semantic scenarios, we analyze the information density distribution of
each signal at different time points. From s, we extract the minimum and maximum values at each
time step and apply mean filtering to them respectively, to retain important signal information.

If the attention distribution of vocabulary features over motion features is highly concentrated at a
given time step, meaning that at this time step, the minimum value of attention across all vocabulary-
to-motion feature pairs exceeds a threshold, then the time step is marked with a dense semantic
signal. We define the dense semantic signal sigbase-dense as the set of attention values that satisfy the
following conditions:

sigbase-dense(t) =
min(s(t))(

min(s(t)) ≤ 1
T

T∑
t=1

min(s(t))

)
+ 1

(2)

Where min(s(t)) denotes the minimum attention value at time step t, and 1
T

∑T
t=1 min(s(t)) repre-

sents the threshold, which also denotes the average of the minimum attention values across all time
steps.

When the attention distribution of vocabulary features over motion features is sparse at a given time
step, meaning that at this time step, the maximum attention value across all vocabulary-to-motion
feature pairs is smaller than the threshold, the time step is marked with a sparse semantic signal. We
define the sparse semantic signal sigbase-sparse as the set of attention values that satisfy the following
conditions:

sigbase-sparse(t) =
max(s(t))(

max(s(t)) ≥ 1
T

T∑
t=1

max(s(t))

)
+ 1

(3)

Where max(s(t)) denotes the maximum attention value at time step t, and 1
T

∑T
t=1 max(s(t))
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Figure 3: SDM Module Details. This module accepts text and motion inputs to generate the Dense
Semantic Signal and Sparse Semantic Signal, which are used for dynamic adjustment in subsequent
motion generation.

represents the threshold, which also denotes the average of the maximum attention values across all
time steps.

3.1.2 COMPOSITE INFORMATION DENSITY

However, the basic information density, based solely on the matching strength at the current time
step, is insufficient to reflect the dynamic changes of semantics over time fully. To more accurately
capture the temporal characteristics of semantic information during motion generation, we com-
bine the temporal variations of attention with the basic information density, forming the criteria for
composite information density.

In this process, we extract the minimum value Alow and maximum value Ahigh of attention at each
time step, forming two attention sequences. The minimum attention represents the “weakest” align-
ment strength among all vocabulary at this time step. If it is still above the threshold, it indicates that
the overall semantic signal is relatively dense. The maximum attention represents the “strongest”
alignment strength among all vocabulary at this time step. If it is still below the threshold, it suggests
that the overall semantic signal is relatively sparse. Then, we compute the changes between adjacent
time steps to model the temporal variation of information density in the sequence.

∆Ahigh = Ahigh − roll(Ahigh, 1),

∆Alow = Alow − roll(Alow, 1).
(4)

Here, the function roll(·, 1) represents shifting the sequence by one time step along the time dimen-
sion to simulate a sliding effect, thereby calculating the change between adjacent time steps and
effectively capturing the variation in information density across the sequence. To identify time steps
with significant changes, we take the absolute value of the difference, set its mean as the threshold,
and filter out the time periods with significant semantic intensity changes, thus obtaining the dense
and sparse semantic signals:

sigdiff-sparse(t) =

{
Ahigh, if |∆Ahigh| < µ|∆Ahigh|
0, otherwise

sigdiff-dense(t) =

{
Alow, if |∆Alow| > µ|∆Alow|
0, otherwise

(5)

This module not only captures the semantic density at the current time step but also sensitively re-
flects the dynamic changes in semantic information, providing a reference with enhanced temporal
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Figure 4: TSB Module Details. This module accepts Dense Semantic Signal, Sparse Semantic
Signal, and intermediate motion feature F as inputs, generating the dynamically adjusted F ′ to
produce motions aligned with user intent.

recognition capability for the signal balancing strategy during the generation process. To fully in-
tegrate the basic information density and the variation information across the time dimension, the
composite information density is adaptively weighted and fused by learnable parameters α and β:

sigdense = α · sigbase-dense + β · sigdiff-dense,

sigsparse = α · sigbase-sparse + β · sigdiff-sparse.
(6)

Here, sigdense denotes the dense semantic signal, and sigsparse denotes the sparse semantic signal.
With initial values set to 0.5, α and β are optimized together with the model parameters, enabling the
system to balance temporal variations in semantic information with the overall intensity distribution,
thus providing more refined modulation signals for the generation process.

