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Abstract
We introduce Interactive Bayesian Distributional
Robustness (IBDR), a novel Bayesian inference
framework that allows modeling the interactions
between particles, thereby enhancing ensemble
quality through increased particle diversity. IBDR
is grounded in a generalized theoretical frame-
work that connects the distributional population
loss with the approximate posterior, motivating
a practical dual optimization procedure that en-
forces distributional robustness while fostering
particle diversity. We evaluate IBDR’s perfor-
mance against various baseline methods using the
VTAB-1K benchmark and the common reasoning
language task. The results consistently show that
IBDR outperforms these baselines, underscoring
its effectiveness in real-world applications.

1. Introduction
Tackling uncertainty remains one of the most challenging
problems in deep learning. This uncertainty arises from
the real world’s inherent randomness and noisy, complex
data. To address this challenge, Bayesian inference offers a
powerful solution by providing a probabilistic framework
that enables reasoning under uncertainty. A particularly
practical approach within Bayesian inference involves parti-
cle sampling techniques, which are well-suited for scenar-
ios requiring multiple models. Notable methods include
Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh, 2011a), Hamiltonian Monte Carlo (HMC) (Neal,
1996), Stochastic Gradient HMC (SGHMC) (Chen et al.,
2014), and Stein Variational Gradient Descent (SVGD) (Liu
& Wang, 2016). However, a key limitation of these methods
is the computational and storage overhead associated with
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maintaining multiple models, especially for large-scale ar-
chitectures. To mitigate this issue, variational inference (VI)
techniques have been developed to approximate the true pos-
terior distribution with tractable approximations known as
variational posteriors. These methods optimize a variational
lower bound, significantly reducing computational costs
while effectively capturing uncertainty. Key contributions
in this domain include Kingma & Welling (2013); Kingma
et al. (2015), and Blundell et al. (2015), who extended
Gaussian variational posterior approximations to neural net-
works. Additionally, Gupta & Nagar (2018) introduced
greater flexibility in posterior approximations, enhancing
the applicability of VI techniques.

Traditional Bayesian inference faces a limitation: the in-
dependent sampling of model particles from the posterior
often fails to capture interactions and can lead to particle
collapse into a single mode. To overcome this, we intro-
duce a novel framework, Interactive Bayesian Distributional
Robustness (IBDR), which establishes a joint distribution
over independent posteriors and integrates a divergence loss
to model this interaction and encourage particle diversity.
To further enhance robustness, we leverage Wasserstein-
based distributional robustness optimization (Gao & Kley-
wegt, 2023; Blanchet et al., 2019; Sinha et al., 2018), as
formalized in Theorem 4.1. This extension generalizes dis-
tributional robustness optimization (DRO) to accommodate
more general risk functions and product joint distributions,
ensuring a balance between robustness and diversity. The
resulting framework improves ensemble performance by
preventing mode collapse while maintaining computational
efficiency. To demonstrate the effectiveness and versatility
of our framework, we conduct experiments on the image
classification task with ViT (Dosovitskiy et al., 2020) and
the commonsense reasoning task on LLaMA-2 (Touvron
et al., 2023), demonstrating significant improvements over
baseline methods.

Our contributions are as follows: (i) We introduce a novel
Bayesian framework that explicitly models interactions
between model particles during training. Leveraging dis-
tributional robustness, we provide a theoretical analysis of
this interactive framework, generalizing existing results to
product distribution spaces. (ii) Building on this analysis,
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we propose a practical framework that ensures both ensem-
ble diversity and distributional robustness. We validate
our approach by fine-tuning ViT (Dosovitskiy et al., 2020)
on the VTAB-1K classification benchmark and LLaMA-2
(Touvron et al., 2023) on a commonsense reasoning task,
demonstrating significant performance improvements.

2. Related Works
2.1. Bayesian Neural Networks

Variational Inference. This approach estimates the poste-
rior distribution by selecting a specific approximation and re-
fining a variational lower bound. Graves (2011) introduced
a Gaussian variational posterior for neural network weights,
further developed in Kingma & Welling (2013); Kingma
et al. (2015); Blundell et al. (2015) using the reparameteri-
zation trick for deep latent variable models. Extensions to
improve posterior flexibility include Caterini et al. (2021),
who used normalizing flows, and Louizos & Welling (2017)
and Gupta & Nagar (2018), who employed a matrix-variate
Gaussian. Other studies have explored structured variational
Gaussian posteriors, such as Kronecker-factored approxima-
tions (Rossi et al., 2020; Eschenhagen et al., 2023), Gaus-
sian score matching (Modi et al., 2023), and non-centered
or rank-1 parameterizations (Ghosh et al., 2018; Dusenberry
et al., 2020). Hybrid approaches combining Variational
Inference and Markov Chain Monte Carlo (MCMC) have
gained popularity, such as Alexos et al. (2022), which used
latent variable averaging to speed up mixing. Applications
of Variational Inference to modern architectures, like Vi-
sion Transformers (Zhang et al., 2021), highlight its role in
uncertainty-aware deep learning.

Markov Chain Monte Carlo (MCMC). This approach
allows sampling multiple models from the posterior distri-
bution, commonly used for neural network inference via
Hamiltonian Monte Carlo (HMC) (Neal, 1996). However,
HMC requires full gradient estimation, which is computa-
tionally expensive. Stochastic Gradient HMC (SGHMC)
(Chen et al., 2014) uses stochastic gradients for scalability
and solution exploration. Alternatively, Stochastic Gradi-
ent Langevin Dynamics (SGLD) (Welling & Teh, 2011b)
applies Langevin dynamics in the stochastic gradient set-
ting. Stein Variational Gradient Descent (SVGD) (Liu &
Wang, 2016) uses particles to approach the posterior distri-
bution. MCMC methods, unlike variational methods, can be
costly due to the need to store multiple models. Nonetheless,
SGHMC, SGLD, and SVGD asymptotically sample from
the posterior with infinitely small step sizes.

2.2. Flat Minimizers

Flat minimizers improve neural network generalization by
helping models find broader local minima, making them

more robust to training-test set differences (Jiang et al.,
2020; Petzka et al., 2021; Nguyen et al., 2023a). The link be-
tween generalization and minimum width has been explored
both theoretically and empirically (Hochreiter & Schmid-
huber, 1994; Neyshabur et al., 2017; Dinh et al., 2017; Fort
& Ganguli, 2019). Various methods for finding flat minima
have been proposed (Pereyra et al., 2017; Izmailov et al.,
2018; Foret et al., 2021; Nguyen et al., 2023a). Studies
by Keskar et al. (2017), Jastrzebski et al. (2017), and Wei
et al. (2020) examine how batch size, learning rate, gradient
covariance, and dropout affect flatness. Some methods also
use regularization terms in the loss function to promote wide
local minima (Pereyra et al., 2017; Zhang et al., 2018; 2019),
such as softmax entropy penalties (Pereyra et al., 2017) and
distillation losses (Zhang et al., 2018; 2019).

