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ABSTRACT

Instruction-guided diffusion models have demonstrated strong capabilities in gen-
erating targeted image edits based on diverse textual prompts. A fundamental
challenge in this setting is achieving the right balance between adhering to tex-
tual instructions and preserving the original content of the input image. Instruct-
Pix2Pix (IP2P) addresses this by applying separate classifier-free guidance (CFG)
terms to the text and image conditions, each scaled independently. However, this
limited parametrization restricts user control, as increasing one guidance scale of-
ten causes the corresponding condition to dominate the output, resulting in imbal-
anced edits. Independently, Adaptive Projected Guidance (APG) was recently in-
troduced to mitigate inherit limitations of CFG at high guidance scales in text- and
class-conditioned diffusion models, reframing CFG as a gradient ascent process
with decomposed guidance directions and improved signal control. In this work,
we present IP2P-APG, a plug-and-play extension of IP2P that repurposes APG
to improve the balance between instruction adherence and content preservation
in image editing tasks. IP2P-APG significantly expands the controllable param-
eter space, allowing users to have more precise control over the editing process.
Moreover, by enabling the use of higher guidance scales without introducing arti-
facts or compromising fidelity to the original content, IP2P-APG achieves a more
effective trade-off between textual alignment and content preservation. Exten-
sive experiments across multiple generative backbones and datasets demonstrate
that our method consistently produces more realistic and instruction-faithful ed-
its, without additional training and with negligible computational overhead. Code
will be released after the review process.

1 INTRODUCTION

Figure 1: Comparison of IP2P (Brooks et al., 2023) (first row) and IP2P-APG (second row) with
sT = 7.5 while varying sI . Here sT is the scaling factor on text guidance and sI is the scaling factor
on image guidance during the editing. IP2P-APG maintains the subject’s posture and orientation
more consistently while using the same model parameters as IP2P, and with sI = 1.4 it achieves a
strong trade off between edit strength and fidelity.
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Instruction-guided image editing has emerged as a powerful approach for enabling everyday users
to modify images by simply describing the desired changes in natural language. This technique has
received considerable attention from the research community, prompting the creation of numerous
datasets and methods (Brooks et al., 2023; Zhang et al., 2023; Sheynin et al., 2024; Zhao et al., 2025;
Hui et al., 2024) that seek to expand the capabilities and accessibility of instruction-based editing.
Among these advancements, InstructPix2Pix (IP2P) (Brooks et al., 2023) stands out for its novel
framework that uses text-conditional, image-conditional, and unconditional noise estimations.

A core challenge in this line of work is maintaining a balance between faithfully applying the re-
quested transformations and preserving the intrinsic fidelity of the input image. IP2P tries to ad-
dress this by introducing separate scale factors for its text- and image-conditioned noise estimations,
thereby affording control over each aspect of the edit. While increasing these scales can help to
achieve stronger text-driven modifications or reinforce image fidelity, pushing them undermine the
overall content quality. Specifically, an excessively large text scale overwrites important details of
the source, whereas a disproportionately high image scale suppresses the desired edits, leaving the
image nearly unchanged. In practice, identifying the optimal guidance scales demands extensive
empirical tuning, offering very limited control over the final output. The inherent constraints in
adjusting these scales mean that users are left with only a narrow margin for tailoring the balance
between the textual instruction and the preservation of the original image. Even minor miscalibra-
tions can result in outputs where the textual directive is either underrepresented or the source content
is excessively distorted. This pronounced sensitivity underscores a broader challenge in instruction-
guided diffusion models: the limited user control available to achieve a harmonious balance between
faithfully incorporating the requested change and maintaining the essential attributes of the original
image.

These fundamental limitations point to a need for more sophisticated control mechanisms. Fortu-
nately, recent advances in text-to-image diffusion models offer promising directions. Specifically,
studies have shown that while high classifier-free guidance (CFG) scales can enhance generation
quality, they often lead to oversaturation and unrealistic artifacts in generated images (Sadat et al.,
2025). Adaptive Projected Guidance (APG) addresses these challenges by decomposing the CFG
update into parallel and orthogonal components relative to the conditional estimate (Sadat et al.,
2025). Through strategic rescaling and reverse momentum, APG effectively controls the oversatu-
ration while preserving the benefits of CFG (Sadat et al., 2025). These insights provide a foundation
for addressing the control limitations in instruction-guided image editing.

