
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SALE : LOW-BIT ESTIMATION FOR EFFICIENT SPARSE
ATTENTION IN LONG-CONTEXT LLM PREFILLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many advanced Large Language Model (LLM) applications require long-context
processing, but the self-attention module becomes a bottleneck during the prefilling
stage of inference due to its quadratic time complexity with respect to sequence
length. Existing sparse attention methods accelerate attention computation by
skipping less significant regions of the attention map. However, these approaches
typically perform coarse-grained inspection of the attention map, resulting in
their suboptimal performance. In this paper, we propose SALE, a fine-grained
sparse attention method that accelerates the long-context prefilling stage of LLM
with negligible loss in model accuracy. SALE achieves fast and accurate fine-
grained attention map estimation using low-bit quantized query-key products to
approximate attention weights, followed by the application of a novel Relative
Attention Score metric to assess the importance of query-key pairs. This design
enables us to accurately identify important regions in the attention map, thereby
constructing a highly sparse attention mask.

We implement a custom CUDA kernel in SALE optimized for hardware effi-
ciency, reducing overhead to approximately 11% of the full attention latency.
Notably, SALE requires no parameter training and can be seamlessly integrated
into existing systems with trivial code modifications. Experiments on long-context
benchmarks demonstrate that our method outperforms existing approaches in
accuracy-efficiency trade-offs, achieving at least 3.36× speedups on Llama-3.1-8B
for sequences longer than 64K while maintaining model quality.

1 INTRODUCTION

With the growing demand for ultra-long context understanding in complex applications such as long
book summarization (Kryściński et al., 2022; Porwal et al., 2023; Chang et al., 2024), long document
question-answering (Caciularu et al., 2023; Pang et al., 2022; Fan et al., 2019), and repository-
level code completion (Wang et al., 2024a;b), state-of-the-art Large Language Models (LLM) are
now equipped with increasingly longer context window (Grattafiori et al., 2024; Yang et al., 2025;
Team et al., 2025; DeepSeek-AI et al., 2025). Most LLMs employ a decoder-only Transformer
architecture (Vaswani et al., 2017), where the self-attention module serves as the core component to
enable powerful language understanding capabilities. However, during the prefilling stage of LLM
inference, the self-attention module exhibits quadratic time complexity with respect to the number
of input tokens. This makes it the primary performance bottleneck, as computational costs increase
rapidly with longer contexts (Fu, 2024; Jiang et al., 2024).

In recent years, numerous research studies have attempted to accelerate prefilling by computing only
the important regions of attention maps, based on the observation that attention maps in LLMs are
significantly sparse (Deng et al., 2024). These methods, referred to as sparse attention, use sparse
masks to indicate the specific regions of the attention map to be computed. Some sparse attention
methods utilize sparse masks with static patterns, such as stride pattern (Child et al., 2019), window
pattern (Zaheer et al., 2020; Beltagy et al., 2020), or streaming pattern (Xiao et al., 2024b; Han et al.,
2023). However, static sparse masks often result in severe performance degradation, as the real sparse
patterns of LLM attention maps are highly dynamic across various input contents (Lai et al., 2025;
Jiang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To adapt to such dynamism, several methods attempt to predict critical attention regions by analyzing
the attention map. For instance, MInference (Jiang et al., 2024) and SampleAttention (Zhu et al.,
2024), decompose the sparse attention pattern into combinations of multiple vertical or slash lines,
and predict the positions of these lines by analyzing the attention score distribution of a subset of
query tokens. Another series of sparse attention methods, such as FlexPrefill (Lai et al., 2025),
SpargeAttn (Zhang et al., 2025b), and HiP Attention (Lee et al., 2025), treat the attention map as
the concatenation of blocks. They dynamically skip certain attention computations at the block
granularity. These methods often construct a representative token for each consecutive query/key
chunk and build sparse masks based on the product between representative tokens. Although existing
dynamic sparse attention methods can accelerate the prefilling stage of LLM inference to some extent,
they fail to achieve a satisfactory accuracy-efficiency trade-off, as their inspection approaches are
either too coarse-grained or insufficiently comprehensive.

In this paper, we propose SALE, a novel block-Sparse Attention technique based on Low-bit
Estimation of attention weights, to significantly accelerate the long-context prefilling stage of LLM
inference with negligible loss in model accuracy. SALE is built on a fast and accurate framework
for fine-grained attention map inspection. By performing element-wise importance analysis on
the entire attention map, SALE is capable of constructing highly sparse attention masks, while
ensuring that the output error is bounded within an acceptable tolerance range. We propose two key
components to implement this framework. First, we utilize low-bit quantized query-key products (QK)
to approximate attention weights. This process runs efficiently on modern GPUs, leveraging two
key factors: the use of high-throughput low-bit Tensor Core instructions and the reduction in
global memory access. Second, we propose a novel Relative Attention Score metric to evaluate the
importance of query-key pairs. Observing that the attention scores in the sink (beginning) and local
(end) regions of each attention map row tend to be relatively higher (Xiao et al., 2024b; Gu et al.,
2025), we determine the importance of a query-key pair based on the relative magnitude between its
attention weight and the attention weights within the sink and local regions. Compared to common
practice that uses the original attention scores (Zhang et al., 2023; Li et al., 2024; Zhang et al., 2024a)
as indicators, our design is more efficient because it avoids materializing the entire attention map
in DRAM. It also supports adaptive adjustment of the sparsity level according to the input, which
allows SALE to robustly handle input samples of varying complexities. SALE further adopts several
kernel optimization techniques to optimize hardware efficiency.

SALE incurs no additional training overhead and can be seamlessly integrated into existing inference
systems. We conduct comprehensive experiments on various long-context processing benchmarks
using two LLMs, Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and Qwen-2.5-32B-Instruct (Yang
et al., 2024), to verify the effectiveness of our method. Experimental results demonstrate that
our method delivers a speed-up of at least 3.36× when processing sequences longer than 64K
tokens, while maintaining negligible accuracy loss. It achieves superior accuracy-efficiency trade-off
compared to the baseline methods.

2 RELATED WORKS

Sparse LLM inference Many previous works try to leverage the sparsity nature of transformer
model to accelerate LLM inference from different perspectives. One line of research exploits input
text sparsity to dynamically prune context irrelevant to the user’s query (Jha et al., 2024; Liu et al.,
2025; Shi et al., 2024; Jiang et al., 2023; Li et al., 2023b). While these methods can significantly
reduce LLM inference latency for relatively simple prompts, they severely degrade generation quality
when processing complex inputs (Yuan et al., 2024).