Among the flat minimizers, Sharpness-Aware Minimiza-
tion (SAM) (Foret et al., 2021) has gained attention for
its effectiveness and scalability across tasks like domain
generalization (Cha et al., 2021; Wang et al., 2023; Zhang
et al., 2023), federated learning (Caldarola et al., 2022; Qu
et al., 2022), Bayesian networks (Nguyen et al., 2023b;
Möllenhoff & Khan, 2023), and meta-learning (Abbas et al.,
2022). SAM has also improved generalization in both vi-
sion models (Chen et al.) and language models (Bahri
et al., 2022). To leverage SAM’s generalization ability,
Nguyen et al. (2023b) explores the link between flat min-
ima and Bayesian inference, proposing methods to use low-
sharpness minima in the Bayesian posterior to enhance neu-
ral network generalization. Recently, (Truong et al., 2025b)
extends the concept of sharpness to the space of functions
that govern the movement of the model particles, and incor-
porates this theoretical framework to strengthen the general-
ization ability of the ensemble in Bayesian inference.

2.3. Bayesian Approach for Model Fine-tuning

Fine-tuning large architectures like Transformers has in-
creasingly shifted toward parameter-efficient fine-tuning
(PEFT) methods such as prompting (Lester et al., 2021),
LoRA (Hu et al., 2022), and adapters (Houlsby et al., 2019).
These techniques enable efficient adaptation to new tasks
without the computational burden of full model retraining.
Prompting facilitates rapid task-switching with minimal up-
dates (Lester et al., 2021; Liu et al., 2022), while LoRA
(Hu et al., 2022) significantly reduces memory and compute
costs by updating only a small subset of parameters. Re-
cently, multiple variants of LoRA have been introduced. For
example, Liu et al. (2024) proposes to decompose the weight
into the direction and magnitude components and learn these
components independently. On the other hand, Truong et al.
(2025a) proposes to reparameterize the low-rank matrices
with small non-linear networks, hence significantly improv-
ing the estimation rate of the low-rank matrices. Besides
LoRA, Adapter modules (Sung et al., 2022; Hu et al., 2023;

2



Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models

Zhang et al., 2024) introduce specialized layers that refine
model behavior without altering its core weights. Together,
these methods make fine-tuning large models more accessi-
ble and efficient.

However, despite their efficiency, PEFT methods can lead
to overconfident predictions, especially when fine-tuned on
small datasets. This has sparked interest in Bayesian ap-
proaches for uncertainty-aware adaptation. Several recent
advancements integrate Bayesian principles into PEFT to en-
hance robustness. For example, Bayesian Low-Rank Learn-
ing (Doan et al., 2025) applies low-rank perturbations to
pre-trained weights, enabling scalable Bayesian neural net-
works (BNNs), deep ensembles, and Stein Variational Gradi-
ent Descent (SVGD) with minimal computational overhead.
BayesTune (Kim & Hospedales, 2023) leverages Bayesian
inference for more efficient and principled hyperparame-
ter tuning. Laplace-LoRA (Yang et al., 2023) enhances
LoRA’s calibration by introducing a Laplace approximation,
improving uncertainty estimation in large language mod-
els (LLMs). Gaussian SWAG + LoRA (Onal et al., 2024)
enables lightweight Bayesian inference with negligible com-
putational overhead. Recently, BLoB (Bayesian Low-Rank
Adaptation by Backpropagation) (Wang et al., 2024) opti-
mizes both the mean and covariance of LoRA parameters,
outperforming post-hoc uncertainty estimation methods. By
embedding Bayesian principles into PEFT, these methods
not only enhance fine-tuning efficiency but also improve
model calibration and uncertainty estimation, addressing a
key limitation of prior PEFT approaches.

3. Background
3.1. Distributional Robustness

This section presents the background on the Wasserstein-
based distributional robustness that serves our theory de-
velopment in the sequel. Distributional robustness (DR) is
an emerging framework for learning and decision-making
under uncertainty, which seeks the worst-case expected loss
among a ball of distributions, containing all distributions
that are close to the empirical distribution (Gao et al., 2017).

Consider a generic Polish space S endowed with a distri-
bution Q. Let f : S −→ R be a real-valued (risk) function
and c : S × S −→ R+ be a cost function. Distributional
robustness setting aims to find the distribution Q′ in the
vicinity of Q that maximizes the expected risk (Sinha et al.,
2018; Blanchet & Murthy, 2019):

max
Q′:Wc(Q′,Q)<ϵ

EQ′ [f (z)] , (1)

where ϵ > 0 andWc denotes the optimal transport (OT) or
a Wasserstein distance (Villani, 2008) with respect to the

metric c, defined as:

Wc (Q
′, Q) := inf

γ∈Γ(Q′,Q)

∫
cdγ, (2)

where Γ (Q′, Q) is the set of couplings whose marginals
are Q′ and Q. Under the assumption that f ∈ L1 (Q) is
upper semi-continuous and c is a non-negative lower semi-
continuous cost satisfying c(z, z′) = 0 iff z = z′, Blanchet
& Murthy (2019) shows that the dual form for Eq. (1) is
given by:

min
λ≥0

{
λϵ+ Ez∼Q[max

z′
{f (z′)− λc (z′, z)}]

}
. (3)

Sinha et al. (2018) further uses a Lagrangian for the
Wasserstein-based uncertainty sets to reach a relaxed version
with λ ≥ 0:

max
Q′
{EQ′ [f (z)]− λWc (Q

′, Q)}

= Ez∼Q[max
z′
{f (z′)− λc (z′, z)}]. (4)

3.2. Fine-tuning Transformer-based Models

Given a transformer-based foundation model Φ, the con-
ventional approach to fine-tuning involves modifying the
model’s parameters as θ = Φ+∆, where ∆ represents addi-
tional modules. Popular parameter-efficient fine-tuning tech-
niques include prompt-tuning (Lester et al., 2021), LoRA
(Hu et al., 2022), and Adapters (Houlsby et al., 2019), which
are commonly used to adapt models for downstream tasks
such as classification on new datasets. To highlight the
effectiveness of our Bayesian Inference framework, we fo-
cus on the LoRA technique to fine-tune two instances of
Transformer-based models, including Vision Transformer
(ViT) models (Dosovitskiy et al., 2020) for the image clas-
sification task and the Large Language Model LLaMA2
(Touvron et al., 2023) for the commonsense reasoning task.

In brief, LoRA modifies the weight matrix W in the Multi-
Head Self-Attention mechanism of the transformer Φ (e.g.,
WQ, WK , and WV ) by applying the transformation W ←
W + BA, where A and B are low-rank matrices. This
low-rank reparameterization ensures that the additional pa-
rameters A and B remain lightweight, making the approach
well-suited for Bayesian inference methods, benefiting from
the efficient incorporation of such lightweight modules.

