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Abstract

Knowledge distillation is classically a procedure where a neural network is trained
on the output of another network along with the original targets in order to transfer
knowledge between the architectures. The special case of self-distillation, where
the network architectures are identical, has been observed to improve generalization
accuracy. In this paper, we consider an iterative variant of self-distillation in a
kernel regression setting, in which successive steps incorporate both model outputs
and the ground-truth targets. This allows us to provide the first theoretical results
on the importance of using the weighted ground-truth targets in self-distillation.
Our focus is on fitting nonlinear functions to training data with a weighted mean
square error objective function suitable for distillation, subject to `2 regularization
of the model parameters. We show that any such function obtained with self-
distillation can be calculated directly as a function of the initial fit, and that infinite
distillation steps yields the same optimization problem as the original with amplified
regularization. Furthermore, we provide a closed form solution for the optimal
choice of weighting parameter at each step, and show how to efficiently estimate this
weighting parameter for deep learning and significantly reduce the computational
requirements compared to a grid search.

1 Introduction
Knowledge distillation, most commonly known from Hinton et al. (2015), is a procedure to transfer
knowledge from one neural network (teacher) to another neural network (student).1 Often the student
has fewer parameters than the teacher, and the procedure can be seen as a model compression
technique. Originally, the distillation procedure achieves the knowledge transfer by training the
student network using the original training targets, denoted as ground-truth targets, as well as a
softened distribution of logits from the (already trained and fixed) teacher network.2 Since the
popularization of knowledge distillation by Hinton et al. (2015), the idea of knowledge distillation
has been extended to a variety of settings.3 This paper will focus on the special case where the teacher
and student are of identical architecture, called self-distillation, and where the aim is to improve
predictive performance, rather than compressing the model.

The idea of self-distillation is to use outputs from a trained model together with the original targets as
new targets for retraining the same model from scratch. We refer to this as one step of self-distillation,
and one can iterate this procedure for multiple distillation steps (see Figure 1). Empirically, it
has been shown that this procedure often generalizes better than the model trained merely on the

1Often knowledge distillation is also referred to under the name Teacher-Student learning.
2We will refer to the weighted outputs of the penultimate layer, i.e. pre-activation of the last layer, as logits.
3See Section 2 for a brief overview, or see Wang and Yoon (2020) for a more exhaustive survey
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original targets, and achieves higher predictive performance on validation data, despite no additional
information being provided during training (Furlanello et al., 2018; Ahn et al., 2019; Yang et al.,
2018).

Figure 1: Illustration of self-distillation for two steps after the initial training, where we use the
notation f (τ) = f(·, β̂(τ)). See Section 3 for details.

Modern deep neural networks are often trained in the over-parameterized regime, where the amount
of trainable parameters highly exceed the amount of training samples. Under simple first-order
methods such as gradient descent, such large networks can fit any target, but in order to generalize
well, such overfitting is usually undesirable (Zhang et al., 2017; Nakkiran et al., 2020). Thus, some
type of regularization is typically imposed during training, in order to avoid overfitting. A common
choice is to add an `2-regularization4 term to our objective function, which has been shown to
perform comparably to early-stopping gradient descent training (Yao et al., 2007). However, in the
theoretical study of the over-parameterized regime, regularization is often overlooked, but recent
results have shown a connection between wide neural networks and kernel ridge regression through
the Neural Tangent Kernel (NTK) (Lee et al., 2019, 2020; Hu et al., 2019). We briefly elaborate on
this connection in Section D, which motivates our problem setup and connection to deep learning in
Section 5.

Our Contributions Through a theoretical analysis we show that

• the solution at any distillation step can easily be calculated as a function of the initial fit,
and infinitely many steps of self-distillation (with fixed distillation weight) correspond to
solving the usual kernel ridge regression problem with a specific amplified regularization
parameter when the distillation weight is non-zero,

• for fixed distillation weights, self-distillation amplifies the regularization at each distillation
step, and the ground-truth targets dampen the sparsification and regularization of the self-
distilled solutions, ensuring non-zero solutions for any number of distillation steps,

• the optimal distillation weight has a closed form solution for kernel ridge regression, and
can be estimated efficiently for neural networks compared to a grid search.

