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ABSTRACT

Understanding individual-level treatment effects is a fundamental and crucial
problem in causal inference. In this paper, our objective is to tackle the issue
of limited overlap, where certain covariates only exist in a single treatment group.
We demonstrate that, under weak conditions, it is possible to simultaneously re-
cover identifiable balanced prognostic scores and balancing scores. By leverag-
ing these scores, we relax the requirement of overlapping conditions in a latent
space, enabling us to generalize beyond overlapped regions. This approach also
allows us to handle out-of-distribution treatments with no overlap. Additionally,
our approach is adaptable to various tasks, including both binary and structured
treatment settings. Empirical results on different benchmarks demonstrate that our
method achieves state-of-the-art performance.

1 INTRODUCTION

Treatment effect estimation plays a vital role in fields that require accurate decision making, such
as medicine (Grzybowski et al., 2003), economics (Athey & Imbens, 2017), and education (Davies
et al., 2018). The fundamental problem of causal inference (Holland, 1986) is that we can never
observe the missing counterfactuals. Randomized control trials obviate these issues through ran-
domization, but can be at times expensive (Sibbald & Roland, 1998) and impractical (Deaton &
Cartwright, 2018). Therefore, deriving precise individual-level treatment effect from observational
data is important and highly valuable.

The central challenge in causal inference from observational data is selection bias (Imbens & Rubin,
2015), where the distributions between treatment arms are different, i.e., p(t|x) ̸= p(t). Previous
studies have primarily focused on selection bias resulting from confounding variables, which are
variables that causally affect both the treatment and outcome, and have relied on the unconfound-
edness assumption (Rosenbaum & Rubin, 1983). However, instruments, which are covariates that
causally affect only the treatment, can also introduce selection bias (Hassanpour & Greiner, 2019b).
As we include more covariates that could potentially act as confounders or instruments, it becomes
increasingly challenging to satisfy the requirement of overlapping support among treatments. Fur-
thermore, in real-world scenarios, the treatment selection mechanism p(t|x) that leads to selection
bias can inherently lack overlap. For instance, a cautious doctor might not perform surgeries on
elderly patients in all cases, making it difficult to generalize to surgical treatments for the elderly.
As Pearl (2009) states, “Whereas in traditional learning tasks we attempt to generalize from one
set of instances to another, the causal modeling task is to generalize from behavior under one set of
conditions to behavior under another set.” In the case of limited overlap, the causal model needs
to generalize to previously unadministered treatments, which can even be completely different, and
this challenge frequently arises in structured settings (Ramsundar et al., 2019).

Previous approaches aimed at mitigating selection bias often assume unconfoundedness and over-
look the issue of limited overlap. Reweighting-based methods (Farrell, 2015; Gretton et al., 2009)
typically rely on the presence of common support between the treatment and control groups to
adjust for distribution mismatch. Subsequently, there has been an increasing interest in balanced
representation learning since Johansson et al. (2016). However, most of these methods primarily
tackle selection bias and do not explicitly consider the problem of limited overlap. Wu & Fukumizu
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(2021) stands as a pioneering work that considers limited overlap in the within-sample setting by
learning an entangled prognostic score (Hansen, 2008).

To effectively address selection bias, including the potential challenge of limited overlap, we em-
ploy a latent identifiable generative model (Khemakhem et al., 2020) that simulataneously learns
identifiable balancing score and balanced prognostic score by disentangling X . Identifiable bal-
ancing score is naturally obtained by concatenating identifiable instruments and confounders, while
identifiable balanced prognostic score is obtained by concatenating identifiable confounders and
adjustments. Intuitively, modeling identifiable balancing score helps us identify the root cause of
selection bias, while modeling identifable balanced prognostic score enables us to directly estimate
the outcome by leveraging the learned identifiable disentangled representation that are direct causes
of the outcome Y .

Our contributions can be summarized as follows: i) We demonstrate that, under weak conditions, it
is possible to simultaneously recover the identifiable balanced prognostic score and balancing score.
Furthermore, we provide theoretical results on how a balanced prognostic score effectively handle
the limited overlap problem. ii) We introduce a practical and generalized disentanglement method
called Disentangled Identifiable vaRiational autoEncoder (DIRE). This method is designed to model
the data generation process with identifiability guarantee. iii) We apply our method to both binary
and structured treatment settings. Notably, we demonstrate how an identifiable balanced prognostic
score can generalize to out-of-distribution treatments with zero overlap, showcasing its robustness.
iv) Through comprehensive experiments, we demonstrate that our method outperforms other state-
of-the-art models in their respective settings. This superiority is evident in both the widely-used
de facto binary treatment benchmark and various limited overlapping synthetic datasets. Synthetic
datasets, along with code, will be made publicly available upon publication.

2 RELATED WORK

There are two main approaches to addressing selection bias. One approach involves sample
reweighting to align different distributions. A common method within this approach is to use propen-
sity scores for inverse weighting of samples (Rosenbaum & Rubin, 1983; Austin, 2011; Allan et al.,
2020; Freedman & Berk, 2008). However, weighting based on propensity scores can be unstable
and lead to high variance (Swaminathan & Joachims, 2015). To address this issue, researchers
have proposed more stable weighting methods. For instance, Gretton et al. (2009) reweights sam-
ples to achieve distribution matching in a high dimensional feature space, while Zubizarreta (2015)
learns weight that minimizes variance and balances distributions simultaneously. Athey et al. (2018)
combines sample reweighting and regression adjustments through approximate residual balancing,
offering the benefits of both approaches.

Ever since Johansson et al. (2016), there has been an growing interest in mitigating selection bias
via minimizing distribution discrepancy (Mansour et al., 2009) of learned representations (Bengio
et al., 2013). Shalit et al. (2017) improve upon Johansson et al. (2016)’s work by learning treatment-
specific function on top of a prognostic score (Hansen, 2008), so that the treatment bit does not
get lost in the distribution alignemnt stage. Hassanpour & Greiner (2019b) proposes learning dis-
entangled representations to clearly identify factors that contribute to either the treatment T , the
outcome Y , or both, in order to to better account for selection bias and achieve improved result. Wu
& Fukumizu (2021) provides identification guarantee in within-sample setting, learning a prog-
nostic score whose dimension is not higher than that of the outcome Y . In our work, we aim to
learn disentangled representation with causal generative process that adheres to the independent
causal mechanism (Schölkopf et al., 2021). Disentangled representation is preferred because, unlike
entangled representations, it allows for sparse or localized changes in the causal factors when the
distribution undergoes interventions (Schölkopf et al., 2021), making our model more robust to such
changes.

Several approaches have been proposed to address the limited overlapping problem. Crump et al.
(2009) suggests using optimal sub-samples to estimate the average treatment effect. Grzybowski
et al. (2003) excludes patients whose propensity scores cannot be matched. Jesson et al. (2020)
focuses on identifying the limited overlapping regions without providing estimations. Oberst et al.
(2020) provides an interpretable characterization of the distributional overlap between treatment
groups.
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3 PRELIMINARIES

Our objective is to estimate E[Y (t)|X] for all x ∈ X and t ∈ T , where xi, ti, yi represents our
dataset with xi as the observed covariates, ti as the administered treatment, and yi as the correspond-
ing outcome. This estimation allows us to accurately assess E[Y (ti) − Y (tj)|X] for all ti, tj ∈ T
and x ∈ X . Here, Y (t) refers to the potential outcome, representing the hidden value that would
have been observed if T = t was administered. By applying the backdoor criterion (Pearl, 2009) to
the causal graph depicted in Figure-1, we can identify the individual-level treatment effect once we
recover Z2 and Z1.

