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ABSTRACT

Tensor Attention extends traditional attention mechanisms by capturing high-
order correlations across multiple modalities, addressing the limitations of clas-
sical matrix-based attention. Meanwhile, Rotary Position Embedding (RoPE) has
shown superior performance in encoding positional information in long-context
scenarios, significantly enhancing transformer models’ expressiveness. Despite
these empirical successes, the theoretical limitations of these technologies remain
underexplored. In this study, we analyze the circuit complexity of Tensor Atten-
tion Transformer and extend to its RoPE-based Tensor Attention variants, showing
that with polynomial precision, constant-depth layers, and linear or sublinear hid-
den dimension, they cannot solve fixed membership problems or (AF,r)

∗ closure
problems, under the assumption that TC0 ̸= NC1. These findings highlight a gap
between the empirical performance and theoretical constraints of Tensor Atten-
tion and RoPE-based Tensor Attention Transformers, offering insights that could
guide the development of more theoretically grounded approaches to Transformer
model design and scaling.

1 INTRODUCTION

Large Language Models (LLMs), such as OpenAI’s ChatGPT (Achiam et al., 2023), Google’s Gem-
ini (Google, 2024), Anthropic’s Claude 3.5 (Anthropic, 2024), and Meta’s LLaMA 3.3 (LT, 2024)
have reshaped a wide range of fields by demonstrating unprecedented advancements. These ad-
vancements are primarily due to their capability to efficiently process long-context inputs, a crucial
feature for tasks like summarizing lengthy documents (e.g., medical reports, legal analyses, technical
briefs), enabling superior reasoning and problem-solving performance at a level comparable to ex-
pert human analysis. At the core of these advancements lies the Transformer architecture (Vaswani
et al., 2017), driven by its self-attention mechanism. Understanding computational primitives that
Transformer components enable is pivotal for principled interpretations and exposing limitations in
Transformer-based systems.

Previous research has investigated these questions by analyzing the expressiveness of Transformers.
As an illustration, the work in (Merrill & Sabharwal, 2023) showed that constant-depth thresh-
old circuit families can effectively emulate Transformers with precision c log n and depth-d. This
holds true in both non-uniform and L-uniform computational models. This result highlights Trans-
formers’ computational efficiency and structural adaptability when analyzed through circuit com-
plexity theory’s lens. Expanding on these results, (Chiang, 2024) showed that Transformers with
O(log n) precision belong to DLOGTIME-uniform TC0, even when the absolute error is bounded
by 2−O(poly(n)).

To augment the capabilities of Transformers, innovations such as Rotary Position Embedding
(RoPE)(Su et al., 2024) have been proposed. Through the rotation matrices, RoPE improves the
sequence length adaptability while enhancing the efficacy of attention mechanisms. Meanwhile,
multi-view approaches are increasingly recognized for capturing high-order correlations in diverse
data types, including mathematical data (Sanford et al., 2024), graph structures (Demirel et al., 2021;
Luo et al., 2023), and multi-modality datasets (Lahat et al., 2015). Models like GPT-4o (OpenAI,
2024) and Google’s Project Astra (Google, 2024) exemplify this trend, integrating reasoning across
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multi-modality in real-time. Despite these advancements, classical attention mechanisms face rep-
resentational limitations. Specifically, (Sanford et al., 2024) demonstrated that matrix attention can
only capture pairwise correlations, falling short in modeling triple-wise or higher-order interactions.
Addressing such limitations typically requires multiple layers or carefully designed architectures,
complicating the integration of multi-view information.

To overcome these constraints, (Sanford et al., 2024) and (Alman & Song, 2024) proposed Tensor
Attention, a higher-order extension of matrix attention. Tensor Attention intrinsically captures high-
order correlations, defined as Softmax(Q(K1 ⊘ K2)

⊤)(V1 ⊘ V2) (see Definition 2.26), where ⊘
denotes the column-wise Kronecker product (see Definition 2.17). Here, Q, K1/V1, and K2/V2

represent inputs from different views or modalities. This raises a natural question: Does the RoPE
and tensor attention enhance the expressiveness of the RoPE-based tensor attention Transformer?

This work addresses this question through the lens of circuit complexity, advancing the theoreti-
cal understanding of tensor attention and RoPE-based tensor attention mechanisms. We present a
rigorous analysis of tensor attention Transformers and RoPE-based tensor attention Transformers,
delineating their intrinsic computational limitations. Our approach methodically evaluates the cir-
cuit complexity of each architectural component, ranging from basic trigonometric operations to
the comprehensive RoPE-based tensor attention Transformers. Specifically, it is demonstrated that
uniform TC0 circuits are amenable to simulating the components mentioned above. Furthermore, it
is proven that, unless TC0 = NC1, tensor attention Transformers, as well as RoPE-enhanced tensor
attention Transformers with O(1) layers, poly(n)-precision, and a feature dimension d = O(n)
are incapable of solving fixed membership problems or (AF,r)

∗ closure problems. This finding un-
derscores fundamental expressivity constraints inherent to tensor attention and RoPE-based tensor
attention architectures.

The summary of our contributions to the theoretical understanding of these architectures and their
computational boundaries, rooted in circuit complexity theory, showed as follows:

• We demonstrate that a DLOGTIME-uniform TC0 circuit family can simulate a tensor at-
tention Transformer with constant depth, poly(n) size, and poly(n) precision. Then we
extend the result to RoPE-based tensor attention Transformer. (Based on Theorem 3.7 and
Theorem 4.5).

• We demonstrate that, unless TC0 = NC1, a tensor attention Transformer or a RoPE-based
tensor attention Transformer with O(1) layers, poly(n) precision, and a feature dimen-
sion d = O(n) are incapable of accomplishing the fixed membership problems (Based on
Theorem 5.6).

• We demonstrate that, unless TC0 = NC1, a tensor attention Transformer or a RoPE-based
tensor attention Transformer with O(1) layers, poly(n) precision, and a feature dimen-
sion d = O(n) are incapable of accomplishing the (AF,r)

∗ closure problems (Based on
Theorem 5.7).

2 PRELIMINARY

This section establishes the essential concepts and definitions. Section 2.1 provides an in-depth
exploration of float point number computation. Section 2.2 offers a comprehensive overview of
computational complexity classes. Then, Section 2.3 presents essential techniques employed in
tensor operations. Finally, Section 2.4 explores the fundamental components that constitute the
RoPE-based tensor attention Transformers.

Notations. Let n ∈ Z+ represent any positive integer. The set of the first n natural numbers is
denoted as [n] := {1, 2, . . . , n}. The inner product of vectors α, β ∈ Rn is given by ⟨α, β⟩. The
vector 1n is an n-dimensional vector, where each component is one. The ℓ∞ norm of a matrix W ∈
Rn×d is represented as ∥W∥∞ := maxm∈[n],n∈[d] |Wm,n|. Finally, a binary string xi ∈ {0, 1}∗
denotes a sequence of arbitrary length.

