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Abstract

We study the problem of multiclass classification
when the number of labels can be unbounded
within the PAC learning framework (Valiant,
1984). Our main contribution is a theory that
demonstrates a simple and elegant agnostic to
realizable reduction for this framework. This re-
solves an open problem raised by the recent work
of (Hopkins et al., 2022). Notably, our result is
the first representation preserving multiclass ag-
nostic to realizable reduction, in contrast with
the compression based approach of the work of
(David et al., 2016). Furthermore, our main the-
orem is stated in an abstract framework, called
“Unified PAC Learning”, which encompasses a
range of frameworks, including multiclass PAC
learning, list PAC learning, and multilabel PAC
learning. In addition, we explore representation
preserving reductions to the realizable setting for
two noise models, namely Massart noise and Tsy-
bakov noise, in the multiclass PAC learning frame-
work. We believe our technique may find other
applications in ensuing studies of theoretical ma-
chine learning.

1. Introduction

In many frameworks within the field of statistical learning
theory, a surprising equivalence emerges between realiz-
able and agnostic learnability, where both are character-
ized by the same quantity despite their inherent difference.
This phenomenon encompasses fundamental frameworks,
including binary PAC learning, multiclass PAC learning, list
PAC learning, binary online learning, and multiclass online
learning, among others. Nonetheless, the proof techniques
employed to establish the realizable and agnostic results
can differ significantly in many of these frameworks. This
observation raises an intriguing question: Do we possess
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a unified theory that underlies these equivalences? Even
more optimistically, could there exist a simple and elegant
unified theory, both in terms of the analysis and reduction
properties, that accounts for these equivalences?

The seminal work of (David et al., 2016) provides a basis
for developing a unified theoretical framework. In fact, for
almost a decade, their sample compression scheme based ap-
proach, which involves boosting, serves as the only tool for
theorists to prove agnostic learnability in frameworks such
as partial PAC learning, multiclass PAC learning, and list
PAC learning, where the number of labels can be unbounded
in the latter two cases. However, this approach can produce
more complex functions than those outputted by a realiz-
able learner due to its reliance on the boosting technique,
which combines multiple realizable learners. In particular,
consider the space of possible outputting functions in the
realizable setting. Then, in the agnostic setting, the resulting
functions based on this approach do not necessarily belong
to that space.

In addition to the mentioned reduction, the recent work of
(Hopkins et al., 2022) provides an affirmative answer to
the aforementioned questions across various frameworks.
More specifically, they introduced a three-line algorithm
accompanied by a relatively simple proof technique, which
effectively demonstrates the existence of reductions in many
frameworks. Moreover, their algorithm uncovers some pre-
viously unknown equivalences between realizable and ag-
nostic learnability. However, despite these advancements,
their approach does not extend to important problems, such
as multiclass PAC leaning with possibly unbounded label
space framework. | We suggest readers refer to section 2 for
a detailed discussion on the significance of this setting. Con-
sequently, they posed the following open question: Is there
a unifying yet still simple and elegant technique that can
also address multiclass PAC learning with possibly infinite
label space framework?

In this work, we provide POSITIVE ANSWER to their open
question. Specifically, we demonstrate that a clever mod-
ification of their three-line algorithm indeed effectively
reduces agnostic learnability to realizable learnability in
frameworks such as multiclass learning with potentially
unbounded label spaces.

'This is discussed formally in Appendix A.
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Additionally, our algorithm possesses a UNIQUE PROPERTY
inherited from the algorithm of (Hopkins et al., 2022). To il-
lustrate, consider the space of possible outputting functions
in the realizable setting. Our reduction always outputs a
function that belongs to that space, which is in sharp con-
trast to the approach of (David et al., 2016) as we discussed.
Going further, our reduction even preserves data-dependent
properties of the output function of the realizable setting,
such as the geometric margin used in Support Vector Ma-
chines, rather than merely producing a function from the
mentioned space. As a result, our work relates to the line
of research focused on learning with simple predictors that
has gained significant attention in recent years. For instance,
the work of (Hanneke et al., 2021) explored this topic in
the context of online learning, while (Aden-Ali et al., 2024,
Bousquet et al., 2020) studied this topic in the context of
binary PAC learning. Therefore, our technique provides a
valuable new tool for theorists to utilize in their problems
when required.

In fact, we state our main theorem within a new abstract
framework, which we call UNIFIED PAC LEARNING. This
framework encompasses a range of frameworks, multiclass
PAC learning (for instance, see the work of (Brukhim et al.,
2022)), list PAC learning (for instance, see (Charikar & Pab-
baraju, 2023)), and multilabel PAC learning. As a result, our
finding reveals some new previously unknown equivalences
and offers new insights into the relationship between realiz-
able and agnostic learnability. We believe that Unified PAC
Learning offers a promising avenue for further exploration
of realizable learnability in future research.

Subsequently, we delve into the exploration of NOISE MOD-
ELS, which occupy an intermediate position between the
realizable and agnostic settings; see (Tsybakov, 2004; Mas-
sart & Nédélec, 2006; Agarwal, 2013; Hanneke & Yang,
2015) for more details. In particular, we focus on two very
popular noise models, namely Massart noise and Tsybakov
noise, for the multiclass PAC learning framework. Using
almost the same technique, we demonstrate that focusing
on noise models, rather than the agnostic setting, allows for
an improvement in the sample complexity.

Finally, we extend our main theorem on the Unified
PAC Learning framework to address PARTIAL CONCEPT
CLASSES as well. We recommend readers refer to the work
of (Alon et al., 2022) for a comprehensive discussion on the
importance of this setting. While the same algorithm can
be applied to partial concept classes, the analysis becomes
more involved. Notably, the work of (Hopkins et al., 2022)
also addresses this setting; however, they adopt a different
definition of agnostic learnability. In contrast, we employ
the definition provided in the recent work of (Alon et al.,
2022) on partial concept classes, which is more favorable in
this context.