Motivated by these findings, we propose IP2P-APG, a plug-and-play training-free framework that
extends adaptive projection strategies for instruction-guided image editing. Our approach system-
atically addresses the control limitations of existing methods by decomposing the guidance signals
into parallel and orthogonal components, introducing separate momentum and normalization terms
for text and image guidance signals, hence enabling more nuanced control of the editing process.
This principled decomposition allows IP2P-APG to move beyond the rigid coupling of guidance
scales, achieving both faithful content preservation and precise alignment with user instructions.
IP2P-APG is model-agnostic and demonstrates effectiveness across diverse instruction-guided im-
age editing backbones, from U-Net-based latent diffusion models (Rombach et al., 2022) to rectified
flow transformers (Esser et al., 2024). This versatility is demonstrated by integrating IP2P-APG into
three state-of-the-art instruction-guided editors: InstructPix2Pix (Brooks et al., 2023), MagicBrush
(Zhang et al., 2023), and UltraEdit (Zhao et al., 2025).

Our contributions are listed as follows:

• We develop a plug-and-play framework for instruction-guided image editing that expands
user control by parameterizing the editing dynamics along three axes: momentum, nor-
malization, and parallel components. This provides interpretable levers for calibrating edit
intensity, mitigating artifacts, and preserving desired source attributes.

• We provide a systematic analysis of how these controls affect the denoising dynamics under
joint text and image guidance, revealing how users can trade off edit strength, fidelity, and
content preservation.

• Our model-agnostic framework achieves stronger content fidelity and instruction alignment
with minimal overhead, as shown across benchmarks with diverse generative models.
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2 METHODOLOGY

We begin this section by establishing the theoretical foundations of our work, covering classifier-
free guidance, instruction-guided image editing, and adaptive projected guidance. Following this
background review, we present our proposed methodology in detail.

2.1 CLASSIFIER-FREE GUIDANCE (CFG)

CFG is an inference method designed to enhance the quality of generated outputs by combining the
predictions of a conditional model and an unconditional model (Ho & Salimans, 2022). Given a null
condition cnull = ∅ for the unconditional case, CFG modifies the denoiser’s output at each sampling
step as follows:

ϵ̃θ (zt, c) = ϵθ (zt,∅) + w · (ϵθ (zt, c)− ϵθ (zt,∅)) , (1)

where w = 1 represents the non-guided case, zt the noisy sample at time index t, and θ denoiser
network parameters. The unconditional model ϵθ(zt,∅) is trained by randomly applying the null
condition cnull = ∅ to the denoiser’s input for a portion of training.

2.2 ADAPTIVE PROJECTED GUIDANCE (APG)

APG has been recently introduced as a solution that preserves the advantages of CFG while signif-
icantly reducing artifacts that typically emerge at higher guidance scales (Sadat et al., 2025). APG
operates on denoised predictions (predicted clean latent, denoted as D(.)). For consistency, we
maintain this notation throughout our analysis. The standard classifier-free guidance update with a
given noisy sample zt, condition c, and guidance scale w is given by:

D̃θ(zt, c) = Dθ(zt, c) + (w − 1)∆Dt, (2)

where ∆Dt represents the difference between conditional and unconditional (null condition, denoted
as ∅) estimates of the denoised image:

∆Dt = Dθ(zt, c)−Dθ(zt,∅),

While increasing w generally improves sample fidelity and condition alignment, it can also lead to
oversaturation and visual artifacts.

CFG can also be interpreted as performing a single step of gradient ascent on the squared difference
between conditional and unconditional predictions (Sadat et al., 2025):

1
2

∥∥Dθ(zt, c)−Dθ(zt,∅)
∥∥2. (3)

From this viewpoint, ∆Dt in Eq. (2) acts much like a gradient step with an effective “learning rate”
of (w − 1). When w grows large, however, this update can overshoot, pushing the model beyond
a desirable range. To counter this, APG introduces rescaling and momentum, techniques borrowed
from optimization, to keep the updates in check.