3.3. Bayesian Inference with Variational Approach

Consider the model space Θ over which the parameters θ
follow a prior distribution P with density function p(θ).
Given a training set S = {(x1, y1), . . . , (xN , yN )} whose
examples (xi, yi) ∼ D, denote l(θ;x, y) as the loss induced
by using the model θ to predict x with the ground-truth label
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y where l is a loss function (e.g., the Cross Entropy (CE)
loss). The true posterior is defined as

p(θ | S) ∝
N∏
i=1

p (yi | xi, θ) p (θ) ,

where the likelihood p(yi | xi, θ) is defined as

p (yi | xi, θ) ∝ exp {−l (θ;xi, yi)} .

Therefore, the true posterior can be rewritten as

p(θ | S) ∝ exp

{
−

N∑
i=1

l (θ;xi, yi)

}
p (θ) .

Variational approaches (Graves, 2011; Kingma & Welling,
2013; Kingma et al., 2015; Blundell et al., 2015) can be
used to obtain an approximate posterior distribution Q with
a simpler density function q(θ) that approximates the true
posterior p(θ | S) as:

min
q

{
Eθ∼q

[
N∑
i=1

l (θ;xi, yi)

]
+DKL (q, p)

}
.

Finally, we sample K particle models θ1:K
iid∼ Q and en-

semble their prediction outputs to produce the final result.
Evidently, the variational approach for Bayesian inference
lack a mechanism to explicitly enforce interaction between
the particle models θ1:K , such as encouraging these parti-
cle models to diverge or complement each other, which is
crucial for improving ensemble performance.

Additionally, the Bayesian framework with Stochastic Gra-
dient Langevin Dynamics (SGLD) (Welling & Teh, 2011b)
and optimization methods (Nguyen et al., 2023b) encounter
the same problem: the particle models θ1:K

iid∼ Q lack a
mechanism to encourage the particle models to diverge or
complement each other.

4. Interactive Bayesian Distributional
Robustness

4.1. Motivations

As discussed earlier, promoting diversity among particles
is crucial to prevent mode collapse. However, conventional
Bayesian frameworks lack explicit mechanisms to model
interactions between particles θ1:K during training. To ad-
dress this, we first define the approximate posterior distri-
bution QK over the product space ΘK , where samples are
concatenated particle models, θ = θ1:K . This formulation
allows us to define a loss function over the joint particle
models, thereby facilitating the modeling of the interactions
between the individual particles θ1:K .

Our framework learns Q such that if θ = θ1:K ∼ QK or
θ1:K

iid∼ Q, the models reside in low-loss, low-sharpness
regions while maintaining diversity. To achieve this, we
introduce a novel loss function that encourages particle inter-
action during training, guiding them toward regions of low
sharpness while maintaining high diversity. Then, the i.i.d
samples (i.e., the models) sampled from this posterior will
also yield high diversity and low sharpness. Notably, parti-
cles interact only during training to shape the final posterior
Q, but they are sampled independently at inference.

One potential drawback of promoting particle interactions
is the risk of uncontrolled instabilities during training. To
alleviate this issue and enhance robustness within this in-
teractive framework, we employ WS-based Distributional
Robustness Optimization (DRO) to develop Theorem 4.1.
This theorem characterizes the population loss over the ap-
proximate posterior QK , providing insights into a practical
method for promoting particle diversity and improving gen-
eralization. Specifically, Theorem 4.1 can be interpreted
as finding particle models that exhibit both diversity and
low sharpness, enhancing their ability to generalize, as
discussed in prior works including Sharpness-Aware Min-
imization (SAM) (Foret et al., 2021). We emphasize that
this result is a generalization upon prior findings on distri-
butional robustness, as elaborated in Corollary 4.2.

4.2. Theoretical Development

Let Θ be the model space and Q and P be the approx-
imate and prior distributions over Θ. Given a positive
number of particle models K > 0. To be able to model
the interactions between these K particles, we first define
QK = Q⊙Q⊙ · · · ⊙Q︸ ︷︷ ︸

K times

and PK = P ⊙ P ⊙ · · · ⊙ P︸ ︷︷ ︸
K times

as

the joint distributions of K statistically independent parti-
cle models sampled from Q and P , respectively. Denote
θ = θ1:K ∼ QK as the concatenation of the K models, we
propose the following loss function

ℓ(θ;x, y) =
1

K

K∑
i=1

l(θi;x, y) + αldiv(θ1:K ;x, y),

where (x, y) ∼ D is sampled from the data distribution (i.e.,
D is the general distribution of data/label pairs), l is the loss
function (e.g., CE loss or Hinge loss), ldiv is the divergence
loss which encourages the particles θ1:K to be diverse and
will be explicitly defined later, and α > 0 is a trade-off
hyperparameter capturing the extent to which we want to
encourage the diversity between the particles.

Given a training set S = {(xi, yi)}Ni=1 ∼ DN , we define
the following population loss functions over a single model
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θ and over the approximate posterior QK as:

LD(θ) = E(x,y)∼D

[
ℓ(θ;x, y)

]
LD

(
QK
)
= Eθ∼QK

[
LD

(
θ
)]

.

Similarly, we define the empirical losses over a single model
and over the approximate posterior QK as:

LS(θ) = E(x,y)∼S

[
ℓ(θ;x, y)

]
,

LS

(
QK
)
= Eθ∼QK

[
LS

(
θ
)]

.

Note that the population loss LD

(
QK
)

takes the form:

LD

(
QK
)
= Eθ∼QK

[
LD

(
θ
)]

= Eθ∼QK

[ 1
K

K∑
i=1

LD(θi) + αED

[
ldiv(θ1:K ;x, y)

]]
.

By minimizing the general loss LD(Q
K), we simultane-

ously encourage the particle models to achieve low general
loss while diverging from each other to enhance ensemble
performance. A key challenge is that directly minimizing
the general loss LD(Q

K) is impractical since we do not
have access to the data distribution D. To address this chal-
lenge, we present the following theorem, whose proof can
be found in Appendix C.

Theorem 4.1. With the probability at least 1− δ over the
choice of S ∼ DN , we have

LD

(
QK
)
≤ L

√√√√KDKL

(
Q,P

)
+ log 1

δ

2N

+min
λ≥0

{
λρ+ Eθ∼QK

[
max
θ′

{
LS(θ

′)− λcK(θ,θ′)
}]}

,

where D is the general data/label distribution, L is
the upper-bound of the loss function ℓ(θ;x, y), and
cK(θ,θ′) = 1

K

∑K
i=1 c(θi, θ

′

i) represents a distance/diver-
gence between two models.