1.1. Overview of the Main Result and Technique

In the following subsection, we provide an overview of our
main result along with a summary of the primary proof
technique in our work. Before proceeding, let us informally
define the Unified PAC Learning framework.

In the Unified PAC Learning framework, we have an in-
stance space X', an output space )/, an action space .4, and a
loss function £ : A x Y — {0, 1}. A predictor is a function
from X to A. Moreover, we have a set of predictors C as a
concept class. In addition, we have another set of predictors
‘H as a hypothesis class. As a result, a 6-tuple consisting of
X, VY, A, L, C, and H specifies an instance of this frame-
work. Importantly, both the output space ) and the action
space A can be unbounded.

Furthermore, in this framework, a learning algorithm maps
a sequence of instance-output pairs of any size to a predictor.
Also, a data distribution is defined on X x ). Based on
these, we adopt the definitions of loss for a given data distri-
bution and predictor, realizable data distribution, realizable
PAC learnability, and agnostic PAC learnability within this
framework. Importantly, in both the definitions of realizable
PAC learnability and agnostic PAC learnability, we require
that the image of the learning algorithm be a subset of H.
See section 3 for formal notations and definitions.

In this paragraph, we provide a concise explanation of how
our framework can be utilized to encompass various settings,
illustrated through two examples. For instance, by defining
Y as a set of labels and A as {a | « C V,|a|] < L} for
some L € N,L < |Y|, we can effectively capture the list
PAC learning framework of (Charikar & Pabbaraju, 2023).
Indeed, A can also be interpreted as a set of labels, then by
specifying YVas{y | y C A, |y| < L} forsomeL € N,L <
|Al, it becomes possible to accommodate the multilabel PAC
learning framework. It is worth noting that this definition is
a special case of the general multilabel setting in practice,
which we find particularly interesting as it serves as a dual
formulation of list learning. For further details, refer to
section 4.

Now, we informally present our main theorem in the current
work.

Theorem 1.1 (Realizable Unified PAC Learnability
— Agnostic Unified PAC Learnability). Let Q =
(X, VA LC, ’H) be an instance of the Unified PAC Learn-
ing framework. If Q is realizable PAC learnable, then Q is
agnostic PAC learnable.

The key idea behind the proof of the above theorem is to run
the realizable learning algorithm on each subset of samples,
followed by applying empirical risk minimization (ERM)
on the resulting finite collection of predictors (1). More-
over, by applying a concentration bound to this finite set
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of predictors, combined with the error rate guarantee from
the realizable PAC learnability for the predictors generated
from each subset, we can get the guarantee of agnostic
learnability. See section 4 for more details.

As a direct corollary of the above theorem, one can derive a
reduction from agnostic PAC learnability to realizable PAC
learnability for the multiclass PAC learning framework, as
described in subsection 4.2. Additionally, our result reveals
new equivalences, including previously unknown equiva-
lence between the realizable multilabel PAC learnability
and the agnostic multilabel PAC learnability, as discussed
in subsection 4.4.

Furthermore, building upon the work of (David et al., 2016),
we establish another reduction for the Unified PAC Learning
framework. While this reduction is more favorable from the
sample complexity perspective, crucially, it does not retain
properties such as representation preserving. In particular,
given an accuracy parameter € € (0, 1), our agnostic result
involves a factor of 1/ €3, compared to the more desirable
factor of 1/€? that can be obtained using a sample com-
pression scheme based proof. For further details, refer to
section 4 and Appendix C. However, for every n,m € N,
we give an example of an instance of the Unified PAC Learn-
ing framework Q = (X, Y, A, £,C, 1) such that | X| = n,
|Y| = |A| = |C] = [H| = m where we have: for every
€,0 € (0,1), there exists a Q(1/¢2) gap between the opti-
mal sample complexity of the realizable PAC learning with
parameters € and J and the optimal sample complexity of
the agnostic PAC learning with the same parameters. In
particular, this example is within multiclass PAC learning
framework. Moreover, it builds upon the concept class of
the countably infinite collection of constant functions over
some domain. For further details, refer to section 6.

1.2. Organization

The remainder of this paper is structured as follows. In sec-
tion 2, we discuss a broader range of related works. Then,
in section 3, we present the formal notations and defini-
tions. Subsequently, in section 4, we establish our main
reduction along with some corollaries. Following this, in
section 5, we explore noise models in the multiclass PAC
learning framework. Finally, in section 7, we conclude the
manuscript.

2. Related Work

PAC Learning. The Probably Approximately Correct
(PAC) learning framework, introduced by (Valiant, 1984),
has been a cornerstone in the field of statistical learning
theory. (Blumer et al., 1989; Vapnik & Chervonenkis, 2015;
Valiant, 1984; Vapnik, 2006) characterizes learnable classes
within the binary PAC learning framework in the realizable

setting via a combinatorial parameter called the VC dimen-
sion. This result was later extended to the agnostic setting
by (Haussler, 1992). Since then, PAC learning has been
extensively studied in various learning theoretic settings.

Multiclass Classification. A large body of theoretical re-
search has been devoted to studying multiclass classifica-
tion in different frameworks. This includes contributions
from (Natarajan & Tadepalli, 1988; Natarajan, 1989; Ben-
David et al., 1992; Haussler & Long, 1995; Rubinstein et al.,
2006; Daniely et al., 2011; 2012; Daniely & Shalev-Shwartz,
2014; Brukhim et al., 2021). Nevertheless, the combinato-
rial characterization of multiclass classification, when the
number of labels can be unbounded, within Valiant’s PAC
learning framework, has remained an open question until
recently, even in the realizable setting. The seminal work of
(Brukhim et al., 2022) addressed this gap. Furthermore, the
same dimension also characterizes the agnostic version of
this problem (David et al., 2016). Also, see the recent work
of (Hanneke et al., 2023).