Proofs of all our results can be found in Supplementary Material A, and code to reproduce
our illustrative example in Section 4.5. Experimental results in Section B can be found at
github.com/Kennethborup/self_distillation.

2 Related Work
The idea of knowledge distillation dates back to Bucila et al. (2006), and was later brought to the deep
learning setting by Ba and Caruana (2014) and more recently popularized by Hinton et al. (2015) in
the context of compressing neural networks. Since the original formulation, various extensions have
been proposed. Some approaches focus on matching the teacher and student models on statistics other
than the distribution of the logits, such as intermediate representations (Romero et al., 2015), spacial
attention maps (Zagoruyko and Komodakis, 2019), Jacobians (Srinivas and Fleuret, 2018), Gram
matrices (Yim et al., 2017), or relational information between teacher outputs (Park et al., 2019).
Other extensions focus on developing the transfer procedure, such as self-distillation (Furlanello
et al., 2018), data-free distillation (Lopes et al., 2017; Nayak et al., 2019; Micaelli and Storkey, 2019;
Chen et al., 2019; Fang et al., 2019), data distillation (Radosavovic et al., 2018), residual knowledge
distillation (Gao et al., 2020), online distillation (Anil et al., 2018) or contrastive distillation (Ahn
et al., 2019; Tian et al., 2020a).

4With slight differences, `2 regularization is often referred to as weight decay and ridge regularization in
deep learning and statistical learning literature, respectively. See e.g. Loshchilov and Hutter (2019) for details.
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The practical benefits of knowledge distillation have been proven countless of times in a variety of
settings, but the theoretical justification for knowledge distillation is still highly absent. Hinton et al.
(2015) conjecture that the success of knowledge distillation should be attributed to the transfer of dark
knowledge (e.g. inter-class relationships revealed in the soft labels). Müller et al. (2019); Tang et al.
(2020) support this conjecture, and argue that knowledge distillation is similar to performing adaptive
label smoothing weighted by the teacher’s confidence in the predictions. Dong et al. (2019) show
the importance of early stopping when training over-parameterized neural networks for distillation
purposes by arguing that neural networks tend to fit informative and simple patterns faster than
noisy signals, and knowledge distillation utilizes these simple patterns for knowledge transfer. Abnar
et al. (2020) empirically investigate how knowledge distillation can transfer inductive biases between
student and teacher models, and Gotmare et al. (2019) empirically shows how the dark knowledge
shared by the teacher mainly is disbursed to some of the deepest layers of the teacher.

To the best of our knowledge, few papers investigate knowledge distillation from a rigorous theoretical
point of view, and those that do, do so with strong assumptions on the setting. Phuong and Lampert
(2019) ignore the ground-truth targets during distillation and furthermore assume linear models.
Mobahi et al. (2020) investigate self-distillation in a Hilbert space setting with kernel ridge regression
models where the teacher is trained on the ground-truth targets, and the student (and subsequent
iterations) is only trained on the predictions from the teacher without access to the ground-truth
targets. They show that self-distillation progressively limits the number of basis functions used to
represent the solutions, thus eventually causing the solutions to underfit. In this paper, we build on
the theoretical results of Mobahi et al. (2020), but we include the weighted ground-truth targets in
the self-distillation procedure, where we allow the weight to depend on the self-distillation step, and
show how this drastically affects the behavior and effect of self-distillation.5

3 Problem Setup
Notation Vectors and matrices are denoted by bold-faced letters; vectors are column vectors by
default, and for a vector a let [a]i be the i-th entry and for a matrix A let [A]i,j be the (i, j)-th
entry. Let In denote the identity matrix of dimension n, [k] = {1, 2, . . . , k}, and let ‖·‖2 and ‖·‖F
denote the `2-norm and the Frobenius norm, respectively. Finally, for a function h : Rn → Rd and
X ∈ Rm×n, we denote by h(X) the Rm×d matrix of outcomes, where the i’th row of h(X) is the
function applied to the i’th row of X, i.e. [h(X)]i,· = h(xi).