Parallel and Orthogonal Decomposition: To better understand which aspects of ∆Dt contribute
to oversaturation, APG decomposes it into parallel and orthogonal components relative to Dθ(zt, c).
The parallel component is given by:

∆D
∥
t =

⟨∆Dt, Dθ(zt, c)⟩
⟨Dθ(zt, c), Dθ(zt, c)⟩

Dθ(zt, c), (4)

which leads to the decomposition:

∆D⊥
t = ∆Dt −∆D

∥
t . (5)

Empirical observations indicate that the parallel component ∆D
∥
t is primarily responsible for in-

creasing pixel intensities, which can result in oversaturation. Conversely, the orthogonal component
∆D⊥

t plays a more significant role in improving image quality (Sadat et al., 2025).

3
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Figure 2: Comparison of IP2P (Brooks et al., 2023) and IP2P-APG at sT = 15.0 with varying sI
values. Despite the high sT value, IP2P-APG accurately preserves the input structure, whereas IP2P
fails to do so.

Rescaling and Reverse Momentum: To regulate the update magnitude, APG applies rescaling to
∆Dt, ensuring that it remains within an ℓ2-ball of radius r:

∆Dt ← ∆Dt ·min

(
1,

r

∥∆Dt∥

)
. (6)

This prevents excessively large updates and limits unnatural deviations from Dθ(zt, c).

Additionally, APG incorporates a reverse momentum mechanism to counteract excessive accumula-
tion of updates in the same direction (Sadat et al., 2025). Specifically, a negative momentum factor
β < 0 is introduced:

∆Dt ← ∆Dt + β∆Dt, (7)
where ∆Dt maintains a running average of past updates.

Unlike standard momentum, which reinforces past update directions, this repulsive momentum en-
sures that each new update is adjusted away from previous directions, helping to suppress excessive
accumulation in the parallel component.

2.3 INSTRUCTPIX2PIX (IP2P)

Traditional single-condition CFGs usually focus on a single modality, typically text. However,
instruction-guided image editing requires additional control to preserve the integrity of the input
image. IP2P addresses this by employing distinct guidance parameters for the image and text con-
ditions, denoted by sI and sT , respectively. Specifically, sI governs how strictly the output should
adhere to the original image’s structure (e.g., color palette, composition), preventing large devia-
tions when sI is high. Meanwhile, sT dictates how strongly the model should follow the textual
instruction, allowing more creative or substantial modifications if set to a higher value.

Hence, the modified noise estimate at step t in IP2P is expressed as:

ẽθ (zt, cI , cT ) =eθ (zt,∅,∅)

+ sI · (eθ (zt, cI ,∅)− eθ (zt,∅,∅))

+ sT · (eθ (zt, cI , cT )− eθ (zt, cI ,∅)) ,

(8)

where cI stands for the image condition, cT for the text condition (i.e., instruction), and ∅ for the
null condition.

2.4 THE IP2P-APG FRAMEWORK

In our proposed method, we rewrite the Eq. (8) with denoised predictions instead by substituting

eθ(zt, c) =
zt − αT ∗Dθ(zt, c)

σT
, (9)

4
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where zt = αTx0 + σT ϵ follows the standard DDPM noise schedule (Ho et al., 2020). For rectified
flow models like SD3 (Esser et al., 2024), we apply an analogous transformation to convert velocity
predictions to denoised estimates. Consequently, the conditional denoising process can be expressed
as:

D̃θ (zt, cI , cT ) =Dθ (zt,∅,∅)

+ sI · (Dθ (zt, cI ,∅)−Dθ (zt,∅,∅))

+ sT · (Dθ (zt, cI , cT )−Dθ (zt, cI ,∅)) .

(10)

By defining the difference terms explicitly, we rewrite the equation as:

D̃θ (zt, cI , cT ) =Dθ (zt,∅,∅)

+ sI ·∆DI,∅
t

+ sT ·∆DT,I
t ,

(11)

where the differences are given by:

∆DI,∅
t = Dθ (zt, cI ,∅)−Dθ (zt,∅,∅) ,

∆DT,I
t = Dθ (zt, cI , cT )−Dθ (zt, cI ,∅) .