Theorem 4.1 offers a practical alternative, as it provides
an upper bound involving empirical losses over the train-
ing set S, which can be computed given the availabil-
ity of the training set S. This upper bound is appealing
due to its connection with Sharpness-Aware Minimiza-
tion (SAM) (Foret et al., 2021). Specifically, in the in-
ner maximization, the parameter λ controls the distance
between the adversarial model θ′ and the center model
θ. The outer minimization balances the terms λρ and
Eθ∼QK

[
maxθ′

{
LS(θ

′)−λc(θ,θ′)
}]

, where an increase
in λ raises the first term but reduces the second.

To further illustrate the connection to SAM, we present the
following corollary, where we adopt a specific form of the
cost function c, establishing a clear link SAM (Foret et al.,
2021). The proof can be found in Appendix C.
Corollary 4.2. Given a metric d over the model space,
consider the following cost function c

c(θ,θ′) =

{
d(θ,θ′) if d(θ,θ′) ≤ ρ

+∞ otherwise.

With the prob. at least 1− δ over the choice of S ∼ DN ,

LD

(
QK
)
≤ Eθ∼QK

[
max

θ′∈Bρ(θ)
LS

(
θ′
)]

+ L

√√√√KDKL

(
Q,P

)
+ log 1

δ

2N
,

where the ball Bρ(θ) := {θ′ : d(θ,θ′) ≤ ρ}.

If we further simplify the analysis by considering the l2
Euclidean distance for d, Corollary 4.2 reveals that the
Sharpness-Aware Bayesian Neural Network (SA-BNN)
framework from (Nguyen et al., 2023b) becomes a spe-
cial case of our broader approach. However, compared to
SA-BNN, our method, as established in Theorem 4.1 and
Corollary 4.2, offers a notable advancement: this framework
operates on the joint distribution QK and incorporates a
divergence loss ldiv, enabling us to model interactions be-
tween the particle models θ1:K . This inter-particle interac-
tion is beneficial to achieve strong ensemble accuracy, as we
will empirically demonstrate in the subsequent experiments.

4.3. Practical Algorithm

This section explores the theory above to derive a practical
method Interactive Bayesian Distribution Robustness for
Model Fine-tuning (IBDR). We first discuss how to model
the divergence loss ldiv(θ1:K ;x, y). Given a pair (x, y) ∈ S,
denote f(x; θi) as the prediction probabilities of the particle
model θi on x. Let f−y(x; θi) (or f i

−y for short, when the
context is clear) be the non-maximal prediction probabilities
by eliminating the prediction probability of the ground-truth
label y. Inspired by Pang et al. (2019), we encourage the
non-maximal predictions f i

−y (i = 1, . . . , C, where C is
the number of classes) to diverge, while maximizing f i

y

(i = 1, . . . , C). Motivated by the theory of Determinantal
Point Processes (DPP) (Kulesza et al., 2012), the ensemble
diversity can be defined as:

ldiv

(
θ1:K ;x, y

)
= det

([
f̃ i
−y

]T
i∈[C}

[
f̃ i
−y

]
i∈[C]

)
,

where f̃ i
−y =

fi
−y

∥fi
−y∥

and
[
f̃ i
−y

]
i∈[C]

∈ R(C−1)×K where[
C
]
=
{
1, ..., C

}
.
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Moreover, according to the matrix theory (Bernstein, 2009),

det
([

f̃ i
−y

]T
i∈[C}

[
f̃ i
−y

]
i∈[C]

)
= Vol2

([
f̃ i
−y

]
i∈[C]

)
,

where Vol
([

f̃ i
−y

]
i∈[C]

)
specifies the volume spanned the

vectors in
[
f̃ i
−y

]
i∈[C]

, indicating that we aim to maximize

the diversity of the non-maximal predictions by maximally
increasing their spanned volume.

We define the approximate posterior distribution as a mix-
ture of Gaussians: Q = 1

K

∑K
i=1N

(
µi, σ

2I
)

, with the

prior distribution given by P = N
(
0, I
)

. Using this setup,
we have the following corollary, which provides valuable
insights for developing a practical method. The proof of this
corollary can be found in Appendix C.

Corollary 4.3. With the probability at least 1− δ over the
choice of S ∼ DN , we have

LD

(
QK
)
≤ min

λ≥0

{
λρ+ Eθ1:K∼Q

[
max
θ
′
1:K

{∑K
i=1 l(θ

′

i;x, y)

K

+ αldiv(θ
′

1:K ;x, y)− λ

K

K∑
i=1

c(θi, θ
′

i)
}]}

+ L

√∑K
i=1 ∥µi∥2 +Kd(σ − log σ) + 2 log 1

δ

4N
,

where D is the general data/label distribution, L is the
upper-bound of the loss ℓ, and d is the model size.

Inspired by this corollary, we apply a minor relaxation to
the right-hand side and propose to solve the following mini-
mization problem:

min
µ1:K ,σ

min
λ≥0

{
λρ+ Eθ1:K∼Q

[ 1
K

K∑
i=1

max
θ
′
i

ℓ̃(θ′i, θi;x, y)
]}

+
β

K

[ K∑
i=1

∥µi∥2 + d(σ − log σ)
]
, (5)

where ℓ̃(θ′i, θi;x, y) = l(θ
′

i;x, y) + αldiv(θ
′

i, θ−i;x, y) −
λc(θi, θ

′

i). Here, β can be interpreted as a regularization
hyper-parameter. We denote the loss function in Eq. (5) as
L(λ, θ′i, θi;x, y). We employ the reparameterization trick,

expressing θi = µi + σϵi with ϵi ∼ N
(
0, I
)

. Additionally,

for each θ
′

i we relax the divergence loss ldiv
(
θ
′

1:K ;x, y
)

to

ldiv

(
θ
′

i, θ−i;x, y
)

, where θ−i =
[
θj

]
j ̸=i

.

Practical algorithm. To solve the optimization problem in
Eq. (5), we alternatively update µ1:K and λ using gradient

Algorithm 1 Interactive Bayesian Distributional Robustness
(IBDR)

Input: Initial particle means µ1:K ; ascend step size α1;
learning rates αλ, αµ

Output: Optimal particle means µ1:K

while not converged do
Sample batch B = {(x1, y1), . . . , (xb, yb)}
Sample ϵi ∼ N(0, I) and θi ← µi + σϵi
Compute θ′i ← θi + α1∇θi ℓ̃(θ

′
i, θi;x, y)

Compute λ← λ− αλ∇λL(λ, θ′i, θi;x, y)
Compute µi ← λ− αµ∇µi

L(λ, θ′i, θi;x, y)
end while
return µ1:K

descent. In practice, we fix σ = 0.1 and do not learn σ.
To update µ1:K , we first apply the reparameterization trick
to obtain θ1:K and use one-step gradient ascend to obtain
θ′1:K . We next consider θ′i = θ′i(θi) = θ′i(µi + σϵi) and
apply the chain rule to compute the gradient of the loss w.r.t.
µi. Similar to SAM, we simplify the derivative of θ′i w.r.t.
θi as the identity matrix, hence leading to the gradient of
the loss w.r.t. µi is that of the loss w.r.t. θ′i. Finally, we
apply one-step projected gradient descent (e.g., to ensure
λ ≥ 0) to update λ. The pseudo-code of our approach is
summarized in Algorithm 1.