Consider the training dataset D ⊆ Rd ×R, and let X = {x | (x, y) ∈ D} and Y = {y | (x, y) ∈ D}
denote the inputs and targets, respectively. Let X = [xi]i∈[n] ∈ Rn×d be the matrix of inputs,
y = [yi]i∈[n] the vector of targets, and X̃ ∈ Rm×d, ỹ ∈ Rm be the matrix and vector of validation
inputs and targets, respectively. Given a feature map ϕ : Rd → V , where V has dimension D,
we denote by K = κ(X,X) = [κ(xi,xj)]

n
i,j=1 ∈ Rn×n, where κ(xi,xj) = 〈ϕ(xi), ϕ(xj)〉, the

symmetric kernel (Gram) matrix associated with the feature map ϕ.6

3.1 Self-Distillation of Kernel Ridge Regressions
In order to avoid overfitting our training data, we will impose a regularization term on our weights,
and thus investigate the kernel ridge regression functions f ∈ F mapping f : X → Y , to construct a
solution which best approximates the true underlying data generating map and generalize well to new
unseen data from this underlying map. We consider self-distillation in the kernel ridge regression
setup; i.e. consider the (self-distillation) objective function

Ldistill(f(X,β),y1,y2) =
α

2
‖f(X,β)− y1‖22 +

1− α
2
‖f(X,β)− y2‖22 +

λ

2
‖β‖22 , (1)

where α ∈ [0, 1], λ > 0, y1,y2 ∈ Rn and f(X,β) = ϕ(X)β. The objective in (1) is a weighted sum
of two Mean Square Error (MSE) objective functions with different targets7 and an `2-regularization

5In Supplementary Material E we relate our problem setup to Mobahi et al. (2020) and extend some of our
results to a constrained optimization setting with a regularization functional in Hilbert space.

6Since the kernel trick makes the predictions depend only on inner products in the feature space, it is not a
restriction if D is infinite. However, for ease of exposition we assume D is finite.

7It is straightforward to verify that minimizing (1) and the classic MSE objective with a weighted target,
i.e. L̃distill(f(X,β),y1,y2) =

1
2
‖f(X,β)− (αy1 + (1− α)y2)‖22 + λ

2
‖β‖22, are equivalent and that the

objective functions are equal up to the additive constant α(α− 1) ‖y1 − y2‖22.
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on the model weights. Minimization of (1) w.r.t. β is straightforward and yields the minimizer

β̂
def
= argmin

β
Ldistill(f(X,β),y1,y2) = ϕ(X)ᵀ (K+ λIn)

−1
(αy1 + (1− α)y2) (2)

by Woodbury’s matrix identity and definition of K. This solution can also be seen as a direct
application of the Representer Theorem (Schölkopf et al., 2001). Let y(0) def

= y, i.e. the original
targets, and recursively define for the steps τ ≥ 1,

β̂(τ) def
= argmin

β
Ldistill(f(X,β),y,y(τ−1)) (3)

= ϕ(X)ᵀ (K+ λIn)
−1
(
α(τ)y + (1− α(τ))y(τ−1)

)
,

f(x, β̂(τ))
def
= ϕ(x)ᵀβ̂(τ) (4)

= κ(x,X)ᵀ (K+ λIn)
−1
(
α(τ)y + (1− α(τ))y(τ−1)

)
,

y(τ) def
= f(X, β̂(τ)), (5)

for fixed α(τ) ∈ [0, 1]. Notice, the initial step (τ = 1) corresponds to standard training by definition
and as such is independent of α(1). Self-distillation treats the weighted average of the predictions,
y(1), from this initial model on X, and the ground-truth targets, y, as targets. This procedure is
repeated as defined in (3)-(5) and we obtain the self-distillation procedure as illustrated in Figure 1.
Note, the special cases α(τ) = 0 and α(τ) = 1 correspond to merely training on the predictions from
the previous step, and only training on the original targets, respectively. Thus, α(τ) = 1 is usually not
of interest, as the solution is equal to a classical kernel ridge regression, and self-distillation plays no
role in this scenario. We will often consider the special case of equal weights, α(2) = · · · = α(τ) = α,
and if α = 0 this corresponds to the setting investigated in Mobahi et al. (2020) in a slightly different
setup. Thus, some of the following results can be seen as a generalization of Mobahi et al. (2020) to
step-wise and non-zero α.