There are several reasons motivating this interest in multi-
class classification when the number of labels can be un-
bounded. First, in multiclass settings, guarantees should
ideally not depend on the number of labels, even when fi-
nite. Second, mathematical concepts that involve infinity
often offer clearer and more elegant insights. Finally, from
a practical standpoint, many critical machine learning tasks
require classification into very large label spaces. This in-
cludes the image object recognition task.

3. Preliminaries

In this section, we introduce the necessary notations and
definitions that will be used throughout the remainder of
this work.

3.1. Notations

We begin by introducing some necessary notation before
describing and analyzing our algorithm. Fix a non-empty
set X equipped with a o-algebra specifying the measurable
subsets as an instance space. Fix a non-empty set ) as
an output space. Also, fix a non-empty set .4 as an action
space. In addition, fix a loss function £ : A x ) — {0,1}.
A predictor is a function from X to .A. With this in mind,
fix a non-empty set of predictors C as a concept class. Ad-
ditionally, fix another set of predictors # as a hypothesis
class. Notably, we implicitly assume standard measura-
bility assumptions on C and H. In particular, a 6-tuple
Q= (X, VA LC, 7—[) presents an instance of the Uni-
fied PAC Learning framework. A learning algorithm A is
a mapping from (X x ))* to a predictor h. Also, a data
distribution D is a probability measure on (X’ x )). Finally,
we use O(+), o(-), Q(-), w(:), and O(-) as standard nota-
tions of them in the theoretical computer science. We also
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use O(+), Q(-), O(-) to exclude logarithmic factors as well
as constant coefficients.

3.2. Definitions

Given the above notations, we make the definitions for true
risk and empirical risk. For a data distribution D and a
predictor h, define the true risk of & with respect to the data
distribution D as follows,

LD(}AL) = P(w,y)ND[['(il(x)? y)]

Based on this, we say that a data distribution D is realiz-
able by a concept class C if there exists ¢* € C such that
Lp(c*) = 0. Similarly, say that a data distribution D is real-
izable by a hypothesis class #, if infyc3 Lp(h) = 0 holds.
For simplicity, we will suppose the infimum inf.cc Lp(c)
is actually achieved by a concept ¢* € C. >

Next, a data set of size m for some m € N is a sub-
set of (X x )) of size m. For such a data S =
{(x1,91), (2,92), .- ., (Zm, Ym)} and a predictor h, define
the empirical risk of h with respect to the data distribution
S as follows,

m

> L(h(@:), vi)- 1)

i=1

Ls(h) := %

We say a data set .S is realizable by a predictor hif Lg (ﬁ) =
0. Subsequently, we present the definitions of realizable and
agnostic PAC learnability for this framework.

Definition 3.1 (Unified PAC Learning). We say that Q =
(X,Y, A, L,C, H) is realizable Unified PAC learnable, if
for every €,8 € (0, 1), there exists a finite MRE (¢, §) € N
and a learning algorithm A with Im(A) C # such that,
for every distribution D on (X' x )) realizable w.r.t. C, for
S ~ DMRE(e"S), with probability at least 1 — §,

Lp(A(S)) <e

The value MBRE(e, §) is called the sample complexity of
A, and the optimal sample complexity® is the minimum
achievable value of MRE (e, §) for every given e, d.

Definition 3.2 (Unified Agnostic PAC Learning). We say
that O = (X,¥, A, L,C,H) is agnostic unified PAC
learnable, if for every ¢, € (0,1), there exists a fi-
nite M~ (¢e,§) € N and a learning algorithm A with
Im(A) C H such that, for every distribution D on (X x ),
for § ~ DM () with probability at least 1 — 4,

LD(A(S)) S LD(C*) + €,

21t not, for any fixed ¢ > 0, we can choose ¢* such that
Lp(c*) <infeec Lp(c) +€/2.

3For brevity, we refer to the optimal sample complexity as
sample complexity.

Algorithm 1 Agnostic to Realizable Reduction
Input: Concept Class C, Hypothesis class H, Realizable
PAC-Learner A, Labeled Sample S.
1: Divide S into two parts V and 7.
2: Run A over all subsets of V to get:

Hy = {A(S) | S C V)

3. Return the hypothesis in Hy with lowest empirical error
over T'.

where c¢* is the optimal concept in the concept class C. The
value MAG (¢, §) is called the sample complexity of A, and
the optimal sample complexity is the minimum achievable
value of MAG (¢, §) for every given €, §.

4. Reduction

We present the unified agnostic-to-realizable reduction in
subsection 4.1. The applications of this reduction will be
discussed in subsections 4.2, 4.3, and 4.4.

4.1. General Reduction

The following theorem demonstrates a representation pre-
serving reduction from agnostic to realizable setting within
the unified PAC learning framework.

Theorem 4.1 (Agnostic — Realizable ). Let A be an
unified realizable learner for a learning instance Q =
(X, Y, A, L,C,H) with sample complexity MR (e d).
Then Algorithm 1 is also an unified agnostic learner for Q =
(X, Y, A, L,C,H) with sample complexity: MG (e,0) =

o (s, MBI (1))

We emphasis that Theorem 4.1 presents the first representa-
tion preserving reduction from agnostic to realizable within
unified PAC learning regime. Its key application to multi-
class learning further highlights the first such reduction in
this domain.

With this settled, we now proceed to prove Theorem 4.1.
The analysis naturally divides into two parts, corresponding
to steps 2 and 3 of Algorithm 1, respectively. In the first
part, we will show that Hy, the set of output hypothesis
corresponding to running the realizable learner A over all
subsets S’ of V, contains a hypothesis A’ which is close to
the optimal concept ¢* in C. More formally, we have the
following lemma.