5. Experiments
We focus on the fine-tuning problem, where a pre-trained
model, denoted as Φ, is provided, and the goal is to identify
the optimal parameters θ = Φ + ∆, with ∆ representing
an additional component. Various parameter-efficient fine-
tuning (PEFT) methods, such as LoRA (Hu et al., 2022)
and Adapters (Houlsby et al., 2019), have been developed
to achieve this objective and have demonstrated remarkable
performance compared to the conventional full fine-tuning.
Since ∆ is typically a much smaller component than the
complete model in PEFT methods, Bayesian techniques
offer promising applications in model fine-tuning. To as-
sess the versatility and effectiveness of our method, we
experiment with two tasks on different domains: image
classification and commonsense reasoning.

5.1. Image Classification

We fine-tuned the ViT-B/16 architecture, pre-trained on the
ImageNet-21K dataset (Deng et al., 2009), using the
LoRA framework to learn the parameters ∆. Within the
Bayesian inference framework, our goal is to learn K LoRA
particles ∆i, each producing a unique model instance θi.
The final output is then generated by averaging the predic-
tions from these model instances.

To evaluate the performance of IBDR, we conducted experi-
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Table 1. Top-1 Accuracy on VTAB-1K. The accuracies are reported with ViT-B/16 pre-trained on ImageNet-21K
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FFT 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 62.3
LoRA 67.1 90.7 68.9 98.1 90.1 84.5 54.2 84.1 94.9 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 68.4
SAM 72.7 90.3 71.4 99.0 90.2 84.4 52.4 82.0 92.6 84.1 74.0 76.7 68.3 47.9 74.3 71.6 43.4 26.9 39.1 70.5

SA-BNN 65.1 91.5 71.0 98.9 89.4 89.3 55.2 86.2 94.5 86.4 75.2 61.4 63.2 40.0 71.3 64.5 34.5 27.2 31.2 68.2
SGLD 68.7 91.0 67.0 98.6 89.3 83.0 51.6 81.2 93.7 83.2 76.4 80.0 70.1 48.2 76.2 71.1 39.3 31.2 38.4 68.4

DeepEns 68.6 88.9 67.7 98.9 90.7 85.1 54.5 82.6 94.8 82.7 75.3 46.6 47.1 47.4 68.2 71.1 36.6 30.1 35.6 67.0
BayesTune 68.2 91.7 69.5 99.0 90.7 86.4 51.2 84.9 95.3 84.1 75.1 82.8 68.9 49.7 79.3 74.3 46.6 30.3 42.8 68.5

SVGD 71.3 90.2 71.0 98.7 90.2 84.3 52.7 83.4 93.2 86.7 75.1 75.8 70.7 49.6 79.9 69.1 41.2 30.6 33.1 70.9

IBDR 73.0 92.1 71.7 99.3 91.4 91.3 56.7 85.1 95.0 87.3 76.5 78.1 75.1 53.6 80.4 77.1 49.3 28.9 40.1 73.6
(.11) (.31) (.12) (0.15) (0.16) (.36) (.18) (.24) (.44) (.14) (.12) (.11) (.24) (.42) (.26) (.29) (.19) (.13) (.37)

Table 2. Expected Calibration Errors (ECE) on VTAB-1K. The results are reported with ViT-B/16 pre-trained on ImageNet-21K
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FFT 0.29 0.23 0.20 0.13 0.27 0.19 0.45 0.21 0.13 0.18 0.17 0.41 0.44 0.42 0.22 0.14 0.23 0.24 0.40 0.26
LoRA 0.38 0.19 0.18 0.05 0.09 0.10 0.14 0.11 0.09 0.12 0.11 0.12 0.19 0.34 0.18 0.14 0.21 0.18 0.31 0.17
SAM 0.21 0.25 0.20 0.11 0.12 0.15 0.14 0.17 0.16 0.14 0.09 0.12 0.17 0.24 0.16 0.21 0.19 0.13 0.16 0.16

SA-BNN 0.22 0.08 0.19 0.15 0.12 0.12 0.24 0.13 0.06 0.12 0.18 0.14 0.21 0.22 0.24 0.25 0.41 0.46 0.34 0.20
SGLD 0.26 0.20 0.17 0.05 0.18 0.14 0.23 0.18 0.09 0.12 0.32 0.26 0.29 0.21 0.26 0.42 0.39 0.11 0.24 0.22

DeepEns 0.24 0.12 0.22 0.04 0.10 0.13 0.23 0.16 0.07 0.15 0.21 0.31 0.32 0.36 0.13 0.32 0.31 0.16 0.29 0.20
BayesTune 0.32 0.93 0.20 0.03 0.85 0.12 0.22 0.13 0.07 0.13 0.22 0.12 0.23 0.30 0.24 0.28 0.28 0.31 0.26 0.23

SVGD 0.20 0.13 0.19 0.04 0.16 0.09 0.20 0.15 0.11 0.13 0.12 0.17 0.21 0.30 0.18 0.21 0.25 0.14 0.26 0.18

IBDR 0.16 0.08 0.19 0.02 0.07 0.07 0.13 0.12 0.06 0.11 0.11 0.13 0.24 0.30 0.12 0.11 0.30 0.30 0.16 0.14
(.03) (.02) (.02) (.01) (.01) (.01) (.02) (.03) (.02) (.02) (.01) (.01) (.02) (.03) (.01) (.01) (.05) (.04) (.02)

Table 3. Accuracy/ECE on six common-sense reasoning datasets

Metric Datasets

Type Method WG-S ARC-C ARC-E WG-M OBQA BoolQ AVG

MLE 68.99 69.10 85.65 74.53 81.52 86.53 77.72
MAP 68.62 67.59 86.55 75.61 81.38 86.50 77.71
MCD 69.26 68.43 86.07 76.18 81.49 87.15 78.10

ACC (↑) ENS 69.57 66.20 84.40 75.32 81.38 87.09 77.33
BBB 67.54 68.11 85.63 73.41 81.72 87.19 77.27
LAP 69.20 66.78 80.05 75.55 82.12 86.95 76.78

BLoB 70.89 70.83 86.68 74.55 82.73 86.80 78.75
IBDR 72.51 70.56 86.95 76.46 84.60 86.89 79.66

MLE 29.83 29.00 13.12 20.62 12.55 3.18 18.05
MAP 29.76 29.42 12.07 23.07 13.26 3.16 18.46
MCD 28.06 27.73 12.31 18.27 15.12 3.49 17.50

ECE (↓) ENS 28.52 29.16 12.57 20.86 15.34 9.61 19.34
BBB 21.93 25.84 12.42 15.89 11.23 3.76 15.18
LAP 4.15 16.25 33.29 7.40 8.70 1.30 11.85

BLoB 20.62 20.61 9.43 11.23 8.36 2.46 12.12
IBDR 24.17 21.20 9.71 11.19 5.82 1.54 12.27

ments using the VTAB-1K benchmark (Zhai et al., 2020),
a standardized framework designed to assess the transfer
learning capabilities of models across a diverse range of
visual tasks. This benchmark includes 19 distinct datasets
encompassing three domains: Natural images, Specialized,
and Structured. Each task in VTAB-1K is constrained to
1,000 labeled examples for fine-tuning, presenting a chal-
lenging scenario for evaluating the model’s ability to gener-
alize across domains with limited data.