We adopt the generalized definition of overlapping condition from Wu & Fukumizu (2021):

Definition 1 V is overlapping if P (T |V = v) > 0 for any t ∈ T , v ∈ V . If the condition is violated
at some value v, then v is non-overlapping and V is limited-overlapping.

As such, to accurately estimate the treatment effect, it is preferable to obtain a lower-dimensional
representation (Bengio et al., 2013) that exhibits overlap, even if the original covariate space is
limited overlapping.

We adapt Wu & Fukumizu (2021)’s definition of prognostic score (Hansen, 2008) to accommodate
for multiple treatments:

Definition 2 A prognostic score (PGS) is {p(X, t)}t∈T , such that Y (t) ⊥⊥ X | p(X, t), where
p(X, t) is a function defined on X × T . A PGS is called Balanced Prognostic Score (bPGS) if
p(x, ti) = p(x, tj) for all ti, tj ∈ T
Since the prognostic score serves as a sufficient statistic for the outcome Y , it is only necessary to
fulfill the overlapping condition over prognostic scores, rather than over the covariates themselves.
Intuitively, requiring overlap over all covariates may be overly strict, as some of them may be gen-
erated by underlying instrumental latent factors and therefore irrelevant for estimating the outcome.
We will demonstrate this in a mathematically rigorous manner later on.

4 METHODOLOGY

In this section, we offer a comprehensive introduction to our method. We begin by presenting the
assumptions of the data generating process in Sec 4.1. Following that, in Sec 4.2, we demonstrate
how a balanced prognostic score tackles the issue of limited overlap. Finally, in Sec 4.3, we present
our model architecture that offers identifiability guarantee and provide a concise overview of its
implementation.

4.1 DATA GENERATING PROCESS AND SETUP

We assume that the Data Generating Process (DGP) follows the causal graph presented in Fig. 1(a).
In this graph, the covariate X is generated from three latent variables: Z1 (adjustment variable), Z2

(confounder variable), and Z3 (instrumental variable). The outcome Y is generated by Z1 and Z2,
while the treatment T is generated by Z2 and Z3. Mathematically, the DGP assumptions can be
formulated as follows:

Assumption 4.1 (DGP for covariates) The covariates are generated from underlying ground-truth
latent code Z1 (adjustment variable), Z2 (confounder variable), Z3 (instrumental variable), where

X = K̃(Z̃1, Z̃2, Z̃3) = K̃1(Z̃1)⊕ K̃2(Z̃2)⊕ K̃3(Z̃3)⊕ K̃4(Z̃1, Z̃2)⊕ K̃5(Z̃1, Z̃3)

⊕ K̃6(Z̃2, Z̃3)⊕ K̃7(Z̃1, Z̃2, Z̃3) + e1. (1)

In DIRE, we intend to model Z̃1, Z̃2 and Z̃3, and the data generating process K̃:
X = K(Z1, Z2, Z3) = K1(Z1)⊕K2(Z2)⊕K3(Z3)⊕K4(Z1, Z2)⊕K5(Z1, Z3)

⊕K6(Z2, Z3)⊕K7(Z1, Z2, Z3) + ϵ1. (2)
where ⊕ denotes dimension concatenation. The random variables and mappings denoted by˜rep-
resent the ground-truth latent factors and mapping, while those without the symbol represent the
learned parameters. Consistent with the works of Wu & Fukumizu (2021) and Khemakhem et al.
(2020), we assume K1-K7 to be injective.
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Figure 1: (a) Extracting identifiable bPGS from latent factors via reconstructing covariates. (b)
DIRE decoder model architecture.

Assumption 4.2 (DGP for Y) The outcome is generated from underlying ground-truth latent code
Z̃1, Z̃2:

Y = J̃(Z̃1, Z̃2, T ) = j̃t(Z̃1, Z̃2) + e2 = j̃t ◦ p+ e2, (3)
where the second equality is obtained through application of do-calculus (Pearl, 2009) in Fig. 1, and
has been shown in Zhang et al. (2021). This is essentially a relaxation of assumption (G1’) in Wu &
Fukumizu (2021) without assuming jt being injective.
Similarly, we have:

Y = J(Z1, Z2, T ) = jt(Z1, Z2) + ϵ2. (4)

Assumption 4.3 (DGP for T) The treatment is generated from underying ground-truth latent code
Z2, Z3, where

T = M̃(Z̃2, Z̃3) + e3, (5)
and

T =M(Z2, Z3) + ϵ3. (6)
This assumption is just a mathematical formulation of directed edges (Z3, T ) and (Z2, T ) in Fig. 1.

Finally, inspired by Kaddour et al. (2021), we make the following assumption:

Assumption 4.4 (Product effect for prognostic score) ∀p ∈ {p(x, t)}, p can be factorized as:

p = (g1(X)Th1(T ), g2(X)Th2(T ), . . . , gn(X)Thn(T )) + ϵ, (7)

= (g1(X), · · · , gn(X))

h1(T ) · · · 0
...

. . .
...

0 · · · hn(T )

+ ϵ, (8)

where there exists Reproducing Kernel Hilbert Space HX and HT such that gi(X) ∈ HX and
hi(T ) ∈ HT for 1 ≤ i ≤ n. This assumption is considered mild, as highlighted in Kaddour
et al. (2021). Subsequently, we will explore the universality of this assumption and demonstrate
the relationship between prognostic score (PGS) and balanced prognostic score (bPGS) under this
assumption.

4.2 IDENTIFICATIONS UNDER LIMITED-OVERLAPPING COVARIATE

Limited overlap is a common occurrence in treatment effect estimation scenarios that involve high-
dimensional covariates and multiple potential treatments. In this subsection, we initially illustrate
how the requirement for overlap can be relaxed within a latent space. Furthermore, we demonstrate
how the presence of an identifiable balanced prognostic score (bPGS) enables us to extend our
generalization beyond regions of overlap.

We first establish the generality of Assumption 4.4, and how we can derive a balanced prognostic
score using a prognostic score.
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Proposition 1 (Universality of product effect formalization for prognostic score) Let HX×T be
the given Reproducing Kernel Hilbert Space. For any ϵ > 0 and any f ∈ Hn, there is a d ∈
N such that there exist 2n d-dimensional function gi : X → Rd and hi : T → Rd such that
∥f − (gTi hi, . . . g

T
nhn)∥L2(PX×T ) ≤ ϵ.

Thus, when provided with a prognostic score (PGS) pt ∈ p(x, t), we can always derive a balanced
prognostic score (bPGS) (g1(X), . . . , gn(X)). Referring to Fig. 1, we can interpret the learning of
the bPGS as the inverse mapping of the generative process for the covariates X . In other words, our
model is inclined to acquire a more general bPGS, rather than just a PGS, which can be utilized for
the downstream CATE task.

In the following theorem, we show how learning bPGS enable us to relax the overlapping condition,
and how bPGS enable us to generalize beyond non-overlapping regions, which frequently occurs in
mutiple and structured treatment setting.

Theorem 1 Suppose Assumption 4.1 - Assumption 4.4 hold. Furthermore, K̃i and Ki are injec-
tive for all i. Then if Epθ [X|Z1, Z2, Z3] = E[X|Z̃1, Z̃2, Z̃3], we have:

1. (Recovery of latent code) If either
1) K̃1, K̃2 and K̃3 are not empty mapping, or
2) at least two of K̃4-K̃7 are non-empty mappings, I(∆T Z̃1;T ) = 0, I(∆Y Z̃3;Y |T ) = 0
for some injective ∆T and ∆Y , I(Z2;T ) ̸= 0 and I(Z2;Y ) ̸= 0,
then Z1 = ∆1 ◦ Z̃1, Z2 = ∆2 ◦ Z̃2, Z3 = ∆3 ◦ Z̃3 for some injective mapping ∆1, ∆2,
∆3.