In summary, through dense and sparse semantic signals, SDM effectively provides adjustment sig-
nals for motion generation. These signals are then processed in the TSB to generate more accurate
dynamic modulation signals, thus improving the coordinated control between text and trajectory.

3.2 TEXT-TRAJECTORY SIGNAL BALANCING STRUCTURE

Although the signal density measurement module effectively identifies densely and sparsely pop-
ulated semantic signals, dynamically adjusting the weighting of text and trajectory signals during
generation to achieve precise semantic and trajectory control remains challenging. The primary task
of TSB is to generate balanced embedding representations at different timesteps based on the sig-
nals from SDM, thus enabling the dynamic modulation of text and trajectory signals. By developing
a Contextual Semantic Modulation Signal and a Spatial Trajectory Modulation Signal, the model
coordinates the guiding influence of each signal on the generated motion, enhancing sequence co-
herence and accuracy.

In the text-trajectory signal balancing structure, sigdense, sigsparse, and xseq are first abstracted into
multi-scale features and fused. These fused features are then concatenated into a combined feature
vector. The combined vector is transformed through a linear layer with a Sigmoid activation function
to produce a modulation factor g.

g = σ(W · combined + b) (7)

where σ denotes the Sigmoid activation function, and W and b are the weight matrix and bias term
of the linear transformation, respectively.

The modulation factor controls the generation of the Contextual Semantic Modulation Signal and
Spatial Trajectory Modulation Signal. These signals are subsequently fused with the motion feature
F within a mask-defined area. The fused features are then processed through a cross-attention
mechanism to further adjust the influence of text and trajectory signals, resulting in dynamically
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optimized motion features F ′. This balancing process significantly enhances the model’s capability
to handle densely and sparsely populated semantics, ensuring the generated motion sequence aligns
more closely with user expectations.

4 EXPERIMENTS

4.1 DATASETS.

We conduct experiments on two widely used public text-motion datasets: the HumanML3D
dataset (Guo et al., 2022) and the KIT-ML dataset (Plappert et al., 2016). The HumanML3D dataset
comprises 14,616 unique motion capture sequences sourced from the AMASS (Mahmood et al.,
2019) and HumanAct12 (Guo et al., 2020) datasets, along with 44,970 corresponding text descrip-
tions. It encompasses a wide range of human activities, including locomotion, sports, and acrobatics.
The KIT-ML dataset, though smaller in scale, contains 3,911 motion sequences paired with 6,278
text descriptions. Both datasets are preprocessed and split into training, validation, and test sets
according to the procedure described in Guo et al. (2022).

4.2 EVALUATION METRICS.

To comprehensively evaluate the quality and control performance of motion sequences generated by
the three backbone networks, we employed several evaluation metrics. For OmniControl, Fréchet
Inception Distance (FID) was used to assess the naturalness and fidelity of generated motions.
R-Precision was utilized to evaluate the relevance between motions and their corresponding text
prompts, while the Diversity metric quantified the variation in generated motions. Additionally, 3D
control error metrics such as trajectory error, position error, and average error were used to measure
the control precision of keyframe joint positions.

For MoMask and SALAD, we adopted similar metrics, including FID, R-Precision, and Diversity.
To further assess semantic alignment, we introduced Multimodal Distance (MM-Dist) to evaluate
how well the generated motions semantically match the input text, and employed Multimodality
(MModality) to measure the diversity of motions generated from the same prompt. We emphasize
the importance of balancing multimodality with quality metrics, as over-optimizing for diversity
may compromise the consistency and relevance of generated results.