(12)

Observing that the term Dθ(zt,∅,∅) + sI · ∆DI,∅
t follows the same structure as Eq. (2), we can

express Eq. (11) in a similar form by adding Dθ(zt, cI ,∅) to both sides. This yields:

D̃θ (zt, cI , cT ) = Dθ (zt, cI ,∅) + (sI − 1) ·∆DI,∅
t

+Dθ(zt, cI , cT ) + (sT − 1) ·∆DT,I
t

−Dθ(zt, cI ,∅).

(13)

Finally, we apply the concepts of rescaling, momentum, and orthogonality to the difference terms
∆DI,∅

t and ∆DT,I
t , which enables precise control over text and image guidance through distinct

momentum, orthogonality, and normalization hyperparameters.

The final IP2P-APG denoised prediction is given by

D̃θ(zt, cI , cT ) = Dθ(zt, cI , cT )

+ (sI − 1)
{
M I,∅

t min
(
1,

rI

∥M I,∅
t ∥

)}⊥

Dθ(zt,cI ,∅)

+ (sT − 1)
{
MT,I

t min
(
1,

rT

∥MT,I
t ∥

)}⊥

Dθ(zt,cI ,cT )
,

(14)

where rI and rT are normalization radius for L2 norm, M I,∅
t and MT,I

t are momentum-applied
differences defined as

M I,∅
t = ∆DI,∅

t + βI ∆Dt
I,∅

,

MT,I
t = ∆DT,I

t + βT ∆Dt
T,I

,

where βI and βT denote the momentum coefficients, and ∆Dt
I,∅

and ∆Dt
T,I

are the running
averages of the corresponding updates.

In this notation, we define the contribution of the parallel component using the orthogonal projection
of a vector X onto a vector D as:

{X}⊥D = X − (1− η)
⟨X,D⟩
⟨D,D⟩

D,

where the parameter η controls the influence of the parallel component in the final estimate. Specifi-
cally, we use ηI and ηT to regulate the strength of the parallel components for ∆Dt

I,∅ and ∆Dt
T,I ,

respectively.
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Table 1: Comparison of methods in MagicBrush (Zhang et al., 2023) test set. For IP2P-APG, the
checkpoint used is indicated in the first column. Best results are highlighted in bold.

Method L1 (↓) DINO (↑) CLIPI (↑) CLIPT (↑) CLIPsim (↑) CLIPdir (↑)

InstructPix2Pix (Brooks et al., 2023) 0.1132 0.7409 0.8534 0.2757 0.8069 0.1117
MagicBrush (Zhang et al., 2023) 0.0748 0.8475 0.9076 0.2848 0.8471 0.1380
EmuEdit* (Sheynin et al., 2024) - - - - 0.8970 0.1350
UltraEdit (Zhao et al., 2025) 0.0687 0.8450 0.8997 0.2869 0.8374 0.1261

IP2P-APG (InstructPix2Pix SD1.5) 0.1028 0.8026 0.8774 0.2849 0.8154 0.1287
IP2P-APG (MagicBrush SD1.5) 0.0667 0.8754 0.9175 0.2860 0.8556 0.1367
IP2P-APG (Ultraedit SD3) 0.0668 0.8424 0.9002 0.2892 0.8318 0.1366

*Since Emuedit does not provide metrics using ground truth images, we exclude those specific metrics
from table (see Subsection 3.2 for details).

Figure 3: Comparison of methods for (sT , sI) = (7.5, 1.5) using IP2P-APG with the MagicBrush
(Zhang et al., 2023) checkpoint using MagicBrush test set. In the first row, IP2P-APG preserves
the details of the monkey while applying edits accurately, while in the second row, it maintains the
landscape details while ensuring precise modifications.

3 RESULTS

3.1 EXPERIMENTS

We compare our method against several baselines to evaluate its effectiveness. Specifically, we
benchmark our approach against the original InstructPix2Pix (IP2P) (Brooks et al., 2023) using its
fine-tuned checkpoint from Stable Diffusion v1.5, MagicBrush (Zhang et al., 2023) fine-tuned on
its dataset with the latest Stable Diffusion v1.5 checkpoint from the MagicBrush repository, and
UltraEdit (Zhao et al., 2025), which employs a Stable Diffusion 3-based checkpoint fine-tuned on
its dataset. For EmuEdit (Sheynin et al., 2024), we utilize the provided generated results for the
EmuEdit test set, as its codebase and model checkpoints are not publicly available.