2. (Recovery of bPGS via subset of covariates) Z = Z1 ⊕ Z2 = v ◦ p for
some injective mappint v. Moreover, the overlapping condition can be relaxed onto
X ′ ⊆ X where where X ′

:= {x ∈ X |k∗4
−1(x) is overlapping} ∪ {x ∈

X |k∗1
−1(x) and k∗2

−1(x) is overlapping} ∪ {x ∈ X |k∗7
−1(x) is overlapping}.

3. (OOD generalization on non-overlapping regions) Suppose f̃t(x) = E[Y |X,T ] =
Epθ [Y |X,T ] = ft(x) for all observed (x, t) ∈ X × T . Suppose ∃t′ ∈ T s.t. j′t and
j̃′t are injective. Suppose there exist a RKHS HP on the bPGS space, also j̃∗t ∈ HP and
j∗t ◦∆ ∈ HP for all t∗ ∈ T where ∆ := j′t

−1 ◦ j̃′t. Then we have ||jt ◦∆ − j̃t|| < ϵ ⇒
|f̃t(x)− ft(x)| < ϵ ∗ C for some constant C for all t ∈ T .

According to Theorem 1, the requirement for overlap can be relaxed to the variables Z1 and Z2.
Furthermore, the acquisition of a balanced prognostic score (bPGS) allows for generalization to
limited overlapping regions, as long as jt can be recovered. In our structured treatment setting, we
empirically demonstrate that our recovered bPGS enables generalization even to out-of-distribution
jt values with zero overlap, highlighting the advantages of learning an identifiable balanced prog-
nostic score.

4.3 MODEL ARCHITECTURE AND IMPLEMENTATION

To recover the underlying instrumental variables, confounding variables, and adjustment variables,
we propose a method named Disentangled Identifiable vaRiational autoEncoder (DIRE) to recon-
struct the covariates. In DIRE, we leverage treatment and outcome information as auxiliary super-
vision signals to guide the learning process and recover the identifiable latent factors. This process
is illustrated in Fig. 1(b).

Put more formally, Let θ = (f, g, T, λ) be parameters of the following generative model:

pθ(x, z1, z2, z3, z4|t, y) = pT,λ(z1|y)pT,λ(z2|t, y)pT,λ(z3|t)pg(z4|z1, z2, z3)pf (x|z4), (9)

where we assume:

pϵ(x− f ◦ g(z1, z2, z3)) = pf (x|z4)pg(z1, z2, z3), (10)
pT,λ(z1, z2, z3|t, y) = pT,λ(z1|y)pT,λ(z2|t, y)pT,λ(z3|t), (11)

where in Eq.10 f and g are injective, and in Eq.11 we are requiring the generative process to be
consistent with our causal model. The graphical model of decoder is shown in Fig. 1
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The corresponding inference model factorizes as:

qϕ(z1, z2, z3, z4|x, t, y) = qϕ(z4|x)qϕ(z1|x, t)qϕ(z2|z4)qϕ(z3|z4, y). (12)

Incoporating the ELBO decomposition trick (Chen et al., 2018) to better isolate the irrelevant factors
from X from the latent factors of interest, we have

Theorem 2 The ELBO of DIRE is

Ep(x)p(t|x)p(y|t,x)[pθ(x|t, y)] ≥
Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)] + Eqϕ(z1,z2,z3,z4,x,t,y)[log pθ(z4|z1, z2, z3)− log qϕ(z4|x)]

+

3∑
i=1

Ep(x,t,y)Eqϕ(z4|x)[−KL(qϕ(zi|paϕ(zi))||qϕ(zi))−
∑
j

KL(qϕ(zij)||pθ(zij |pa(zij)))

−KL(qϕ(zi)||
∏
j

qϕ(zij))], (13)

where pa(z) denote the parent nodes of z in Fig 1.

Given auxiliary information T, Y , the learned latent factors are identifiable.

Proposition 2 Assume the following hold:

• f and g are injective in Eq.10.

• Let ψϵ be the characteristic function of pϵ. {x ∈ X|ψϵ(x) = 0} has measure zero.

• Suppose z1 ∈ Ra, z2 ∈ Rb, and z3 ∈ Rc, a + b + c = n, then λ(t, y) = λ1(y) ⊕
λ2(t, y) ⊕ λ3(t), where λ1(y) ∈ R2a, λ2(t, y) ∈ R2b, λ3(t) ∈ R2c are parameters of
gaussian distribution.

• There exists 2n + 1 points (t0, y0) . . . (t2n+1, y2n+1) such that the matrix L =
[(λ1(y1) − λ1(y0)) ⊕ (λ2(t1, y1) − λ2(t0, y0)) ⊕ (λ3(t1) − λ3(t0)), . . . , (λ1(y2n+1) −
λ1(y0)) ⊕ (λ2(t2n+1, y2n+1) − λ2(t0, y0)) ⊕ (λ3(t2n+1) − λ3(t0)))] = [(λ(t1, y1) −
λ(t0, y0)), . . . , (λ(t2n+1, y2n+1) − λ(t0, y0))] is invertible, i.e., λ = λ1 ⊕ λ2 ⊕ λ3 where
λ1 is independent of t, and λ3 is independent of y.

• The sufficient statistics are differentiable almost everywhere.

• Let k = f ◦ g, then k(z1, z2, z3) = k1(z1)⊕ k2(z2)⊕ k3(z3)⊕ k4(z1, z2)⊕ k5(z1, z3)⊕
k6(z2, z3)⊕ k7(z1, z2, z3) satisfies Range(ki) ∩Range(kj) = ∅.

then if pθ(x|t, y) = p′θ(x|t, y) we have

k−1(x) = diag(a)k′
−1

(x) + b. (14)

Hence, agreement on observational distribution, in our case the covariates X , implies that the un-
derlying generating model parameter is uniquely determined. Moreover, as indicated in (A) such
identification can be done up to translation and scaling.

The derivation of the derived ELBO in Theorem 1 enables us to learn identifiable latent representa-
tions for adjustments, confounders, and instruments. We add two estimators on top of the balanced
prognostic score and balancing score. Estimating the selected treatment using the balancing score
allows us to more accurately identify the root cause of selection bias. Furthermore, estimating the
outcome using the balanced prognostic score enables us to obtain more robust outcome estimations
across different treatments.

The overall loss is derived as:

L = Lprognostic score + LELBO + Lbalancing score. (15)

And the loss for the ELBO is:

LELBO =
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Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)]− Eqϕ(z1,z2,z3,x,t,y)[α4(log qϕ(z4|x)− log qϕ(z4))

+ β4(log qϕ(z4)− log qϕ(
∏
j

z4j)) + γ4(log qϕ(
∏
j

z4j)− log pθ(z4|z1, z2, z3))]

+

3∑
i=1

αiEp(x,t,y)Eqϕ(z4|x)[−KL(qϕ(zi|paϕ(zi))||qϕ(zi))− βi
∑
j

KL(qϕ(zij)||pθ(zij |pa(zij)))

− γiKL(qϕ(zi)||
∏
j

qϕ(zij))]. (16)

in which we introduced the ELBO decomposition trick (Chen et al., 2018) to learn better disentan-
gled representations.

Lprognostic score is the loss of the outcome predictor, where we can use the loss function of any
downstream treatment effect estimators such as (Shalit et al., 2017; Hassanpour & Greiner, 2019a;
Künzel et al., 2019; Yao et al., 2018), and Lbalancing score is the loss of the treatment predictor,
where we predict the treatment using the identifiable balancing score.