2.1 FLOAT POINT OPERATIONS

We present basic concepts of the computational foundation.
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Definition 2.1 (Float point number, Definition 9 from (Chiang, 2024)). Any p-bit float point number
is characterized by a pair ⟨r, k⟩, both r and k are integer values. Specifically, the significand of r
lies within the range (−2p,−2p−1] ∪ {0} ∪ [2p−1, 2p), while the exponent k is constrained to the
interval [−2p, 2p). The product r ·2k is the real value corresponding to the float point number ⟨r, k⟩.
The collection of all possible p-bit float point numbers is represented by Fp.

Then, we introduce the rounding operation, which is necessary for floating point number computa-
tion in modern computers.
Definition 2.2 (Rounding, Definition 9 from (Chiang, 2024)). Given any real number or float point
value x, the notation roundp(x) denotes the p-bit float point number closest to x. In cases where
we have different numbers equidistant from x, the tie-breaking convention dictates that roundp(x)
will be the even significand one.

The operations mentioned above are capable of efficient hardware implementation, as demonstrated
by the following:

Lemma 2.3 (Float point operations in TC0, Lemma 10 and Lemma 11 from (Chiang, 2024)). If
integer 0 < p ≤ poly(n), then we say the conditions below are satisfied:

• Part 1. The operations addition, division, multiplication, and comparison of two p-bit float
point numbers (described in Definition B.1) are calculable by a constant depth poly(n)
size uniform threshold circuit. dstd denotes the deepest depth necessitated for executing
these operations.

• Part 2. We can execute n p-bit float point numbers repeated multiplication using a con-
stant depth poly(n) size uniform threshold circuit. The required depth for this iterated
multiplication process is denoted as d⊗.

• Part 3. We can approximate n p-bit float point numbers sequential addition and round-
ing using a constant depth poly(n) size uniform threshold circuit. The depth needed for
iterated addition is represented by d⊕.

Corollary 2.4 (Floor operation in TC0, Corollary 3.17 from (Chen et al., 2024a)). For any integer
0 < p ≤ poly(n), a poly(n) size constant depth uniform threshold circuit is able to calculate the
floor operation from Definition B.1 on a p-bit float point number. The operation’s maximum depth
is bounded by dstd, as established in Lemma 2.3.

Lemma 2.5 (Computing exp in TC0, Lemma 12 from (Chiang, 2024)). For any integer 0 < p ≤
poly(n) and any p-bit float point number x, it is computable to approximate most 2−p relative error
exp(x) using poly(n) size constant depth uniform threshold circuit. The depth required for this
computation is denoted by dexp.

Lemma 2.6 (Computing square root in TC0, Lemma 12 from (Chiang, 2024)). Given an integer p
such that 0 < p ≤ poly(n) and a p-bit float point number x, a constant depth poly(n) size uniform
threshold circuit exists to calculate

√
x with a relative error bounded by 2−p. The depth required

for this operation is represented by dsqrt.

2.2 CIRCUIT COMPLEXITY

In computational theory, a Boolean circuit, constructed using basic gates such as AND, OR, and
NOT, represents a core model of computation. A precise mathematical definition of this structure
comes below.
Definition 2.7 (Boolean Circuit, Definition 6.1 in (Arora & Barak, 2009)). An n variables Boolean
circuit is defined as Cn : {0, 1}n → {0, 1} and is depicted by a directed acyclic graph (DAG).
In this representation, logical gates such as AND, OR, and NOT correspond to the vertices of the
graph. Input vertices, each linked to one of the n Boolean variables, have an in-degree of 0, whereas
non-input vertices derive their values from outputs of preceding gates in the structure.

Based on the boolean circuit, we can define the recognizable languages.
Definition 2.8 (Languages, Definition 6.2 from (Arora & Barak, 2009)). A Boolean circuit family
C is said to recognize language L ⊆ {0, 1}∗ if a Boolean circuit C|z| ∈ C with |z| variables exists,
s.t., C|z|(z) = 1, iff z ∈ L, for every string z ∈ {0, 1}∗.
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Then, we can define different circuit complexity classes based on the language we defined above.

Definition 2.9 (NCi, Definition 6.21 from (Arora & Barak, 2009)). The class NCi is defined as
the set of languages that are recognizable using Boolean circuits of size O(poly(n)) and depth
O((log n)i), with logical gates of bounded fan-in, including NOT, OR, and AND gates.

When Boolean circuits are permitted to incorporate gates such as AND and OR with unbounded
fan-in, their ability to process languages becomes significantly enhanced. The development leads to
the complexity classes of ACi.

Definition 2.10 (ACi, Definition 6.22 from (Arora & Barak, 2009)). Languages which can be com-
puted by the Boolean circuit of depth O((log n)i), size O(poly(n)), unbounded fan-in gates, includ-
ing AND, OR, NOT, are contained in the class ACi.

The MAJORITY gates can simulate AND, NOT, OR gates, which yield an output of 1 if the majority
of inputs are 1, and 0 otherwise. By incorporating MAJORITY gates, one can define a broader
complexity class known as TCi.

Definition 2.11 (TCi, Definition 4.34 from (Vollmer, 1999)). If we have languages are recognizable
by O(poly(n)) size Boolean circuits of O((log n)i) depth, and unbounded fan-in gates, including
MAJORITY, NOT, OR, and AND gates. If half of the inputs are 1, the MAJORITY gate will output
1.

The class TCi contains languages that are recognizable by Boolean circuits of size O(poly(n)),
depth O((log n)i), and gates with unbounded fan-in, including NOT, OR, AND, and MAJORITY
gates. A MAJORITY gate outputs one if more than half of its inputs are one.

As Definition 2.11 shows, MOD or THRESHOLD gates (for prime moduli) can replace MAJORITY
gates. Boolean circuits employing such gates are collectively referred to as threshold circuits. Next,
we formally introduce the class P.
Definition 2.12 (P, Definition 1.20 from (Arora & Barak, 2009)). A language is considered to be in
P if it can be decided by a deterministic Turing machine within polynomial time of input size.

The hierarchical relationships among certain circuit families are encapsulated in the following well-
known result.
Fact 2.13 (Corollary, Corollary 4.35 from (Vollmer, 1999)). Any i ∈ N, the following inclusions
are valid: NCi ⊆ ACi ⊆ TCi ⊆ NCi+1 ⊆ P.

If i = 0, it has been established NC0 ⊊ AC0 ⊊ TC0. However, it remains unresolved whether
TC0 ⊊ NC1. Moreover, the question of whether NC := ∪i∈NNC

i ⊊ P is an open problem. Ad-
ditional details can be found in Corollary 4.35 from (Vollmer, 1999). Non-uniform circuit families,
characterized by their lack of consistent structural design across varying input sizes, are theoret-
ically capable of addressing undecidable problems. Nevertheless, their impracticality arises from
the infinite length required for their description. In contrast, Uniform circuit families, which adhere
to a systematic computational model, hold greater relevance in the study of complexity and formal
language theory. We begin with the definition of L-uniformity.
Definition 2.14 (L-uniformity class, Definition 6.5 from (Arora & Barak, 2009)). Denote C as
a class of languages represented by circuit family C (such as, NCi, ACi, or TCi). A language
L ⊆ {0, 1}∗ is classified as belonging to the L-uniform class of C if existing a Turing machine can
map 1n to C class circuit with n variables in O(log n) space, for each n ∈ N, and the resulting
circuit Cn recognizes L.