Numerous studies have observed sparsity patterns in self-attention modules, where only a small
subset of attention map elements are much larger than the rest. Some methods (Xiao et al., 2024b;
Fu et al., 2024; Xiao et al., 2024a) use predefined static sparsity patterns to prune the attention
map. However, these methods suffer from accuracy degradation as the attention sparsity distribution
varies among different input contexts (Jiang et al., 2024; Lai et al., 2025). Other methods assume
that the distribution follows certain structures, such as Vertical-Slash or Block-Sparse. Some of
them (Jiang et al., 2024; Zhu et al., 2024) try to dynamically predict the location of important regions
by examining the exact attention scores of several tokens. Others (Gao et al., 2024; Zhang et al.,
2025b; Lai et al., 2025; Lee et al., 2025) regard the attention map of compressed tokens, which are

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generated from continuous token chunks, as the proxy of real attention map. All these methods fail to
achieve accurate predictions due to their overly coarse-grained approximations of attention maps.

In contrast to the aforementioned approaches, several alternatives to self-attention have emerged
to circumvent its quadratic complexity. Notable examples include: (1) natively sparse attention
algorithms (Yuan et al., 2025; Lu et al., 2025), (2) linear attention mechanisms (Peng et al., 2023;
Yang et al., 2023), and (3) state-space models (Gu & Dao, 2024; Dao & Gu, 2024). However, these
methods impose significant adoption costs as they require full model training.

During the decoding stage, methods like SparQ (Ribar et al., 2023) and InfiniGen (Lee et al.,
2024) compress the channels of query / key tokens to efficiently approximate the attention scores.
Retrieval-based approaches (Zhang et al., 2024a; Chen et al., 2025; Liu et al., 2024) leverage vector-
retrieval techniques to approximately sort the attention scores of previous input tokens. Several
existing algorithms compress tokens by analyzing attention maps during the prefilling stage. These
approaches either eliminate redundant tokens (Zhang et al., 2023; Liu et al., 2023; Li et al., 2024; Ge
et al., 2023; Devoto et al., 2024) or perform token merging (Zhang et al., 2024d; Zandieh et al., 2024).
Our method is orthogonal to these optimizations and can be combined to further enhance end-to-end
LLM inference efficiency.

Attention kernel optimization Many CUDA kernel optimization techniques (Dao et al., 2022;
Dao, 2023; Shah et al., 2024; Sanovar et al., 2024) leverage hardware features to accelerate the
computation of the original full attention. Although these methods accelerate computation, they still
require full attention calculations and fail to fully exploit the inherent sparsity of attention maps.

3 METHOD

3.1 PROBLEM FORMULATION

We denote the query, key and value matrices as Q, K and V , respectively, while the corresponding
vectors at token offset i are qi, ki, vi. Let N represent the sequence length and d represent the hidden
size. The shapes of Q, K and V are all N × d. Matrix M is the sparse attention mask with a shape
of N ×N . Single-head self-attention module can be mathematically formalized as below:

Attn(Q,K, V,M) = Softmax(
QKT

√
d

+M) · V (1)

During the computation of self-attention, the attention weight matrix S is defined as S = QKT /
√
d,

and the attention score matrix P is defined as P = Softmax(S +M). The sparse attention mask
is formed by M = Mc +Ms, where Mc,Ms ∈ {0,−∞} represent the causal mask and the sparse
mask respectively. Based on the mathematical properties of Softmax function, if an item M [i, j] in
matrix M is −∞, its corresponding attention score will be zero. Therefore, we can skip the attention
computation at this position.

For block-sparse attention, query and key tokens are divided into continuous blocks of sizes bq, bk
along the sequence dimension. We denote the query, key token block at position j as Qj , Kj , which
have the shapes of bq × d and bk × d respectively. For simplicity, we assume bq | N , bk | N , and
denote Nq = N/bq, Nk = N/bk. As shown in Figure 1(a), the attention map can be viewed as the
concatenation of Nq ·Nk attention blocks, each of shape bq × bk. Block sparse attention skips certain
computations at the block level. To formulate, we denote Mbs ∈ {0, 1} as block-level sparse mask,
and values of sparse mask Ms depend on Mbs:

Ms[i, j] =

{
0, if Mbs[⌊i/bq⌋, ⌊j/bk⌋] = 1,

−∞, if Mbs[⌊i/bq⌋, ⌊j/bk⌋] = 0
(2)

In other words, the attention computation between Qi,Kj , Vj will be skipped if Mbs[i, j] is zero.
Block-sparse attention aims to maximize sparsity in matrix Mbs while bounding the approximation
error relative to full attention within a tolerable threshold.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

b! = 2

b" = 2

Estimated Attention Map

To skipTo compute

Sparse Mask

4-bit estimatedFP16 computed

(a) Sparse mask obtained after estimation.

In
pu

t 2
In

pu
t 1

Layer 0, Head 6 Layer 16, Head 13

(b) Attention maps.

Figure 1: (a) Illustration of SALE. The whole 16× 16 attention map is viewed as concatenation of
many 2 × 2 blocks. We first estimate the attention weights in an element-wise manner, and then
construct a sparse mask at the block level based on these estimations. (b) Attention maps of two
different attention heads in Llama-3.1-8B-Instruct when processing different input sequences.

3.2 BLOCK SELECTION VIA FINE-GRAINED IMPORTANCE APPROXIMATION

Considering the dynamic nature of the attention pattern in LLMs (Jiang et al., 2024; Lai et al.,
2025), constructing "Sparse and Accurate" Mbs is highly challenging. To achieve this goal, SALE
evaluates the “importance” of each position in the attention map. Such a framework enables SALE
to examine the attention map at a fine-grained level, allowing robust handling of various dynamic
attention patterns. We propose two key designs—Low-bit Attention Weight Approximation and
Relative Importance Approximation—to ensure the efficient and accurate operation of SALE.

Low-bit attention weight approximation SALE first calculates the attention weights for all
query-key pairs. Rather than using full-precision floating-point Q and K matrices, SALE computes
attention weights using low-bit quantized versions Q̃ and K̃ for approximation, significantly min-
imizing additional overhead with high-throughput low-bit Tensor Core instructions and reduced
DRAM access. For instance, on RTX 4090 and RTX 5090 GPUs, the throughput of 4-bit and
8-bit Tensor Core instructions is 8× and 4× that of 16-bit (full precision) Tensor Core instructions,
respectively (NVIDIA, 2023; 2025). Meanwhile, the overhead of loading 4-bit and 8-bit QK matrices
from DRAM is 1/4 and 1/2 of that required for loading 16-bit QK matrices, respectively.

Regarding the selection of the quantization scheme, we choose to quantize query-key matrices to
4-bit, which maintains high selection accuracy while maximizing the acceleration capability of the
low-bit instructions in GPU Tensor Cores. We provide more detailed discussion about quantization
scheme in section H.