5 EXPERIMENTS

Our experiments aim to answer the following questions: Q1: Can our method effectively handle
the limited overlap problem? Q2: Is our method robust when faced with varying degrees of limited
overlap? Q3: Can our method successfully address the limited overlap problem within the structured
treatment setting? Q4: How does our method perform in scenarios with zero overlap? To evaluate
our approach, we conduct experiments on synthetic and semi-synthetic datasets, considering both
within-sample and out-sample settings.

5.1 EXPERIMENTAL SETUP

Dataset. We conducted experiments on three datasets, and the detailed information can be found
in the Appendix. First, IHDP, a de facto semi-synthetic benchmark compiled by Hill (2011) to study
the treatment effect of home visit on future cognitive test scores. We follow the same setting as
Johansson et al. (2016); Shalit et al. (2017); Louizos et al. (2017), averaging over 1000 replications
of simulated outcomes with a 63/27/10 train/validation/test split. Second, we synthesized a more
challenging synthetic dataset to assess the performance of our method under different degrees of
limited overlap. Third, drawing inspiration from Kaddour et al. (2021), we designed a structured
treatment dataset using scaffold split (Ramsundar et al., 2019). This dataset required us to perform
zero-shot/zero-overlap treatment effect estimation on out-of-distribution treatments. For further de-
tails regarding the synthetic datasets, please refer to the Appendix.

Baselines. We choose BLR, BNN (Johansson et al., 2016), BART (Chipman & McCulloch, 2016;
Chipman et al., 2010), RF (Breiman, 2001), CF (Wager & Athey, 2018), CEVAE (Louizos et al.,
2017), GANITE (Yoon et al., 2018), β-intact-VAE (Wu & Fukumizu, 2021), DR-CFR (Hassanpour
& Greiner, 2019b), SIN (Kaddour et al., 2021) as baselines. In particular, we included β-intact-
VAE as a comparable baseline that primarily addresses limited overlap. SIN was chosen due to its
ability to handle structured treatment settings. We also selected DR-CFR, a disentanglement learning
method, to compare its performance against our proposed DIRE in the limited overlap setting.

5.2 RESULTS ON IHDP (Q1)

We adopt two metrics to evaluate the methods. Individual-based evaluation metric, PEHE =√∑N
i=1 ((y1i − y0i)− (τ1i − τ0i))2 and population-based metric, ϵATE = |

∑N
i=1 (τ1i − τ0i) −∑N

i=1 (y1i − y0i)|. Results1 are depicted in Tab. 2, where the best results for each metric is bolded,
and the runner-ups are underlined.

1Results are taken directly from Shalit et al. (2017); Louizos et al. (2017); Yoon et al. (2018); Wu &
Fukumizu (2021).
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Table 1: IHDP Resuts.

Method within-sample out-sample
PEHE ϵATE PEHE ϵATE

OLS-1 5.8 ± .3 .73 ± .04 5.8 ± .3 .94 ± .06
OLS-2 2.4 ± .1 .14 ± .01 2.5 ± .1 .31 ± .02
BLR 5.8 ± .3 .72 ± .04 5.8 ± .3 .93 ± .05
k-NN 2.1 ± .1 .14 ± .01 4.1 ± .2 .79 ± .05
BART 2.1 ± .1 .23 ± .01 2.3 ± .1 .34 ± .02

RF 4.2 ± .2 .73 ± .05 6.6 ± .3 .96 ± .06
CF 3.8 ± .2 .18 ± .01 3.8 ± .2 .40 ± .03

BNN 2.2 ± .1 .37 ± .03 2.1 ± .1 .42 ± .03
CFR-WASS .71 ± .0 .25 ± .01 .76 ± .0 .27 ± .01

CEVAE 2.7 ± .1 .34 ± .01 2.6 ± .1 .46 ± .02
GANITE 1.9 ± .4 .43 ± .05 2.4 ± .4 .49 ± .05

Beta-Intact-VAE 0.709 ± .024 .180 ± .007 0.946 ± .048 .211 ± .011
DIRE 0.475 ± 0.006 0.130 ± 0.003 0.520 ± 0.011 0.141 ± 0.003

As shown in Table 2, DIRE consistently outperforms all other baseline methods across all evaluation
metrics. Notably, even though Wu & Fukumizu (2021) primarily focuses on the post-treatment
setting, DIRE achieves a significant improvement over β-Intact-VAE. Furthermore, since DIRE also
generalizes its identification capability to the out-sample setting, we have achieved state-of-the-art
(SOTA) results in the out-sample scenario as well.

5.3 RESULTS ON SYNTHETIC DATASET (Q2)
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Figure 2: Synthetic Dataset Result.(a) In sample
(b) Out sample.

To assess the effectiveness of our method
across different degrees of limited overlap,
we conducted experiments using five non-
overlapping levels denoted as ω, where a
higher value of ω indicates a more severe
non-overlapping scenario. For each non-
overlapping level, we examined 27 configura-
tions by varying the dimensions of the latent
variable, specifically dim v ∈ {4, 8, 10}.
Our data generation process differs from that
of Wu et al. (2021) in that we also consider Z3

as a source of selection bias. This additional
factor makes it more challenging to derive a
low-dimensional balanced prognostic score from the covariates.

To ensure fair comparison, we conduct hyperparameter search using Li et al. (2020) on a hold-out
validation dataset and select the best hyperparameters over 30 runs. The results, depicted in Figure 2,
include both in-sample (Figure 2(a)) and out-sample (Figure 2(b)) evaluations.

We observed that even in the in-sample scenario, β-Intact-VAE struggles to generate a balanced
prognostic score in the presence of instruments, where the overlapping condition is not necessary.
The performance of DR-CFR diminishes as the limited overlapping level becomes more severe, as
evident from Figure 2 when ω is set to 10 or 15. In contrast, DIRE exhibits robustness across all
limited overlapping levels, with its performance remaining unaffected or even improving in more
severe cases. This highlights the efficacy of learning a balanced prognostic score and a balancing
score simultaneously in DIRE.

5.4 RESULTS ON STRUCTURED TREATMENTS DATASET (Q3&Q4)

The structured treatment setting presents additional challenges due to the involvement of multiple
treatments, where even slight variations in the treatment structure result in a different treatment. As

8
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(b) Out-Sample UPEHE
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(c) In-Sample WPEHE
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Figure 3: Structured dataset result averaged over 25 random seeds.

such, we investigate the out-of-distribution treatment setting to see if our learned balanced prog-
nostic score enables us to generalize under the out-of-distribution zero-shot setting. Given that
β-intact-VAE (Wu & Fukumizu, 2021) cannot handle the structured treatment problem, We mainly
compare with SIN (Kaddour et al., 2021) whose g(X) representation naturally serves as a balanced
prognostic score as well.

We use the evaluation metric proposed by Kaddour et al. (2021), where ϵUPEHE(WPEHE) =∫
X (τ̂(t′, t, x)− τ(t′, t, x))2p(t|x)p(t′|x)p(x)dx. PEHE@K is computed over the topK treatments

ranked by propensities with
(
K
2

)
combinations. To ensure fair comparison, we conduct hyperparam-

eter search using Li et al. (2020) on a hold-out validation dataset and select the best hyperparameters
over 100 runs. For more detail refer to the appendix. The results are shown in Tab. 3, where the best
results for each metric is bolded, and the runner-ups are underlined.

Table 2: CATE Estimation Error measured at PEHE@10, averaged over 25 random seeds.