Then, the DLOGTIME-uniformity and examine its correspond to L-uniformity will be introduced.
Definition 2.15 (DLOGTIME-uniformity, Definition 4.28 from (Barrington & Immerman, 1994)).
Let C be a class of languages represented by circuit family C (such as NCi, ACi, or TCi). A language
L ⊆ {0, 1}∗ is defined to belong to the DLOGTIME-uniform class of C if a random-access Turing
machine can map 1n to n variables circuit Cn in C within O(log n) time, for every n ∈ N, such that
Cn recognizes L.

The concept of DLOGTIME-uniformity aligns with that of L-uniformity, except in smaller circuit
classes that do not have the capability to imitate the constructing machine. Further exploration of
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uniformity concepts can be found in (Barrington & Immerman, 1994; Hesse et al., 2002). Within
this paper, references to uniform TC0 pertain specifically to DLOGTIME-uniform TC0.

2.3 TENSOR OPERATION ANALYSIS TECHNIQUES

We first define operations such as the Kronecker product, a matrix operation that takes two matrices
of any size and produces a block matrix. Unlike standard matrix multiplication, it is useful for
introducing and analyzing tensor attention. Then, we introduce some key techniques for applying
tensor attention to RoPE.
Definition 2.16 (⊗ Kronecker product). Given K1 ∈ Rn1×d1 and K2 ∈ Rn2×d2 , let K :=
K1 ⊗ K2 ∈ Rn1n2×d1d2 be defined for any i1 ∈ [n1], j1 ∈ [d1] and i2 ∈ [n2], j2 ∈ [d2] as
Ki1+(i2−1)n1,j1+(j2−1)d1

= (K1)i1,j1 · (K2)i2,j2 .

Definition 2.17 (⊘ column-wise Kronecker product). Given matrices K1 ∈ Rn1×d,K2 ∈ Rn2×d,
we define matrix K := K1 ⊘ K2 ∈ Rn1n2×d as for any i1 ∈ [n1], i2 ∈ [n2], j ∈ [d],
Ki1+(i2−1)n1,j := (K1)i1,j · (K2)i2,j .

Definition 2.18 (⊖ row-wise Kronecker product). Given matrices K1 ∈ Rn×d1 ,K2 ∈ Rn×d2 , we
define matrix K := K1⊖K2 ∈ Rn×d1d2 as for any ∀i ∈ [n], j1 ∈ [d1], j2 ∈ [d2], Ki,j1+(j2−1)d1

:=
(K1)i,j1 · (K2)i,j2 .

Fact 2.19 indicates that the order of tensor operation and matrix multiplication can be swapped,
enabling computation in the lower dimension first to reduce complexity.
Fact 2.19 (Swap rule for tensor and matrix product, informal version of Fact D.1). Let W1,W2 ∈
Rd×d, A1, A2 ∈ Rn×d. We have (A1⊗A2)n2×d2 ·(W1⊘W2)d2×d = (A1 ·W1)n×d⊘(A2 ·W2)n×d.

2.4 TRANSFORMER BLOCK

With the mathematical foundation in place, this section outlines the key components of the RoPE-
based tensor attention Transformers architecture, starting with the softmax operation, a fundamental
element of Transformer.
Definition 2.20 (Softmax function). Noted z ∈ Fn

p . The Softmax function : Fn
p → Fn

p is formally
given by: Softmax(z) := exp(z)/⟨exp(z),1n⟩.

One of the pivotal advancements in contemporary Transformer architectures is RoPE, which em-
ploys a rotation matrix as its foundation:
Definition 2.21 (Rotation matrix block). For an input sequence of length n, embedding dimension
d, and parameter θ ∈ Fp, the rotation matrix is constructed as follows:

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

This fundamental rotation matrix is generalized to encode the relative positions within a sequence,
facilitating the embedding of positional context.
Definition 2.22 (Rotation matrix). Noted j represents position index within input sequence and i
denotes token index. The relative rotation matrix is then expressed as:

Rj−i =


R((j − i)θ1) 0 · · · 0

0 R((j − i)θ2) · · · 0
...

...
. . .

...
0 0 · · · R((j − i)θd/2)

 ,

where the angular frequencies θ1, · · · , θd/2 are all predefined. More about selecting θ, consult
Equation (15) from (Su et al., 2024).

Leveraging rotation matrices mentioned above, RoPE-based tensor attention embeds positional re-
lation intrinsically within the computational process of attention. Now, we are about to introduce
the RoPE-based tensor attention. First, we introduce the parameters and input.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 2.23 (Input and weight matrix). We define the input sequence as X ∈ Rn×d and the key,
query, and value weight matrix as WK1

,WK2
,WQ,WV1

,WV2
∈ Rd×d. Then, we define the key,

query, and value matrix as K1 := XWK1
∈ Rn×d, K2 := XWK2

∈ Rn×d, Q := XWQ ∈ Rn×d,
V1 := XWV1

∈ Rn×d, V2 := XWV2
∈ Rn×d.

Then, based on Definition 2.17, we define RoPE-based tensor attention matrix in the following way.
Definition 2.24 (RoPE-based tensor attention). As we defined in Definition 2.22 and 2.23. We
compute the new attention matrix A ∈ Fn×n2

p by,

Aj1,j2+(j3−1)d := (exp(Qj1,∗Rj1,j2+(j3−1)d · (K∗,j2+(j3−1)d)
⊤/d))j1,j2+(j3−1)d

where Rj1,j2+(j3−1)d = Rj1−j2 ⊖Rj1−j3 ∈ Fn×n
p , K = K1 ⊗K2 ∈ Fn2×d2

p .
Definition 2.25 (Single RoPE-based tensor attention layer, Definition 7 in (Sanford et al., 2024),
Definition 1.1 in (Alman & Song, 2024), Definition 3.8 in (Liang et al., 2024)). Given input matrices
Q,K1,K2, V1, V2 ∈ Fn×d

p , R ∈ Fd×d
p , as Definition 2.24, we compute the i-th RoPE-based tensor

attention layer Attni as

Attni(X) := D−1A(X ⊗X)(WV1
⊘WV2

)

by applying Fact 2.19, we define the i-th RoPE tensor attention layer Attni as Attni(X) :=

D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d

where D := diag(A1n2) ∈ Fn×n
p , and V = V1 ⊘ V2 ∈ Fn2×d

p .