Our evaluations are conducted on three distinct test sets: the InstructPix2Pix test set (15,651 im-
ages), the MagicBrush test set (1,056 images), and the EmuEdit test set (3,589 images). To assess
performance trade-offs, we present comparative graphs illustrating the relationship between CLIPsim
and CLIPdir metrics (see next section for detailed descriptions). These graphs are shown for the In-
structPix2Pix test set in Appendix Fig. B.1, the MagicBrush test set in Appendix Fig. B.2, and the
EmuEdit test set in Appendix Fig. B.3. Additionally, we provide quantitative results for the Mag-
icBrush and EmuEdit datasets in Tabs. 1 and 2, respectively.

Furthermore, qualitative comparisons between IP2P and our proposed IP2P-APG method are pre-
sented in Fig. 1, Fig. 2, Appendix Fig. C.2 and Appendix Fig. C.4. Comparisons on the MagicBrush
dataset are shown in Fig. 3 and on the EmuEdit dataset in Fig. 5. As shown in Fig. 1, our method
significantly improves input structure preservation and textual adherence compared to the original

6
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Table 2: Comparison of methods in Emuedit (Sheynin et al., 2024) test set. For IP2P-APG, the
checkpoint used is indicated in the first column. Best results are highlighted in bold.

Method L1 (↓) DINO (↑) CLIPT (↑) CLIPsim (↑) CLIPdir (↑)

InstructPix2Pix (Brooks et al., 2023) 0.1220 0.7615 0.2541 0.8495 0.0686
MagicBrush (Zhang et al., 2023) 0.0826 0.8093 0.2535 0.8775 0.0853
EmuEdit (Sheynin et al., 2024) 0.0890 0.8398 0.2540 0.8743 0.1090
Ultraedit (Zhao et al., 2025) 0.0549 0.8470 0.2504 0.8757 0.0865

IP2P-APG (InstructPix2Pix SD1.5) 0.1069 0.8044 0.2573 0.8626 0.0818
IP2P-APG (MagicBrush SD1.5) 0.0574 0.8931 0.2490 0.9171 0.0823
IP2P-APG (Ultraedit SD3) 0.0525 0.8473 0.2518 0.8754 0.0949

IP2P. In Fig. 2, we illustrate the advantages of IP2P-APG under a higher textual guidance scale
(sT = 15.0), highlighting its effectiveness at larger scales, still preserving the input structure while
delivering stronger edits. In the first row of Fig. 3, IP2P-APG accurately adds the owl while keeping
the monkey’s facial details intact; in the second row, it preserves landscape details better than the
competing methods. As shown in Fig. 5, results with the SD3 backbone from UltraEdit demonstrate
the versatility of our framework. In this setting, our method attains performance comparable to
EmuEdit without access to its private training data.

3.2 COMPARISON METRICS

Building on existing literature (Brooks et al., 2023; Sheynin et al., 2024; Zhao et al., 2025), we as-
sess image fidelity using multiple metrics. First, we compute the pixel-level L1 difference between
the ground truth and edited images to quantify the preservation of original details. We also extract
DINO features from both the original and edited images and compute their cosine similarity. Addi-
tionally, we evaluate CLIP image similarity (CLIPI) by measuring the cosine similarity between the
edited image and the ground truth. Finally, we calculate the cosine similarity between the input and
edited image embeddings (CLIPsim). To assess how well the image editing aligns with the provided
text prompt, we incorporate two CLIP-based metrics: CLIPdir and CLIPT. CLIP direction (CLIPdir)
evaluates alignment by comparing the transformation from the input to the output—both in terms
of images and captions—with their corresponding descriptive captions (Brooks et al., 2023). Mean-
while, CLIP-text (CLIPT) quantifies the similarity between the editing prompt and the edited image.
For MagicBrush (Zhang et al., 2023), where ground truth edited images are available, we follow the
original evaluation protocol by computing the metrics using these ground truth images rather than
the inputs. In contrast, for Emuedit (Sheynin et al., 2024), which provides only input images, we
compute the L1, and DINO metrics based on the inputs and omit the CLIPI metric.