We benchmarked IBDR against 8 baselines, utilizing three

deterministic fine-tuning approaches: full fine-tuning (FFT),
AdamW, and SAM, as well as five Bayesian inference meth-
ods: Sharpness-Aware Bayesian Neural Network (SA-BNN)
(Nguyen et al., 2023b), Stochastic Gradient Langevin Dy-
namics (SGLD) (Welling & Teh, 2011a), Bayesian Deep
Ensembles (DeepEns) (Lakshminarayanan et al., 2017),
BayesTune (Kim & Hospedales, 2023) and Stein Variational
Gradient Descent (SVGD) (Liu & Wang, 2016).

In our experiment, we set α = 0.02, β = 10−4 for all
datasets. We tune ρ using the provided validation set, with
the candidate set being ρ ∈ {0.01, 0.05, 0.1}. All mod-
els, except for the deterministic methods (including SAM,
LoRA with the AdamW optimizer, and full fine-tuning),
were trained using four particles on the same set of LoRA
parameters specified by Hu et al. (2022). We conducted
three independent runs for each experiment and reported
the mean scores and standard deviation. For additional in-
formation regarding the experimental setup, please refer to
Appendix A.

According to Table 1, IBDR outperforms all baselines by
large margins. We also note that IBDR surpasses SA-BNN
by more than 5%, underscoring the effectiveness of incor-
porating inter-particle interaction for ensemble diversity.
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Figure 1. Percentage of OOD samples at different thresholds. Left:
model trained on CIFAR-100 and tested on SVHN. Right: trained
and tested on SVHN.

While the inter-particle interactions can enhance ensemble
diversity, these repulsive forces may compromise model
robustness. However, our approach mitigates this issue
by incorporating distributional robustness into the interac-
tive framework. To evaluate the robustness of IBDR, we
report the Expected Calibration Error (ECE) in Table 2.
Although there is often a trade-off between accuracy and
ECE, IBDR maintains a good balance between these metrics
and achieves the best ECE among the baselines. This re-
sult highlights the effectiveness of our method in balancing
distributional robustness and particle diversity.

5.2. Commonsense Reasoning

Having shown that IBDR excels on the vision task, we ex-
tend our experiment to the commonsense reasoning task.
We fine-tuned the LLaMA2-7B model on six widely-used
common-sense reasoning tasks: ARC-Challenge (ARC-C)
and ARC-Easy (ARC-E) (Clark et al., 2018), Winogrande-
Small (WG-S) and Winogrande-Medium (WG-M) (Sak-
aguchi et al., 2021), OpenBookQA (OBQA) (Mihaylov
et al., 2018), and BoolQ (Clark et al., 2019). Following
the experimental setup outlined in Wang et al. (2024), we
benchmarked IBDR against seven baseline methods, includ-
ing Maximum Likelihood Estimation (MLE), Maximum
A Posteriori (MAP), Monte Carlo Dropout (MCD) (Gal &
Ghahramani, 2016), Bayes By Backprop (BBB) (Blundell
et al., 2015), Deep Ensembles (ENS) (Lakshminarayanan
et al., 2017), the recently proposed LaplaceLoRA (LAP)
(Yang et al., 2023) and Bayesian Low-Rank Adaptation by
Backpropagation (BLoB) (Wang et al., 2024). For all base-
line methods, we used the same frozen pre-trained LLM
backbone. To maintain consistency, we kept hyperparam-
eters identical across all datasets. Except for a few IBDR-
specific hyperparameters, we strictly adhered to the default
settings from Hu et al. (2022).

The accuracy and Expected Calibration Error (ECE) metrics
are presented in Table 3, demonstrating that IBDR outper-
forms the baseline methods across most tasks, achieving
notable performance improvement while maintaining com-
petitive calibration. Also, IBDR’s ability to balance pre-
dictive accuracy with uncertainty calibration highlights its
effectiveness in modeling inter-particle interactions.
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Figure 2. Average prediction probabilities of four particles on the
SVHN testing set. The blue bar indicates the ground truth label.

6. Ablation Studies
6.1. Out-of-Distribution Performance

We conducted additional experiments to evaluate our
model’s out-of-distribution (OOD) detection capability. As
shown in Figure 1, we plotted two line graphs illustrating the
percentages of OOD samples at corresponding thresholds.
The left graph represents the results for a model trained on
the CIFAR-100 dataset and tested on the SVHN dataset,
while the right graph illustrates the results for a model both
trained and tested on the SVHN dataset. As expected, when
evaluated on a dataset different from the training data, our
model exhibits low confidence across all classes and suc-
cessfully identifies these samples as OOD. In contrast, the
results in the right graph demonstrate that the model trained
and tested on the SVHN dataset achieves high confidence
in its predictions, further supporting our findings.

6.2. Particle Interactions and Ensemble Diversity

This section delves into the effectiveness of our framework
in enhancing ensemble diversity. As shown in Figure 2,
which visualizes the average prediction probabilities of four
particles, two out of the four particles assign the highest
probability to the ground truth class, while the other two
predict the ground truth as one of the top two probabilities.
As discussed in Section 4.3, our algorithm is designed to
promote diversity in nonmaximal probability predictions.
This is evident in Figure 2. Indeed, the third particle pre-
dicts class 0 with high probability. Through interaction
among the particles, the other particles tend to assign lower
probabilities to class 0, and this effect extends to all classes
that are not the ground truth. Then, when taking the average
of the predictions across all particles, the overall probability
for non-ground-truth classes is reduced, leading to the dom-
inant probability of 30% for the ground truth compared to
the probability of less than 15% for any other class in this
case. By fostering particle diversity and maximizing the
spanned volume of nonmaximal predictions, we decreased
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the chance of multiple particles making the same mispredic-
tion and enhanced the ensemble quality.