Relative importance approximation Denoting approximated attention weights as S̃, the next
step is to evaluate the “importance” of each attention block. In related works (Zhang et al., 2023;
Li et al., 2024; Liu et al., 2025; 2023), a commonly used metric is the attention score, obtained
by applying Softmax function to attention weights. Compared to existing practices, our approach
performs importance computation on-the-fly, bypassing the need to compute full attention scores. We
propose Relative Attention Score as our importance metric instead of the original attention scores.

Our design is based on an observation in many related studies (Xiao et al., 2024b; Gu et al., 2025;
Xiao et al., 2024a). As shown in Figure 1(b), attention scores within the “sink and local regions” (i.e.
the beginning and end of each row) maintain consistently large values, while the region exhibits
consistent size across diverse input sequences. Motivated by this pattern, we assess “importance” by
comparing S̃[i, j] with the attention weights from the sink and local regions. Specifically, before
examining those blocks located in the middle of the sequence, we first compute full precision QK
matrix multiplication on blocks in the sink and local areas. Denoting the indices of key tokens within
the sink and local regions as ISL, this process yields two intermediate values, m̃i and l̃i. We then
compute the Relative Attention Score P̃ [i, j] base on these two intermediate results, which can be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

formulated as follows:

m̃i = max
j∈ISL

S[i, j], l̃i =
∑

j∈ISL

eS[i,j]−m̃i , P̃ [i, j] =
eS̃[i,j]−m̃i

l̃i

If all P̃ [i, j] values in a block are smaller than the threshold τ (e.g. 0.004), this block is marked
as non-critical, and the attention computation for this block will be skipped. The procedure for
determining the threshold value τ ∈ (0, 1) is elaborated in Section 3.3.

3.3 PER-HEAD THRESHOLD CALIBRATION

Figure 1(b) illustrates the attention score distributions of two attention heads of Llama-3.1-8B-Instruct,
exhibiting inconsistent sparsity levels. Thus, applying the same τ for all heads may lead to suboptimal
performance. To address the issue, we propose an offline calibration procedure to determine the
optimal τ value for each head, which ensures negligible output errors while maximizing sparsity.

We adopt the L1 distance between the output of SALE and the output of full attention as the error
metric, which can be formulated as Err(τ) = ∥O− Õ∥1/N . O is the result of the original attention,
Õ is the result of SALE, and N represents sequence length. At the beginning of the calibration, τ
is initially set to be a relatively large threshold τ0 (e.g. 0.008). We then progressively reduce the
sparsity level by halving the value of τ until Err(τ) falls below θ, where θ is the predefined error
bound. By tuning θ, we can control the sparsity level of SALE. In Section F, we provide a detailed
explanation of the correlations between these hyperparameters.

3.4 KERNEL OPTIMIZATION

For kernel implementation, we propose several optimization techniques to further improve the
hardware efficiency of SALE. Here, we describe some core designs, and more detailed information
about the optimizations can be found in Section G.

Computation tiling SALE targets long context processing scenarios, where materializing the
intermediate results of QK GEMM would occupy a large amount of DRAM space and introduce
extensive I/O overhead. Therefore, we implement SALE based on the framework of FlashAttention2
(Dao, 2023) to avoid this issue. Specifically, the computation tasks of different query blocks will be
scheduled to different cooperative thread arrays (CTA) for parallel processing. Each CTA iteratively
checks the importance between its corresponding query block and different key blocks.

Estimation-computation disaggregation In consideration of performance issues, SALE separates
"important block selection" and "sparse attention computation" into two distinct CUDA kernels,
which are referred to as Selection-Pass and Computation-Pass, respectively. During Selection-Pass,
we select important attention regions at the block granularity and record the coordinates of these
blocks. We provide the corresponding pseudo code in Section J for a more detailed description. After
Selection-Pass, we compute attention output on selected blocks in the following Computation-Pass.

A potentially simpler and more efficient implementation is the “One-pass” alternative: upon iden-
tifying an important key block, immediately compute the output for that block. However, such a
design is not feasible in practice, as it fails to reduce computational workload on the one hand and is
incompatible with the hardware characteristics of GPUs on the other. We provide a more detailed
discussion on this issue in Section I.

Relative attention score comparison Directly computing Relative Attention Score is time-
consuming as it consists of multiple complex hardware instructions, including floating point division
and exponential function. Considering that l̃i and m̃i do not change after computation in sink and
local areas, we optimize this comparison by following mathematical transformation:

eS̃[i,j]−m̃i

l̃i
≥ τ ⇐⇒ S̃[i, j] ≥ ln(τ · l̃i + m̃i) (3)

The comparison between the Relative Attention Score and τ can then be accomplished using a single
floating point comparison instruction. It is worth noting that we also mitigate potential overflow
issues caused by the exponential function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Integration with SageAttention The final stage of SALE is Computation-Pass. We employ the
QK 8-bit quantization strategy proposed in SageAttention (Zhang et al., 2025a) to further accelerate
Computation-Pass while maintaining negligible precision loss.

4 EXPERIMENTS

4.1 SETTINGS

Models Most of the experiments are conducted using Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) (Llama-3.1). We also use Qwen2.5-32B-Instruct (Yang et al., 2024) (Qwen-2.5) to validate
the effectiveness of our method on larger-scale LLM. Both models support a context length of 128K.

Implementation details We implement Selection-Pass in C++ CUDA and use Triton (Tillet et al.,
2019) compiler to accelerate the quantization process. We implement the quantized Computation-Pass
based on the open-source code of SpargeAttn (Zhang et al., 2025b). For those hyper-parameters
mentioned in Section 3.2, we use block size bq = 64 and bk = 32. We constrain the sink area
size to 32 tokens and the local area size to no more than 256 tokens. During offline calibration, we
set the initial threshold τ0 = 0.008, and use error bounds of θ = 0.4 for Llama-3.1 and θ = 2.0
for Qwen-2.5 by default. All latency experiments are conducted on a server with 8 GeForce RTX
4090 GPUs without using tensor-parallel (Shoeybi et al., 2019) or context-parallel (Li et al., 2023a)
techniques. In the Section B, we provide additional information about the implementation.

Baselines To demonstrate the advantages of SALE, we compare it with four strong baselines for
self-attention acceleration in long-context processing: FlashAttention2(FA2) (Dao, 2023), MInfer-
ence(MInfer) (Jiang et al., 2024), FlexPrefill(Flex) (Lai et al., 2025), and SpargeAttn(Sparge) (Zhang
et al., 2025b). FA2 computes standard full attention, which serves as an oracle. The other three
methods employ sparse attention mechanisms. All experimental results are based on their publicly
available implementation. We use γ = 0.95 for Llama-3.1 and γ = 0.98 for Qwen-2.5 when
evaluating FlexPrefill. We use (l1 = 0.08, l2 = 0.09) for Llama-3.1, and (l1 = 0.04, l2 = 0.05) for
Qwen-2.5 when evaluating SpargeAttn. For MInference, we select the optimal sparse pattern based
on its open-source code. Additionally, to investigate the performance of these methods under varying
sparsity levels, we prepare multiple sets of hyperparameters based on their publicly available codes.
For FlexPrefill and SpargeAttn, as described in their papers, we adjust their sparsity levels by tuning
γ and (l1, l2), respectively. For MInference, since its open-source implementation configures all
heads with the Vertical-Slash pattern, the sparsity rate is adjusted by varying the total number of
vertical and slash lines across all heads. We provide more details in Section C.