Then, we introduce a single tensor attention layer.
Definition 2.26 (Single tensor attention layer, Definition 7 in (Sanford et al., 2024), Definition
1.1 in (Alman & Song, 2024), Definition 3.5 in (Liang et al., 2024)). Given input matrices
Q,K1,K2, V1, V2 ∈ Fn×d

p , compute the following matrix Attni(X) := D−1AV. where (1)
A := exp(QK⊤/d) ∈ Fn×n2

p and K := K1 ⊘ K2 ∈ Fn2×d
p , (2) D := diag(A1n2) ∈ Fn×n

p ,
and (3) V := V1 ⊘ V2 ∈ Fn2×d

p .

Next, we can also integrate multi-layer attention and the additional mechanism mentioned above to
construct a comprehensive Transformer.
Definition 2.27 (Multiple layer tensor attention Transformer). The number of Transformer’s layers
is denoted by m. In the i-th Transformer layer, let gi signify components distinct from self-attention,
where gi : Fn×d

p → Fn×d
p , each i ∈ [m]. And Attni represent i-th layer attention mechanism(as

defined in Definition 2.25 and Definition 2.26). Given an input data matrix X ∈ Fn×d
p , an m-layer

Transformer TF : Fn×d
p → Fn×d

p is formally defined as:

TF(X) := gm ◦ Attnm ◦ · · · ◦ g1 ◦ Attn1 ◦ g0(X) ∈ Fpn×d,

where ◦ denotes the composition of functions.

3 COMPLEXITY OF TENSOR ATTENTION TRANSFORMER

We now formally turn our attention to investigating the circuit complexity of the tensor attention
layer and the multi-layer tensor attention Transformer, emphasizing their computability within the
complexity class TC0. Section 3.1 delves into matrix operations. Section 3.2 addresses the compu-
tation of a single tensor attention layer. Section 3.3 provides an in-depth examination of the entire
tensor attention mechanism. Lastly, Section 3.4 presents our principal findings regarding the circuit
complexity bounds for the tensor attention Transformer. These results establish the foundation for
the main theorem concerning Transformer expressiveness.

3.1 MATRIX OPERATIONS

We demonstrate that fundamental matrix multiplication is efficiently evaluatable within TC0.

Lemma 3.1 (Matrix multiplication in TC0, Lemma 4.2 in (Chen et al., 2024a)). Let A ∈ Fn1×d
p , B ∈

Fd×n2
p represent matrices. Under conditions that p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n, the

product AB is evaluatable via poly(n) size uniform threshold circuit with (dstd + d⊕) depth.

6
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We have similar conclusions for the Kronecker product.

Lemma 3.2 (Kronecker product in TC0, informal version of Lemma E.1). Let A ∈ Fn1×d
p and

B ∈ Fd×n2
p represent matrices. If p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n, the Kronecker

product A⊗B can be evaluated by a poly(n) size uniform threshold circuit with dstd depth.

Lemma 3.3 (Column-wise Kronecker Product in TC0, informal version of Lemma E.2). Let matri-
ces A ∈ Fn1×d

p and B ∈ Fn2×d
p be given. If p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n, then the

column-wise Kronecker product A ⊘ B is evaluatable by a poly(n) size uniform threshold circuit
with depth dstd.

Lemma 3.4 (Row-wise Kronecker Product Computation in TC0, informal version of Lemma E.3).
Let A ∈ Fd×n1

p and B ∈ Fd×n2
p be matrices, with the conditions p ≤ poly(n), n1, n2 ≤ poly(n),

and d ≤ n. Then, a size poly(n) uniform threshold circuit with dstd depth can calculate the row-
wise Kronecker product A⊖B.

3.2 SINGLE TENSOR ATTENTION LAYER

Here, we examine the complexity of the single layer of the tensor attention.

Lemma 3.5 (Complexity of Single Tensor Attention Layer in TC0, informal version of Lemma E.4).
When p ≤ poly(n), the Attn in Definition 2.26, is evaluatable by a poly(n) size and 5dstd +5d⊕ +
dexp depth uniform threshold circuit.

3.3 MULTI-LAYER TENSOR ATTENTION

This section analyzes the computation of multi-layer tensor attention in a Transformer.

Lemma 3.6 (Computation of Multi-layer Tensor Attention Transformer in TC0, informal version of
Lemma E.5). Suppose that for every i ∈ [m], the function gi in TF can be evaluated by a poly(n)
size constant depth dg uniform threshold circuit. Assuming that p ≤ poly(n), the RoPE-based
tensor attention TF, as defined in Definition 2.27, is evaluatable by poly(n) size uniform threshold
circuit of and depth (m+ 1)dg + 6mdstd + 5md⊕ +mdexp.

3.4 CIRCUIT COMPLEXITY BOUND OF TENSOR ATTENTION

The subsequent discussion focuses on presenting the main result regarding the circuit complexity
bound for tensor attention Transformers.

Theorem 3.7 (Circuit Complexity of Tensor Attention, informal version of Theorem E.6). Assume
that for every i ∈ [m], the function gi in TF is evaluatable by poly(n) size uniform threshold circuit
of constant dg depth. As Definition 2.27, we can approximate the RoPE-based tensor attention
Transformer TF by a uniform TC0 circuit family, when d ≤ O(n), p ≤ poly(n), and m ≤ O(1).

Above Theorem E.6, we establish that, unless TC0 = NC1, a constant depth tensor attention with
poly(n) size, and poly(n)-precision can be approximated by a DLOGTIME-uniform TC0 circuit
family. While tensor attention Transformers exhibit strong empirical performance, this result indi-
cates inherent limits in their expressivity when viewed through the framework of circuit complexity.
These constraints are examined further in Section 5, in tandem with the analysis from Section 4.

4 COMPLEXITY OF RoPE-BASED TENSOR ATTENTION TRANSFORMER

This section presents key results concerning the circuit complexity of fundamental operations within
RoPE-based tensor attention computations. Section 4.1 investigates trigonometric functions, which
play a crucial role in rotary position embeddings, while Section 4.2 focuses on the RoPE-based ten-
sor attention matrix computation. Section 4.3 delves into the individual RoPE-based tensor attention
layer. In Section 4.4, the complete RoPE-based tensor attention mechanism is detailed. Finally, Sec-
tion 4.5 presents the primary results regarding the circuit complexity bounds for RoPE-based tensor
attention, forming the foundation for the essential theorem on RoPE-based Tensor Attention Trans-
former expressiveness.

7
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4.1 APPROXIMATING TRIGONOMETRIC FUNCTIONS

Here, we outline the efficient calculation of fundamental trigonometric functions that are critical for
RoPE embeddings via threshold circuits. The next lemma plays a central role:

Lemma 4.1 (Trigonometric Function Approximation in TC0, Lemma 4.1 in (Chen et al., 2024a)).
For any p ≤ poly(n), the values of sin(x) and cos(x) for a float point number x of p bits with
a relative error bounded by 2−p are evaluatable by poly(n) size uniform threshold circuit with
constant depth. Let d△ denote the maximum depth required to calculate both cos(x) and sin(x).

4.2 RoPE-BASED TENSOR ATTENTION MATRIX

The following section builds on what we already know about the computation of the RoPE-based
tensor attention matrix.
Lemma 4.2 (RoPE-based tensor attention matrix computation in TC0, informal version of
Lemma E.7). For any polynomial p ≤ poly(n), a size poly(n) uniform threshold circuit with depth
7dstd + 4d⊕ + d△ + dexp is capable of computing A, i.e., the attention matrix in Definition 2.24.