Method Weighted PEHE Unweighted PEHE
Within-Sample Out-Sample Within-Sample Out-Sample

ZERO 24.05 ± 2.20 15.47 ± 1.54 24.60 ± 0.97 16.00 ± 0.69
SIN 23.93 ± 1.33 16.00 ± 1.20 24.86 ± 0.85 16.76 ± 0.70

SIN-With-Aux-Info 23.94 ± 2.19 15.42 ± 1.53 24.38 ± 0.95 15.93 ± 0.69
DIRE 7.87 ± 0.50 10.44 ± 0.96 8.54 ± 0.33 11.89 ± 0.65

SIN does not effectively utilize the auxiliary information and performs worse than zero. Even when
provided with auxiliary information T (a vector of molecular properties used as the treatment), SIN
still struggles to learn a stable balanced prognostic score (bPGS), with its performance being similar
to zero.

In contrast, DIRE successfully identifies the confounding factors even when faced with out-of-
distribution treatment jt in the zero-overlapping scenario, as outlined in Assumption 4.2. This
demonstrates that only DIRE effectively learns a balanced prognostic score, while the other methods
fall short in this regard.

6 CONCLUSION

This paper addresses the challenge of limited overlap in treatment effect estimation by proposing a
method that allows for the identification of latent adjustments, confounders, and instruments. By
leveraging these latent factors, we can relax the requirement of overlapping conditions and extend
our estimation to non-overlapping regions. Moreover, our method enables generalization to out-of-
distribution treatments with zero overlap. The experimental results demonstrate the superiority of
our proposed method across various benchmarks, highlighting its effectiveness and versatility.
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A THEORETICAL RESULTS

Theorem 2 The ELBO of DIRE is
Ep(x)p(t|x)p(y|t,x)[pθ(x|t, y)] ≥
Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)] + Eqϕ(z1,z2,z3,z4,x,t,y)[log pθ(z4|z1, z2, z3)− log qϕ(z4|x)]

+

3∑
i=1

Ep(x,t,y)Eqϕ(z4|x)[−KL(qϕ(zi|paϕ(zi))||qϕ(zi))−
∑
j

KL(qϕ(zij)||pθ(zij |pa(zij)))

−KL(qϕ(zi)||
∏
j

qϕ(zij))]

Proof:
Ep(x)p(t|x)p(y|t,x)[log pθ(x|t, y)]

≥ Ep(x,t,y)qϕ(z1,z2,z3,z4,x|t,y)[log pθ(x, z1, z2, z3, z4|t, y)− log qϕ(z1, z2, z3, z4, x|t, y)]

≥ Ep(x,t,y)qϕ(z1,z2,z3,z4,x|t,y)[log pθ(x|z4) + log pθ(z4|z1, z2, z3) + log pθ(z1|y)
+ log pθ(z2|t, y) + log pθ(z3|t)
− log qϕ(z4|x)− log qϕ(z4|x)− log qϕ(z1|z4, t)− log qϕ(z2|z4)− log qϕ(z3|z4, y)]

≥ Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)] + Eqϕ(z1,z2,z3,x,t,y)[log pθ(z4|z1, z2, z3)− log qϕ(z4|x)]
+ Ep(x,t,y)qϕ(z4|x)qϕ(z1|z4,t)[log pθ(z1|y)− log qϕ(z1|z4, t)]
+ Ep(x,t,y)qϕ(z4|x)qϕ(z2|z4)[log pθ(z2|t, y)− log qϕ(z2|z4)]
+ Ep(x,t,y)qϕ(z4|x)qϕ(z3|z4,y)[log pθ(z3|t)− log qϕ(z3|z4, y)]

≥ Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)]

− Eqϕ(z1,z2,z3,x,t,y)[log qϕ(z4|x)− log qϕ(z4) + log qϕ(z4)− log qϕ(
∏
j

z4j)

+ log qϕ(
∏
j

z4j)− log pθ(z4|z1, z2, z3)]

− Ep(x,t,y)qϕ(z4|x)qϕ(z1|z4,t)[log qϕ(z1|z4, t)− log qϕ(z1) + log qϕ(z1)− log qϕ(
∏
j

z1j)

+ log qϕ(
∏
j

z1j)− log pθ(z1|y)]

− Ep(x,t,y)qϕ(z4|x)qϕ(z3|z4,y)[log qϕ(z2|z4)− log qϕ(z2) + log qϕ(z2)− log qϕ(
∏
j

z2j)

+ log qϕ(
∏
j

z2j)− log pθ(z2|t, y)]

− Ep(x,t,y)qϕ(z4|x)qϕ(z3|z4,y)[log qϕ(z3|z4, y)− log qϕ(z3) + log qϕ(z3)− log qϕ(
∏
j

z3j)

+ log qϕ(
∏
j

z3j)− log pθ(z3|t)]

≥ Ep(x,t,y)qϕ(z4|x)[log pθ(x|z4)]

− Eqϕ(z1,z2,z3,x,t,y)[log qϕ(z4|x)− log qϕ(z4) + log qϕ(z4)− log qϕ(
∏
j

z4j)

+ log qϕ(
∏
j

z4j)− log pθ(z4|z1, z2, z3)]

− Ep(x,t,y)qϕ(z4|x)qϕ(z1|z4,t)[log
qϕ(z1|z4, t)
qϕ(z1)

+ log
qϕ(z1)

qϕ(
∏
j z1j)

+
∑
j

log
qϕ(z1j)

pθ(z1j |y)
]

− Ep(x,t,y)qϕ(z4|x)qϕ(z1|z4,t)[log
qϕ(z2|z4)
qϕ(z2)

+ log
qϕ(z2)

qϕ(
∏
j z2j)

+
∑
j

log
qϕ(z2j)

pθ(z2j |t, y)
]

− Ep(x,t,y)qϕ(z4|x)qϕ(z1|z4,t)[log
qϕ(z3|z4, y)
qϕ(z3)

+ log
qϕ(z3)

qϕ(
∏
j z3j)

+
∑
j

log
qϕ(z3j)

pθ(z3j |t)
]

Writing some of them in explicit KL form, we obtain the ELBO.
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Proposition 1 (Universality of product effect formalization for prognostic score) Let HX×T be
the given Reproducing Kernel Hilbert Space. For any ϵ > 0 and any f ∈ Hn, there is a d ∈
N such that there exist 2n d-dimensional function gi : X → Rd and hi : T → Rd such that
∥f − (gTi hi, . . . g

T
nhn)∥L2(PX×T ) ≤ ϵ.

Let f be given, where fi ∈ HX×T , and HX×T is isometrically isomorphic to HX × HT . Let

H0X×T be the pre-RKHS where H0X×T = {f(x, t)|f(x, t) =

n∑
i=1

αik((xi, ti), (x, t))} for 1 ≤

i ≤ n.

Let {fin} ⊆ H0X×T be the associated Cauchy sequence converging to fi. We have that {fin} also
converges to fi in || · ||HX×T as well.

∀ ϵ2

n+1 > 0, ∃Ni > 0 s.t. ∀k ≥ Ni, we have ||fki − fi||HX×T < ϵ.

Let k′ = max(N1, . . . , Nn), then we have ∀ϵ > 0 and a given f , ||f−(fk′1, . . . , fk′n)||L2(PX×T ) =

(

n∑
i=1

∫
X×T

||fi − fk′i||)
1
2 ≤ (n ∗ ϵ2

n+ 1
)

1
2 < (n ∗ ϵ

2

n
)

1
2 = ϵ.

Proposition 2 Assume the following hold:

• f and g are injective in Eq.10.

