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ABSTRACT

Many advanced Large Language Model (LLM) applications require long-context
processing, but the self-attention module becomes a bottleneck during the prefilling
stage of inference due to its quadratic time complexity with respect to sequence
length. Existing sparse attention methods accelerate attention computation by
skipping less significant regions of the attention map. However, these approaches
typically perform coarse-grained inspection of the attention map, resulting in
their suboptimal performance. In this paper, we propose SALE, a fine-grained
sparse attention method that accelerates the long-context prefilling stage of LLM
with negligible loss in model accuracy. SALE achieves fast and accurate fine-
grained attention map estimation using low-bit quantized query-key products to
approximate attention weights, followed by the application of a novel Relative
Attention Score metric to assess the importance of query-key pairs. This design
enables us to accurately identify important regions in the attention map, thereby
constructing a highly sparse attention mask.

We implement a custom CUDA kernel in SALE optimized for hardware effi-
ciency, reducing overhead to approximately 11% of the full attention latency.
Notably, SALE requires no parameter training and can be seamlessly integrated
into existing systems with trivial code modifications. Experiments on long-context
benchmarks demonstrate that our method outperforms existing approaches in
accuracy-efficiency trade-offs, achieving at least 3.36× speedups on Llama-3.1-8B
for sequences longer than 64K while maintaining model quality.

1 INTRODUCTION

With the growing demand for ultra-long context understanding in complex applications such as long
book summarization (Kryściński et al., 2022; Porwal et al., 2023; Chang et al., 2024), long document
question-answering (Caciularu et al., 2023; Pang et al., 2022; Fan et al., 2019), and repository-
level code completion (Wang et al., 2024a;b), state-of-the-art Large Language Models (LLM) are
now equipped with increasingly longer context window (Grattafiori et al., 2024; Yang et al., 2025;
Team et al., 2025; DeepSeek-AI et al., 2025). Most LLMs employ a decoder-only Transformer
architecture (Vaswani et al., 2017), where the self-attention module serves as the core component to
enable powerful language understanding capabilities. However, during the prefilling stage of LLM
inference, the self-attention module exhibits quadratic time complexity with respect to the number
of input tokens. This makes it the primary performance bottleneck, as computational costs increase
rapidly with longer contexts (Fu, 2024; Jiang et al., 2024).

In recent years, numerous research studies have attempted to accelerate prefilling by computing only
the important regions of attention maps, based on the observation that attention maps in LLMs are
significantly sparse (Deng et al., 2024). These methods, referred to as sparse attention, use sparse
masks to indicate the specific regions of the attention map to be computed. Some sparse attention
methods utilize sparse masks with static patterns, such as stride pattern (Child et al., 2019), window
pattern (Zaheer et al., 2020; Beltagy et al., 2020), or streaming pattern (Xiao et al., 2024b; Han et al.,
2023). However, static sparse masks often result in severe performance degradation, as the real sparse
patterns of LLM attention maps are highly dynamic across various input contents (Lai et al., 2025;
Jiang et al., 2024).
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To adapt to such dynamism, several methods attempt to predict critical attention regions by analyzing
the attention map. For instance, MInference (Jiang et al., 2024) and SampleAttention (Zhu et al.,
2024), decompose the sparse attention pattern into combinations of multiple vertical or slash lines,
and predict the positions of these lines by analyzing the attention score distribution of a subset of
query tokens. Another series of sparse attention methods, such as FlexPrefill (Lai et al., 2025),
SpargeAttn (Zhang et al., 2025b), and HiP Attention (Lee et al., 2025), treat the attention map as
the concatenation of blocks. They dynamically skip certain attention computations at the block
granularity. These methods often construct a representative token for each consecutive query/key
chunk and build sparse masks based on the product between representative tokens. Although existing
dynamic sparse attention methods can accelerate the prefilling stage of LLM inference to some extent,
they fail to achieve a satisfactory accuracy-efficiency trade-off, as their inspection approaches are
either too coarse-grained or insufficiently comprehensive.

In this paper, we propose SALE, a novel block-Sparse Attention technique based on Low-bit
Estimation of attention weights, to significantly accelerate the long-context prefilling stage of LLM
inference with negligible loss in model accuracy. SALE is built on a fast and accurate framework
for fine-grained attention map inspection. By performing element-wise importance analysis on
the entire attention map, SALE is capable of constructing highly sparse attention masks, while
ensuring that the output error is bounded within an acceptable tolerance range. We propose two key
components to implement this framework. First, we utilize low-bit quantized query-key products (QK)
to approximate attention weights. This process runs efficiently on modern GPUs, leveraging two
key factors: the use of high-throughput low-bit Tensor Core instructions and the reduction in
global memory access. Second, we propose a novel Relative Attention Score metric to evaluate the
importance of query-key pairs. Observing that the attention scores in the sink (beginning) and local
(end) regions of each attention map row tend to be relatively higher (Xiao et al., 2024b; Gu et al.,
2025), we determine the importance of a query-key pair based on the relative magnitude between its
attention weight and the attention weights within the sink and local regions. Compared to common
practice that uses the original attention scores (Zhang et al., 2023; Li et al., 2024; Zhang et al., 2024a)
as indicators, our design is more efficient because it avoids materializing the entire attention map
in DRAM. It also supports adaptive adjustment of the sparsity level according to the input, which
allows SALE to robustly handle input samples of varying complexities. SALE further adopts several
kernel optimization techniques to optimize hardware efficiency.