4 Main Results
In this section we present our main results for finitely and infinitely many distillation steps along with
a closed form solution for the optimal α(τ) as well as an illustrative example highlighting the effect
of the chosen sequence of (α(t)) on the solutions.

4.1 Finite Self-Distillation Steps
Our first result, which follows from straightforward computations, states that the predictions obtained
after any finite number of distillation steps can be expressed directly as a function of y and the kernel
matrix K calculated at the initial fit (τ = 1).

Theorem 4.1. Let y(τ), β̂(τ), and f(·, β̂(τ)) be defined as above. Fix α(2), . . . , α(τ) ∈ [0, 1), and
let η(i, τ) def

=
∏τ
j=i

(
1− α(j)

)
, then for τ ≥ 1, we have that

y(τ) =

(
τ∑
i=2

α(i)η(i+ 1, τ)
(
K (K+ λIn)

−1
)τ−i+1

+ η(2, τ)
(
K (K+ λIn)

−1
)τ)

y, (6)

f(x, β̂(τ)) = α(τ)f(x, β̂(1)) + (1− α(τ))f(x, β̂
(τ)
α=0) (7)

for any x ∈ Rd, where β̂(τ)
α=0 is the minimizer in (3) with α(τ) = 0.

Since (6) and (7) are expressed only in terms of K, (K + λIn)
−1, κ(x,X), and y we are able to

calculate the predictions for the training data as well as for any x ∈ Rd based merely on the initial fit
(τ = 1) without the need for any additional fits. Hence, despite the calculations of K, κ(x,X), and
especially (K+ λIn)

−1 being (potentially) highly computationally demanding, when obtained, we
can calculate any distillation step directly by the equations in Theorem 4.1. Furthermore, predictions
at step τ can be seen as a weighted combination of two classical ridge regression solutions, based
on the original targets and the predicted targets from step τ − 1, respectively. However, choosing
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appropriate α(t) for t = 2, . . . , τ is non-trivial. We explore these dynamics in Section 4.3 and 4.4.
First, we use Theorem 4.1 to analyse the regularization that self-distillation progressively impose on
the solutions.

4.2 Effective Sparsification of Self-Distillation Solutions
We now show that we can represent the solutions as a weighted sum of basis functions, and that this
basis sparsifies when we increase τ , but also that the amount of sparsification depends on the choice
of α. A similar sparsification result for the special case of fixed α(τ) = 0 for τ ≥ 1 was proved in
Mobahi et al. (2020), and in particular, our (13) generalizes equation (47) in their paper.

Using the spectral decomposition of the symmetric matrix K we write K = VDVᵀ, where V ∈
Rn×n is an orthogonal matrix with the eigenvectors of K as rows and D ∈ Rn×n is a non-negative
diagonal matrix with the associated eigenvalues in the diagonal. Inserting the diagonalization yields

K(K+ λIn)
−1 = VDVᵀ(VDVᵀ + λIn)

−1 (8)

= VD (D+ λIn)
−1

Vᵀ, (9)

where λ > 0. By straightforward calculations using (6) and (9) we have

y(τ) = VB(τ)Vᵀy, where (10)

B(τ) def
=

τ∑
i=2

α(i)η(i+ 1, τ)Aτ−i+1 + η(2, τ)Aτ , and A
def
= D(D+ λIn)

−1, (11)

and A, B(τ) ∈ Rn×n are diagonal matrices for any τ . Furthermore, by (10) the only part of the
solution depending on τ is the diagonal matrix, B(τ), and in the following we show how B(τ)

determines the effective sparsification of the solution f(·, β̂(τ)).

Lemma 4.2. Let B(τ), and A be defined as above, and let B(0) def
= In. Then we can express B(τ)

recursively as

B(τ) = A
(
(1− α(τ))B(τ−1) + α(τ)In

)
, (12)

and [B(τ)]k,k ∈ [0, 1] is (strictly) decreasing in τ for all k ∈ [n] and τ ≥ 1 if α(2) = · · · = α(τ) = α.

Similarly to (10), if we use Lemma 4.2 and Theorem 4.1, we can show that for any x ∈ Rp

f(x, β̂(τ)) = κ(x,X)ᵀVD−1B(τ)Vᵀy

= p(x)ᵀB(τ)z, where (13)

p(x)
def
= D−1Vᵀκ(x,X), and z

def
= Vᵀy.