Lemma 4.2. For any distribution D over (X x ), with
probability at least 1 — 25 /3, there exists h' € Hy which
satisfies:

Lp(h') < Lp(c*) +€¢/2,
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where c* is the optimal concept in C.

Once we prove this lemma, the second part is to show that
Step 3, an empirical risk minimization process on Hy over
labeled sample T', gives the desired agnostic hypothesis.
Since Hy is finite, a standard Chernoff bound gives that
with probability at least 1 — §/3, the empirical risk Ly (h)
of every hypothesis h in Hy is €¢/4-close to its true risk
Lp(h), as long as T is sufficiently large. Combining these
two parts, Algorithm 1 returns a hypothesis with at most
Lp(c*) + € error rate with high probability.

It remains to prove Lemma 4.2. The key observation is
that the output A(S*) of running A over the subset S*
realizable by c* is close to c*.

Proof of Lemma 4.2. Since the optimal concept ¢* may not
be realizable with respect to distribution D over (X x ).
We divide the sample space (X x ) into two parts according
to whether realizable with respect to ¢* and D. Let (X x ))*
denote the realizable part and let D* denote the restriction of
D over it. Similarly, let D* denote the restriction of D over
the complement, that is (X x Y)\ (X x Y)*. With this in
mind, let x* denote the probability mass of D on (X x ))*.
Since we are restricting our attention to classification error,
we can decompose the true risk of ¢* over D as:

Lo(e") = u* Lo (") + (1 = p*) L. (") = 1 — ",

where the second step is by the decomposition of the sample
space (X x ), and the last step follows from the observation
that Lp«(¢*) = 0 and Lj.(c*) = 1 always hold by defini-
tion. To get a hypothesis within €/2 true risk of Lp(c*), we
claim that it is sufficient to prove Hy contains some h with
true risk €/2u* over D*, that is some h satisfying:

Lp-(h) <€/(2p7). 2
This follows from a similar analysis of Lp(h*) above. We
can decompose Lp(h) as:

Lp(h) = pw*Lp-(h) + (1 — u*)Lp«(h) < €/2+ Lp(c).

It remains to prove the claim that Hy contains a hypothesis
satisfying Equation(2) with high probability. Notice that S*
can be seen as drawn from the distribution D*. Then, by
the definition of the realizable learning, on the labeled sam-
ple S* ~ D* of size MRE(e/(2u*),5/3), the realizable
learner A will output hg~ satisfying:

Lo-(hs-) < ¢/ (2u").

with probability at least 1 — §/3.

Then we just need to draw a large enough sam-
ple V to make sure that the size of S* is at least
MBE(e/(2u*),6/3). By a Chernoff bound, it is enough

to draw ¢cMRE(e/(2u*),6/3)/u* data points to achieve
this for some constant ¢ > 0. Since we do not know p*, we
need to draw ¢ max,e(e/2,1]{M"*(¢/(21),8/3)/ 1} data
points to ensure this claim holds (if 4* < €/2, note that any
hypothesis will give a valid solution). By a union bound,
we have that this overall process holds with probability at
least 1 — 24/3. O

Proof of Theorem 4.1. By Lemma 4.2, with probability at
least 1 — 20/3, Hy contains a hypothesis hg+ such that :

L’D(hs*) < L’D(C*) + 6/2.

We can now use standard empirical risk minimization
bounds on Hy to find a hypothesis with true risk at most
Lp(c*) + €. A Chernoff and union bounds imply that with
probability at least 1 — §/3, the empirical risk of every
hypothesis in Hy is at most €/4 away from its true risk
on a sample of size O(log(|Hy|/5)/€?). Since hg- has
true risk Lp(hg+) at most Lp(c*) + €/2, its empirical risk
Ly (hg~) is at most Lp(c*) + 3¢/4. Then we can be sure
there exists a hypothesis in Hy, with empirical risk at most
Lp(c*) 4 3¢/4, and by the above guarantee any hypothesis
in Hy with empirical risk at most Lp(c*) + 3¢/4 has true
risk at most Lp(c*) + €.

Combining Lemma 4.2 and the above analysis of empir-
ical risk minimization, we have that with probability at
least 1 — § over the entire process, the output of Algo-
rithm 1 is a desired agnostic learner. The sample com-
plexity follows from noting that |Hy | is at most 2!V! with
VI = O(maxegeo (M (e/(2),6/3)/u}) due to
Lemma 4.2. O

4.2. Multiclass Learning

Building on Theorem 4.1, we can readily adapt it to mul-
ticlass learning setting with the action space A equal to
the infinite label space ), and L represents the classifica-
tion error. In this way, a unified PAC learning instance
Q = (X,V,A,L,C,H) can be specified as a multiclass
learning instance (X', Y, C,H). Then Theorem 4.1 can be
applied to this learning setting, together with Theorem 1 and
Algorithm 1 in Brukhim et al. (2022) we have the following
corollary.

Corollary 4.3 (Agnostic — Realizable (Multiclass Learn-
ing)). If H has finite DS dimension d, Algorithm 1 is an
agnostic multiclass learner with sample complexity:

d*/? 4+ log(1 /5))

€3

M (e.6) = O

4.3. List Learning

We can also adapt Theorem 4.1 to L-list learning setting
with the action space A = {Y C Y, |Y| < L}. The con-
cept class C consists of functions ¢ : X — A’, where
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A" ={Y C Y,|Y| = 1}. Similarly, the hypothesis class
‘H consists of functions h : X — A. By definition, there is
a bijection between ) and A’ mapping each y to a corre-
sponding Y such that y € Y. According to this bijection,
the loss function £ can be defined on (A x A’) such that
L(h(z),c(z)) = 0if and only if ¢(x) C h(z). In this way, a
unified PAC learning instance Q = (X, Y, A, L,C,H) can
be specified as a L-list learning instance (X, ), A,C, H).
Thus, Theorem 4.1 can be applied to this learning setting,
together with Theorem 2 and Algorithm 1 in Charikar &
Pabbaraju (2023), we have the following corollary.