SALE incurs no additional training overhead and can be seamlessly integrated into existing inference
systems. We conduct comprehensive experiments on various long-context processing benchmarks
using two LLMs, Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and Qwen-2.5-32B-Instruct (Yang
et al., 2024), to verify the effectiveness of our method. Experimental results demonstrate that
our method delivers a speed-up of at least 3.36× when processing sequences longer than 64K
tokens, while maintaining negligible accuracy loss. It achieves superior accuracy-efficiency trade-off
compared to the baseline methods.

2 RELATED WORKS

Sparse LLM inference Many previous works try to leverage the sparsity nature of transformer
model to accelerate LLM inference from different perspectives. One line of research exploits input
text sparsity to dynamically prune context irrelevant to the user’s query (Jha et al., 2024; Liu et al.,
2025; Shi et al., 2024; Jiang et al., 2023; Li et al., 2023b). While these methods can significantly
reduce LLM inference latency for relatively simple prompts, they severely degrade generation quality
when processing complex inputs (Yuan et al., 2024).

Numerous studies have observed sparsity patterns in self-attention modules, where only a small
subset of attention map elements are much larger than the rest. Some methods (Xiao et al., 2024b;
Fu et al., 2024; Xiao et al., 2024a) use predefined static sparsity patterns to prune the attention
map. However, these methods suffer from accuracy degradation as the attention sparsity distribution
varies among different input contexts (Jiang et al., 2024; Lai et al., 2025). Other methods assume
that the distribution follows certain structures, such as Vertical-Slash or Block-Sparse. Some of
them (Jiang et al., 2024; Zhu et al., 2024) try to dynamically predict the location of important regions
by examining the exact attention scores of several tokens. Others (Gao et al., 2024; Zhang et al.,
2025b; Lai et al., 2025; Lee et al., 2025) regard the attention map of compressed tokens, which are
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generated from continuous token chunks, as the proxy of real attention map. All these methods fail to
achieve accurate predictions due to their overly coarse-grained approximations of attention maps.

In contrast to the aforementioned approaches, several alternatives to self-attention have emerged
to circumvent its quadratic complexity. Notable examples include: (1) natively sparse attention
algorithms (Yuan et al., 2025; Lu et al., 2025), (2) linear attention mechanisms (Peng et al., 2023;
Yang et al., 2023), and (3) state-space models (Gu & Dao, 2024; Dao & Gu, 2024). However, these
methods impose significant adoption costs as they require full model training.

During the decoding stage, methods like SparQ (Ribar et al., 2023) and InfiniGen (Lee et al.,
2024) compress the channels of query / key tokens to efficiently approximate the attention scores.
Retrieval-based approaches (Zhang et al., 2024a; Chen et al., 2025; Liu et al., 2024) leverage vector-
retrieval techniques to approximately sort the attention scores of previous input tokens. Several
existing algorithms compress tokens by analyzing attention maps during the prefilling stage. These
approaches either eliminate redundant tokens (Zhang et al., 2023; Liu et al., 2023; Li et al., 2024; Ge
et al., 2023; Devoto et al., 2024) or perform token merging (Zhang et al., 2024d; Zandieh et al., 2024).
Our method is orthogonal to these optimizations and can be combined to further enhance end-to-end
LLM inference efficiency.

Attention kernel optimization Many CUDA kernel optimization techniques (Dao et al., 2022;
Dao, 2023; Shah et al., 2024; Sanovar et al., 2024) leverage hardware features to accelerate the
computation of the original full attention. Although these methods accelerate computation, they still
require full attention calculations and fail to fully exploit the inherent sparsity of attention maps.

3 METHOD

3.1 PROBLEM FORMULATION

We denote the query, key and value matrices as Q, K and V , respectively, while the corresponding
vectors at token offset i are qi, ki, vi. Let N represent the sequence length and d represent the hidden
size. The shapes of Q, K and V are all N × d. Matrix M is the sparse attention mask with a shape
of N ×N . Single-head self-attention module can be mathematically formalized as below:

Attn(Q,K, V,M) = Softmax(
QKT

√
d

+M) · V (1)

During the computation of self-attention, the attention weight matrix S is defined as S = QKT /
√
d,

and the attention score matrix P is defined as P = Softmax(S +M). The sparse attention mask
is formed by M = Mc +Ms, where Mc,Ms ∈ {0,−∞} represent the causal mask and the sparse
mask respectively. Based on the mathematical properties of Softmax function, if an item M [i, j] in
matrix M is −∞, its corresponding attention score will be zero. Therefore, we can skip the attention
computation at this position.

For block-sparse attention, query and key tokens are divided into continuous blocks of sizes bq, bk
along the sequence dimension. We denote the query, key token block at position j as Qj , Kj , which
have the shapes of bq × d and bk × d respectively. For simplicity, we assume bq | N , bk | N , and
denote Nq = N/bq, Nk = N/bk. As shown in Figure 1(a), the attention map can be viewed as the
concatenation of Nq ·Nk attention blocks, each of shape bq × bk. Block sparse attention skips certain
computations at the block level. To formulate, we denote Mbs ∈ {0, 1} as block-level sparse mask,
and values of sparse mask Ms depend on Mbs:

Ms[i, j] =

{
0, if Mbs[ ⌊i/bq⌋, ⌊j/bk⌋ ] = 1,

−∞, if Mbs[ ⌊i/bq⌋, ⌊j/bk⌋ ] = 0
(2)

In other words, the attention computation between Qi,Kj , Vj will be skipped if Mbs[i, j] is zero.
Block-sparse attention aims to maximize sparsity in matrix Mbs while bounding the approximation
error relative to full attention within a tolerable threshold.
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Figure 1: (a) Illustration of SALE. The whole 16× 16 attention map is viewed as concatenation of
many 2 × 2 blocks. We first estimate the attention weights in an element-wise manner, and then
construct a sparse mask at the block level based on these estimations. (b) Attention maps of two
different attention heads in Llama-3.1-8B-Instruct when processing different input sequences.