Thus, the solution f(·, β̂(τ)) can be represented as a weighted sum of some basis functions, where
the basis functions are the components of the orthogonally transformed and scaled basis p(x), and z
is an orthogonally transformed vector of targets.

Now assume α(2) = · · · = α(τ) = α for any τ ≥ 2 for the remaining of this section. In the following
we show how the behaviour of B(τ), and in turn also the behaviour of f(·, β̂(τ)), with τ is dependent
on the choice of α. Lemma 4.2 not only provides a recursive formula for B(τ), but also shows that
each diagonal element of B(τ) is in [0, 1] and is strictly decreasing in τ , which in turn implies that the
self-distillation procedure progressively shrinks the coefficients of the basis functions. Using Lemma
4.2 we can now show, that not only does B(τ) decrease in τ , smaller elements of B(τ) shrink faster
than larger elements for α = 0, as we elaborate on below the theorem.

Theorem 4.3. For any pair of diagonals of D, i.e. dk and dj , where dk > dj , we have for all τ ≥ 1,

[B(τ)]k,k
[B(τ)]j,j

=


1+ λ

dj

1+ λ
dk

, for α = 1,(
1+ λ

dj

1+ λ
dk

)τ
, for α = 0,

(14)
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and if we let sgn(·) denote the sign function8, then for α ∈ (0, 1) we have that

sgn

(
[B(τ)]k,k
[B(τ)]j,j

− [B(τ−1)]k,k
[B(τ−1)]j,j

)
= sgn

(((
[B(τ−1)]k,k
[B(τ−1)]j,j

− [A]k,k
[A]j,j

)
[A]j,j

[B(τ−1)]k,k([A]k,k − [A]j,j)
+ 1

)−1
− α

)
. (15)

If we consider a pair of diagonals of D, where dk > dj , then for α = 0, the fraction [B(τ)]k,k
[B(τ)]j,j

is
strictly increasing in τ , due to the r.h.s. of (14) inside the parenthesis being strictly larger than 1.
Hence, the diagonals corresponding to smaller eigenvalues shrink faster than the larger ones as τ
increases. However, for α ∈ (0, 1) we can not ensure this behaviour, but at step τ we are able to
predict the behaviour at step τ + 1, by using (15). Thus, when we include the ground-truth targets in
our distillation procedure we do not consistently increase the regularization with each distillation step,
but can potentially obtain a solution which does not sparsify any further. We now turn our attention to
the question of how to pick the α(τ)’s in an optimal manner, and find that it can be done if we relax
the condition that the weights are restricted to the interval [0, 1].

4.3 Closed Form Optimal Weighting Parameter

Recall, X̃ ∈ Rm×d is the matrix of validation inputs and ỹ ∈ Rm the vector of validation targets. If
we allow α(τ) ∈ R, we can find an optimal α(τ) (which is a non-trivial function of λ) at each step
τ , denoted by α?(τ).9 Here, optimal denotes the value for which the validation MSE is minimized.
Note, α?(τ) is optimal for a single distillation step, but not necessarily so for multiple distillation
steps, however we may consider α?(τ) a greedy estimate of the optimal value across multiple steps.

Theorem 4.4. Fix τ ≥ 2, λ > 0 and α(2), . . . , α(τ−1) ∈ R, then

α?(τ) = argmin
α(τ)∈R

∥∥∥ỹ − f(X̃, β̂(τ))
∥∥∥2
2
= 1−

(
ỹ
(τ)
α=0 − ỹ(1)

)ᵀ (
ỹ − ỹ(1)

)
∥∥∥ỹ(τ)

α=0 − ỹ(1)
∥∥∥2
2

(16)

where ỹ(1) = f(X̃, β̂(1)), and ỹ
(τ)
α=0 = f(X̃, β̂

(τ)
α=0).