4.3 SINGLE RoPE-BASED TENSOR ATTENTION LAYER

This section provides a detailed examination of the RoPE tensor attention layer, with an emphasis
on tracking the circuit depth requirements throughout the computation process.

Lemma 4.3 (One RoPE-based Attention Layer within TC0, informal version of Lemma E.8). For
p ≤ poly(n), the Attn defined in Definition 2.25 can be evaluatable by a poly(n) depth 11dstd +
8d⊕ + d△ + dexp uniform threshold circuit.

4.4 MULTI-LAYER RoPE TENSOR ATTENTION

We now describe the computation of the multi-layer RoPE-based tensor attention Transformer.

Lemma 4.4 (Multi-layer RoPE-based tensor attention Transformer computation in TC0, informal
version of Lemma E.9). Consider the assumption that for every i ∈ [m], gi in TF can be evaluated
using poly(n) size uniform threshold circuit with a constant depth dg . When p ≤ poly(n), the
RoPE-based tensor attention TF, as specified in Definition 2.27, can be evaluated by poly(n) size
uniform threshold circuit of depth (m+ 1)dg + 11mdstd + 8md⊕ +m(d△ + dexp).

4.5 CIRCUIT COMPLEXITY OF RoPE TENSOR ATTENTION

We present the central contribution of this paper, establishing the circuit complexity for the RoPE-
based tensor attention.
Theorem 4.5 (Main result, Circuit complexity of RoPE-based tensor attention Transformers, infor-
mal version of Theorem E.10). Assume that ∀i ∈ [m], gi in TF can be computed using poly(n) size
uniform threshold circuit of constant depth dg . The RoPE-based tensor attention TF, as defined in
Definition 2.27, is simulatable by uniform TC0 circuit family when d ≤ O(n), p ≤ poly(n), and
m ≤ O(1).

In Theorem 3.7 and Theorem 4.5, unless TC0 = NC1, a DLOGTIME-uniform TC0 circuit fam-
ily can emulate both tensor attention Transformers and RoPE-based tensor attention Transformers,
which are defined by constant depth, poly(n) precision, and poly(n) size. This finding suggests
that, notwithstanding the empirical success of these models, their expressive capabilities are intrin-
sically constrained when analyzed through the lens of circuit complexity. The subsequent section
will delve deeper into these limitations.

5 HARDNESS

This section delineates two fundamental problems, accompanied by their respective hardness results.
The fixed membership problem is introduced in Section 5.1, while the closure problem is defined in
Section 5.2. Section 5.3 presents the four principal hardness results.
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5.1 FIXED MEMBERSHIP

The fixed membership problem, as originally formulated in (Fleischer & Kufleitner, 2019), is thor-
oughly defined in this section. A formal exposition of its definition is provided as the foundation for
subsequent analysis.

Definition 5.1 (Fixed membership problem, Definition from (Fleischer & Kufleitner, 2019)). Let
F (S) denote the collection of finite subsets of S. The fixed membership problem is defined as
follows: Input: A fixed morphism h: A+ → S, a fixed set P ⊆ F (S) and finite words u, v ∈ A+

Question: Is uvω ∈ [P ]?

Proposition 5.2 (Proposition 7.1 from (Fleischer & Kufleitner, 2019)). The fixed membership prob-
lem for recognizing morphisms over finite words is NC1-complete.

5.2 (AF,r)
∗ CLOSURE

In this section, attention is shifted to the (AF,r)
∗ closure problem in (Allender et al., 2003).

Definition 5.3 (Kleene star, page 3 of (Kuznetsov, 2021), Definition 7.1 from (Allender et al., 2003)).
Let L be a language, the kleene star of L, denoted by L∗, is the set of all finite concatenations of
strings from L, defined as: L∗ = sup⪯{Ln | n ≥ 0} where L0 := ϵ.

Definition 5.4 ((AF,r)
∗ Closure Problem, Definition 7.1 from (Allender et al., 2003)). Let (A, ◦)

denote a finite monoid. A natural homomorphism v : A∗ → A maps each word w to its corre-
sponding valuation v(w) in the monoid A. Let F ⊆ A and r ∈ Z+ . The language AF,r ⊆ A∗ is
characterized by AF,r = {w ∈ A∗ | ∥w∥ ≤ r, v(w) ∈ F}. The (AF,r)

∗ closure problem refers to
the decision problem aimed at determining whether a given string s belongs to (AF,r)

∗.

We now introduce a famous result from previous work, which will be used later.

Theorem 5.5 (Theorem 7.3(a) from (Allender et al., 2003)). For any nonsolvable monoid A, there
exists a group F ⊆ A and a constant r > 0 such that the (AF,r)

∗ closure problem is NC1-complete.

5.3 HARDNESS RESULT

We present two crucial findings concerning tensor attention Transformers and RoPE-based tensor
attention Transformers.

Theorem 5.6 (Informal version of Theorem F.1). If TC0 ̸= NC1, an O(1) layers RoPE-based tensor
attention Transformer with d ≤ O(n) hidden dimension, poly(n) precision is incapable of solving
the fixed membership problem.

Theorem 5.7 (Informal version of Theorem F.2). Assuming TC0 ̸= NC1, an O(1) layers RoPE-
tensor attention Transformer with d ≤ O(n) hidden dimension, and poly(n) precision is not capable
of solving the (AF,r)

∗ closure problem.

The above two theorems show the representation limitation of a RoPE-based tensor attention Trans-
former with a constant number of layers.

6 CONCLUSION

This paper analyzes the computational limits of tensor attention Transformers and extends to its
RoPE-based variants, showing they are simulable by uniform TC0 circuits and, under TC0 ̸= NC1,
cannot solve fixed membership or (AF,r)

∗ closure problems with O(1) layers, poly(n) precision,
and d ≤ O(n) dimensions. Despite their empirical success, these models face fundamental trade-
offs between efficiency and expressive power. The analysis, limited to constant-depth activations,
invites further research into alternative attention mechanisms and encoding schemes to bridge the
gap between theoretical constraints and practical performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Evrim Acar, Seyit A Camtepe, and Bülent Yener. Collective sampling and analysis of high order
tensors for chatroom communications. In Intelligence and Security Informatics: IEEE Interna-
tional Conference on Intelligence and Security Informatics, ISI 2006, San Diego, CA, USA, May
23-24, 2006. Proceedings 4, pp. 213–224. Springer, 2006.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Eric Allender, Vikraman Arvind, and Meena Mahajan. Arithmetic complexity, kleene closure, and
formal power series. Theory of Computing Systems, 36:303–328, 2003.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku.
https://www.anthropic.com/news/claude-3-family, 2024.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

D Mix Barrington and Neil Immerman. Time, hardware, and uniformity. In Proceedings of IEEE
9th Annual Conference on Structure in Complexity Theory, pp. 176–185. IEEE, 1994.