3.2 BLOCK SELECTION VIA FINE-GRAINED IMPORTANCE APPROXIMATION

Considering the dynamic nature of the attention pattern in LLMs (Jiang et al., 2024; Lai et al.,
2025), constructing "Sparse and Accurate" Mbs is highly challenging. To achieve this goal, SALE
evaluates the “importance” of each position in the attention map. Such a framework enables SALE
to examine the attention map at a fine-grained level, allowing robust handling of various dynamic
attention patterns. We propose two key designs—Low-bit Attention Weight Approximation and
Relative Importance Approximation—to ensure the efficient and accurate operation of SALE.

Low-bit attention weight approximation SALE first calculates the attention weights for all
query-key pairs. Rather than using full-precision floating-point Q and K matrices, SALE computes
attention weights using low-bit quantized versions Q̃ and K̃ for approximation, significantly min-
imizing additional overhead with high-throughput low-bit Tensor Core instructions and reduced
DRAM access. For instance, on RTX 4090 and RTX 5090 GPUs, the throughput of 4-bit and
8-bit Tensor Core instructions is 8× and 4× that of 16-bit (full precision) Tensor Core instructions,
respectively (NVIDIA, 2023; 2025). Meanwhile, the overhead of loading 4-bit and 8-bit QK matrices
from DRAM is 1/4 and 1/2 of that required for loading 16-bit QK matrices, respectively.

Regarding the selection of the quantization scheme, we choose to quantize query-key matrices to
4-bit, which maintains high selection accuracy while maximizing the acceleration capability of the
low-bit instructions in GPU Tensor Cores. We provide more detailed discussion about quantization
scheme in section H.

Relative importance approximation Denoting approximated attention weights as S̃, the next
step is to evaluate the “importance” of each attention block. In related works (Zhang et al., 2023;
Li et al., 2024; Liu et al., 2025; 2023), a commonly used metric is the attention score, obtained
by applying Softmax function to attention weights. Compared to existing practices, our approach
performs importance computation on-the-fly, bypassing the need to compute full attention scores. We
propose Relative Attention Score as our importance metric instead of the original attention scores.

Our design is based on an observation in many related studies (Xiao et al., 2024b; Gu et al., 2025;
Xiao et al., 2024a). As shown in Figure 1(b), attention scores within the “sink and local regions” (i.e.
the beginning and end of each row) maintain consistently large values, while the region exhibits
consistent size across diverse input sequences. Motivated by this pattern, we assess “importance” by
comparing S̃[i, j] with the attention weights from the sink and local regions. Specifically, before
examining those blocks located in the middle of the sequence, we first compute full precision QK
matrix multiplication on blocks in the sink and local areas. Denoting the indices of key tokens within
the sink and local regions as ISL, this process yields two intermediate values, m̃i and l̃i. We then
compute the Relative Attention Score P̃ [i, j] base on these two intermediate results, which can be
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formulated as follows:

m̃i = max
j∈ISL

S[i, j], l̃i =
∑

j∈ISL

eS[i,j]−m̃i , P̃ [i, j] =
eS̃[i,j]−m̃i

l̃i

If all P̃ [i, j] values in a block are smaller than the threshold τ (e.g. 0.004), this block is marked
as non-critical, and the attention computation for this block will be skipped. The procedure for
determining the threshold value τ ∈ (0, 1) is elaborated in Section 3.3.

3.3 PER-HEAD THRESHOLD CALIBRATION

Figure 1(b) illustrates the attention score distributions of two attention heads of Llama-3.1-8B-Instruct,
exhibiting inconsistent sparsity levels. Thus, applying the same τ for all heads may lead to suboptimal
performance. To address the issue, we propose an offline calibration procedure to determine the
optimal τ value for each head, which ensures negligible output errors while maximizing sparsity.

We adopt the L1 distance between the output of SALE and the output of full attention as the error
metric, which can be formulated as Err(τ) = ∥O− Õ∥1/N . O is the result of the original attention,
Õ is the result of SALE, and N represents sequence length. At the beginning of the calibration, τ
is initially set to be a relatively large threshold τ0 (e.g. 0.008). We then progressively reduce the
sparsity level by halving the value of τ until Err(τ) falls below θ, where θ is the predefined error
bound. By tuning θ, we can control the sparsity level of SALE. In Section F, we provide a detailed
explanation of the correlations between these hyperparameters.

3.4 KERNEL OPTIMIZATION

For kernel implementation, we propose several optimization techniques to further improve the
hardware efficiency of SALE. Here, we describe some core designs, and more detailed information
about the optimizations can be found in Section G.

Computation tiling SALE targets long context processing scenarios, where materializing the
intermediate results of QK GEMM would occupy a large amount of DRAM space and introduce
extensive I/O overhead. Therefore, we implement SALE based on the framework of FlashAttention2
(Dao, 2023) to avoid this issue. Specifically, the computation tasks of different query blocks will be
scheduled to different cooperative thread arrays (CTA) for parallel processing. Each CTA iteratively
checks the importance between its corresponding query block and different key blocks.

Estimation-computation disaggregation In consideration of performance issues, SALE separates
"important block selection" and "sparse attention computation" into two distinct CUDA kernels,
which are referred to as Selection-Pass and Computation-Pass, respectively. During Selection-Pass,
we select important attention regions at the block granularity and record the coordinates of these
blocks. We provide the corresponding pseudo code in Section J for a more detailed description. After
Selection-Pass, we compute attention output on selected blocks in the following Computation-Pass.