Metrics To validate the effectiveness of SALE, we assess model quality using long-context bench-
marks (see Section 4.2) and measure efficiency through latency measurements. All latency results in
the experimental section focus solely on the attention computation time across all layers during the
LLM prefilling phase. Our latency measurements include all online operations, such as quantization,
block selection, and index selection. In some experiments, we report the end-to-end (E2E) latency on
certain datasets, which is computed by summing the latency of all samples in the dataset.

4.2 ACCURACY EVALUATION

Following common practice (Zhang et al., 2025b; Jiang et al., 2024; Lai et al., 2025; Zhang et al.,
2024a; Gao et al., 2024; Li et al., 2024), we adopt three long-context understanding benchmarks
to compare the generation quality of our method with other baselines. Achieving higher scores on
these baselines indicates better performance. (1) LongBench (Bai et al., 2024): A comprehensive
benchmark covering diverse long-text applications, including single-document QA, multi-document
QA, summarization, few-shot learning, synthetic tasks, etc. The context lengths of most input
samples are below 32K tokens. (2) InfiniteBench (Zhang et al., 2024c): A benchmark designed to
evaluate the capability of processing excessively long context (exceeding 100K tokens). It comprises
several challenging synthetic tasks such as Retrieve.KV and Math.Find, as well as other real-world
tasks including QA and summarization based on fake books or fake dialogues. (3) Needle-In-A-
Haystack (Kamradt, 2023): A widely-used long-context retrieval task. It requires the LLM to locate
a randomly inserted sentence at various positions within a real-world context.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: LongBench evaluation results of different methods. We use boldface to denote the highest
value and underline to indicate the second-highest value.

Llama-3.1 Qwen-2.5Tasks
FA2 MInfer Flex Sparge SALE FA2 MInfer Flex Sparge SALE

NarrativeQA 29.93 24.92 28.29 29.62 28.95 29.20 31.27 29.80 29.19 32.21
Qasper 44.82 44.29 44.55 43.73 45.33 45.79 45.05 45.53 44.61 45.95

MultiFieldQA 54.65 53.71 55.34 56.02 55.18 53.25 53.01 52.61 51.66 53.37
HotpotQA 55.81 52.00 55.38 54.57 55.83 64.68 64.59 64.78 63.94 63.95

2WikiMQA 46.16 44.10 43.43 47.08 42.61 60.87 60.82 62.98 61.13 62.33
MuSiQue 30.41 25.72 30.07 31.40 30.10 39.89 41.38 39.46 39.22 40.54

GovReport 35.29 35.09 34.64 35.04 35.45 30.38 30.59 30.78 30.36 30.66
QMSum 25.25 25.47 25.83 25.12 25.33 23.06 23.16 23.10 23.18 23.42
TREC 72.50 72.00 70.50 71.00 70.50 73.50 73.50 73.50 74.50 73.00

TriviaQA 91.65 91.18 89.81 92.68 90.47 87.68 88.40 89.40 88.81 87.97
SAMSum 43.67 43.73 43.18 43.18 44.19 45.67 45.92 46.43 46.41 45.92

LSHT 46.50 46.00 41.00 45.50 46.50 45.79 47.50 44.17 47.00 47.21
Count 6.72 3.25 2.59 5.89 7.09 12.67 13.67 3.57 9.22 13.38

Retrieval 99.50 97.00 82.00 84.00 100.00 99.50 99.25 92.25 98.83 98.25

Average 48.77 47.03 46.18 47.48 48.39 50.85 51.29 49.88 50.57 51.30

Speedup (64K) 1.00× 1.07× 2.21× 3.11× 3.36× 1.00× 1.25× 1.39× 2.55× 3.28×

LongBench Table 1 presents the LongBench evaluation results comparing SALE with baseline
approaches. In the second row of the table, we use abbreviations introduced in Section 4.1 to denote
each method. In the last two rows, we report the average scores and the latency speedup. The latency
metric, measured on a 64K-length Needle-In-A-Haystack input, confirms the premise of our accuracy
test, that SALE achieves the highest speedup when processing long contexts.

The results on both models show that SALE achieves superior accuracy among all sparse attention
baselines In addition, when our method is applied, Llama-3.1 exhibits only marginal performance
degradation while Qwen-2.5 even shows improvement. We attribute this improvement to our method’s
ability to potentially filter noisy information during the prefilling phase, thereby enhancing the model’s
comprehension capabilities.

InfiniteBench Table 2 presents the test scores of InfiniteBench, evaluating the capability of
processing extremely long inputs. As shown in the table, our method also achieves the best accuracy-
efficiency trade-off on InfiniteBench.

Needle-In-A-Haystack We evaluate the Needle-In-A-Haystack (NIAH) task using Llama-3.1,
with results visualized in Figure 2. The average score and end-to-end speedup for each method are
annotated above their respective plots. Our method achieves a 3.81× speedup with only a 0.1% drop
in average score compared to FlashAttention2, outperforming all other sparse attention baselines.

4.3 EFFICIENCY EVALUATION

Single input speedup We first compare the latency of different methods when processing a single
input. The results are presented in Figure 3(a). We conduct experiments using Llama-3.1 and report

Table 2: InfiniteBench evaluation results of different methods. We use boldface to denote the highest
value and underline to indicate the second-highest value.

Llama-3.1 Qwen-2.5Tasks
FA2 MInfer Flex Sparge SALE FA2 MInfer Flex Sparge SALE

Retrieve.KV 55.60 20.00 38.00 47.20 56.40 4.00 7.60 4.80 4.60 5.40
En.MC 67.25 55.02 68.56 66.38 66.38 63.70 63.32 59.80 61.50 62.80

Math.Find 34.29 34.86 30.00 34.57 30.57 41.40 45.71 47.20 41.70 52.00
En.QA 15.12 13.96 14.18 13.51 13.19 6.70 6.85 6.70 6.80 6.90
En.Dia 16.50 13.50 17.00 17.50 19.00 27.50 30.00 29.00 25.50 27.50

Average 37.75 27.47 33.55 35.83 37.11 28.66 30.70 29.5 28.02 30.92

Speedup (64K) 1.00× 1.07× 2.21× 3.11× 3.36× 1.00× 1.25× 1.39× 2.55× 3.28×

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t

Avg: 96.1% | Speedup: 1.00x

0

2

4

6

8

10

Sc
or

e

(a) FlashAttention2.