Since neither ỹ(1) nor ỹ
(τ)
α=0 depend on the choice of α(τ), we can calculate α?(τ) recursively

as presented in Algorithm 1, where α?(τ) has the closed form in (16). In combination with the
diagonalization results of Section 4.2 we can efficiently calculate the solutions. This should be
compared to performing grid-search for α with g equidistant values on [0, 1] in order to approximate
the optimal α, which requires g(τ − 1) + 1 model fits if one uses the same α for each sequence of
τ ≥ 2 steps (gτ−1 if α is not fixed across distillation steps). However, by Algorithm 1 it is sufficient
to perform 2(τ − 1) + 1 model fits, and obtain the exact optimal value at each step instead of an
approximated value. In Section 5 we apply Algorithm 1 to approximate α?(τ) in a deep learning
setting.

4.4 Infinite Number of Self-Distillation Steps
We now prove that if we were to perform an infinite number of distillations steps (τ →∞) with a
fixed α (i.e. α(2) = · · · = α(τ) = α) the solution would solve the classical kernel ridge regression
problem, with an amplified regularization parameter (by α−1) if α > 0. Observe that, when α = 0

and τ →∞, (6) and (7) yield that the predictions y(∞) and f(x, β̂(∞)) collapse to the zero-solution
for any x ∈ Rp as expected from Mobahi et al. (2020).

8Note, we use the definition of sgn(·) where sgn(0)
def
= 0.

9If α?(τ) /∈ [0, 1], the sign of either the first or second term of (1) becomes negative, indicating either
too strong or weak regularization of the previous distillation step, and one might fear this affects distillation
performance. However, simply clipping of α?(τ) to be in [0, 1] alleviates this, at the cost of requiring a larger τ .
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Theorem 4.5. Let y(τ), β̂(τ), and f(·, β̂(τ)) be defined as above, and α ∈ (0, 1], then the following
limits hold

y(∞) def
= lim
τ→∞

y(τ) = K

(
K+

λ

α
In

)−1
y (17)

f(x, β̂(∞))
def
= lim
τ→∞

f(x, β̂(τ)) = αf(x, β̂(1)) + (1− α)f(x, γ̂(∞))

where (17) corresponds to classical kernel ridge regression with amplified regularization parameter
λ/α, and we let γ̂(∞) denote the kernel ridge regression weights associated with solving another
kernel ridge regression on the targets y(∞) with regularization parameter λ. Furthermore, the
convergence limτ→∞ y(τ) is of linear rate.

Algorithm 1: Calculate β̂(τ) and α?(τ) for τ ≥ 2.

Calculate β̂(1) from (3) (with any α(1));
Calculate ỹ(1) = f(X̃, β̂(1));
for t = 2 to τ do

Calculate β̂(t)
α=0 from (3) and ỹ

(t)
α=0 = f(X̃, β̂

(t)
α=0);

Solve:

α?(t) = argmin
α∈R

∥∥∥ỹ − (αỹ(1) + (1− α)ỹ(t)
α=0

)∥∥∥2
2
;

Calculate β̂(t) from (3) with α?(t);
end

If α > 0, then by (9) and The-
orem 4.5, we have that y(∞) =∑p
j=1 vj

dj
dj+

λ
α

vᵀ
j y and we shrink

the eigenvectors with smallest eigen-
values, corresponding to the direc-
tions with least variance, the most.
Furthermore, if α > 0 the lim-
iting solution is a non-zero ker-
nel ridge regression with regulariza-
tion parameter λ/α ≥ λ, causing
the eigenvectors associated with the
smallest eigenvalues to shrink even
more than in the original solution.

Our results gives a theoretical explanation for why one should treat α(τ) as an adjustable hyperparam-
eter to fine-tune the amount of regularization that self-distillation impose for a particular problem, and
that it can be chosen in an optimal way for kernel ridge regression. In the following we provide an
illustrative example, and in Section 5 we estimate the optimal weighting parameter for deep learning
using an adaptation of Algorithm 1.

4.5 Illustrative example
Consider the training dataset D where X = {0, 0.1, . . . , 0.9, 1} and Y = {sin(2πx) + ε | x ∈ X},
and ε is sampled from a zero-mean Gaussian random variable with standard deviation 0.5. Let ϕ be
the Radial Basis Function kernel, i.e. κ(xi,xj) = e−γ‖xi−xj‖

2
2 , where we choose γ = 1

80 , and let
λ = 0.2 and consider the three cases; (a) α = 0, (b) α = 0.25, and (c) step-wise optimal α?(τ).