A potentially simpler and more efficient implementation is the “One-pass” alternative: upon iden-
tifying an important key block, immediately compute the output for that block. However, such a
design is not feasible in practice, as it fails to reduce computational workload on the one hand and is
incompatible with the hardware characteristics of GPUs on the other. We provide a more detailed
discussion on this issue in Section I.

Relative attention score comparison Directly computing Relative Attention Score is time-
consuming as it consists of multiple complex hardware instructions, including floating point division
and exponential function. Considering that l̃i and m̃i do not change after computation in sink and
local areas, we optimize this comparison by following mathematical transformation:

eS̃[i,j]−m̃i

l̃i
≥ τ ⇐⇒ S̃[i, j] ≥ ln(τ · l̃i + m̃i) (3)

The comparison between the Relative Attention Score and τ can then be accomplished using a single
floating point comparison instruction. It is worth noting that we also mitigate potential overflow
issues caused by the exponential function.
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Integration with SageAttention The final stage of SALE is Computation-Pass. We employ the
QK 8-bit quantization strategy proposed in SageAttention (Zhang et al., 2025a) to further accelerate
Computation-Pass while maintaining negligible precision loss.

4 EXPERIMENTS

4.1 SETTINGS

Models Most of the experiments are conducted using Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) (Llama-3.1). We also use Qwen2.5-32B-Instruct (Yang et al., 2024) (Qwen-2.5) to validate
the effectiveness of our method on larger-scale LLM. Both models support a context length of 128K.

Implementation details We implement Selection-Pass in C++ CUDA and use Triton (Tillet et al.,
2019) compiler to accelerate the quantization process. We implement the quantized Computation-Pass
based on the open-source code of SpargeAttn (Zhang et al., 2025b). For those hyper-parameters
mentioned in Section 3.2, we use block size bq = 64 and bk = 32. We constrain the sink area
size to 32 tokens and the local area size to no more than 256 tokens. During offline calibration, we
set the initial threshold τ0 = 0.008, and use error bounds of θ = 0.4 for Llama-3.1 and θ = 2.0
for Qwen-2.5 by default. All latency experiments are conducted on a server with 8 GeForce RTX
4090 GPUs without using tensor-parallel (Shoeybi et al., 2019) or context-parallel (Li et al., 2023a)
techniques. In the Section B, we provide additional information about the implementation.

Baselines To demonstrate the advantages of SALE, we compare it with four strong baselines for
self-attention acceleration in long-context processing: FlashAttention2(FA2) (Dao, 2023), MInfer-
ence(MInfer) (Jiang et al., 2024), FlexPrefill(Flex) (Lai et al., 2025), and SpargeAttn(Sparge) (Zhang
et al., 2025b). FA2 computes standard full attention, which serves as an oracle. The other three
methods employ sparse attention mechanisms. All experimental results are based on their publicly
available implementation. We use γ = 0.95 for Llama-3.1 and γ = 0.98 for Qwen-2.5 when
evaluating FlexPrefill. We use (l1 = 0.08, l2 = 0.09) for Llama-3.1, and (l1 = 0.04, l2 = 0.05) for
Qwen-2.5 when evaluating SpargeAttn. For MInference, we select the optimal sparse pattern based
on its open-source code. Additionally, to investigate the performance of these methods under varying
sparsity levels, we prepare multiple sets of hyperparameters based on their publicly available codes.
For FlexPrefill and SpargeAttn, as described in their papers, we adjust their sparsity levels by tuning
γ and (l1, l2), respectively. For MInference, since its open-source implementation configures all
heads with the Vertical-Slash pattern, the sparsity rate is adjusted by varying the total number of
vertical and slash lines across all heads. We provide more details in Section C.

Metrics To validate the effectiveness of SALE, we assess model quality using long-context bench-
marks (see Section 4.2) and measure efficiency through latency measurements. All latency results in
the experimental section focus solely on the attention computation time across all layers during the
LLM prefilling phase. Our latency measurements include all online operations, such as quantization,
block selection, and index selection. In some experiments, we report the end-to-end (E2E) latency on
certain datasets, which is computed by summing the latency of all samples in the dataset.

4.2 ACCURACY EVALUATION

Following common practice (Zhang et al., 2025b; Jiang et al., 2024; Lai et al., 2025; Zhang et al.,
2024a; Gao et al., 2024; Li et al., 2024), we adopt three long-context understanding benchmarks
to compare the generation quality of our method with other baselines. Achieving higher scores on
these baselines indicates better performance. (1) LongBench (Bai et al., 2024): A comprehensive
benchmark covering diverse long-text applications, including single-document QA, multi-document
QA, summarization, few-shot learning, synthetic tasks, etc. The context lengths of most input
samples are below 32K tokens. (2) InfiniteBench (Zhang et al., 2024c): A benchmark designed to
evaluate the capability of processing excessively long context (exceeding 100K tokens). It comprises
several challenging synthetic tasks such as Retrieve.KV and Math.Find, as well as other real-world
tasks including QA and summarization based on fake books or fake dialogues. (3) Needle-In-A-
Haystack (Kamradt, 2023): A widely-used long-context retrieval task. It requires the LLM to locate
a randomly inserted sentence at various positions within a real-world context.
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Table 1: LongBench evaluation results of different methods. We use boldface to denote the highest
value and underline to indicate the second-highest value.