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t

Avg: 94.1% | Speedup: 1.41x

0

2

4

6

8

10

Sc
or

e

(b) MInference.

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t

Avg: 94.5% | Speedup: 3.35x

0

2

4

6

8

10

Sc
or

e

(c) FlexPrefill.

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t

Avg: 95.0% | Speedup: 3.35x

0

2

4

6

8

10

Sc
or

e
(d) SpargeAttn.

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t

Avg: 96.0% | Speedup: 3.81x

0

2

4

6

8

10

Sc
or

e

(e) SALE.

Figure 2: Needle-In-A-Haystack evaluation results.

the speedup of each method relative to FlashAttention2. To illustrate how latency scales with the
number of tokens, we prepare five input samples of different lengths. These samples are obtained by
truncating a single 128K-length input from the Needle-In-A-Haystack task.

Our method demonstrates consistent speedups over FlashAttention2 across all sequence lengths while
outperforming all sparse attention baselines in most cases. At 8K context length, SALE achieves
a 1.39× speedup. It further exhibits greater speedup as context length increases—reaching 3.88×
at 128K—owing to sparser attention patterns. It should be noted that the hyperparameters of each
sparse method in this test are aligned with those in Section 4.2, indicating that our speedup evaluation
is based on SALE achieving optimal accuracy performance.

Accuracy vs efficiency We adjust the computation budget of each method following the approach
described in Section 4.1 to analyze the accuracy-efficiency trade-offs. Considering that the speedup
achieved by dynamic sparse attention methods may vary depending on the input content, we evaluate
the end-to-end latency of all methods on both LongBench and InfiniteBench for comprehensive
comparison. The results, shown in Figure 4, demonstrate the superior performance of our method on
both datasets.

8K 16K 32K 64K 128K
Context Length

0

1

2

3

4

Sp
ee

du
p

FA2
MInference
FlexPrefill
SpargeAttn
SALE

(a) Single input speedup.

5 6 7
128K Latency(s)

120

140

160

180

Sc
or

e

SALE
SALE w/o Calibration

(b) Effect of calibration.

Figure 3: (a) Speedup in single-input processing. (b) Comparison between SALE v.s. SALE w/o
Calibration on InfiniteBench. The brown horizontal dashed line represents the score achieved by
FlashAttention2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

300 700 1100520

550

580

610

640

670

Sc
or

e

3400 4100 4800
E2E Latency(s)

SALE
Sparge
Flex
MInfer

(a) Trade-off on LongBench.

500 600 700
E2E Latency(s)

650

660

670

680

Sc
or

e

SALE
Sparge

(b) Zoom in.

8000 12000 16000 20000
E2E Latency(s)

130

140

150

160

170

180

190

Sc
or

e

SALE Sparge MInfer Flex

(c) Trade-off on InfiniteBench.

Figure 4: Evaluation of accuracy-efficiency trade-offs. The brown horizontal dashed line represents
the score achieved by FlashAttention2. (a) Performance on LongBench under different sparsity levels.
(b) A magnified view focusing on the region enclosed by the dashed box in (a). (c) Performance on
InfiniteBench under different sparsity levels.

4.4 ABLATION STUDY

In this section, we evaluate the latency of each stage in SALE and assess the impact of per-head
threshold calibration. Additionally, in Section D and Section H, we provide additional experimental
results to demonstrate the block selection accuracy of SALE. We also present sparsity measurement
results of these sparse methods across contexts of varying lengths in Section E, which serves as a
supplement to our previous comparison.

Latency breakdown We report the latency breakdown results of SALE under various input lengths
in Table 3. All experiments use Llama-3.1, with reported timings reflecting end-to-end execution
across all 32 model layers. In the second-to-last line, we show the execution time ratio of Quantization
and Selection-Pass operations relative to full attention latency. In the final line, we present the speedup
of Computation-Pass compared to full attention. The results demonstrate that our method introduces
acceptable computational overhead, with its relative cost decreasing as sequence length grows.
Furthermore, Computation-Pass shows greater speedups with longer context lengths, reflecting
improved sparsity level at scale.

Table 3: Latency breakdown (ms).

Context length 8K 16K 32K 64K 128K

Quantization 11 21 47 99 208
Selection-Pass 14 48 166 634 2562

Computation-Pass 51 137 378 1117 3599
FA2 106 416 1597 6224 24731

Overhead ratio 23.9% 16.7% 13.3% 11.5% 11.1%
Computation-Pass speedup 2.08× 3.04× 4.23× 5.57× 6.87×

Threshold calibration To demonstrate the performance gain brought by per-head threshold calibra-
tion, we set all heads in Llama-3.1 to share the same τ , which is referred to as SALE w/o Calibration.
As shown in Figure 3(b), setting different τ values according to the characteristics of attention patterns
across different heads yields substantial performance gains.

5 CONCLUSION

In this paper, we propose a block-Sparse Attention technique based on Low-bit Estimation. By
performing fine-grained estimation of the attention map, we achieve a better accuracy-efficiency
trade-off. Specifically, we estimate the attention weights using low-bit quantized queries and keys,
and assess the importance of query-key pairs using our Relative Attention Score metric. Furthermore,
we introduce several CUDA kernel optimization techniques to ensure the efficiency of sparse mask
construction on hardware. Experimental results demonstrate that our approach achieves the best
trade-off among existing sparse attention baselines, delivering a speedup of at least 3.36× when
processing sequences longer than 64K tokens while maintaining negligible accuracy loss.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our submission does not violate ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

In Section 4, Section B and Section C, we provide details regarding the experiments as well as the
implementation of our method.

We also upload our code to https://anonymous.4open.science/r/SALE-7209 for experiments result
reproducibility.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Avi Caciularu, Matthew Peters, Jacob Goldberger, Ido Dagan, and Arman Cohan. Peek across:
Improving multi-document modeling via cross-document question-answering. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1970–1989, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
110. URL https://aclanthology.org/2023.acl-long.110/.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A systematic exploration of
book-length summarization in the era of LLMs. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=7Ttk3RzDeu.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. MagicPIG: LSH sampling for
efficient LLM generation. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=ALzTQUgW8a.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,

10

https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2023.acl-long.110/
https://openreview.net/forum?id=7Ttk3RzDeu
https://openreview.net/forum?id=ALzTQUgW8a

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. CoRR, abs/2404.02690, 2024. doi: 10.48550/ARXIV.2404.02690. URL https://doi.
org/10.48550/arXiv.2404.02690.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l_2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5:
Long form question answering, 2019. URL https://arxiv.org/abs/1907.09190.