4.3 COMPARISON WITH OTHER METHODS

To validate the effectiveness of the method proposed in this paper, we conducted experiments
on three backbone networks, OmniControl (Xie et al., 2023), MoMask (Guo et al., 2024), and
SALAD (Hong et al., 2025), respectively, and compared them with current mainstream methods.
Due to the unique evaluation metrics of OmniControl, we summarize its results separately in Sec-
tion A.3, where the data for OmniControl is based on our reproduced model. When comparing with
MDM (Tevet et al., 2022b), PriorMDM (Shafir et al., 2023), and GMD (Karunratanakul et al., 2023),
we focus solely on pelvis control to ensure fairness in the comparisons. To further validate the multi-
joint control performance of our method, we also conducted comparisons with OmniControl under
additional combinations of control joints.

Considering that MoMask and SALAD follow a shared evaluation framework, we perform compar-
isons on the HumanML3D and KIT-ML datasets against several state-of-the-art methods, including
T2M (Guo et al., 2022), MDM (Tevet et al., 2022b), BAMM (Pinyoanuntapong et al., 2024b),
ReMoDiffuse (Zhang et al., 2023b), MoMask (Guo et al., 2024), SALAD (Hong et al., 2025), Mo-
GenTS (Yuan et al., 2024), and Motion Anything (Zhang et al., 2025). Each experiment is repeated
20 times, and the reported results include the mean and the 95% confidence interval. The experi-
mental results are summarized in Table 1. Qualitative evaluation results are provided in Section A.5.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparison of MoMask and SALAD with other methods on HumanML3D
and KIT-ML. The best and runner-up values are bold and underlined. The right arrow → indicates
that closer values to ground truth are better.

Datasets Methods
R Precision↑

FID↓ MM-Dist↓ Diversity→ MultiModality↑
Top 1 Top 2 Top 3

Human
ML3D

Ground Truth 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
T2M 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 9.175±.083 2.219±.074

MDM 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

BAMM 0.525±.002 0.720±.003 0.814±.003 0.055±.002 2.919±.008 9.717±.089 1.687±.051

ReMoDiffuse 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

MoMask 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 - 1.241±.040

SALAD 0.581±.003 0.769±.003 0.857±.002 0.076±.002 2.649±.009 9.696±.096 1.751±.062

MoGenTS 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 9.570±.077 -
Motion Anything 0.546±.003 0.735±.002 0.829±.002 0.028±.005 2.859±.010 9.521±.083 2.705±.068

MoMask (Ours) 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 - 1.283±.048

SALAD (Ours) 0.583±.003 0.774±.003 0.859±.002 0.074±.002 2.637±.007 9.660±.086 1.756±.074

KIT-
ML

Ground Truth 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
T2M 0.361±.005 0.559±.007 0.681±.007 3.022±.107 3.488±.028 10.72±.145 2.052±.107

MDM 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.847±.109 1.907±.214

BAMM 0.438±.009 0.661±.009 0.788±.005 0.183±.013 2.723±.026 11.01±.094 1.609±.065

ReMoDiffuse 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 10.80±.105 1.239±.028

MoMask 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

SALAD 0.477±.006 0.711±.005 0.828±.005 0.296±.012 2.585±.016 11.097±.095 1.004±.040

MoGenTS 0.445±.006 0.671±.006 0.797±.005 0.143±.004 2.711±.024 10.92±.090 -
Motion Anything 0.449±.007 0.678±.004 0.802±.006 0.131±.003 2.705±.024 10.94±.098 1.374±.069

MoMask (Ours) 0.441±.005 0.665±.006 0.788±.007 0.141±.020 2.757±.014 - 1.149±.042

SALAD (Ours) 0.482±.007 0.713±.006 0.828±.005 0.249±.015 2.558±.017 11.174±.011 0.963±.032

4.4 ABLATION STUDIES

4.4.1 IMPACT OF SEMANTIC DENSITY PERCEPTION ON GENERATION PERFORMANCE.

In this experiment, we explore the impact of different semantic density judgment strategies on gen-
eration performance. Our approach dynamically captures the trends of signal changes and combines
temporal information to accurately identify high and low-density regions, thereby optimizing signal
weights. Unlike traditional density evaluation based on statistical features, our method intelligently
responds to signal fluctuations, significantly improving generation performance. The results of this
experiment are presented in Table 2.