7. Conclusion
We present Interactive Bayesian Distributional Robustness
(IBDR), a novel Bayesian inference framework that models
interactions between particles to simultaneously enhance
ensemble diversity and distributional robustness. IBDR has
been rigorously tested on different tasks from various do-
mains, where it notably outperformed the baselines, demon-
strating its effectiveness across diverse tasks.
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Möllenhoff, T. and Khan, M. E. SAM as an optimal re-
laxation of bayes. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=k4fevFqSQcX.

Neal, R. M. Bayesian Learning for Neural Networks.
Springer-Verlag, Berlin, Heidelberg, 1996. ISBN
0387947248.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,
N. Exploring generalization in deep learning. Advances
in neural information processing systems, 30, 2017.

Nguyen, V.-A., Le, T., Bui, A., Do, T.-T., and Phung, D.
Optimal transport model distributional robustness. In Ad-
vances in Neural Information Processing Systems, 2023a.

Nguyen, V.-A., Vuong, T.-L., Phan, H., Do, T.-T., Phung,
D., and Le, T. Flat seeking bayesian neural networks. Ad-
vances in Neural Information Processing Systems, 2023b.
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Supplement for “Promoting Ensemble Diversity with Interactive Bayesian
Distributional Robustness for Fine-tuning Foundation Models”

The Supplementary Material is structured as follows: Appendix A presents the additional experiments to demonstrate the
effectiveness and robustness of our method. Appendix B discusses the experimental information, including hyperparameters
choice and the details about datasets. Appendix C presents the proofs of the theoretical results.

A. Additional Experiments
To further evaluate the performance and behavior of IBDR, we conduct additional experiments in this section. First, we
examine the impact of the number of particles, verifying the benefits of using multiple diverse particles and supporting
our choice for the optimal number. Additionally, we assess IBDR’s performance across various hyperparameter values,
demonstrating its robustness with respect to different settings of ρ and α.

A.1. Effect of Number of particles

We conducted experiments on the four Specialized datasets, including the Patch Camelyon, EuroSAT, Resics45, and Diabetic
Retinopathy datasets, to assess how the number of particles affects final performance. As shown in Table 4, increasing the
number of particles enhances the ensemble’s quality, improving performance. However, Table 5 shows that increasing the
number of particles also results in a linear increase in runtime. Considering this tradeoff between time and memory, we
determined that using #PARTICLES = 4 offers an optimal balance between accuracy and training cost.

Table 4. Classification accuracy with different #PARTICLES

#PARTICLES Camelyon EuroSAT Resics45 Retinopathy

1p 82.4 93.1 84.2 73.8

2p 84.8 93.9 86.6 74.3

4p 85.1 95.0 87.3 76.5

8p 85.8 95.5 87.4 77.0

Table 5. Runtime per epoch with different #PARTICLES

#PARTICLES Camelyon EuroSAT Resics45 Retinopathy

1p 51±1.8 50±1.5 48±1.7 51±0.7

2p 80±2.1 83±2.4 93±2.1 85±0.9

4p 158±4.3 161±4.9 156±4.1 151±2.1

8p 220±6.2 230±5.7 218±7.3 246±6.8

A.2. Effect of particle interaction via ldiv

To further assess the impact of particle interactions, we examine the effect of varying values of α, which indicates the extent
to which we enforce diversity among particles through the divergence loss ldiv. There is a significant performance gap
between α = 0 and α = 0.02 on all datasets, indicating the importance of the divergence loss and particle diversity. As α
increases, we anticipate that the behavior of the particles may become increasingly unstable, as the divergence loss begins to
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Table 6. Accuracy with different values of α on DTD, DMLab, and SVHN datasets

α DTD DMLAB SVHN

0 67.24 51.92 87.03
0.02 71.70 53.61 91.32
0.08 71.73 52.73 91.26
0.5 70.86 53.16 90.63
1.5 70.93 51.27 90.34
3 68.32 48.64 86.31

Table 7. Classification accuracy with different values of α and ρ

DATASETS α\ρ 0.01 0.03 0.05 1 2

DTD

0 67.98 67.24 69.24 67.11 65.13
0.02 70.11 71.70 70.34 69.26 68.41
0.08 71.02 71.73 70.88 70.01 69.20
0.5 70.43 70.86 70.61 69.23 69.01
1.5 69.67 70.93 70.93 68.61 67.14
3 68.01 68.32 70.24 67.31 66.09

DMLAB

0 51.86 51.04 51.92 51.22 49.67
0.02 52.33 53.24 53.61 51.09 49.30
0.08 53.01 53.26 52.73 50.98 48.12
0.5 52.12 52.87 53.16 48.11 46.87
1.5 50.02 49.64 51.27 47.19 44.62
3 48.96 48.62 48.64 46.23 44.11

dominate the classification loss. However, as shown in Table 6, IBDR maintains robust performance across a reasonable
range of α.

A.3. Hyperparameter Sensitivity

IBDR depends on two key hyperparameters: α and ρ. In this section, we evaluate IBDR’s performance on the DTD and
SVHN datasets across various values of α and ρ to assess the algorithm’s robustness with respect to these parameters. As
discussed in Section A.2, α controls the degree to which we promote diversity among particles. However, larger values of α
may cause instability, and we found that α = 0.02 works well as a default across all experiments. Conversely, ρ serves as
the step size for the ascent step, and setting it too high can also destabilize the model. Nonetheless, as shown in Table 7, our
method remains robust over a reasonable range of both hyperparameters, demonstrating a desirable level of stability.

B. Experimental Details
The experiments were conducted using PyTorch on a Tesla V100 GPU with 40GB of RAM. We set the hyperparameters as
follows: α = 0.02, β = 10−4, and ρ ∈ {0.01, 0.03, 0.05}, with ρ tuned using the standard validation set. For optimization,
we used stochastic gradient descent (SGD) as the base optimizer, combined with a cosine annealing learning rate scheduler,
500 warm-up steps, a momentum of 0.9, and no weight decay.

B.1. Datasets

B.1.1. IMAGE CLASSIFICATION

The VTAB-1K (Visual Task Adaptation Benchmark) is a diverse and challenging image classification/prediction suite
consisting of 19 datasets from various domains. VTAB-1K covers various tasks across different semantics and object
categories and is designed to evaluate how well pre-trained models can adapt to various visual tasks by fine-tuning on
small datasets. Specifically, in the VTAB-1K setting, only 1,000 training examples are provided for each task, making it
challenging to fine-tune models with limited data.
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Some key features of VTAB-1K including of:

• Diverse tasks: VTAB-1K consists of a variety of visual tasks that fall into three broad categories:

– Natural: Tasks derived from natural images, such as classification of real-world objects. This category consists of
CIFAR100, Caltech101, DTD, Oxford Flowers, Pets, SVHN, and Sun397 datasets.

– Specialized: Tasks from specific domains requiring more fine-tuned understanding (e.g., satellite imagery,
medical images). This category consists of Patch Camelyon, EuroSAT, Resics45, and Diabetic
Retinopathy datasets.