Tianyu Fu, Haofeng Huang, Xuefei Ning, Genghan Zhang, Boju Chen, Tianqi Wu, Hongyi Wang,
Zixiao Huang, Shiyao Li, Shengen Yan, et al. Moa: Mixture of sparse attention for automatic large
language model compression. arXiv preprint arXiv:2406.14909, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analysis,
2024. URL https://arxiv.org/abs/2405.08944.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in your
llms. arXiv preprint arXiv:2410.13276, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,

11

https://arxiv.org/abs/2412.19437
https://doi.org/10.48550/arXiv.2404.02690
https://doi.org/10.48550/arXiv.2404.02690
https://arxiv.org/abs/1907.09190
https://arxiv.org/abs/2405.08944

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and Min
Lin. When attention sink emerges in language models: An empirical view. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=78Nn4QJTEN.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023.

Siddharth Jha, Lutfi Eren Erdogan, Sehoon Kim, Kurt Keutzer, and Amir Gholami. Characterizing
prompt compression methods for long context inference. arXiv preprint arXiv:2407.08892, 2024.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. Advances in Neural Information Processing
Systems, 37:52481–52515, 2024.

Greg Kamradt. Needle in a haystack - pressure testing llms, 2023. URL https://github.com/
gkamradt/LLMTest_NeedleInAHaystack?tab=readme-ov-file.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization, 2022. URL https:
//arxiv.org/abs/2105.08209.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware
sparse attention mechanism for efficient long-sequence inference. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=OfjIlbelrT.

Heejun Lee, Geon Park, Youngwan Lee, Jaduk Suh, Jina Kim, Wonyong Jeong, Bumsik Kim,
Hyemin Lee, Myeongjae Jeon, and Sung Ju Hwang. A training-free sub-quadratic cost transformer
model serving framework with hierarchically pruned attention. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=PTcMzQgKmn.

13

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://github.com/gkamradt/LLMTest_NeedleInAHaystack?tab=readme-ov-file
https://github.com/gkamradt/LLMTest_NeedleInAHaystack?tab=readme-ov-file
https://arxiv.org/abs/2105.08209
https://arxiv.org/abs/2105.08209
https://openreview.net/forum?id=OfjIlbelrT
https://openreview.net/forum?id=OfjIlbelrT
https://openreview.net/forum?id=PTcMzQgKmn
https://openreview.net/forum?id=PTcMzQgKmn

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Dacheng Li, Rulin Shao, Anze Xie, Eric P Xing, Xuezhe Ma, Ion Stoica, Joseph E Gonzalez, and
Hao Zhang. Distflashattn: Distributed memory-efficient attention for long-context llms training.
arXiv preprint arXiv:2310.03294, 2023a.

Yucheng Li, Bo Dong, Chenghua Lin, and Frank Guerin. Compressing context to enhance inference
efficiency of large language models. arXiv preprint arXiv:2310.06201, 2023b.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Jingyu Liu, Beidi Chen, and Ce Zhang. Speculative prefill: Turbocharging ttft with lightweight and
training-free token importance estimation. arXiv preprint arXiv:2502.02789, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

NVIDIA. Nvidia ada gpu architecture. Technical report, NVIDIA, 2023. URL
https://images.nvidia.cn/aem-dam/Solutions/geforce/ada/
nvidia-ada-gpu-architecture.pdf.

NVIDIA. Nvidia rtx blackwell gpu architecture. Technical report, NVIDIA, 2025. URL
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu-architecture.pdf.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman. Quality:
Question answering with long input texts, yes!, 2022. URL https://arxiv.org/abs/
2112.08608.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Siddhant Porwal, Laxmi Bewoor, and Vivek Deshpande. Transformer based implementation for
automatic book summarization. arXiv preprint arXiv:2301.07057, 2023.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. arXiv preprint arXiv:2312.04985, 2023.

Rya Sanovar, Srikant Bharadwaj, Renee St Amant, Victor Rühle, and Saravan Rajmohan. Lean
attention: Hardware-aware scalable attention mechanism for the decode-phase of transformers.
arXiv preprint arXiv:2405.10480, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Advances
in Neural Information Processing Systems, 37:68658–68685, 2024.

14

https://images.nvidia.cn/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.cn/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://arxiv.org/abs/2112.08608
https://arxiv.org/abs/2112.08608

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar,
Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
2025. URL https://arxiv.org/abs/2503.19786.

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL 2019, pp. 10–19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367196. doi:
10.1145/3315508.3329973. URL https://doi.org/10.1145/3315508.3329973.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Chong Wang, Jian Zhang, Yebo Feng, Tianlin Li, Weisong Sun, Yang Liu, and Xin Peng. Teaching
code llms to use autocompletion tools in repository-level code generation, 2024a. URL https:
//arxiv.org/abs/2401.06391.

15

https://arxiv.org/abs/2503.19786
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2401.06391
https://arxiv.org/abs/2401.06391

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen, Ruikai Zhang, Yuchi Ma, and Zibin Zheng.
Rlcoder: Reinforcement learning for repository-level code completion, 2024b. URL https:
//arxiv.org/abs/2407.19487.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=NG7sS51zVF.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy
Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, et al. Kv cache compression, but what must we
give in return? a comprehensive benchmark of long context capable approaches. arXiv preprint
arXiv:2407.01527, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublinear
time and memory. arXiv preprint arXiv:2402.06082, 2024.

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen,
and Bin Cui. Pqcache: Product quantization-based kvcache for long context llm inference. arXiv
preprint arXiv:2407.12820, 2024a.

Jintao Zhang, Haofeng Huang, Pengle Zhang, Jia Wei, Jun Zhu, and Jianfei Chen. Sageattention2
technical report: Accurate 4 bit attention for plug-and-play inference acceleration. arXiv preprint
arXiv:2411.10958, 2024b.

Jintao Zhang, Jia wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit atten-
tion for plug-and-play inference acceleration. In The Thirteenth International Conference on Learn-
ing Representations, 2025a. URL https://openreview.net/forum?id=OL44KtasKc.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei
Chen. Spargeattn: Accurate sparse attention accelerating any model inference. arXiv preprint
arXiv:2502.18137, 2025b.

16

https://arxiv.org/abs/2407.19487
https://arxiv.org/abs/2407.19487
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=OL44KtasKc

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench: Extending long context
evaluation beyond 100k tokens, 2024c. URL https://arxiv.org/abs/2402.13718.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning, 2024d.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv, Huanqi
Cao, Xiao Chuanfu, Xingcheng Zhang, et al. Sampleattention: Near-lossless acceleration of long
context llm inference with adaptive structured sparse attention. arXiv preprint arXiv:2406.15486,
2024.

17

https://arxiv.org/abs/2402.13718

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A LLM USAGE

During the writing process of this paper, we used LLMs to assist in polishing the writing and
employed AI tools to support the visualization of experimental results.