4.4.2 IMPACT OF MODULATION SIGNAL FUSION METHODS ON GENERATION
PERFORMANCE.

This experiment investigates the application of a multi-head attention mechanism and multi-scale
pooling in signal fusion. The multi-head attention mechanism optimizes computational resources
by processing signals in parallel, especially during time steps with higher information density, while
multi-scale pooling further refines signal processing by pooling intermediate results. Experimental
results show that although these two methods independently improve generation performance, their
precision and quality still fall short compared to our approach. Our method significantly enhances
generation quality through more precise signal modulation and dynamic control. The results of this
experiment are presented in Table 3.

4.4.3 IMPACT OF INFORMATION DENSITY THRESHOLD STRATEGIES ON GENERATION
PERFORMANCE

This experiment evaluates the effect of different threshold-setting strategies in the SDM for detecting
dense and sparse semantic signals. We compare fixed threshold, global adaptive threshold, and our
proposed time-series adaptive threshold. Results show that the fixed threshold struggles to generalize
across motions of varying complexity, while our time-series adaptive threshold achieves a better
balance between global and local variations, leading to more accurate identification of dense/sparse
signals and significantly improving motion continuity and control precision in the final generation
results. The results of this experiment are presented in Table 4.
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Table 2: Ablation study of the semantic density perception strategy on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Standard Deviation 0.519±.003 0.709±.002 0.804±.002 0.044±.002 2.979±.009 1.366±.041

Entropy 0.483±.002 0.674±.003 0.775±.002 0.136±.007 3.181±.009 1.651±.050

Median 0.516±.003 0.710±.002 0.806±.002 0.047±.002 2.968±.008 1.413±.041

Quantile 0.519±.003 0.712±.003 0.808±.002 0.035±.002 2.945±.007 1.320±.039

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

Table 3: Ablation study of the modulation signal fusion methods on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Multi-head Attention 0.521±.003 0.712±.002 0.804±.002 0.042±.002 2.954±.010 1.272±.061

Multi-scale Pooling 0.530±.003 0.721±.002 0.811±.002 0.042±.002 2.914±.007 1.329±.046

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

Table 4: Ablation study of the information density threshold strategies on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Fixed Threshold 0.520±.003 0.710±.002 0.801±.002 0.044±.002 2.965±.009 1.255±.055

Global Adaptive Threshold 0.526±.003 0.716±.002 0.808±.002 0.038±.001 2.945±.006 1.271±.050

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

Table 5: Ablation study of the weighting strategies on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Fixed Weighting 0.521±.003 0.711±.002 0.803±.002 0.043±.002 2.960±.008 1.262±.053

Simple Proportional Weighting 0.527±.003 0.715±.002 0.808±.002 0.037±.001 2.944±.007 1.275±.047

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

4.4.4 IMPACT OF WEIGHTING STRATEGIES ON GENERATION PERFORMANCE

This experiment investigates the impact of different weighting strategies when integrating basic
information density and temporal variation information. We compare a learnable dynamic weighting
method with two baseline approaches: fixed weighting and simple proportional weighting. The
experimental results show that, compared to the baselines, the learnable dynamic weighting strategy
achieves superior performance in terms of motion continuity, semantic consistency, and control
precision. The results of this experiment are presented in Table 5. Additional ablation studies
complementing are presented in Section A.4

5 CONCLUSION

In conclusion, the Signals-Balanced Motion Generator (SBMG) introduces an effective solution for
multimodal motion generation by dynamically balancing text and trajectory signals. By incorpo-
rating a Signal Density Measuring Module and a Text-Trajectory Signal Balancing Block, SBMG
addresses the challenges of aligning generated motions with user expectations, mitigating action
inconsistencies and semantic misalignments. Our extensive experiments demonstrate SBMG’s su-
perior performance in both qualitative and quantitative assessments, highlighting its potential in
advancing the field of motion generation.
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A APPENDIX

A.1 THE USE OF LLMS

In this work, LLMs were used solely as general-purpose tools to aid and polish the writing of the
manuscript. The ideas, scientific content, experimental design, and other related aspects were devel-
oped entirely by the authors.