Corollary 4.4 (Agnostic — Realizable (L-List Learning)).
If H has finite L-DS dimension d, Algorithm 1 is an agnostic
list learner with sample complexity:

ey oL st

€3

4.4. Multilabel Learning

With Theorem 4.1 in mind, we can also adapt it to multi-
label learning setting where the action space is defined as
A ={Y C Y,|Y| < L}. The concept class C consists
of functions ¢ : X — A. Similarly, the hypothesis class
H consists of functions i : X — A’, where A’ = {Y C
Y,|Y| = 1}. By definition, there is a bijection between
Y and A’ mapping each y to a corresponding Y such that
y € Y. According to this bijection, the loss function £ can
be defined on (A x A’) such that £(c(z), h(z)) = 0 if and
only if h(x) C ¢(x). In this way, a unified PAC learning
instance Q = (X, Y, A, L,C,H) can be specified as a mul-
tilabel learning instance (X, ), A, C,H), and thus, we can
apply Theorem 4.1 to this learning setting.

5. Noise Models

In this section, we provide the sample complexity of our mul-
ticlass classification reduction algorithm under two noise
models: Massart Noise (Massart & Nédélec, 2006) and
Tsybakov noise (Tsybakov, 2004). We use Mp(e, d) to
denote the agnostic sample complexity constrained by the
distribution D € D. Since multiclass learnability can be
characterized by DS dimension d, which means a hypothe-
sis class H is PAC learnable if and only if it has finite DS
dimension, we restricted our reduction on the hypothesis
classes with finite DS dimension. For the realizable learner
A, we use the one-inclusion graph algorithm introduced by
Brukhim et al. (2022).

Before present our result, we first give the definition of these
two noise models.

Definition 5.1 (Massart Noise). For A € (0, 1), define
MN(A) as the collection of joint distributions Pxy over

X x Y such that f* € C and

Ply=f*(a)lr) = max Py=yla)>A ()

y'#f*(x)

holds almost surely, where f* is the Bayes optimal classifier.

Definition 5.2 (Tsybakov Noise). For a € [1,00) and
€ (0,1), define TN(a, «) as the collection of joint distri-
butions Pxy over X x ) such that f* € C and Vy > 0,

Px(a: Ply = f*(@)le) -

< a/,ya/(l—a)’

max Py = x<)
,#()(y y'le) <y

“
where ' = (1 — a)(2a)*/(1=*)g!/(1=2) and f* is the
Bayes optimal classifier.

The following theorem shows the reduction from Massart
noise to realizable.

Theorem 5.3 (Massart — Realizable (Multiclass Learning)).
If H has finite DS dimension d, Algorithm 1 is an agnostic
multiclass learner with sample complexity :

~ (d3/? +1og(1/0)
Muin(a)(e,0) = O (AEQ> .
Before providing the proof of Theorem 5.3, we state a useful
lemma that will be used in the proof.

Lemma 5.4. For any distribution D over X x Y, with
probability at least 1 — §, we have:

Lo(h) — Lp(c*) — ¢/2 < clog([Hyv|/6)/|T]
+ o/ (Ph() # e () + ¢/2) log([Hy /) /I,

where Hy is the hypothesis class generated in step 2 of
Algorithm 1, and h is the hypothesis output by ERM in step
3 of Algorithm 1, and c¢* € C is the Bayes optimal classifier,
and ¢ is some positive constant.

Proof of Lemma 5.4. By uniform Bernstein inequality, for
all h,h' € Hy, and distribution D over (X x J), with
probability at least 1 — 6/3 we have:

Jog((7v1/9)

— Lp(h) <

log(|#v1/9)

T
) 5)
For h, hs« € H and ¢* € C, we have the following inequal-
ity:

+ c\/ P(h(z) # I (2),y € {h(z), I (2)})

P(hs- # h(x),y € {h. hs-(z)})
< P(h(x) # ¢*(x),y € {h(x),¢*(2)}) ©)
+ P(hs-(z) # ¢*(2),y € {hs-(2),¢"(2)}).
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We can furthur upper bound P(hg«(z) # c*(x),y €
{hg~(z),c*(x)}) by €/2 due to the construction of hg-
in Lemma 4.2. Then combining Equation (5), Equation (6)
and Lemma 4.2, we can get the desired conclusion. O

With the above lemma in mind, we start the proof of Theo-
rem 5.3.

Proof of Theorem 5.3. For all distribution D € MN(A)
and h € Y, with probability 1, we have

Lp(h) = Lp(c*) =2 AP(h(x) # c*(x)). (]

Combining Lemma 5.4 and Equation (7), with probability
at least 1 — 4, we have

A log([Hy/9)

LD(h) — LD(C*) — 6/2 S
T )
o (Aot - Lot +2) ),

where ¢ is some positive constant. Transferring Equation
(8) such that the term Lp(h) — Lp(c*) only appears in the
left side of the inequality, with probability at least 1 — §, we
have

j 1 log([Hv|/9) | e

LD( )— LD(C*) <c A |T| + 57 (9)

where ¢’ is some positive constant. Further upper bound
Equation (9) with ¢ and solve for |T|, we have when
|T| > ¢log(|Hv|/d)/Ae, with probability at least 1 —
0, the output of Algorithm 1 is a desired learner un-
der Massart noise. The sample complexity follows
from noting that |Hy| is at most 2/Vl with |V| =
O(max,efe/2,1{M™(e/(2p),0/3)/1u}) due to Lemma
4.2. O

The following theorem shows the reduction from Tsybakov
noise to realizable.