Llama-3.1 Qwen-2.5Tasks
FA2 MInfer Flex Sparge SALE FA2 MInfer Flex Sparge SALE

NarrativeQA 29.93 24.92 28.29 29.62 28.95 29.20 31.27 29.80 29.19 32.21
Qasper 44.82 44.29 44.55 43.73 45.33 45.79 45.05 45.53 44.61 45.95

MultiFieldQA 54.65 53.71 55.34 56.02 55.18 53.25 53.01 52.61 51.66 53.37
HotpotQA 55.81 52.00 55.38 54.57 55.83 64.68 64.59 64.78 63.94 63.95

2WikiMQA 46.16 44.10 43.43 47.08 42.61 60.87 60.82 62.98 61.13 62.33
MuSiQue 30.41 25.72 30.07 31.40 30.10 39.89 41.38 39.46 39.22 40.54

GovReport 35.29 35.09 34.64 35.04 35.45 30.38 30.59 30.78 30.36 30.66
QMSum 25.25 25.47 25.83 25.12 25.33 23.06 23.16 23.10 23.18 23.42
TREC 72.50 72.00 70.50 71.00 70.50 73.50 73.50 73.50 74.50 73.00

TriviaQA 91.65 91.18 89.81 92.68 90.47 87.68 88.40 89.40 88.81 87.97
SAMSum 43.67 43.73 43.18 43.18 44.19 45.67 45.92 46.43 46.41 45.92

LSHT 46.50 46.00 41.00 45.50 46.50 45.79 47.50 44.17 47.00 47.21
Count 6.72 3.25 2.59 5.89 7.09 12.67 13.67 3.57 9.22 13.38

Retrieval 99.50 97.00 82.00 84.00 100.00 99.50 99.25 92.25 98.83 98.25

Average 48.77 47.03 46.18 47.48 48.39 50.85 51.29 49.88 50.57 51.30

Speedup (64K) 1.00× 1.07× 2.21× 3.11× 3.36× 1.00× 1.25× 1.39× 2.55× 3.28×

LongBench Table 1 presents the LongBench evaluation results comparing SALE with baseline
approaches. In the second row of the table, we use abbreviations introduced in Section 4.1 to denote
each method. In the last two rows, we report the average scores and the latency speedup. The latency
metric, measured on a 64K-length Needle-In-A-Haystack input, confirms the premise of our accuracy
test, that SALE achieves the highest speedup when processing long contexts.

The results on both models show that SALE achieves superior accuracy among all sparse attention
baselines In addition, when our method is applied, Llama-3.1 exhibits only marginal performance
degradation while Qwen-2.5 even shows improvement. We attribute this improvement to our method’s
ability to potentially filter noisy information during the prefilling phase, thereby enhancing the model’s
comprehension capabilities.

InfiniteBench Table 2 presents the test scores of InfiniteBench, evaluating the capability of
processing extremely long inputs. As shown in the table, our method also achieves the best accuracy-
efficiency trade-off on InfiniteBench.

Needle-In-A-Haystack We evaluate the Needle-In-A-Haystack (NIAH) task using Llama-3.1,
with results visualized in Figure 2. The average score and end-to-end speedup for each method are
annotated above their respective plots. Our method achieves a 3.81× speedup with only a 0.1% drop
in average score compared to FlashAttention2, outperforming all other sparse attention baselines.

4.3 EFFICIENCY EVALUATION

Single input speedup We first compare the latency of different methods when processing a single
input. The results are presented in Figure 3(a). We conduct experiments using Llama-3.1 and report

Table 2: InfiniteBench evaluation results of different methods. We use boldface to denote the highest
value and underline to indicate the second-highest value.

Llama-3.1 Qwen-2.5Tasks
FA2 MInfer Flex Sparge SALE FA2 MInfer Flex Sparge SALE

Retrieve.KV 55.60 20.00 38.00 47.20 56.40 4.00 7.60 4.80 4.60 5.40
En.MC 67.25 55.02 68.56 66.38 66.38 63.70 63.32 59.80 61.50 62.80

Math.Find 34.29 34.86 30.00 34.57 30.57 41.40 45.71 47.20 41.70 52.00
En.QA 15.12 13.96 14.18 13.51 13.19 6.70 6.85 6.70 6.80 6.90
En.Dia 16.50 13.50 17.00 17.50 19.00 27.50 30.00 29.00 25.50 27.50

Average 37.75 27.47 33.55 35.83 37.11 28.66 30.70 29.5 28.02 30.92

Speedup (64K) 1.00× 1.07× 2.21× 3.11× 3.36× 1.00× 1.25× 1.39× 2.55× 3.28×
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(b) MInference.
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(c) FlexPrefill.

1K 15
K

29
K

43
K

57
K

71
K

85
K

99
K

11
3K

12
8K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h 
Pe

rc
en

t

Avg: 95.0% | Speedup: 3.35x

0

2

4

6

8

10

Sc
or

e
(d) SpargeAttn.
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(e) SALE.

Figure 2: Needle-In-A-Haystack evaluation results.

the speedup of each method relative to FlashAttention2. To illustrate how latency scales with the
number of tokens, we prepare five input samples of different lengths. These samples are obtained by
truncating a single 128K-length input from the Needle-In-A-Haystack task.

Our method demonstrates consistent speedups over FlashAttention2 across all sequence lengths while
outperforming all sparse attention baselines in most cases. At 8K context length, SALE achieves
a 1.39× speedup. It further exhibits greater speedup as context length increases—reaching 3.88×
at 128K—owing to sparser attention patterns. It should be noted that the hyperparameters of each
sparse method in this test are aligned with those in Section 4.2, indicating that our speedup evaluation
is based on SALE achieving optimal accuracy performance.