– Structured: Tasks involving synthetic or abstract images that require understanding of structured patterns (e.g.,
depth estimation, object counting). This category consists of SmallNORB, DMLab, dSprites, and KITTI
datasets.

• Evaluation Process: Models are pre-trained on large datasets (e.g., ImageNet-21K) and then fine-tuned using only
1,000 examples from each task in VTAB-1K, with an official 80/20 train-validation split. The performance is evaluated
based on accuracy or other task-specific metrics, testing the model’s adaptability and generalization.

B.1.2. COMMONSENSE REASONING

For more details on the size of the training set and the number of labels for each commonsense reasoning dataset, we refer to
Appendix B.3 of (Wang et al., 2024).

B.2. Data Augmentations

B.2.1. IMAGE CLASSIFICATION

Our implementation is based on the repository V-PETL. For each dataset, we use the following data augmentation:

• For Caltech101, CIFAR100, Clevr-Dist, Dsprites-Loc, Dsprites-Ori,
SmallNorb-Azi, SmallNorb-Ele:

self.transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])
self.transform_test = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])

• For Clevr-Count, Diabetic Retinopathy, DMLab, DTD, EuroSAT, KITTI, Flowers102,
Pets, Patch Camelyon, Resisc45, Sun397, SVHN:

from timm.data import create_transform
self.transform_train = create_transform(

input_size=(224, 224),
is_training=True,
color_jitter=0.4,
auto_augment=’rand-m9-mstd0.5-inc1’,
re_prob=0.0,
re_mode=’pixel’,
re_count=1,
interpolation=’bicubic’,

)
aug_transform.transforms[0] = transforms.Resize((224, 224),

interpolation=3)
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self.transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])

B.2.2. COMMONSENSE REASONING

For more details on the data augmentation used for the commonsense reasoning task, we refer to (Wang et al., 2024).

C. All Proof
C.1. Proof of Theorem 4.1:

We restate the theorem

Theorem C.1. Let δ ∈ (0, 1). With the probability at least 1− δ over the choice of S ∼ DN , we have

LD

(
QK
)
≤ min

λ≥0

{
λρ+ Eθ∼QK

[
max
θ′

{
LS(θ

′)− λcK(θ,θ′)
}]}

+ L

√√√√KDKL

(
Q∥P

)
+ log 1

δ

2N
, (6)

where D is the general data/label distribution, L is the upper-bound of the loss function ℓ(θ;x, y), and cK(θ,θ′) =
1
K

∑K
i=1 c(θi, θ

′

i) represents a distance/divergence between two models.

Proof. Under the assumption that the loss ℓ (θ;x, y) ≤ L is bounded by L > 0, it follows from Theorem 4.1 developed by
(Alquier et al., 2016) that for any β > 0

LD
(
QK
)
≤ LS

(
QK
)
+

1

β

[
DKL

(
QK∥PK

)
+ log

1

δ
+

β2L2

8N

]
. (7)

Consider the term DKL(Q
K , PK), which is equal to:

DKL(Q
K ∥ PK) =

∫
θ1,...,θK

QK(θ1, . . . , θK) log
QK(θ1, . . . , θK)

PK(θ1, . . . , θK)
dθ1dθ2 · · · dθK

=

∫
θ1,...,θK

K∏
k′=1

Q(θk′) log

∏K
k=1 Q(θk)∏K
k=1 P (θk)

dθ1dθ2 · · · dθK

=

K∑
k=1

∫
θk

Q(θk) log
Q(θk)

P (θk)

( ∏
k′ ̸=k

∫
θk′

Q(θk′)dθk′

)
dθk

=

K∑
k=1

∫
θk

Q(θk) log
Q(θk)

P (θk)
dθk

= KDKL(Q∥P )

By choosing β =
√
8N

√
DKL(QK∥PK)+log 1

δ

L in Eq. (7), the RHS becomes
√

DKL(QK∥PK)+log 1
δ

2N × L. Therefore:
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LD
(
QK
)
≤ LS

(
QK
)
+ L

√
DKL (QK∥PK) + log 1

δ

2N

= LS
(
QK
)
+ L

√
KDKL (Q∥P ) + log 1

δ

2N

≤ max
Q̃K :Wc(Q̃K ,QK)≤ρ

LS

(
Q̃K
)
+ L

√
KDKL (Q∥P ) + log 1

δ

2N
.

According to (Blanchet & Murthy, 2019), the duality problem of the DRO problem implies that

max
Q̃K :Wc(Q̃K ,QK)≤ρ

LS

(
Q̃K
)
≤ min

λ≥0

{
λρ+ Eθ∼QK

[
max
θ′

{
LS
(
θ′)− λc

(
θ,θ′)}]} .

Therefore, we conclude that:

LD
(
QK
)
≤ min

λ≥0

{
λρ+ Eθ∼QK

[
max
θ′

{
LS
(
θ′)− λc

(
θ,θ′)}]}+ L

√
KDKL (Q∥P ) + log 1

δ

2N
. (8)

C.2. Proof of Corollary 4.2:

Corollary C.2. Given a metric d over the model space, consider the following cost function c

c(θ,θ′) =

{
d(θ,θ′) if d(θ,θ′) ≤ ρ

+∞ otherwise.

With the probability at least 1− δ over the choice of S ∼ DN , we have

LD

(
QK
)
≤ Eθ∼QK

[
max

θ′∈Bρ(θ)
LS

(
θ′
)]

+ L

√√√√KDKL

(
Q∥P

)
+ log 1

δ

2N
,

where we define the ball Bρ(θ) := {θ′ : d(θ,θ′) ≤ ρ}.

Proof. This result follows directly from the fact that

max
θ′
{LS (θ′)− λc (θ,θ′)} = max

θ′:d(θ,θ′)≤ρ
LS (θ′)

because c (θ,θ′) becomes +∞ when θ′ /∈ Bρ (θ) := {θ′ : d (θ,θ′) ≤ ρ}. Apply this result to Theorem 4.1, the outer
minimization in Eq. (8) is obtained when λ = 0, which concludes the proof.

C.3. Proof of Corollary 4.3:

Corollary C.3. With the probability at least 1− δ over the choice of S ∼ DN , we have
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LD

(
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λ≥0
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[
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′
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K
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i)
}]}
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i=1 ∥µi∥2 +Kd(σ − log σ) + 2 log 1

δ

4N
,

where D is the general data/label distribution, L is the upper-bound of the loss ℓ, and d is the model size.

Proof. This result follows directly from Theorem 4.1 and from the fact that

DKL (Q∥P ) = DKL

(
1

K

K∑
i=1

N
(
µi, σ

2I
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∥N (0, I)

)
≤ 1
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DKL
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2I
)
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)
=

1
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(
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)
.
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