Theorem 5.5 (Tsybakov — Realizable (Multiclass Learn-
ing)). If H has finite DS dimension d, Algorithm 1 is an
agnostic multiclass learner with sample complexity:

a(d®/? + log(l/é)))

MTN(a,a) (67 6) = @ <

e3—a

proof of Theorem 5.5. For all distribution D € TN(a, @)
and h € Y%, we have

P(h(z) # c*(2)) < a(Lp(h) = Lp(c"))",  (10)

which also refers to Bernstein class condition (Hanneke &
Yang, 2015). Combining Lemma 5.4 and Equation (10),

with probability at least 1 — §, we have

log(1Hv1/9)

LD(E) - LD(C*) |T|

—€/2<

P log(|Hv|/6

! c\/<"(L1>(h> — Lo(e)* +¢/2) g(||T|V/)
(1)
where ¢ is some positive constant. For |T| >

" log(|Hv|/5) /€2, with probability at least 1 — &, Equa-
tion (11) holds with Lp(ﬁ) — Lp(c*) < ¢, where ¢” is some
positive constant. In this way, we have that the output of
Algorithm 1 is a desired learner under Tsybakov noise. The
sample complexity follows from noting that |y | is at most
2V with [V] = O(maxe(e/a, IME(¢/(20),/3) /1)
due to Lemma 4.2. O

6. Lower Bound

In this section, we demonstrate that although our sample
complexity upper bound includes an additional 1/¢ term
compared to the upper bound obtained via a compression
scheme, this extra factor is sometimes unavoidable due to
the representation-preserving property maintained by our
algorithm. Formally, we state the following theorem:

Theorem 6.1. For every n,m € N, there exist an example
of an instance of the Unified PAC Learning framework Q =

(X, Y, A, L,C,H) such that | X| = n, |Y| =|A| =|C| =
|H| = m for which we have:
MRE(ea(S) 2
Ve,(5 S (0, 1), MT(G’(S) S Q(l/G ),

where MTE (¢, 6) and MAC (e, §) are optimal sample com-
plexity of the realizable PAC learning and the agnostic PAC
learning, accordingly.

Proof. Let X = {1,2,...,n}. Also, lety = A =
{1,2,...,m}. In addition, let C = H = {c, |c,

X — {y},y € Y}. Additionally, define £ as the multi-
class classification loss 4.2. Now, observe that Q is realiz-
able PAC learnable with only one sample. Therefore, we
have: Ve,§ € (0,1), MTE(e,8) € O(1). Also, we have:
Ve,d € (0,1), MAC(e,8) € Q(1/€?). This follows from
the standard technique based on the slightly unbiased coin;
for instance, see (Daniely et al., 2011). As a result, we have:
Ve, 5 € (0,1), MEE(e,5)/MAC(,5) € Q(1/€%). We
note that it is possible to construct a similar example using
partial concept classes B.1. This finishes the proof. O

Remark 6.2. Indeed, it is preferable to provide an exam-
ple of an instance of the Unified PAC Learning framework
where the aforementioned result holds true but we also have
an ©(1/¢) lower bound on the optimal sample complexity
of the realizable PAC learning for every €,6 € (0, 1) as the
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parameters. However, this claim holds if and only if there is
a sublinear proper sample compression scheme for a given
hypothesis class, which is an interesting and important topic
to explore. Actually, if we have a proper sample compres-
sion scheme of size k(n) = O (n'/?/logn), then we can
get an agnostic proper sample compression scheme with the
same size k(n). An agnostic proper sample compression
scheme of size k(n) implies a proper agnostic learner with
error rate

n.5) = O \/k(n) log % + k(n) + log%
n
In other words, the sample complexity of this agnostic
learner would be M4 (e,§) = O(1/¢€?), which matches
the sample complexity upper bound of our algorithm. How-
ever, even in the binary case, the existence of such a proper
sample compression scheme remains unproven. We leave
this as an open question for further exploration.

7. Conclusion

In this work, we established a simple and elegant agnostic
to realizable reduction within the Unified PAC Learning
framework. In particular, our result leads to the first repre-
sentation preserving agnostic to realizable reduction within
the multiclass PAC learning framework, especially when
the number of labels can be unbound. Also, we explored
representation preserving reductions in the realizable setting
for two noise models in the multiclass PAC learning frame-
work. In addition, we showed similar results for the Unified
PAC Learning framework with partial concept classes. We
believe that our techniques could have applications in future
studies in the field of statistical learning theory.

Impact Statement

This paper presents work whose goal is to advance the field
of Statistical Learning Theory. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.
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A. Failure of Hopkins et al. (2022) in Infinite-Label Multiclass Learning

We address it by noting the Hopkins et al. reduction fails for the well-studied “stars and sets” concept class, namely Example
4.1 of Daniely et al. (2011). Specifically, consider X = [0, 1], denote by F(X) the collection of all finite subsets A C X'.
Let the label space Y = F(X) |J{*}, where x is a special label (not to be confused with “«” from the partial concept
classes section). For every A C X, define f4 : X — ) as follows:

fA(x):{* ifre A

A otherwise.