A.2 NETWORK OVERVIEW

In the task of multimodal motion generation, text descriptions and trajectory signals often exhibit
uneven and dynamically changing information density in the time dimension. When the model fails
to identify these fluctuations in semantic density accurately, it is prone to erroneously assigning
excessively high or low weights to a particular modal signal at moments of overly dense or sparse
semantics, leading to semantic disorder and poor continuity in the generated motions. The root
cause of this disharmony lies in the fact that existing methods generally lack accurate quantification
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and dynamic regulation mechanisms for the semantic information density of different modal signals
in the temporal sequence, thus failing to adapt to the fluctuations and imbalances in the information
content of text and trajectory signals across different periods.

To delve deeper into this issue, we approach it from the perspective of the semantic density of
input signals, arguing that the importance of each modal signal in different time steps during the
motion generation process should be dynamically adjusted based on the actual effective information
it carries. Specifically, the information density of text and trajectory signals on the time axis exhibits
highs and lows; if the model blindly adopts static or simple weighted fusion, it is difficult to achieve
temporal alignment and reasonable balance of semantics, resulting in motion planning that may
overly rely on text while ignoring trajectory cues during semantically dense periods, and vice versa.

Therefore, this study proposes a dynamic signal-balanced generation framework driven by informa-
tion density, aiming to precisely capture the changes in semantic intensity of multimodal signals
in the temporal sequence and adjust the guiding weights of each modality in the motion genera-
tion process accordingly. The framework consists of two key components: first, by analyzing the
matching degree between text and motion features, quantify the information density of multimodal
signals at different time steps, revealing semantically dense and sparse intervals; second, based on
this information density distribution, dynamically generate control signals that reflect the balance
state of semantics and trajectories, achieving cross-modal temporal alignment and adaptive weight
adjustment, thereby mitigating the negative impacts of signal conflicts on motion generation.

A.3 DETAILED EXPERIMENTAL RESULTS OF OMNICONTROL

Due to OmniControl (Xie et al., 2023) employing different evaluation metrics and settings com-
pared to other methods, its experimental results are not included in the main text but are compiled
separately in this section. Tables 6 and 7 show the experimental results of OmniControl.

Table 6: Quantitative results of the first backbone network (OmniControl) on the HumanML3D test
set. Best results are in bold.

Method Control Joint FID↓ R-precision↑
(Top-3)

Diversity→
Traj. Err.↓

(50 cm)
Loc. Err.↓

(50 cm)
Avg. Err.

(cm)↓
Real - 0.002 0.797 9.503 0.000 0.000 0.000

MDM

Pelvis

0.698 0.602 9.197 0.402 0.308 0.596
PriorMDM 0.475 0.583 9.156 0.346 0.213 0.442

GMD 0.576 0.665 9.206 0.931 0.032 0.144
OmniControl 0.387 0.712 9.705 0.136 0.024 0.073

Ours (on pelvis) 0.104 0.705 9.352 0.033 0.003 0.031
OmniControl

Pelvis
0.323 0.691 9.854 0.078 0.013 0.064

Ours (on all) 0.155 0.694 9.447 0.041 0.005 0.048
OmniControl

Head
0.316 0.687 9.921 0.093 0.017 0.076

Ours (on all) 0.158 0.703 9.435 0.057 0.008 0.064
OmniControl

Left Hand
0.264 0.690 9.661 0.200 0.028 0.119

Ours (on all) 0.122 0.702 9.331 0.139 0.015 0.096
OmniControl

Right Hand
0.264 0.690 9.661 0.200 0.028 0.119

Ours (on all) 0.127 0.696 9.359 0.129 0.014 0.093
OmniControl

Left Foot
0.292 0.689 9.855 0.123 0.017 0.062

Ours (on all) 0.165 0.690 9.593 0.101 0.010 0.051
OmniControl

Right Foot
0.307 0.693 9.901 0.143 0.019 0.065

Ours (on all) 0.135 0.713 9.511 0.109 0.013 0.055
OmniControl

Average
0.297 0.691 9.828 0.139 0.019 0.083

Ours (on all) 0.144 0.700 9.446 0.096 0.011 0.068

A.4 ADDITIONAL ABLATION STUDIES

A.4.1 IMPACT OF SEMANTIC DENSITY VARIATION ON GENERATION PERFORMANCE.