4 USER-CONTROLLED EDITING: ABLATIONS AND INSIGHTS

We conduct extensive ablation studies to isolate and evaluate the individual effects of momentum,
orthogonality, and normalization in both ∆DI,∅

t and ∆DT,I
t . Each hyperparameter is tested sepa-

rately, with the most notable quantitative results summarized in Tab. 3 and comprehensive illustra-
tion of the corresponding visual effects are presented in Fig. 4, Appendix Fig. C.1 and Appendix
Fig. C.3. Additionally, we plot the L2-norm of the denoised prediction across the denoising sched-
ule, comparing IP2P-APG (with and without each component) to the original IP2P in Appendix
Fig. B.4.

As shown in Tab. 3, we carefully select hyperparameters that strike a balance between fidelity and
editing performance by setting both text (βT ) and image momentum (βI ) to small positive values.
This choice maintains a robust level of text guidance without causing overly aggressive updates in
the denoising process. In contrast, APG yields better FID in text-to-image generation with negative
momentum (Sadat et al., 2025). However, our experiments revealed that negative text momen-
tum, while boosting fidelity to the original content, tended to reduce the model’s ability to follow
editing instructions. Thus, the trade-off leaned in favor of small positive momentum values, which
preserved meaningful text guidance and ensured more consistent editing outcomes. Intuitively, neg-
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Figure 4: We demonstrate how IP2P-APG enables finer-grained, user-steerable control over the
editing process by isolating the impact of each component. For clarity, symbolic notations are
decoded (e.g., Eta Text refers to ηT , Norm Text refers to rT etc.). Except for the component being
evaluated, all other parameters are fixed at their optimal values as specified in Tab. 3. Input image
and instruction is taken from IP2P test dataset (Brooks et al., 2023) and editing performed with their
SD1.5 checkpoint with (sT = 15.0, sI = 1.5).
ative momentum in text-to-image models serves a purpose in early denoising steps by exploring
diverse directions in the noise space. However, in our image and text dual-conditioned framework,
consecutive denoising steps should maintain a relatively consistent direction. In the second row of
Fig. 4, we visualize the effect of applying momentum to the ∆DI,∅

t : although the dog’s head is
successfully replaced with a lion’s, negative momentum values introduce an unintended color and
texture shift in the suit. The third row demonstrates the visual effect of momentum in ∆DT,I

t , where
a positive momentum value enables the model to erase the dog’s eyes more effectively.

On the other hand, normalizing ∆DT,I
t proved to be essential in preventing abrupt changes during

the denoising phase. By controlling the scale of these updates, normalization helped the framework
to stabilize both the text and image guidance signals. At the same time, applying normalization
to ∆DI,∅

t improved textual adherence by constraining the magnitude of image guidance; however,
this came at the cost of reduced fidelity to the original content, suggesting that the primary source
of unstable updates arose from the coupling of text and image guidance rather than the image com-
ponent alone. The final two rows of Fig. 4 illustrate the role of image and text normalization factors
(rI and rT ), which act as explicit regularizers by constraining the magnitude of guidance signals
during denoising. Higher norm values result in stronger guidance effects, while Norm Image =∞
corresponds to the absence of regularization—allowing the ∆DI,∅

t to influence the generation with
its maximum possible strength.

Lastly, we investigated the influence of the parallel components, represented by varying η values for
both ∆DT,I

t and ∆DI,∅
t . The effect of the parallel components was comparatively minor, as be seen

8
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Table 3: Ablation studies on MagicBrush (Zhang et al., 2023) test set with MagicBrush SD1.5
checkpoint, where (sT , sI) = (15.0, 1.5).