Let the concept and hypothesis classbe C = H = {fa : A € F(X) U X'}. Then, there is a realizable learner Agyoq that
returns fy unless a label A € F(X) appeared in the sample, in which case it returns f4. Let D have marginal on X the
uniform distribution over X, and let the labels be always « (i.e., realizable with target fx). Now, consider the algorithm

of Hopkins et al. with this scenario and realizable learner Ag,04. Let the unlabeled dataset be Sy = {z1, 22, -, s},
and the labeled dataset be S, = {(zp+1, %), (Tnt2,%), -, (Tntm,*)}, and with probability one these x’s are all distinct.
Denote A = {Zn41, Tnt2, + , Tntm} € F(X). Then their algorithm would run Ag.eq on all realizable labelings of Sir;

in particular, one of these is (Su, fa(Sv)) = {(x1,4),...,(zy, A)}, and the output hypothesis of Agooa(Sv, fa(Sv))
would be f4. By the definition of f4, we know that the empirical error of f4 on Sy, is 0. Their algorithm then outputs any
ERM on S}, from these functions produced by .Ag0q, which means their algorithm can output f4. However, the true error
rate of f4 is 1, while the best error in the concept class is 0. Thus, their algorithm fails for this concept class (for essentially
the same reason ERM fails for this concept class). In contrast, our algorithm returns fx, hence achieves error 0.

B. Partial Concept Classes

We discuss the reduction for partial PAC learning in this section.

B.1. Notations

We first develop some necessary notation for partial PAC learning. A partial predictor is a function from X" to A U {x}.
With this in mind, fix a non-empty set of partial predictors C as a concept class. Additionaly, fix another set of predictors
H as a hypothesis class. The support of a partial predictor & is the set supp(h) = h~*(.A). A loss function £ is a map
L: AU {x} x Y — {0,1}, with L(%,-) = 0. Similar to unified PAC learning, a 6-tuple Q presents an instance of Unified
Partial PAC Learning framework. A learning algorithm A is a mapping from (X' x ))* to a partial predictor h.

Given the above notations, we make the following definitions for realizability. A probability distribution, D, over the
product space of instance space and label space (X x )), is realizable by a partial concept class C if almost surely
(i.e., with probability 1), a sample S = ((x;,y;)), ~ D™ (for any n € N) is realizable by some partial concept
¢ € C: thatis {z;}; C supp(c) and L(c(x;),y;) = 0 for all i < n. For a partial concept ¢ and a distribution D on
X x Y, we define the true risk: Lp(c) := E(, )~p[L(c(x),y)].The true risk of a hypothesis / can also be defined as
Lp(h) := E(z,y)~p[L(h(z),y)]. Given the above notation and definition, we define Unified Partial PAC learning, which
can be easily adapted to a specific learning regime.

Definition B.1 (Unified Partial PAC Learning). We say that O = (X, Y, A, £,C, H) is unified partial PAC learnable, if for
every €, € (0, 1), there exists a finite MRF (¢, §) € N and a learning algorithm A with Im(A) C H such that, for every
distribution D on X x ) realizable w.r.t. C, for S ~ DMRE(“‘S), with probability at least 1 — 9,

Lp(A(S)) < e.

The value MRF (¢, §) is called the sample complexity of A, and the optimal sample complexity* is the minimum achievable
value of MRE (¢, §) for every given e, 0.

For any n € N and data sequence S € (X x )", define the empirical risk of any partial concept ¢ as

Ls(c) = 23" | L(c(xi),y;). For a distribution D on X x Y, define the approximation error of C as Lp(C) =

lim,, oo E;LN’Dn [min.ec Lg(c)].

“For brevity, we refer to the optimal sample complexity as sample complexity.

10



Representation Preserving Multiclass Agnostic to Realizable Reduction

Definition B.2 (Unified Agnostic Partial PAC Learning). We say that Q = (X Y, A L,C, ’H) is agnostic unified partial
PAC learnable, if for every ¢, € (0, 1), there exists a finite M“% (¢, §) € N and a learning algorithm A with Im(A) C H
such that, for every distribution D on X x Y, for S ~ DMAG(“‘S), with probability at least 1 — 9,

Lp(A(S)) < Lp(C) + <.

The value MAG (¢, §) is called the sample complexity of A, and the optimal sample complexity is the minimum achievable
value of M*AG (¢, §) for every given ¢, 6.

B.2. General Reduction

Given the definition above, we provide the unified partial agnostic to realizable reduction in the following theorem.

Theorem B.3 (Agnostic — Realizable (Partial Learning) ). Let A be a realizable unified partial learner for a learning
instance Q = (X,Y, A, L,C,H) with sample complexity MRE (¢, ). Then Algorithm 1 is an agnostic unified partial
learner for (X,Y, A, L,C, H) with sample complexity:

MBE(e/211,6/3)
MAS(e,6) = O (maxue[e/m i 10g(1/5)>.

€2

Theorem B.3 is also the first representation preserving reduction within unified partial PAC learning regime.
However, compared to a reduction-to-realizable technique of David et al. (2016), Theorem B.3 incurs an extra
max,,e(c/2,1]{ M (e/2u,0/3)/pu} term, which can scale to 1/e. This raises an open question:

Although Theorem B.3 achieves the same sample complexity as Theorem 4.1, the proofs differ significantly, as there
is no optimal concept ¢* in C under the framework of agnostic partial PAC learning. Before presenting the proof, we
introduce the following notations. Let h be the output hypothesis in step 3 of Algorithm 1. For a given sample 7', let

*

¢* = argmin,cc Lr(c). According to ¢*, let S* C S be the largest realizable sample set in S, i.e. S* = {(z,y) €
S|L(c*(z) = y)}. Also, let hg» = A(S™*). With these notations in mind, we we now present the proof of Theorem B.3.