B ADDITIONAL IMPLEMENTATION DETAILS

For the quantization algorithm scheme, we use the smoothing technique mentioned in SageAtten-
tion2 (Zhang et al., 2024b) to improve the quality of QK quantization, which introduce negligible
overhead. While the quality of quantization affects the accuracy performance of SALE, it should be
noted that SALE is designed to be orthogonal to the quantization algorithm.

We select five input samples from the Retrieve.KV task in InfiniteBench to perform calibration for
SALE, and the final configuration must satisfy the error bound requirement across all five samples.
The per-head threshold calibration for Llama-3.1 on RTX4090 server takes approximately five
minutes to complete.

C ADDITIONAL EXPERIMENT DETAILS

For model inference, we leverage the transformers (Wolf et al., 2020) library to build an execution
pipeline and replace the default self-attention module with sparse methods. We use greedy decoding
to avoid randomness during generation, and use the default chat template to construct the input
prompt. We use the same set of input samples as our method to search the optimal hyperparameters
for SpargeAttention. Since the open-source code of MInference only uses one input sample for
calibration, we employed the first sample from this set for its sparse pattern searching.

During evaluation process, to ensure proper model behavior, we truncate samples that exceed the
maximum context window length. Following common practice, we retain the tokens from both the
beginning and the end of the sequence and remove those from the middle portion. For all these
benchmarks and tasks, we employ the official evaluation scripts from their respective open-source
repositories to assess model outputs.

For the data format during model inference, we employed BFloat16 for FlexPrefill due to requirements
specified in its repository, while Float16 was used for all other methods.

D 4BIT SELECTION-PASS VS 16BIT SELECTION PASS

8K 16K 32K 64K 128K
Context Length

0

1

2

3

4

Sp
ee

du
p

SALE w/o QK Quant
SALE

(a) Single input speedup

0.78 0.82 0.86 0.90
Sparsity

120

140

160

180

Sc
or

e

SALE
SALE w/o QK Quant

(b) Accuracy and sparsity result

Figure 5: Comparison between SALE and SALE w/o QK Quant. (a)Single input speedup. (b)
Comparison between SALE v.s. SALE w/o QK Quant on InfiniteBench. The brown horizontal
dashed line represents the score achieved by FlashAttention2.

To evaluate the effectiveness of 4-bit attention weight approximation, we further conducted experi-
ments using original-precision (16-bit) QK matrices to inspect the attention map, which is referred to
as SALE w/o QK Quant. The result is shown in Figure 5. We measure the single input speedup of two

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

methods under varying input lengths, using the same set of input samples as in the Figure 3(a). The
result indicates that using original-precision QK to estimate attention weights leads to a significant
increase in computational overhead.

We further evaluate the accuracy and attention sparsity of both methods based on Llama-3.1, where
corresponding data points for the two methods are obtained using the same θ. We use the scores from
InfiniteBench to represent accuracy. Attention sparsity metric is defined as the ratio of the number of
skipped attention blocks to the total number of attention blocks, and the results presented here are
measured when processing contexts of 128K length. As observed, under identical hyperparameter
settings, SALE w/o QK Quant achieves higher attention sparsity while showing a slight performance
drop on InfiniteBench. This may be attributed to the limited precision of current Int4 quantization
techniques, which can cause certain approximated attention weights to exceed their true values,
thereby leading to more blocks being selected.

E SPARSITY STATISTIC ANALYSIS

To enable a more transparent comparison between SALE and other sparse attention baselines intro-
duced in the Section 4, we tested the sparsity results of these methods on the input samples from
LongBench. We divided all inputs into three groups according to their context lengths and computed
the average sparsity rate along with its standard deviation for each group during processing. The
hyperparameters used for each sparse method here are consistent with those described in Section 4.1.
The results are in Table 4, with data in each cell formatted as (mean, std):

Table 4: Sparsity comparison

Sparse methods MInfer Flex Sparge SALE

0-20K (0.138, 0.029) (0.604, 0.035) (0.184, 0.016) (0.517, 0.028)
20K-40K (0.356, 0.043) (0.676, 0.046) (0.279, 0.022) (0.651, 0.028)

> 40K (0.471, 0.044) (0.677, 0.026) (0.339, 0.025) (0.678, 0.020)

The experimental results show that our scheme has obvious advantages in terms of sparsity rate
compared with MInference and SpargeAttn. When compared with FlexPrefill, our sparsity rate is
lower for context length ≤40K, but higher for context length > 40K.

It should be noted that a higher sparsity rate of FlexPrefill here does not mean better performance.
According to the results in Figure 4(a), SALE can achieve both higher scores and faster end-to-end
latency than FlexPrefill under various sparsity rates.

F HYPERPARAMETERS EXPLANATION

τ controls the sparsity rate of a specific attention head. When the relative attention score of an
attention block is less than τ , this block will be ignored in the Computation Pass. Therefore, as τ
increases, more blocks will be skipped, leading to a higher sparsity rate, decreased accuracy, and
faster attention computation. The value of τ can vary across different heads, and its specific value is
determined during the calibration process.

τ0 represents the initial value of τ in calibration process for each attention head. It will gradually
decrease during the calibration process until the output error requirement is met. Therefore, it is
sufficient for τ0 to have a relatively large initial value. τ0 does not affect the speedup and accuracy
performance of the model.

θ, on the other hand, is a hyperparameter that adjusts the global sparsity rate. When θ increases, the τ
values for each head will also increase, and the sparsity level of SALE get higher. In our Figure 4, we
have assessed the performance of SALE under various values of θ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G ADDITIONAL KERNEL OPTIMIZATION TECHNIQUE

Reduction in dequantization operations Theoretically, whether an attention block is skipped
only depends on the comparison between the largest Relative Attention Score with τ . By employing
per-thread quantization strategy proposed in (Zhang et al., 2024b), we make all quantized attention
weight elements held by each thread share the same quantization scale. This ensures that the largest
Relative Attention Score and the largest approximated attention weight occur at the same position.
Therefore, only the largest approximated attention weight needs to be dequantized, which saves many
low-throughput operations such as datatype conversion.

Segment level all-reduce Due to the hardware characteristics of GPU Tensor Cores, the QK
GEMM for an attention block is collectively executed by multiple threads within a GPU thread blocks
with the output of the QK GEMM stored in a distributed manner across different threads. Since the
elements held by each thread are invisible to other threads, we need to perform a CTA-wise all-reduce
operation on the relative importance comparison results in each thread. This ensures that all threads
within the thread blocks reach a unified judgment on the importance of the current block.

In fact, this all-reduce operation is costly:it introduces multiple warp_shfl instructions,
_syncthreads instructions, and shared memory access instructions. Since the Selection-Pass does
not require computing attention output, we employs specific optimization techniques to reduce the
number of all-reduce operations. Specifically, each thread can temporarily store the relative impor-
tance of multiple consecutive blocks as multiple bits in local variables, and use a single all-reduce
operation to achieve CTA-wise consistency. This allows us to save a significant number of all-reduce
operations.