Accuracy vs efficiency We adjust the computation budget of each method following the approach
described in Section 4.1 to analyze the accuracy-efficiency trade-offs. Considering that the speedup
achieved by dynamic sparse attention methods may vary depending on the input content, we evaluate
the end-to-end latency of all methods on both LongBench and InfiniteBench for comprehensive
comparison. The results, shown in Figure 4, demonstrate the superior performance of our method on
both datasets.

8K 16K 32K 64K 128K
Context Length

0

1

2

3

4

Sp
ee

du
p

FA2
MInference
FlexPrefill
SpargeAttn
SALE

(a) Single input speedup.

5 6 7
128K Latency(s)

120

140

160

180

Sc
or

e

SALE
SALE w/o Calibration

(b) Effect of calibration.

Figure 3: (a) Speedup in single-input processing. (b) Comparison between SALE v.s. SALE w/o
Calibration on InfiniteBench. The brown horizontal dashed line represents the score achieved by
FlashAttention2.
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Figure 4: Evaluation of accuracy-efficiency trade-offs. The brown horizontal dashed line represents
the score achieved by FlashAttention2. (a) Performance on LongBench under different sparsity levels.
(b) A magnified view focusing on the region enclosed by the dashed box in (a). (c) Performance on
InfiniteBench under different sparsity levels.

4.4 ABLATION STUDY

In this section, we evaluate the latency of each stage in SALE and assess the impact of per-head
threshold calibration. Additionally, in Section D and Section H, we provide additional experimental
results to demonstrate the block selection accuracy of SALE. We also present sparsity measurement
results of these sparse methods across contexts of varying lengths in Section E, which serves as a
supplement to our previous comparison.

Latency breakdown We report the latency breakdown results of SALE under various input lengths
in Table 3. All experiments use Llama-3.1, with reported timings reflecting end-to-end execution
across all 32 model layers. In the second-to-last line, we show the execution time ratio of Quantization
and Selection-Pass operations relative to full attention latency. In the final line, we present the speedup
of Computation-Pass compared to full attention. The results demonstrate that our method introduces
acceptable computational overhead, with its relative cost decreasing as sequence length grows.
Furthermore, Computation-Pass shows greater speedups with longer context lengths, reflecting
improved sparsity level at scale.

Table 3: Latency breakdown (ms).

Context length 8K 16K 32K 64K 128K

Quantization 11 21 47 99 208
Selection-Pass 14 48 166 634 2562

Computation-Pass 51 137 378 1117 3599
FA2 106 416 1597 6224 24731

Overhead ratio 23.9% 16.7% 13.3% 11.5% 11.1%
Computation-Pass speedup 2.08× 3.04× 4.23× 5.57× 6.87×

Threshold calibration To demonstrate the performance gain brought by per-head threshold calibra-
tion, we set all heads in Llama-3.1 to share the same τ , which is referred to as SALE w/o Calibration.
As shown in Figure 3(b), setting different τ values according to the characteristics of attention patterns
across different heads yields substantial performance gains.

5 CONCLUSION

In this paper, we propose a block-Sparse Attention technique based on Low-bit Estimation. By
performing fine-grained estimation of the attention map, we achieve a better accuracy-efficiency
trade-off. Specifically, we estimate the attention weights using low-bit quantized queries and keys,
and assess the importance of query-key pairs using our Relative Attention Score metric. Furthermore,
we introduce several CUDA kernel optimization techniques to ensure the efficiency of sparse mask
construction on hardware. Experimental results demonstrate that our approach achieves the best
trade-off among existing sparse attention baselines, delivering a speedup of at least 3.36× when
processing sequences longer than 64K tokens while maintaining negligible accuracy loss.
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A LLM USAGE

During the writing process of this paper, we used LLMs to assist in polishing the writing and
employed AI tools to support the visualization of experimental results.

B ADDITIONAL IMPLEMENTATION DETAILS

For the quantization algorithm scheme, we use the smoothing technique mentioned in SageAtten-
tion2 (Zhang et al., 2024b) to improve the quality of QK quantization, which introduce negligible
overhead. While the quality of quantization affects the accuracy performance of SALE, it should be
noted that SALE is designed to be orthogonal to the quantization algorithm.

We select five input samples from the Retrieve.KV task in InfiniteBench to perform calibration for
SALE, and the final configuration must satisfy the error bound requirement across all five samples.
The per-head threshold calibration for Llama-3.1 on RTX4090 server takes approximately five
minutes to complete.

C ADDITIONAL EXPERIMENT DETAILS

For model inference, we leverage the transformers (Wolf et al., 2020) library to build an execution
pipeline and replace the default self-attention module with sparse methods. We use greedy decoding
to avoid randomness during generation, and use the default chat template to construct the input
prompt. We use the same set of input samples as our method to search the optimal hyperparameters
for SpargeAttention. Since the open-source code of MInference only uses one input sample for
calibration, we employed the first sample from this set for its sparse pattern searching.

During evaluation process, to ensure proper model behavior, we truncate samples that exceed the
maximum context window length. Following common practice, we retain the tokens from both the
beginning and the end of the sequence and remove those from the middle portion. For all these
benchmarks and tasks, we employ the official evaluation scripts from their respective open-source
repositories to assess model outputs.

For the data format during model inference, we employed BFloat16 for FlexPrefill due to requirements
specified in its repository, while Float16 was used for all other methods.

D 4BIT SELECTION-PASS VS 16BIT SELECTION PASS

8K 16K 32K 64K 128K
Context Length

0

1

2

3

4

Sp
ee

du
p

SALE w/o QK Quant
SALE

(a) Single input speedup

0.78 0.82 0.86 0.90
Sparsity

120

140

160

180

Sc
or

e

SALE
SALE w/o QK Quant

(b) Accuracy and sparsity result

Figure 5: Comparison between SALE and SALE w/o QK Quant. (a)Single input speedup. (b)
Comparison between SALE v.s. SALE w/o QK Quant on InfiniteBench. The brown horizontal
dashed line represents the score achieved by FlashAttention2.