Ablation Hyperparameters L1 (↓) DINO (↑) CLIPI(↑) CLIPT(↑) CLIPsim(↑) CLIPdir(↑)

ηT , ηI
(ηT , ηI ) = (0,1) 0.0626 0.8907 0.9262 0.2841 0.8748 0.1294
(ηT , ηI ) = (1,0) 0.0669 0.8747 0.9175 0.2862 0.8555 0.1361

βT
(βT , βI ) = (-0.25,0.25) 0.0628 0.8842 0.9238 0.2853 0.8697 0.1317
(βT , βI ) = (0,0.25) 0.0641 0.8810 0.9215 0.2857 0.8640 0.1344

rT , rI

(rT , rI ) = (2.5,0) 0.0602 0.8973 0.9304 0.2805 0.8910 0.1147
(rT , rI ) = (7.5,7.5) 0.0861 0.8123 0.8866 0.2882 0.8068 0.1446
(rT , rI ) = (0,2.5) 0.1245 0.7285 0.8455 0.2868 0.7583 0.1485
(rT , rI ) = (0,10.0) 0.1228 0.7321 0.8476 0.2869 0.7616 0.1484

Proposed
(βT , βI ) = (0.25,0.25)
(rT , rI ) = (10.0,0)
(ηT , ηI ) = (0,0)

0.0668 0.8754 0.9175 0.2859 0.8556 0.1366

in Tab. 3, especially when compared to the more dominant impact of momentum and normalization
choices. Consequently, to simplify our approach without sacrificing performance, we set both ηT
and ηI parameters to zero. Visually in Fig. 4, as shown in the first row, the parallel component in
∆DT,I

t has minimal impact, while the parallel component in ∆DI,∅
t leads to undesired retention of

original content—for example, the dog’s eyes remain visible.

Figure 5: Comparison of methods using IP2P-APG with (sT , sI) = (15.0, 1.5) and the Ul-
traEdit (Zhao et al., 2025) SD3 checkpoint on the EmuEdit test dataset (Sheynin et al., 2024). As
observed, IP2P-APG successfully applies the required edits in both cases while preserving the over-
all structure and retaining most of the original details.

5 CONCLUSION AND LIMITATIONS

In this work, we introduced IP2P-APG, a plug-and-play framework that integrates adaptive pro-
jection strategies into instruction-guided image editing to improve the balance between instruction
adherence and image fidelity. By decomposing guidance signals into orthogonal components and in-
corporating momentum and normalization terms, our method extends the effective range of guidance
scales and provides users finer, more predictable control over each aspect of the editing process.

Our analysis clarifies the denoising dynamics under joint image and text conditioning and shows how
momentum, normalization, and parallel components shape the edit trajectory. While our approach
improves fidelity and prompt adherence without retraining by relying on the base model’s original
weights, the ultimate performance remains bounded by the capacity of the underlying architecture.
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REPRODUCIBILITY STATEMENT

Our method is training-free: we apply Eq. (14) on top of publicly available Stable Diffusion check-
points from the InstructPix2Pix (Brooks et al., 2023), MagicBrush (Zhang et al., 2023), and Ul-
traEdit (Zhao et al., 2025) codebases. All datasets are public (EmuEdit (Sheynin et al., 2024),
MagicBrush (Zhang et al., 2023), InstructPix2Pix (Brooks et al., 2023)). Because no fine-tuning
is required, the algorithm is a lightweight wrapper around the standard sampler and can be imple-
mented in a few lines of Python. The exact hyperparameters used in our experiments are listed in
Tab. 3.
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USE OF LARGE LANGUAGE MODELS (LLMS)

We have used LLMs only to polish writing in this paper.

A RELATED WORKS

TEXT-GUIDED IMAGE TRANSLATION

A well-established approach to image translation leverages pre-trained diffusion models. The pro-
cess involves first inverting the input image into a latent representation, then refining it through
text-based prompts. SDE-Edit (Meng et al., 2021) employs a stochastic perturbation process to first
introduce controlled noise into images, followed by a guided denoising step conditioned on text
prompts to achieve editing, Null-Text Inversion (Mokady et al., 2023) enables edits on real images
by inverting an input image using a null-text embedding, while EDICT (Wallace et al., 2023) in-
troduces a dual noise-vector inversion method to improve image reconstruction and alignment with
textual prompts. Imagic (Kawar et al., 2023) fine-tunes the diffusion model itself to better interpret
complex text instructions.