0.0 0.2 0.4 0.6 0.8 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

f1 f2 f3 f4 f5 f6 f∞ Dtrain

(a) α = 0

0.0 0.2 0.4 0.6 0.8 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

f1 f2 f3 f4 f5 f6 f∞ Dtrain

(b) α = 0.25

0.0 0.2 0.4 0.6 0.8 1.0

−1

0

1

f1 f2 f3 f4 f5 f6 Dtrain

1 2 3 4 5 6τ

−0.50
−0.25

0.00
0.25

α?

(c) α?(τ)

Figure 2: Six steps of self-distillation with (a) zero limiting solution (dashed), (b) non-zero limiting
solution (dashed), and (c) optimal step-wise α?(τ). Training examples are represented with × and in
(c) we also plot α?(τ) with τ .

As illustrated in Figure 2a for case (a), the regularization imposed by self-distillation initially improves
the quality of the solution, but eventually overregularize and the solutions underfit the data, and will
eventually converge to the zero-solution (see supplementary materials for the loss values). Using
α > 0 (see Figure 2b), and more specifically α = 0.25, reduce the imposed regularization and
increases the stability of the distillation procedure; i.e. the solutions differ much less between each
distillation step. This allows for a more dense exploration of solutions during iterated distillation
steps, where increasing α reduces the difference between solutions from two consecutive steps, but
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also reduces the space of possible solutions as the limit, f(·, β̂(∞)), approaches the initial solution
f(·, β̂(1)) quickly.10. However, choosing the step-wise optimal α?(τ) yields minuscule changes to
the solution for τ > 2, and a single step of distillation is effectively enough. Furthermore, for τ ≥ 3,
all α?(τ) are approximately equal, and the distillation procedure has reached an equilibrium.11

As expected from Lemma 4.2 and Theorem 4.3, Figure 3 verifies that both in case (a) and (b), the
diagonal of B(τ) is decreasing in τ and the diagonal coordinates corresponding to smaller eigenvalues
shrink faster than those corresponding to larger eigenvalues in case (a). Without loss of generality we
can assume d1 < d2 < · · · < dn, and for k = 1, . . . n−1 and any τ ≥ 1 define R(τ)

k
def
=

[B(τ)]k+1,k+1

[B(τ)]k,k
.

We expect R(τ)
k to be strictly increasing in τ for all k in case (a), but for case (b) we can make no

such guarantee. Both of these properties are verified in Figure 4.
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(a) α = 0
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Figure 3: Diagonal of B(τ) for τ = 1, . . . , 6 associated with Figure 2. Note, the plots are overlaid,
but since the diagonal of B(τ) decrease in τ , all values until convergence are visible. In (a) we expect
and observe strictly decreasing values in τ for all indices, until collapsing at 0, but in (b) and (c) the
values converge to a non-zero limit.

Finally, we observe that in case (a), the values of B(τ) shrink much faster than in case (b), and
eventually collapse to all zeros, whereas the latter is nearly converged after six iterations. Furthermore,
case (a) appear to obtain a more sparsified solution, as the smallest coordinates effectively diminishes,
which is not true for case (b). Furthermore, when directly comparing solutions from both cases with
similar quality of fit, the solutions obtained with α = 0 usually has smaller coordinates in B(τ) than
those obtained with larger values of α.
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(a) α = 0
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(b) α = 0.25
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Figure 4: Ratios, R(τ)
k of the ordered diagonal of B(τ) for all τ . In (a) we expect and observe strictly

increasing values in τ for all k, but have no such guarantee in (b) or (c). The x-axis corresponds to
indices k = 1, . . . , n− 1.

5 Approximate Optimal Weighting Parameter for Deep Learning
The following experiment aim at empirically evaluating the theoretical analysis above in a simple
deep learning setting. In (16) we find α?(τ) on closed form when f(·, β̂(τ)) is a (self-distilled) kernel
ridge regression. No closed form solution can be found for neural networks, but recent results show
that (very) wide neural networks can be seen as kernel ridge regression solutions with the neural
tangent kernel (Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019, 2020).