To evaluate the effectiveness of 4-bit attention weight approximation, we further conducted experi-
ments using original-precision (16-bit) QK matrices to inspect the attention map, which is referred to
as SALE w/o QK Quant. The result is shown in Figure 5. We measure the single input speedup of two
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methods under varying input lengths, using the same set of input samples as in the Figure 3(a). The
result indicates that using original-precision QK to estimate attention weights leads to a significant
increase in computational overhead.

We further evaluate the accuracy and attention sparsity of both methods based on Llama-3.1, where
corresponding data points for the two methods are obtained using the same θ. We use the scores from
InfiniteBench to represent accuracy. Attention sparsity metric is defined as the ratio of the number of
skipped attention blocks to the total number of attention blocks, and the results presented here are
measured when processing contexts of 128K length. As observed, under identical hyperparameter
settings, SALE w/o QK Quant achieves higher attention sparsity while showing a slight performance
drop on InfiniteBench. This may be attributed to the limited precision of current Int4 quantization
techniques, which can cause certain approximated attention weights to exceed their true values,
thereby leading to more blocks being selected.

E SPARSITY STATISTIC ANALYSIS

To enable a more transparent comparison between SALE and other sparse attention baselines intro-
duced in the Section 4, we tested the sparsity results of these methods on the input samples from
LongBench. We divided all inputs into three groups according to their context lengths and computed
the average sparsity rate along with its standard deviation for each group during processing. The
hyperparameters used for each sparse method here are consistent with those described in Section 4.1.
The results are in Table 4, with data in each cell formatted as (mean, std):

Table 4: Sparsity comparison

Sparse methods MInfer Flex Sparge SALE

0-20K (0.138, 0.029) (0.604, 0.035) (0.184, 0.016) (0.517, 0.028)
20K-40K (0.356, 0.043) (0.676, 0.046) (0.279, 0.022) (0.651, 0.028)

> 40K (0.471, 0.044) (0.677, 0.026) (0.339, 0.025) (0.678, 0.020)

The experimental results show that our scheme has obvious advantages in terms of sparsity rate
compared with MInference and SpargeAttn. When compared with FlexPrefill, our sparsity rate is
lower for context length ≤40K, but higher for context length > 40K.

It should be noted that a higher sparsity rate of FlexPrefill here does not mean better performance.
According to the results in Figure 4(a), SALE can achieve both higher scores and faster end-to-end
latency than FlexPrefill under various sparsity rates.

F HYPERPARAMETERS EXPLANATION

τ controls the sparsity rate of a specific attention head. When the relative attention score of an
attention block is less than τ , this block will be ignored in the Computation Pass. Therefore, as τ
increases, more blocks will be skipped, leading to a higher sparsity rate, decreased accuracy, and
faster attention computation. The value of τ can vary across different heads, and its specific value is
determined during the calibration process.

τ0 represents the initial value of τ in calibration process for each attention head. It will gradually
decrease during the calibration process until the output error requirement is met. Therefore, it is
sufficient for τ0 to have a relatively large initial value. τ0 does not affect the speedup and accuracy
performance of the model.

θ, on the other hand, is a hyperparameter that adjusts the global sparsity rate. When θ increases, the τ
values for each head will also increase, and the sparsity level of SALE get higher. In our Figure 4, we
have assessed the performance of SALE under various values of θ.
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G ADDITIONAL KERNEL OPTIMIZATION TECHNIQUE

Reduction in dequantization operations Theoretically, whether an attention block is skipped
only depends on the comparison between the largest Relative Attention Score with τ . By employing
per-thread quantization strategy proposed in (Zhang et al., 2024b), we make all quantized attention
weight elements held by each thread share the same quantization scale. This ensures that the largest
Relative Attention Score and the largest approximated attention weight occur at the same position.
Therefore, only the largest approximated attention weight needs to be dequantized, which saves many
low-throughput operations such as datatype conversion.

Segment level all-reduce Due to the hardware characteristics of GPU Tensor Cores, the QK
GEMM for an attention block is collectively executed by multiple threads within a GPU thread blocks
with the output of the QK GEMM stored in a distributed manner across different threads. Since the
elements held by each thread are invisible to other threads, we need to perform a CTA-wise all-reduce
operation on the relative importance comparison results in each thread. This ensures that all threads
within the thread blocks reach a unified judgment on the importance of the current block.

In fact, this all-reduce operation is costly:it introduces multiple warp_shfl instructions,
_syncthreads instructions, and shared memory access instructions. Since the Selection-Pass does
not require computing attention output, we employs specific optimization techniques to reduce the
number of all-reduce operations. Specifically, each thread can temporarily store the relative impor-
tance of multiple consecutive blocks as multiple bits in local variables, and use a single all-reduce
operation to achieve CTA-wise consistency. This allows us to save a significant number of all-reduce
operations.

H QUANTIZATION SCHEME ANALYSIS

SALE uses quantized QK to estimate attention weights in Selection-Pass. Theoretically, the fewer
the number of bits used in quantization, the faster the estimation of attention weights will be, as
this allows the use of faster Tensor Core instructions and results in lower DRAM memory access
overhead. Considering that the minimum bit width supported by Tensor Cores in current mainstream
computing cards is 4-bit, the most efficient quantization scheme we can choose is 4-bit quantization
for QK. Lower quantization bit widths cannot yield additional performance benefits.