Guillaume Bouchard, Jason Naradowsky, Sebastian Riedel, Tim Rocktäschel, and Andreas Vlachos.
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Appendix

A RELATED WORK

The Computational Complexity in Deep Learning. Circuit complexity studies computational
models using circuit families, with classes like AC0 and TC0 characterizing problems solvable by
parallel circuits with logic or threshold gates, respectively, and NC1 solving problems with O(log n)
depth (Merrill et al., 2022). It is known that AC0 ⊂ TC0 ⊆ NC1, though whether TC0 ̸= NC1

remains open. Assuming this inequality, (Liu et al., 2022) shows that Transformer depth must
scale with input length for simulating certain non-solvable semiautomata. Circuit complexity also
evaluates architectures like Mamba (Chen et al., 2024b) and Hopfield networks (Li et al., 2024).

Computation of Transformers. Transformers have revolutionized natural language processing
but struggle with mathematical computations (Charton, 2022). Research has focused on their com-
putational limits, particularly for two types: (1) average-head attention Transformers, which set the
highest probability to 1 and others to 0, and (2) softmax-attention Transformers, which use the soft-
max function. Merrill, Sabharwal, and Smith (Merrill et al., 2022) show that average-head attention
Transformers exceed AC0 power but are simulable by constant-depth threshold circuits in the non-
uniform TC0 class. Similarly, (Liu et al., 2022) show softmax-attention Transformers also belong
to TC0. Further studies (Merrill & Sabharwal, 2023; 2024) refine these results, demonstrating that
these models fit within L-uniform and DLOGTIME-uniform TC0 classes. In practical applications,
(Feng et al., 2024) argue that unless TC0 = NC1, Transformers with log-precision cannot efficiently
solve arithmetic or CFG membership problems (Sipser, 1996), highlighting their limitations in math
tasks.

Tensor Computation for High-order Representation. Tensors are more effective than matri-
ces in capturing higher-order relationships in data and are essential for low-rank factorizations in
various fields, including natural language processing (Lei et al., 2015; Bouchard et al., 2015), com-
puter vision (Lu et al., 2016; Chen et al., 2017), computer graphics (Wang et al., 2005; Vasilescu,
2009), security (Acar et al., 2006; Kolda & Bader, 2006), and data mining (Karatzoglou et al., 2010;
Rendle & Schmidt-Thieme, 2010; Mørup, 2011). Tensors are also crucial in machine learning (Po-
dosinnikova et al., 2015; Jain & Oh, 2014; Zhong et al., 2017; Yang et al., 2019; Shi et al., 2022)
and other domains (Reps et al., 2016; Yi et al., 2016; Ray et al., 2018).

Roadmap. In Section B, we introduce four fundamental float point operations used in this paper.
Section C mainly discussing two widely used components when constructing Transformer. In Sec-
tion D, the complete proof of Fact 2.19 has been proposed. And in Section E, all the missing proofs
from Section 3 and Section 4 are completed. In Section F, we consummate all the missing proofs
appear in Section 5.

B FLOATING-POINT NUMBER OPERATIONS

Definition B.1 (Float point operations, Lemma 10 from (Chiang, 2024)). Let x and y represent two
integers, then x⊘ y defined as follows:

x⊘ y :=

{
1/8 + x/y if x/y is not a multiple of 1/4,
x/y if x/y is a multiple of 1/4.

Let ⟨r1, k1⟩ and ⟨r2, k2⟩ all denoted as p-bit float points, then we have:

• Addition:

⟨r1, k1⟩+ ⟨r2, k2⟩

:=

{
roundp(⟨r1 + r2 ⊘ 2k1−k2 , k1⟩) if k1 ≥ k2,

roundp(⟨r1 ⊘ 2k2−k1 + r2, k2⟩) if k1 ≤ k2.
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• Comparison:

⟨r1, k1⟩ ≤ ⟨r2, k2⟩ ⇔
{
r1 ≤ r2 ⊘ 2k1−k2 if k1 ≥ k2,

r1 ⊘ 2k2−k1 ≤ r2 if k1 ≤ k2.

• Multiplication:

⟨r1, k1⟩ × ⟨r2, k2⟩ := roundp(⟨r1r2, k1 + k2⟩).

• Division:

⟨r1, k1⟩ ÷ ⟨r2, k2⟩
:= roundp(⟨r12p−1 ⊘ r2, k1 − k2 − p+ 1⟩).

• Floor:

⌊⟨r, k⟩⌋ :=
{
round(⟨r/2−k, 0⟩) if k < 0,

⟨r2k, 0⟩ if k ≥ 0.

C OTHER BUILDING BLOCKS OF TRANSFORMERS

Subsequently, we define two categories of gi functions. Start with the layer normalization.

Definition C.1 (Layer normalization). Let X ∈ Fn×d
p be the input data matrix, and let i ∈ [n]. The

LN layer is formulated as:

gLN(X)i,∗ :=
Xi,∗ − µi√

σ2
i

,

where µi :=
∑d

j=1
Xi,j

d , and σ2
i :=

∑d
j=1

(Xi,j−µi)
2

d .

The second category is the multilayer perceptron.

Definition C.2 (Multilayer perceptron). Let X ∈ Fn×d
p be the input data matrix, and let i ∈ [n].

The MLP layer is described as:

gMLP(X)i,∗ := W︸︷︷︸
d×d

·Xi,∗︸︷︷︸
d×1

+ b︸︷︷︸
d×1

.

The foundation of modern Transformer is built upon these layered architectures, which integrate
float point computations, attention, and rotation matrix to an exceptionally efficient framework for
sequential computation.

According to Definition 2.27, the definition of the Multi-layer RoPE-based Transformer is provided,
which integrates RoPE-based self-attention layers together with supplementary components, such as
layer normalization and MLP. This section subsequently addresses the circuit complexity associated
with these mechanisms.

The analysis begins with an investigation of the complexity pertaining to the MLP layer.

Lemma C.3 (Compute MLP in TC0, Lemma 4.5 in (Chen et al., 2024a)). If p ≤ poly(n), poly(n)
size depth 2dstd + d⊕ uniform threshold circuit suffices to evaluate the MLP layer as defined in
Definition C.2.

Next, we will turn our attention to the complexity of the LN layer.

Lemma C.4 (Compute Layer-norm in TC0, Lemma 4.6 in (Chen et al., 2024a)). Let p ≤ poly(n).
Then, the layer-normalization defined in Definition C.1 can be evaluated by poly(n) size depth
5dstd + 2d⊕ + dsqrt uniform threshold circuit.
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D PROOF OF FACT 2.19

Here we present the proof of Fact 2.19. We restate Fact 2.19 below

Fact D.1 (Formal version of Fact 2.19). Let W1,W2 ∈ Rd×d, A1, A2 ∈ Rn×d. We have

(A1 ⊗A2)︸ ︷︷ ︸
n2×d2

· (W1 ⊘W2)︸ ︷︷ ︸
d2×d

= (A1 ·W1)︸ ︷︷ ︸
n×d

⊘ (A2 ·W2)︸ ︷︷ ︸
n×d

.