Other methods focus on manipulating attention and spatial features to guide edits more effectively.
Prompt-to-Prompt (P2P) (Hertz et al., 2022) modifies attention maps by injecting those from an
input caption into the target caption, whereas Plug-and-Play (PNP) (Tumanyan et al., 2023) enhances
editing precision by integrating spatial features alongside attention maps. Another class of models
incorporates masks as additional inputs to improve localized editing. Imagen Editor (Wang et al.,
2023) and SmartBrush (Xie et al., 2023) extend text-to-image models by conditioning them on both
the input image and a corresponding mask.

Despite these advancements, text-based image translation methods often suffer from inconsistencies
and require additional inputs, such as highly detailed textual descriptions of both the input and target
images or explicitly defined masks, making them less flexible for general use.

INSTRUCTION-GUIDED IMAGE EDITING

Following InstructPix2Pix (Brooks et al., 2023), several methods—including MagicBrush (Zhang
et al., 2023), UltraEdit (Zhao et al., 2025), and EmuEdit (Sheynin et al., 2024)—have been developed
to address its limitations, primarily by improving dataset quality. Since InstructPix2Pix is trained
exclusively on synthetic data, which can introduce noise and lack the diversity of real-world images,
these approaches aim to mitigate performance bottlenecks caused by suboptimal training samples.
However, while these methods focus on enhancing data quality, they do not fundamentally change
inference process of InstructPix2Pix, setting our approach apart.

More recently, additional techniques have emerged to improve fidelity in instruction-guided image
editing. UIP2P (Simsar et al., 2024) incorporates cycle-consistency loss (Zhu et al., 2017) to re-
duce dependency on paired datasets, while SeedEdit (Shi et al., 2024) introduces a diffusion-based
framework that unifies generation and editing, striving to balance both tasks effectively. While these
methods offer a better fidelity they differ from our training-free approach.
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B ADDITIONAL QUANTITATIVE RESULTS

Figure B.1: Comparison of CLIP Metrics on the InstructPix2Pix (Brooks et al., 2023) test set for
IP2P-APG and the original IP2P, using the IP2P checkpoint with Stable Diffusion v1.5 (sT = 7.5
with varying sI ∈ [1.0, 2.2]).

Figure B.2: Comparison of CLIP Metrics on MagicBrush (Zhang et al., 2023) test set for IP2P-APG
and MagicBrush, using their fine-tuned checkpoint with Stable Diffusion v1.5. (sT = 7.5 with
varying sI ∈ [1.0, 2.2])
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Figure B.3: Comparison of CLIP Metrics on the EMUEDIT (Sheynin et al., 2024) test set for IP2P-
APG and UltraEdit, using the Stable Diffusion 3 checkpoint from (Zhao et al., 2025). (sT = 7.5
with varying sI ∈ [1.0, 2.2])

Figure B.4: Evolution of the denoised estimate (predicted clean latent) magnitude throughout de-
noising, contrasting IP2P with IP2P-APG. The value at denoising step t is ||D̃θ(zt, cI , cT )||2, av-
eraged over 100 test images from MagicBrush. Normalization in ∆DT,I

t decouples direction from
scale, enforcing a bounded energy on the denoised prediction and yielding smoother, lower-norm
trajectories.
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C ADDITIONAL QUALITATIVE RESULTS

Figure C.1: Component-wise analysis, analogous to Fig. 4, on an EmuEdit (Sheynin et al., 2024)
example edited with UltraEdit’s SD3 checkpoint (Zhao et al., 2025) (sT = 7.5, sI = 1.5).

Figure C.2: Comparison of IP2P and IP2P-APG at sT = 7.5 with varying sI values. Using identical
model weights, IP2P-APG yields significantly improved fidelity, better preserving building struc-
tures and maintaining a more accurate color palette while consistently yielding higher CLIP scores.
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Figure C.3: Component-wise analysis, analogous to Fig. 4 and Fig. C.1, on an EmuEdit (Sheynin
et al., 2024) example edited with UltraEdit’s SD3 checkpoint (Zhao et al., 2025) (sT = 7.5, sI =
1.5).

Figure C.4: Comparison of IP2P and IP2P-APG at sT = 7.5 with varying sI values. With identical
model weights, IP2P-APG achieves notable improvements in both fidelity and textual adherence,
performing accurate and targeted edits. It preserves the woman’s identity while modifying only the
hairstyle as instructed, whereas IP2P alters her facial features as well.
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