We further investigate the impact of semantic density variation on generation performance. By com-
bining the judgment of base semantic density with time step variations, we can precisely identify key
change moments and dynamically adjust signal weights. This dual semantic density judgment strat-
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Table 7: Quantitative results of the first backbone network (OmniControl) on the KIT test set. Best
results are in bold.

Method Control Joint FID↓ R-precision↑
(Top-3)

Diversity→
Traj. Err.↓

(50 cm)
Loc. Err.↓

(50 cm)
Avg. Err.

(cm)↓
Real - 0.031 0.779 11.08 0.000 0.000 0.000

PriorMDM

Pelvis

0.851 0.397 10.518 0.3310 0.1400 0.2305
GMD 1.565 0.382 9.664 0.5443 0.3003 0.4070

OmniControl 0.702 0.397 10.927 0.1105 0.0337 0.0759
Ours 0.994 0.399 11.123 0.1619 0.0358 0.1100

OmniControl
Average

0.788 0.379 10.841 0.1433 0.0368 0.0854
Ours 0.665 0.411 11.258 0.1295 0.0261 0.0948

Table 8: Ablation study of the impact of semantic density variation on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Temporal Difference 0.525±.003 0.717±.002 0.810±.003 0.032±.002 2.931±.006 1.165±.051

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

Table 9: Ablation study of gating mechanisms on signal fusion effectiveness.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Forgetting Gate 0.526±.002 0.719±.002 0.812±.002 0.037±.002 2.918±.007 1.312±.055

Weighted Gate 0.518±.002 0.712±.002 0.806±.002 0.041±.002 2.962±.007 1.386±.063

Nonlinear Gate 0.518±.003 0.713±.003 0.808±.002 0.047±.002 2.950±.009 1.354±.061

Low-rank Gate 0.523±.003 0.716±.003 0.811±.002 0.043±.002 2.938±.007 1.354±.061

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

Table 10: Ablation study of the dynamic sliding window on generation performance.

Methods
R Precision↑

FID↓ MM-Dist↓ MultiModality↑
Top 1 Top 2 Top 3

Dynamic Sliding Window 0.520±.002 0.710±.002 0.805±.002 0.039±.002 2.967±.007 1.353±.038

Ours 0.532±.003 0.719±.002 0.812±.002 0.030±.001 2.938±.004 1.283±.048

egy effectively enhances generation accuracy and diversity, especially in complex temporal tasks,
outperforming strategies that solely rely on time step variations. The results of this experiment are
presented in Table 8.

A.4.2 IMPACT OF GATING MECHANISMS ON SIGNAL FUSION EFFECTIVENESS.

We compare the impact of different gating mechanisms on signal fusion. While these mechanisms
optimize signal weight adjustment to some extent, our research shows that with more refined gating
adjustments, our method exhibits significant advantages in temporal control of dense and sparse
signals, enhancing generation accuracy, quality, and robustness. The results of this experiment are
presented in Table 9.

A.4.3 IMPACT OF DYNAMIC SLIDING WINDOW ON GENERATION PERFORMANCE.

This experiment employs the dynamic sliding window method for signal density recognition and
adjustment. By using sliding windows, we can capture local signal fluctuations at each time step
and dynamically adjust signal density. Although this method improves generation control to some
extent, its performance still has room for improvement compared to our method. Our approach
significantly enhances generation quality through more precise signal modulation. The results of
this experiment are presented in Table 10.
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Text Momask Ours

A person walks in a 

circle.

A person kneels down 

onto the floor.

A person walks 

forward then sits 

down.

A person walks forward 

with both hands above 

head.

Figure 5: Qualitative evaluation of text-to-motion generation. We conducted a qualitative com-
parison between the motion visualizations generated by our method and those generated by Mo-
Mask (Guo et al., 2024).

A.5 QUALITATIVE EVALUATION

To qualitatively evaluate the performance of our text-to-motion generation method, We compare the
visualizations produced by our approach with those generated by a representative existing method in
text-to-motion generation, including MoMask (Guo et al., 2024). The text prompts are customized
based on the HumanML3D test set. As shown in Figure 5, our method demonstrates significant
advantages over the existing methods in terms of motion quality, diversity, and alignment between
text and motion.
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