Proof. For any i1, i2 ∈ [n], j ∈ [d], we have

((A1 ⊗A2) · (W1 ⊘W2))i1+(i2−1)n,j

=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d

· (W1 ⊘W2)k1+(k2−1)d,j

=
∑

k1∈[d],k2∈[d]

(A1 ⊗A2)i1+(i2−1)n,k1+(k2−1)d

· (W1)k1,j · (W2)k2,j

=
∑

k1∈[d],k2∈[d]

(A1)i1,k1 · (A2)i2,k2 · (W1)k1,j · (W2)k2,j

= (
∑

k1∈[d]

(A1)i1,k1 · (W1)k1,j) · (
∑

k2∈[d]

(A2)i2,k2 · (W2)k2,j)

= (A1 ·W1)i1,j · (A2 ·W2)i2,j

= ((A1 ·W1)⊘ (A2 ·W2))i1+(i2−1)n,j ,

where the initial step involves the application of matrix multiplication, followed by the utilization
of Definition 2.17 in the second step. Subsequently, the third step employs Definition 2.16, while
the fourth step simplifies the expression through fundamental algebraic principles. The fifth step
re-engages matrix multiplication, and the concluding step leverages Definition 2.17 once more.

E MSSING PROOFS IN SECTION 3 AND SECTION 4

Here we present some missing proofs in Section 3 and Section 4. First we show the proof of
Lemma E.1 below.

Lemma E.1 (Formal version of Lemma 3.2). Let A ∈ Fn1×d
p and B ∈ Fd×n2

p represent matrices.
If p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n, the Kronecker product A⊗B can be evaluated by a
poly(n) size uniform threshold circuit with dstd depth.

Proof. Each product (A)i1,j1 · (B)i2,j2 computes the entry (A⊗B)i1+(i2−1)n1,j1+(j2−1)d, accord-
ing to Part 1 of Lemma 2.3. Since the computations for distinct index pairs (i1, j1) and (i2, j2) are
independent, they can be performed concurrently, resulting in a total depth of dstd for all computa-
tions.

The circuit size is polynomial in n, as each operation uses a polynomial-sized circuit, and
n1, n2, d ≤ poly(n).

Therefore, the Kronecker product A⊗B is evaluatable by a poly(n) size uniform threshold circuit
with dstd depth.

This concludes the proof.

Lemma E.2 (Formal version of Lemma 3.3). Let matrices A ∈ Fn1×d
p and B ∈ Fn2×d

p be given.
If p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n, then the column-wise Kronecker product A ⊘ B is
evaluatable by a poly(n) size uniform threshold circuit with depth dstd.
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Proof. This result directly follows from Lemma E.1. By applying Lemma 2.3, the product (A)i1,j ·
(B)i2,j for i1 ∈ [n1], i2 ∈ [n2], and j ∈ [d] computes the entry (A ⊘ B)i1+(i2−1)n1,j using a
uniform threshold circuit with depth dstd. Since these computations are independent for distinct
values of (i1, i2), they can be evaluated concurrently, resulting in a circuit depth of dstd.

The circuit size remains polynomial in n because n1, n2, d ≤ poly(n) and every operation utilizes
a polynomial-sized circuit.

Thus, the column-wise Kronecker product A ⊘ B can be evaluated by a poly(n) size depth dstd
uniform threshold circuit.

This concludes the proof.

Lemma E.3 (Formal version of Lemma 3.4). Let A ∈ Fd×n1
p and B ∈ Fd×n2

p be matrices, with the
conditions p ≤ poly(n), n1, n2 ≤ poly(n), and d ≤ n. Then, a size poly(n) uniform threshold
circuit with dstd depth can calculate the row-wise Kronecker product A⊖B.

Proof. Similarly as Lemma E.2, according to Lemma 2.3, the product (A)i,j1 ·(B)i,j2 , for j1 ∈ [n1],
j2 ∈ [n2], and i ∈ [d], computes the entry (A ⊖ B)i,j1+(j2−1)n1

via a depth dstd uniform thresh-
old circuit. These products, for distinct (i1, i2), are evaluatable in parallel, allowing all necessary
products (A)i,j1 · (B)i,j2 to be evaluated simultaneously within the depth dstd.

The circuit size is polynomial in n because n1, n2, d ≤ poly(n), and each individual operation can
be evaluated by a polynomial-sized circuit.

Hence, poly(n) size dstd depth uniform threshold circuit can calculate A⊖B.

The proof is concluded.

Lemma E.4 (Formal version of Lemma 3.5). When p ≤ poly(n), the attention Attn in Defini-
tion 2.26, is evaluatable by a poly(n) size and 5dstd + 5d⊕ + dexp depth uniform threshold circuit.

Proof. The matrix multiplications Q := ZWQ, K1 := ZWK1
, and K2 := ZWK2

can be eval-
uated in parallel with a size poly(n) depth dstd + d⊕ uniform threshold circuit, as established in
Lemma 3.1.

As per Lemma E.2, the column-wise Kronecker product V := V1 ⊘ V2 is evaluatable for poly(n)
size uniform threshold circuit with dstd depth.

Using Lemma 3.1 and Part 1 of Lemma 2.4, the operation QK⊤/d is evaluatable by poly(n) size
uniform threshold circuit with depth 2dstd + d⊕.

According to Lemma 2.5, the exponential function exp() is evaluatable by poly(n) size uniform
threshold circuit with depth dexp.

As per Part 3 of Lemma 2.3, D := A1n is evaluated with poly(n) size uniform threshold circuit of
depth d⊕.

Finally, the expression D−1AV is evaluated in parallel using poly(n) size uniform threshold circuit
of 2(dstd + d⊕) depth, as shown in Lemma 3.1.

The total depth required for computing Attni(X) := D−1AV is therefore:

6dstd + 5d⊕ + dexp.

Lemma E.5 (Formal version of Lemma 3.6). Suppose that for every i ∈ [m], the function gi in
TF can be evaluated by a poly(n) size constant depth dg uniform threshold circuit. Assuming that
p ≤ poly(n), the RoPE-based tensor attention TF, as defined in Definition 2.27, is evaluatable by
poly(n) size uniform threshold circuit of and depth (m+ 1)dg + 6mdstd + 5md⊕ +mdexp.

Proof. By assumption, ∀i ∈ [m], gi is evaluatable by a poly(n) size constant dg depth uniform
threshold circuit. From Lemma E.4, the attention operation Attni is evaluatable by poly(n) size
uniform threshold circuit with depth 6dstd + 5d⊕ + dexp.
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In order to compute TF(X), the functions g0, g1, . . . , gm and Attn1, . . . ,Attnm must be evaluated.
Consequently, the overall depth is (m + 1)dg + 6mdstd + 5md⊕ + mdexp, and the circuit size
remains poly(n).

The proof is completed.