10As expected by Theorem 4.5, we experience a fast convergence to the limit; usually less than 10 iterations
are sufficient to converge

11If we clip α?(τ) to be in [0, 1], the α?(τ) converges at τ = 4 rather than τ = 3.
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Thus, inspired by (7) we propose to estimate α?(t) for t = 2, . . . , τ , denoted by α̂(t), for a neural
network trained with self-distillation using an adapted Algorithm 1. Let fnn(·,θ) ∈ Rp be a neural
network with vector of weights θ, and recursively for τ ≥ 1 let θ̂(τ) be the weights solving

argmin
θ

α(τ)

2

∥∥∥fnn(X,θ)−Y(1)
∥∥∥2
F
+

1− α(τ)

2

∥∥∥fnn(X,θ)−Y(τ−1)
∥∥∥2
F
+
λ

2
‖θ‖22 , (18)

with α(τ) = α̂(τ) and where Y(τ) ∈ Rn×p.12 Furthermore, let θ̂(τ)α=0 be the weights associated with
minimizing (18) with α(τ) = 0, and Ỹ

(τ)
α=0

def
= fnn(X̃, θ̂

(τ)
α=0) as well as Ỹ(τ) def

= fnn(X̃, θ̂
(τ)) be the

predictions on the validation input X̃. Then, following Algorithm 1 with ‖·‖2 replaced by ‖·‖F , and
(18) rather than (1) we can calculate the estimates α̂(t). These estimates yield comparable predictive
performance to the best fixed α(τ) (found with time-consuming grid search), but only require one
additional model fit per distillation step; i.e. 2(τ − 1) + 1 fits compared to g(τ − 1) + 1 for a grid
search over g values. See Figure 5 for results and supplementary material for experimental details.

5.1 Experiment
We perform self-distillation with ResNet-50 (He et al., 2016) networks on CIFAR-10 (Krizhevsky
and Hinton, 2009), with minor pre-processing and augmentations. The model is initialized randomly
at each step13 and trained according to the above with either estimated optimal parameters, α̂(τ), or
fixed α for all steps. We use the network weights from the last iteration of training at each distillation
step for the next step, irrespective of whether a better model occurred earlier in the training. Our
models are trained for a fixed 75 epochs and each experiment is repeated with 4 different random
seeds over 11 chains of distillation steps, corresponding to α ∈ {0.0, 0.1, . . . , 0.9} and α̂(τ), with
the first model initialized identically across all chains. The accuracy reported at the τ ’th step is based
on comparing the training and validation predictions, Y(τ) and f(X̃, β̂(τ)) with the original training
and validation targets; Y and Ỹ.14
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Figure 5: Training and validation accuracy for five distillation steps with ResNet-50 models on
CIFAR-10. Comparing fixed α(t) for t = 2 . . . , τ and estimating optimal weight with α̂(t) at each
step. The experiment is repeated four times and the mean (and max/min in shaded) is reported.

6 Conclusion
In this paper, we provided theoretical arguments for the importance of weighting the teacher outputs
with the ground-truth targets when performing self-distillation with kernel ridge regressions along
with a closed form solution for the optimal weighting parameter. We proved how the solution at any
(possibly infinite) distillation step can be calculated directly from the initial distillation step, and
that self-distillation for an infinite number of steps corresponds to a classical kernel ridge regression
solution with amplified regularization parameter. We showed both empirically and theoretically that

12We treat class labels as p-dimensional one-hot encoded vectors and use norm of the difference between the
predicted class probabilities and the one-hot vectors.

13Note, we initialize the models equally across all α for one experiment, but alter the seed for initialization
between experiments.

14The empirical experiments are constrained by the theoretical set-up and performed in a highly simple setting;
e.g. using the weighted MSE loss from (18) (see supplementary materials for more details). Therefore, our
accuracy measures are to be expected to be lower than for more fine-tuned training setups.
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the weighting parameter α determines the amount of regularization imposed by self-distillation, and
empirically supported our results in a simple deep learning setting.

6.1 Future Research Directions
Interesting directions of future research are on rigorously connecting neural networks and kernel
methods in a knowledge distillation setting, extend to other objective functions than MSE as well as
including intermediate model statistics in the distillation procedure. Finally, a larger empirical study
of the connection between the choice of α and the degree of overfitting is interesting as well.
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