However, lower-precision quantization also introduces greater errors, possibly leading to a decrease
in the accuracy of important block selection in Selection-Pass. To demonstrate the block selection
accuracy under 4-bit quantization, We tested the “recall rate” between the blocks selected using 4-bit
QK and those selected using full precision floating-point QK. The “recall rate” metric can be defined
as “the number of blocks commonly selected by both methods” divided by “the total number of
blocks selected using full precision QK”. The input samples used in the test are aligned with those
in Figure 3(a), and the tests are also based on the Llama-3.1-8B-Instruct model. We obtained the
statistical results under different context lengths, which are demonstrated in Table 5:

Table 5: Block selection recall rate

Context length 8K 16K 32K 64K 128K

Recall rate 98.2% 97.7% 97.2% 96.6% 95.4%

The experimental results demonstrate that 4-bit QK is capable of accurately selecting important
blocks. The "Sparsity-Accuracy" curve presented in Figure 5(b) also indicates that quantizing QK
to 4-bit can achieve block selection accuracy comparable to that of full-precision QK. Thus, SALE
adopts 4-bit scheme which enables it to balance accuracy and efficiency.

I TWO PASS DESIGN RATIONALE

In contrast to our “Estimation-computation disaggregation” (“Two-pass”) kernel design mentioned
in Section 3.4, the “One-pass” design integrates these two processes into a single kernel. Specifically,
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when iterating through a key block, if the current attention block is determined to be important, the
output for the current block is computed directly (i.e. “on-the-fly pruning”).

Theoretically, this design eliminates the need to store the coordinates of important blocks, and can
reuse the computation results of low-bit QK GEMM, which is expected to run faster. However, in
practice, the “One-pass” design is not feasible. Two primary reasons are listed here:

4-bit quantization issue In fact, the results of 4-bit QK GEMM cannot be directly used for
computing attention output, as this would lead to significant accuracy degradation. To illustrate this
point, in Table 6, we present the accuracy experiment results of using 4-bit QK in the computation
stage. We refer to this scheme as “4+4”, whereas SALE corresponds to “4+8”. We also tested a scheme
that calculates attention scores using only 4-bit QK without block pruning, denoted as "4 dense".
All 4-bit quantization in the table has adopted the technique mentioned in SageAttention2 (Zhang
et al., 2024b) to improve quantization quality. We report the scores on two tasks of InfiniteBench
in Table 6:

Table 6: Accuracy performance comparison

Tasks Retrieve.KV En.MC

4+4 35.8 63.30
4 dense 41.4 60.26

SALE (4+8) 56.4 66.38

Our experimental results show that the "4+4" scheme leads to a degradation in model performance.
Even if we do not prune any blocks, a significant score drop still occurs. Therefore, we choose to use
QK with a precision of at least 8 bits in the Computation Pass.

Implementation challenges According to the hardware characteristics of GPUs, “on-the-fly prun-
ing” cannot be efficiently implemented on GPUs. The requirement for immediate decisions imposed
by the "on-the-fly pruning" means that we have to perform an all-reduce operation each time after
computing the QK GEMM. Based on the analysis provided in Section G, it will introduce much
more CTA-wise all-reduce operations compared to SALE, which is not efficient.

In addition, “on-the-fly pruning” is unfriendly to the GPU memory hierarchy. Due to the high DRAM
access latency of GPUs, high-performance CUDA implementations typically pre-issue memory
access instructions for data that will be computed to achieve overlap between memory access and
computation. However, the nature of “on-the-fly pruning” dictates that we must decide whether to
issue the memory access instruction only after completing the QK GEMM, and then wait for the data
transmission of value tensor, which waste the computational resource on SM. Otherwise, if we issue
memory access instructions for the value tensor for all blocks, the unnecessary memory access will
also impair performance.

Based on the above analysis, even if we adopt the “8+8” scheme to attempt reusing the results of
8-bit QK GEMM, it still cannot match the efficiency of “Two-pass” design.

J SELECTION-PASS ALGORITHM
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Algorithm 1: Selection-Pass

Input: Q,K ∈ RN×d , 4-bit quantized matrices Q̃, K̃ ∈ ZN×d, threshold τ , block size bq, bk, local
area size l.

1 Nq ← N/bq , Nk ← N/bk, Nlocal ← l/bk;
2 Split Q,K into blocks Qi ∈ Rbq×d, Kj ∈ Rbk×d, split Q̃, K̃ into blocks Q̃i ∈ Zbq×d, K̃j ∈ Zbk×d

for i = 0 to Nq − 1 do
3 ISL ← {0} ∪ [i−Nlocal, i− 1] ; // Block indices of sink-local area

4 m̃, l̃ ∈ Rbq , m̃← −∞, l̃← 0 ; // Initialize intermediate result
5 for j ∈ ISL do
6 if j ̸= 0 then
7 m̃∆ ← m̃ - rowmax(QiK

T
j /
√
d); l̃← l̃ · exp (m̃∆) ;

8 end
9 m̃← rowmax(QiK

T
j /
√
d) ; // Ignore causal mask

10 l̃← l̃ + rowsum(exp(
QiK

T
j√

d
- m̃)) ;

11 Mbs[i, j]← 1

12 end
13 for j ← 1 to (i−Nlocal − 1) do
14 S̃ij ← Dequantize(Q̃iK̃

T
j ) /
√
d ; // Approximate attention weight

15 P̃ij ← exp(S̃ij − m̃) / l̃ ; // Compute Relative Attention Score

16 Mbs[i, j]← max(P̃ij) ≥ τ ;
17 end
18 end

Output: Block-level sparse mask Mbs
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