Theorem E.6 (Formal version of Theorem 3.7). Assume that for every i ∈ [m], the function gi in
TF is evaluatable by poly(n) size uniform threshold circuit of constant dg depth. As described in
Definition 2.27, we can approximate the RoPE-based tensor attention Transformer TF by a uniform
TC0 circuit family, when d ≤ O(n), p ≤ poly(n), and m ≤ O(1).

Proof. With constant m, and Lemma E.5, the depth of the circuit computing TF(X) is

(m+ 1)dg + 6mdstd + 5md⊕ +mdexp = O(1),

and the poly(n) circuit size. Thus, a uniform TC0 circuit family can simulate this computation.

This concludes the proof.

Lemma E.7 (Formal version of Lemma 4.2). For any polynomial p ≤ poly(n), a size poly(n)
uniform threshold circuit with depth 7dstd + 4d⊕ + d△ + dexp is capable of computing A, i.e., the
attention matrix in Definition 2.24.

Proof. For every j1, j2, j3 ∈ [n], the matrix element Aj1,j2+(j3−1)d is evaluated according to the
formula in Definition 2.24.

From Lemma 3.1, the matrix products Q := ZWQ, K1 := ZWK1
, and K2 := ZWK2

can be
evaluated in parallel by a size poly n depth dstd + d⊕ uniform threshold circuit.

As indicated by Lemma 4.1, the entries of Rj1−j2 are evaluatable by a size poly(n) depth d△ uni-
form threshold circuit. Since n is polynomial, all entries of Rj1−j2 are evaluatable simultaneously
with the same circuit size and depth. This holds true for Rj1−j3 and Rj1−j2 as well.

According to Lemma E.3, the row-wise Kronecker product Rj1,j2+(j3−1)d = Rj1−j2 ⊖ Rj1−j3 is
evaluatable by poly n size uniform threshold circuit with dstd depth.

Lemma E.1 further shows that the Kronecker product K := K1 ⊗K2 can be evaluated using a size
poly n depth dstd uniform threshold circuit.

By Lemma 3.1 and the first part of Lemma 2.4, the matrix product and division
QRj1,j2+(j3−1)dK

⊤/d is evaluatable by poly(n) size uniform threshold circuit with 3dstd + 2d⊕
depth.

The exponential function exp() can be evaluated using Lemma 2.5 by a size poly n depth dexp
uniform threshold circuit.

Thus, the total required depth to compute the matrix A is:

7dstd + 4d⊕ + d△ + dexp.

Any entry of Ai,j , ∀i, j ∈ [n] can be evaluated in parallel, so the overall circuit size is poly(n), and
the total depth is 7dstd + 4d⊕ + d△ + dexp.

The proof is thus concluded.

Lemma E.8 (Single RoPE-based Attention Layer within TC0, informal version of Lemma 4.3).
For p ≤ poly(n), the Attn defined in Definition 2.25, can is evaluatable by a size poly(n) depth
11dstd + 8d⊕ + d△ + dexp uniform threshold circuit.

Proof. To evaluate Attn, the multiplication of the matrices D−1, A, and V is required. Initially,
D := diag(A1n) can be evaluated by poly(n) size uniform threshold circuit with d⊕ depth, as
established in Part 3 of Lemma 2.3. The matrix A requires a circuit with 7dstd + 4d⊕ + d△ + dexp
depth, according to Lemma E.7.
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Next, the evaluation of V := V1 ⊘ V2 is carried out in depth dstd, as per Lemma E.2. The multipli-
cation of A and V is performed by poly(n) size uniform threshold circuit of dstd + d⊕ depth, based
on Lemma 3.1.

Lastly, the multiplication D−1 ·AV is evaluated by performing division in parallel, which is imple-
mented by poly(n) size uniform threshold circuit of dstd + d⊕ depth, as per Part 1 of Lemma 2.3.

Summing the circuit depths gives:

11dstd + 8d⊕ + d△ + dexp.

Because parallel operations can be conducted for each element, the attention operation Attn(X) can
be evaluated by a uniform threshold circuit with the required depth and size.

This concludes the proof.

Lemma E.9 (Formal version of Lemma 4.4). Consider the assumption that for every i ∈ [m], gi in
TF can be evaluated using poly(n) size uniform threshold circuit with a constant depth dg . When
p ≤ poly(n), the RoPE-based tensor attention TF, as specified in Definition 2.27, can be evaluated
by poly(n) size uniform threshold circuit of depth (m+1)dg +11mdstd+8md⊕+m(d△+ dexp).

Proof. Under the given assumption, for every i ∈ [m], gi can be evaluated by poly(n) size uniform
threshold circuit having constant dg depth.

Moreover, from Lemma E.8, it follows that each Attni is evaluatable by poly(n) size uniform thresh-
old circuit with depth 8dstd + 6d⊕ + d△ + dexp + 1.

To approximate TF(X), it is required to evaluate g0, g1, . . . , gm and Attn1, . . . ,Attnm. As a result,
the total depth of the poly(n) size circuit is (m+ 1)dg + 11mdstd + 8md⊕ +m(d△ + dexp).

This concludes the proof.

Theorem E.10 (Formal version of Theorem 4.5). Assume that ∀i ∈ [m], gi in TF can be computed
using poly(n) size uniform threshold circuit of constant depth dg . The RoPE-based tensor attention
TF, as defined in Definition 2.27, is simulatable by uniform TC0 circuit family when d ≤ O(n), p ≤
poly(n), and m ≤ O(1).

Proof. According to Lemma E.9, we have m = O(1), the O(poly(n)) bounded circuit used to
compute TF(X) has a depth given by

(m+ 1)dg + 11mdstd + 8md⊕ +m(d△ + dexp),

which bounded by O(poly(n)). Thus, based on the definition of TC0, it follows that the uniform
TC0 circuit family can approximate RoPE-based tensor attention Transformer.

The proof is complete.

F MISSING PROOFS IN SECTION 5

Theorem F.1 (Formal version of Theorem 5.6). If TC0 ̸= NC1, O(1) layers RoPE-based tensor
attention Transformer with d ≤ O(n) hidden dimension, poly(n) precision is incapable of solving
the fixed membership problem.

Proof. The proof follows from the combination of Theorem E.10, which provides a circuit com-
plexity bound for RoPE-based tensor attention Transformers, and Proposition 5.2, which establishes
that the fixed membership problem for recognizing morphisms over finite words is NC1-complete.
Additionally, Fact 2.13, which outlines the hierarchy of circuit families, is also applied here. This
completes the proof.
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Theorem F.2 (Formal version of Theorem 5.7). Assuming TC0 ̸= NC1, a O(1) layers tensor atten-
tion Transformer with d ≤ O(n) hidden dimension, and poly(n) precision is not capable of solving
the (AF,r)

∗ closure problem.

Proof. This follows directly from Theorem E.10, which establishes the circuit complexity bound for
RoPE-based tensor attention Transformers, and Theorem 5.5, which asserts that the (AF,r)

∗ closure
problem is NC1-complete. Additionally, Fact 2.13 concerning the hierarchy of circuit families is
also utilized. Thus, the proof is complete.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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