H QUANTIZATION SCHEME ANALYSIS

SALE uses quantized QK to estimate attention weights in Selection-Pass. Theoretically, the fewer
the number of bits used in quantization, the faster the estimation of attention weights will be, as
this allows the use of faster Tensor Core instructions and results in lower DRAM memory access
overhead. Considering that the minimum bit width supported by Tensor Cores in current mainstream
computing cards is 4-bit, the most efficient quantization scheme we can choose is 4-bit quantization
for QK. Lower quantization bit widths cannot yield additional performance benefits.

However, lower-precision quantization also introduces greater errors, possibly leading to a decrease
in the accuracy of important block selection in Selection-Pass. To demonstrate the block selection
accuracy under 4-bit quantization, We tested the “recall rate” between the blocks selected using 4-bit
QK and those selected using full precision floating-point QK. The “recall rate” metric can be defined
as “the number of blocks commonly selected by both methods” divided by “the total number of
blocks selected using full precision QK”. The input samples used in the test are aligned with those
in Figure 3(a), and the tests are also based on the Llama-3.1-8B-Instruct model. We obtained the
statistical results under different context lengths, which are demonstrated in Table 5:

Table 5: Block selection recall rate

Context length 8K 16K 32K 64K 128K

Recall rate 98.2% 97.7% 97.2% 96.6% 95.4%

The experimental results demonstrate that 4-bit QK is capable of accurately selecting important
blocks. The "Sparsity-Accuracy" curve presented in Figure 5(b) also indicates that quantizing QK
to 4-bit can achieve block selection accuracy comparable to that of full-precision QK. Thus, SALE
adopts 4-bit scheme which enables it to balance accuracy and efficiency.

I TWO PASS DESIGN RATIONALE

In contrast to our “Estimation-computation disaggregation” (“Two-pass”) kernel design mentioned
in Section 3.4, the “One-pass” design integrates these two processes into a single kernel. Specifically,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

when iterating through a key block, if the current attention block is determined to be important, the
output for the current block is computed directly (i.e. “on-the-fly pruning”).

Theoretically, this design eliminates the need to store the coordinates of important blocks, and can
reuse the computation results of low-bit QK GEMM, which is expected to run faster. However, in
practice, the “One-pass” design is not feasible. Two primary reasons are listed here:

4-bit quantization issue In fact, the results of 4-bit QK GEMM cannot be directly used for
computing attention output, as this would lead to significant accuracy degradation. To illustrate this
point, in Table 6, we present the accuracy experiment results of using 4-bit QK in the computation
stage. We refer to this scheme as “4+4”, whereas SALE corresponds to “4+8”. We also tested a scheme
that calculates attention scores using only 4-bit QK without block pruning, denoted as "4 dense".
All 4-bit quantization in the table has adopted the technique mentioned in SageAttention2 (Zhang
et al., 2024b) to improve quantization quality. We report the scores on two tasks of InfiniteBench
in Table 6:

Table 6: Accuracy performance comparison

Tasks Retrieve.KV En.MC

4+4 35.8 63.30
4 dense 41.4 60.26

SALE (4+8) 56.4 66.38

Our experimental results show that the "4+4" scheme leads to a degradation in model performance.
Even if we do not prune any blocks, a significant score drop still occurs. Therefore, we choose to use
QK with a precision of at least 8 bits in the Computation Pass.

Implementation challenges According to the hardware characteristics of GPUs, “on-the-fly prun-
ing” cannot be efficiently implemented on GPUs. The requirement for immediate decisions imposed
by the "on-the-fly pruning" means that we have to perform an all-reduce operation each time after
computing the QK GEMM. Based on the analysis provided in Section G, it will introduce much
more CTA-wise all-reduce operations compared to SALE, which is not efficient.

In addition, “on-the-fly pruning” is unfriendly to the GPU memory hierarchy. Due to the high DRAM
access latency of GPUs, high-performance CUDA implementations typically pre-issue memory
access instructions for data that will be computed to achieve overlap between memory access and
computation. However, the nature of “on-the-fly pruning” dictates that we must decide whether to
issue the memory access instruction only after completing the QK GEMM, and then wait for the data
transmission of value tensor, which waste the computational resource on SM. Otherwise, if we issue
memory access instructions for the value tensor for all blocks, the unnecessary memory access will
also impair performance.

Based on the above analysis, even if we adopt the “8+8” scheme to attempt reusing the results of
8-bit QK GEMM, it still cannot match the efficiency of “Two-pass” design.

J SELECTION-PASS ALGORITHM

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 1: Selection-Pass

Input: Q,K ∈ RN×d , 4-bit quantized matrices Q̃, K̃ ∈ ZN×d, threshold τ , block size bq, bk, local
area size l.

1 Nq ← N/bq , Nk ← N/bk, Nlocal ← l/bk;
2 Split Q,K into blocks Qi ∈ Rbq×d, Kj ∈ Rbk×d, split Q̃, K̃ into blocks Q̃i ∈ Zbq×d, K̃j ∈ Zbk×d

for i = 0 to Nq − 1 do
3 ISL ← {0} ∪ [i−Nlocal, i− 1] ; // Block indices of sink-local area

4 m̃, l̃ ∈ Rbq , m̃← −∞, l̃← 0 ; // Initialize intermediate result
5 for j ∈ ISL do
6 if j ̸= 0 then
7 m̃∆ ← m̃ - rowmax(QiK

T
j /
√
d); l̃← l̃ · exp (m̃∆) ;

8 end
9 m̃← rowmax(QiK

T
j /
√
d) ; // Ignore causal mask

10 l̃← l̃ + rowsum(exp(
QiK

T
j√

d
- m̃)) ;

11 Mbs[i, j]← 1

12 end
13 for j ← 1 to (i−Nlocal − 1) do
14 S̃ij ← Dequantize(Q̃iK̃

T
j) /
√
d ; // Approximate attention weight

15 P̃ij ← exp(S̃ij − m̃) / l̃ ; // Compute Relative Attention Score

16 Mbs[i, j]← max(P̃ij) ≥ τ ;
17 end
18 end

Output: Block-level sparse mask Mbs

22

	Introduction
	Related works
	Method
	Problem formulation
	Block selection via fine-grained importance approximation
	Per-head threshold calibration
	Kernel optimization

	Experiments
	Settings
	Accuracy evaluation
	Efficiency evaluation
	Ablation study

	Conclusion
	Ethics statement
	Reproducibility statement
	LLM usage
	Additional implementation details
	Additional experiment details
	4bit Selection-Pass vs 16bit Selection Pass
	Sparsity statistic analysis
	Hyperparameters explanation
	Additional Kernel optimization technique
	Quantization scheme analysis
	Two pass design rationale
	Selection-Pass algorithm