• Let ψϵ be the characteristic function of pϵ. {x ∈ X|ψϵ(x) = 0} has measure zero.

• Suppose z1 ∈ Ra, z2 ∈ Rb, and z3 ∈ Rc, a + b + c = n, then λ(t, y) = λ1(y) ⊕
λ2(t, y) ⊕ λ3(t), where λ1(y) ∈ R2a, λ2(t, y) ∈ R2b, λ3(t) ∈ R2c are parameters of
gaussian distribution.

• There exists 2n + 1 points (t0, y0) . . . (t2n+1, y2n+1) such that the matrix L =
[(λ1(y1) − λ1(y0)) ⊕ (λ2(t1, y1) − λ2(t0, y0)) ⊕ (λ3(t1) − λ3(t0)), . . . , (λ1(y2n+1) −
λ1(y0)) ⊕ (λ2(t2n+1, y2n+1) − λ2(t0, y0)) ⊕ (λ3(t2n+1) − λ3(t0)))] = [(λ(t1, y1) −
λ(t0, y0)), . . . , (λ(t2n+1, y2n+1) − λ(t0, y0))] is invertible, i.e., λ = λ1 ⊕ λ2 ⊕ λ3 where
λ1 is independent of t, and λ3 is independent of y.

• The sufficient statistics are differentiable almost everywhere.

• Let k = f ◦ g, then k(z1, z2, z3) = k1(z1)⊕ k2(z2)⊕ k3(z3)⊕ k4(z1, z2)⊕ k5(z1, z3)⊕
k6(z2, z3)⊕ k7(z1, z2, z3) satisfies Range(ki) ∩Range(kj) = ∅.

then if pθ(x|t, y) = p′θ(x|t, y) we have

k−1(x) = diag(a)k′
−1

(x) + b. (17)

Proof:

p(x|t, y) ≥ p(x′|t′, y′)

⇒
∫
p(x, z|t, y)dz =

∫
p(x′, z′|t′, y′)dz′

⇒
∫
z1

∫
z2

∫
z3

∫
z4

p(x|z4)p(z4|z1, z2, z3)p(z1|y)p(z2|t, y)p(z3|t)

=

∫
z′1

∫
z′2

∫
z′3

∫
z′4

p(x′|z′4)p(z′4|z′1, z′2, z′3)p(z′1|y′)p(z′2|t′, y′)p(z′3|t′)dz′

⇒
∫
X
pϵ(x− x̄)p(g−1 ◦ f−1(x̄)|t, y)vol Jf−1(x̄)vol Jg−1(f−1(x̄))dx̄

=

∫
X
pϵ(x− x̄′)p(g−1 ◦ f−1(x̄′)|t, y)vol Jf−1(x̄′)vol Jg−1(f−1(x̄′))dx̄′

⇒ (p̃z1,z2,z3,z4 ∗ pϵ)(x) = (p̃z̄1,z̄2,z̄3,z̄4 ∗ pϵ)(x)
⇒ F [p̃z1,z2,z3,z4 ](w)ψϵ(w) = F [p̃z̄1,z̄2,z̄3,z̄4 ](w)ψϵ(w)

⇒ p̃z1,z2,z3,z4(x) = p̃z̄1,z̄2,z̄3,z̄4(x)
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⇒ log vol Jf−1(x) + log vol Jg−1(f−1(x))

+

a∑
i=1

(log Qi((g
−1 ◦ f−1)i(x))− log Z3(t) +

2∑
j=1

Ti,j((g
−1 ◦ f−1)i(x))λi,j(t))

+

a+b∑
i=a+1

(log Qi((g
−1 ◦ f−1)i(x))− log Z3(t, y) +

2∑
j=1

Ti,j((g
−1 ◦ f−1)i(x))λi,j(t, y))

+

n∑
i=a+b+1

(log Qi((g
−1 ◦ f−1)i(x))− log Z3(y) +

2∑
j=1

Ti,j((g
−1 ◦ f−1)i(x))λi,j(y))

= log vol Jf̃−1(x) + log vol Jg̃−1(f̃−1(x))

+

a∑
i=1

(log Q̃i((g̃
−1 ◦ f̃−1)i(x))− log Z̃3(t) +

2∑
j=1

T̃i,j((g̃
−1 ◦ f̃−1)i(x))λ̃i,j(t))

+

a+b∑
i=a+1

(log Q̃i((g̃
−1 ◦ f̃−1)i(x))− log Z̃i(t, y) +

2∑
j=1

T̃i,j((g̃
−1 ◦ f̃−1)i(x))λ̃i,j(t, y))

+

n∑
i=a+b+1

(log Q̃i((g̃
−1 ◦ f̃−1)i(x))− log Z̃i(y) +

2∑
j=1

T̃i,j((g̃
−1 ◦ f̃−1)i(x))λ̃i,j(y)).

Let the 2n + 1 points in the assumption be given. Define λ̄(t, y) = λ1(y) − λ1(y0) ⊕ λ2(t, y) −
λ2(t0, y0)⊕ λ3(t)− λ3(t0). Subtracting the equations for (ti, yi) from the equation for (t0, y0), we
get

< T (g−1 ◦ f−1(x)), λ̄(tk, yk) > +
∑
i

log
Z3(t0, y0)

Z3(tk, yk)
+
∑
i

log
Z3(t0)

Z3(tk)
+

∑
i

log
Z3(y0)

Z3(yk)

=< T̃ (g̃−1 ◦ f̃−1(x)),
¯̃
λ(tk, yk) > +

∑
i

log
Z̃i(t0, y0)

Z̃i(tk, yk)
+
∑
i

log
Z̃i(t0)

Z̃i(tk)
+

∑
i

log
Z̃i(y0)

Z̃i(yk)
.

Define bk =
∑
i log

˜Z3(t0,y0)Z3(tk,yk)

Z3(t0,y0)Z̃3(tk,yk)
+

∑
i log

˜Z3(t0)Z3(tk)

Z3(t0)Z̃3(tk)
+

∑
i log

˜Z3(y0)Z3(yk)

Z3(y0)Z̃3(yk)
.

Arranging the terms, we get

LTT (g−1 ◦ f−1(x)) = L̃TT (g̃−1 ◦ f̃−1(x)) + b.

Hence we have
T (g−1 ◦ f−1(x)) = AT (g̃−1 ◦ f̃−1(x)) + c.

Denote h = f ◦ g ,we then have T (h−1(x)) = AT (h̃−1(x)) + c.

Hence, by following the same line of reasoning as Sorrenson et al. (2020), we have that k−1(x) =

diag(a)k′
−1

(x) + b

Theorem 1 Suppose Assumption 4.1 - Assumption 4.4 hold. Furthermore, K̃i and Ki are injec-
tive for all i. Then if Epθ [X|Z1, Z2, Z3] = E[X|Z̃1, Z̃2, Z̃3], we have:

1. (Recovery of latent code) If either
1) K̃1, K̃2 and K̃3 are not empty mapping, or
2) at least two of K̃4-K̃7 are non-empty mappings, I(∆T Z̃1;T ) = 0, I(∆Y Z̃3;Y |T ) = 0
for some injective ∆T and ∆Y , I(Z2;T ) ̸= 0 and I(Z2;Y ) ̸= 0,
then Z1 = ∆1 ◦ Z̃1, Z2 = ∆2 ◦ Z̃2, Z3 = ∆3 ◦ Z̃3 for some injective mapping ∆1, ∆2,
∆3.

2. (Recovery of bPGS via subset of covariates) Z = Z1 ⊕ Z2 = v ◦ p for
some injective mappint v. Moreover, the overlapping condition can be relaxed onto
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X ′ ⊆ X where where X ′
:= {x ∈ X |k∗4

−1(x) is overlapping} ∪ {x ∈
X |k∗1

−1(x) and k∗2
−1(x) is overlapping} ∪ {x ∈ X |k∗7

−1(x) is overlapping}.
3. (OOD generalization on non-overlapping regions) Suppose f̃t(x) = E[Y |X,T ] =
Epθ [Y |X,T ] = ft(x) for all observed (x, t) ∈ X × T . Suppose ∃t′ ∈ T s.t. j′t and
j̃′t are injective. Suppose there exist a RKHS HP on the bPGS space, also j̃∗t ∈ HP and
j∗t ◦∆ ∈ HP for all t∗ ∈ T where ∆ := j′t

−1 ◦ j̃′t. Then we have ||jt ◦∆ − j̃t|| < ϵ ⇒
|f̃t(x)− ft(x)| < ϵ ∗ C for some constant C for all t ∈ T .

Since we have Epθ [X|Z1, Z2, Z3] = E[X|Z̃1, Z̃2, Z̃3] and that K̃1, K̃2, K̃3 are non-empty mapping,
we have K̃1(Z̃1) = K1(Z1), K̃2(Z̃2) = K2(Z2), K̃3(Z̃3) = K3(Z3). Since K̃i andKi are injective
for all i, Z1 = K−1

1 K̃1(Z̃1), Z2 = K−1
2 K̃2(Z̃2), Z3 = K−1

3 K̃3(Z̃3), hence the result.

We will show the case where K̃4 and K̃6 are non-empty, other cases are similar. Since we have
K4(Z1 ⊕ Z2) = K̃4(Z̃1 ⊕ Z̃2), Z1 ⊕ Z2 = K−1

4 K̃4(Z̃1 ⊕ Z̃2). Consider K−1
4 K̃4(Z̃1). Let

∆T := K−1
4 K̃4. Since we have I(K−1

4 K̃4(Z̃1);T ) = 0 and I(Z2;T ) ̸= 0, it then follows that
K−1

4 K̃4(Z̃1) ∩ Z2 = ∅, hence K−1
4 K̃4(Z̃1) ⊆ Z1. The other side of set inclusion can be similarly

shown, hence K−1
4 K̃4(Z̃1) = Z1. Similarly, we have Z2 ⊕ Z3 = K−1

6 K̃6(Z̃2 ⊕ Z̃3). Consider
K−1

6 K̃6(Z̃3). Let ∆Y := K−1
6 K̃6. Since we have I(K−1

6 K̃6Z̃3;Y |T ) = 0 and I(Z2;Y |T ) ̸= 0,
it then follows that K−1

6 K̃6(Z̃3) ∩ Z2 = ∅, hence K−1
6 K̃6(Z̃3) ⊆ Z3, and the other side of set

inclusion can be similarly shown. By set exclusion we also have K−1
4 K̃4(Z̃2) = Z2.

We will show the case for {x ∈ X |k∗4
−1(x) is overlapping}. The other cases shall be similar. Let

∆ : P → Rn be an injective mapping. Let z(x) = k∗4
−1(x) = z∗ = ∆ ◦ p, then clearly k∗4

−1 is a
set of optimal parameters. According to Proposition 2, we have z = k−1

4 = A ◦ k∗4
−1 = A ◦∆ ◦ p.

Let v := A ◦∆, hence the result.

Let such t
′

be given. j̃′t ◦p = j′t ◦z ⇒ z = j′t
−1 ◦ j̃′t ◦p since jt is injective. ∀x, let its corresponding

p(x), denoted hereafter as p, be given. ∀t ∈ T ,

we then have ||jt ◦ z − j̃t ◦ p|| = ||jt ◦ j′t
−1 ◦ j̃′t − j̃t ◦ p|| ≤ ||δp||||jt ◦∆− j̃t|| < ϵ ∗ C.

Note that the overlapping condition is significantly relaxed. By modeling the data generating process
forX , we only require the overlapping condition to hold on covariates resulting from their generating
latent factors, which can potentially be a lower dimensional space depending on the dataset. Also,
once a bPGS is learned up to an invertible transformation, we can always utilize the information on
any treatment arm jt to extrapolate beyond the seen regions.

B EXPERIMENTAL DETAILS

B.1 BINARY SYNTHETIC DATASET

Dataset. We generate the synthetic dataset in the following way:

• Generate n samples according to N(µv, σv) for v ∈ {Z1, Z2, Z3}.
• Sample the prognostic coefficient P from N(µprog, σprog).
• Sample the balancing coefficient B from N(µbal, σbal).
• Let Zp = Z1 ⊕ Z2 be the prognostic score, and Zb = Z2 ⊕ Z3 be the balancing score.
• Generate the outcome as Yt ∼ N(fT (Zp)P, 0.1).
• Generate the treatment as T ∼ Bern(ω(ZbB)), where ω controls the non-overlapping

level.

Hyperparameter Search Range To facilitate hyperparameter search, we integrate the
ASHAScheduler (Li et al., 2020) in ray tune (Moritz et al., 2018) into our training work flow. The
corresponding api call used for each hyperparameter is listed in Table 3, Table 4, and Table 5.
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Table 3: Intact VAE Hyperparameter Search Range.

Hyperparameters Search Range
Beta Coefficient loguniform(1e-2, 1e2)

Number of Encoder Layers choice([1, 2, 3, 4])
Encoder Layer Size qrandint(20, 100, 5)
Decoder Layer Size qrandint(20, 100, 5)
Latent Layer Size qrandint(5, 50, 5)

Number of Outcome Layers choice([1, 2, 3, 4]
Outcome Layer Size qrandint(20, 100, 5)

Table 4: DR-CFR Hyperparameter Search Range.

Hyperparameters Search Range
adjustment layer size qrandint(10, 100, 10)

Number of adjustment layers qrandint(2, 3, 1)
adjustment hidden layer size qrandint(10, 100, 10)

confounder layer size qrandint(10, 100, 10)
Number of confounder layers qrandint(2, 3, 1)
confounder hidden layer size qrandint(10, 100, 10)

instrument layer size qrandint(10, 100, 10)
Number of instrument layers qrandint(2, 3, 1)
instrument hidden layer size qrandint(10, 100, 10)
Number of outcome layers qrandint(2, 4, 1)
Outcome hidden layer size qrandint(50, 200, 10)

Imbalance coefficient loguniform(1e-1, 1e1)
treatment loss coefficient loguniform(1e-1, 1e1)

B.2 STRUCTURED DATASET

Covariates. For covariates, we use the gene expression measurements from The Cancer Genomic
Atlas Simulation (Weinstein et al., 2013), which is used in Kaddour et al. (2021)’s work as well.
We use Kaddour et al. (2021)’s preprocessing implementation, with 4000/1000/4659 units in the
train/validation/test datasets, respectively.

Treatment Graphs. For treatment graphs, we use the tox21 dataset from the MoleculeNet (Wu
et al., 2018) as our structured treatments. To conduct scaffold split over the treatments, we adopt
the preprocessing implementation used by Hu et al. (2019). This setup presents a greater challenge
compared to the approach used in Kaddour et al. (2021), where random splitting over treatment
graphs is employed. As such, we are testing the model’s ability to generalize beyond seen and
in-distribution treatments. In his influential work, Pearl (2009) states that “Causal models should
therefore be chosen by a criterion that challenges their stability against changing conditions...”
(also discussed in the introduction of Shalit et al. (2017)). Hence, our curated setting can be viewed
as an extreme means to rigorously evaluate the model’s stability.

Data Generation Process. We use a similar outcome generation scheme as that of Kaddour et al.
(2021). Given a 12-dimensional molecular properties z ∈ R12, and covariate X , the outcome is
generated as:

Y =
1

3
µ0(x) +

9

10
zTx(PCA) + ϵ, ϵ ∼ N(0, 1).

Hyperparameter Search Range To facilitate hyperparameter search, we integrate the
ASHAScheduler (Li et al., 2020) in ray tune (Moritz et al., 2018) into our training work flow. The
corresponding api call used for each hyperparameter is listed in Table 6 and Table 7.
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Table 5: DIRE Hyperparameter Search Range.

Hyperparameters Search Range
Z1 layer size qrandint(10, 100, 10)

Number of Z1 layers qrandint(2, 3, 1)
Z2 layer size qrandint(10, 100, 10)

Number of Z2 layers qrandint(2, 3, 1)
Z3 layer size qrandint(10, 100, 10)

Number of Z3 layers qrandint(2, 3, 1)
Z4 layer size qrandint(10, 100, 10)

Number of Z4 layers qrandint(2, 3, 1)
Number of outcome layers qrandint(2, 4, 1)
Outcome hidden layer size qrandint(50, 200, 10)

Imbalance coefficient loguniform(1e-1, 1e1)
treatment loss coefficient loguniform(1e-1, 1e1)

Z1 mutual info qrandint(0.1, 20)
Z2 mutual info qrandint(0.1, 20)
Z3 mutual info qrandint(0.1, 20)
Z4 mutual info qrandint(0.1, 20)

Z1 total correlation loguniform(1e-1, 1e1)
Z2 total correlation loguniform(1e-1, 1e1)
Z3 total correlation loguniform(1e-1, 1e1)
Z4 total correlation loguniform(1e-1, 1e1)

prior coefficient uniform(0.1, 1.0)
Z1 decoder layer size qrandint(5, 20, 5)
Z2 decoder layer size qrandint(5, 20, 5)
Z3 decoder layer size qrandint(5, 20, 5)

Number of Z1 decoder layers qrandint(1, 2, 1)
Number of Z2 decoder layers qrandint(1, 2, 1)
Number of Z3 decoder layers qrandint(1, 2, 1)

Number of reconstruction hidden layers qrandint(2, 3, 1)
Reconstruction layer size qrandint(20, 100, 10)

ELBO coefficient loguniform(1e-1, 1e1)

Model and Implementation. To better evaluate if DIRE learns a better balanced prognostic score,
we incorporate DIRE with Generalized Robinson Decomposition (Kaddour et al., 2021). The Gen-
eralized Robinson Decomposition for the outcome is:

Y = mϕ(Z1, Z2) + gη(Z1, Z2)
T (h(T )− eψ(Z2)) + ϵ.

Importantly, the value of mϕ is solely determined by adjustments and confounders, while gη and
eψ depend only on confounders. We keep the h(T ) representation fixed (we also provide the same
information to SIN-with-Aux-Info) and utilize the corresponding latent representations in the down-
stream plug-in estimators. We also adopt a two-stage learning process as in Kaddour et al. (2021):

Stage 1. We learn the mean outcome model using latent factors relevant to Y . Denote the regular-
izers as Λ(·), the loss of the mean outcome model is:

Lϕ,θ =
1

m
(yi −mϕ,θ(Z1, Z2))

2 + LELBO + Λ(ϕ) + Λ(θ). (18)

Stage 2. In contrast to the approach taken by Kaddour et al. (2021), we learn mϕ, gη, eψ in this
stage, fixing the treatment representation. The loss in this stage is derived as:

Lη,ψ,θ,ϕ =
1

n
(yi − gη(Z2))

2 + αψ
1

n
(ti − eψ(Z2))

2 + αϕ
1

n
(yi −mϕ,θ(Z1, Z2))

2,

+ LELBO + Λ(η) + Λ(ψ) + Λ(θ) + Λ(ϕ).
(19)

where αψ, αϕ are hyperparameters.
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Table 6: SIN structured Hyperparameter Search Range.

Hyperparameters Search Range
Output dimension of g(X), h(T ) qrandint(2, 800)

Dimension of hidden covariates layer qrandint(100, 400)
Number of Update Steps of Global Objective qrandint(10, 20)

Dimension of hidden conditional mean outcome layers qrandint(100, 300)
Dimension of hidden propensity layers qrandint(10, 80, 1)

Number of covariates layers qrandint(2, 4)
Number of conditional mean outcome layers qrandint(2, 4)

Number of propensity layers qrandint(1, 4, 1)
patience {30}

batch size {500}
Propensity Net Weight Decay {0.0, 1e-4}
Propensity Net Learning Rate { 1e-3, 5e-4 }

Conditional Mean Outcome Net Learning Rate { 1e-3, 5e-4 }
Conditional Mean Outcome Net Weight Decay { 0.0, 1e-4 }

GNN Learning Rate { 1e-3, 5e-4 }
GNN Weight Decay { 0.0, 1e-4 }

Covariates Net Learning Rate { 1e-3, 5e-4 }
Covariates Net Weight Decay { 0.0, 1e-4 }

Max Epochs { 400 }

Table 7: DIRE structured Hyperparameter Search Range.

Hyperparameters Search Range
Outcome Discretization dimension qrandint(5, 20, 1)

ELBO coefficient loguniform(1e-2, 1e2)
Z1 mutual info uniform(0.1, 25.0)
Z2 mutual info uniform(0.1, 25.0)
Z3 mutual info uniform(0.1, 25.0)
Z4 mutual info uniform(0.1, 25.0)

Z1 total correlation uniform(0.1, 25.0)
Z2 total correlation uniform(0.1, 25.0)
Z3 total correlation uniform(0.1, 25.0)
Z4 total correlation uniform(0.1, 25.0)
Z1 prior coeff uniform(0.1, 1.0)
Z2 prior coeff uniform(0.1, 1.0)
Z3 prior coeff uniform(0.1, 1.0)
Z4 prior coeff uniform(0.1, 1.0)

Z1 decoder layer size qrandint(5,50, 1)
Z2 decoder layer size qrandint(5,50, 1)
Z3 decoder layer size qrandint(5,50, 1)

Number of Z1 decoder layers qrandint(1, 4, 1)
Number of Z2 decoder layers qrandint(1, 4, 1)
Number of Z3 decoder layers qrandint(1, 4, 1)

Reconstruction Layer Size qrandint(20, 200, 1)
Number of reconstruction layers qrandint(2, 4, 1)

Conditional Mean Outcome Model coefficient uniform(0.1, 1.0)
VAE Learning Rate { 1e-3, 5e-4 }
VAE Weight Decay { 0.0, 1e-4 }
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Algorithm 1 SIN with DIRE

Input: Data {(xi, ti, yi)}, stage 1 batch size m, stage 2 batch size n, step size λη, λϕ, λψ, λθ, λϕ
Initialize η, ϕ, ψ, θ, ϕ
while not coverged do

Sample mini-batch {xi, yi}mi=1
Evaluate Lϕ,θ in Eq.18
ϕ← ϕ− λϕ∇̂ϕLϕ,θ
θ ← θ − λθ∇̂θLϕ,θ

end while
while not converged do

Sample mini-batch {xi, yi}ni=1
Evaluate Lη,ψ,θ,ϕ in Eq.19
ϕ← ϕ− λϕ∇̂ϕLϕ,θ
ψ ← ψ − λψ∇̂ψLη,ψ,θ,ϕ
θ ← θ − λθ∇̂θLη,ψ,θ,ϕ
η ← η − λη∇̂ηLη,ψ,θ,ϕ

end while
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