Proof of Theorem B.3. Leveraging a standard Chernoff bound over H g, for any h € Hg, with probability at least 1 — 6/4,

we have
Lp(h) < Lr(h) + c1/log(|Hs|/9)/|T],

for some positive constant ¢;. Specially, for the output hypothesis h in step 3 of Algorithm 1, with probability at least

1— /4, we have

Lp(h) < Lr(h) + c1/log(|Hs]/6)/|T].
By the construction of h, we have Ly (k) < Ly(h) forall h € Hg. Since hg- € Hg, we have Ly (h) < Ly (hg-), which
futhur leads to

Lp(h) < Ly(hs-) + c1/1og(|Hs|/0)/|T] (12)

holds with probability at least 1 — d/4. On the other hand, since function Lz (h) is bounded noise with constant bound
1/|T|, leveraging McDiarmid’s inequality, with probability at least 1 — 6/4, we have

Ly (") <E[Lr(c")] + ca/log(1/0)/T],

for some postive constant cs. Since E[Lz(c*)] is non decreasing in the size of sample T', (see Lemma 39 in Alon et al.
(2022)) we have E[Ly(c*)] < Lp(C) for any T sampled from distribution D. Thus, with probability at least 1 — §/4, we

have
Lr(c*) < Lp(C) + c2/log(1/0)/|T, (13)

for some positive constant co. If we can further bound the difference L1 (hg«) — Lr(c¢*) with high probability, combining
Equation (12) and (13), we can get the desired conclusion. A natural idea is to divide 7" into two parts: T, the realizable
part according to ¢*, and T, the complementary of 7. Then, we can decompose L (c*) as

Lp(c*) = p* Ly« (c*) + (1 — p*) Lpa (¢*) = 1 — p*, (14)

11
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where p* = |T*|/|T’| denote the portion of realizable samples of ¢* in T'. Similarly, we can decompose L (hg~) as

Ly(hs+) = p* Ly« (hs«) + (1 — p*) Ly« (hs~)
<1—p* +p*Ly-(hs) (15)
= Lp(c") + p* L1~ (hs~),

where the inequality comes from L. (hg+) < 1, and the last equality is due to Equation (14). Since both S* and T*
are realizable by c*, as long as |S*| > MPRE(e/2u*,6/4), with probability at least 1 — §/4, we have Ly« (k%) < €/2.
Leveraging a standard Chernoff bound, when |S| = ¢s max,,c[¢/2,1]{ M" " (€/2p,0/4)/ 1}, with probability at least 1 —§/4,
we have |S*| > MRE(e/2u*,§/4). Choosing |T| = O(log(|Hs|/5)/€?), by a union bound across the whole process, we
have, with probability at least 1 — 9, R
Lo(h) < Ln(C) + <

In this way, we prove Algorithm 1 is an agnostic partial unified PAC leaner. The sample complexity comes from |Hg| = 2
with | S| = ¢s max, (/2,11 {M"F (e/2u,5/4)/pu} for some positive constant c. O

151

B.3. Multiclass Learning

With Theorem B.3 in mind, we can readily adapt it to multiclass learning setting with the action space A = Y U {*}, and £
represents the classification error. In this way, a unified PAC learning instance Q = (X', Y, A, £,C, H) can be specified as a
multiclass learning instance (X, Y,C, H).

Corollary B.4 (Agnostic — Realizable (Partial Multiclass Learning)). Let A be a realizable partial multiclass learner for
a learning instance (X,Y,C,H) with sample complexity MRE (e, §). Then Algorithm 1 is an agnostic partial multiclass
learner for (X,Y,C, H) with sample complexity:

MBE(e/211,6/3)
A4AG(e5)::C7<Inaxuek/11]{ P }_%10g0/6)>

€2

Moreover, if H has finite DS dimension d, Algorithm 1 only needs:

(e o 2110

€3

labeled samples.

B.4. List Learning

Building on Theorem B.3, We can adapt it to L-list learning setting with the action space A = {Y C Y, |Y| < L}. The
concept class C consists of functions ¢ : X — A’ U {*}, where A’ = {Y C ), |Y| = 1}. Similarly, the hypothesis class
H consists of functions h : X — A U {x}.By definition, there is a bijection between ) and .4’ mapping each y to a
corresponding Y such that y € Y. According to this bijection, the loss function £ can be defined on (AU {x} x A" U {x})
such that £(h(z), c(z)) = 0if and only if ¢(x) C h(x). In this way, a unified PAC learning instance @ = (X, Y, A, L,C, H)
can be specified as a L-list learning instance (X, Y, A,C, H).

Corollary B.5 (Agnostic — Realizable (Partial List Learning)). Let A be a realizable partial list learner for a learning
instance (X,Y, A,C,H) with sample complexity MR (e, 8). Then Algorithm 1 is an agnostic partial list learner for
(X, Y, A,C, H) with sample complexity:

MPE(e/214,5/3)
MaX,ele/2,1] +log(1/9)
Mm@®=0< . { . } .

2
Moreover, if H has finite L-DS dimension d, Algorithm 1 needs only:

L6d3/2+1og(1/5)>
63

M“@®o<
labeled samples.

12
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B.5. Multilabel Learning

We can also adapt Theorem B.3 to multilabel learning setting where the action space is defined as A = {Y C Y, |Y| < L}.
The concept class C consists of functions ¢ : X — A. Similarly, the hypothesis class H consists of functions h : X — A’,
where A" = {Y C ), |Y| = 1}. By definition, there is a bijection between ) and A’ mapping each y to a corresponding
Y such that y € Y. According to this bijection, the loss function £ can be defined on (A U {x} x A’ U {x}) such that
L(c(x), h(z)) = 0if and only if h(x) C ¢(x). In this way, a unified PAC learning instance Q = (X, Y, A, £,C,H) can be
specified as a multilabel learning instance (X, ), A,C, H).

Corollary B.6 (Agnostic — Realizable (Partial Multilabel Learning)). Let A be a realizable partial multilabel learner
for (X, Y, A,C,H) with sample complexity MR (e, §). Then Algorithm 1 is an agnostic partial multilabel learner for
(X, ), A,C,H) with sample complexity:

RE €

€2

C. Reduction via Compression Scheme

For completeness, we state the sample complexity of reduction via compression method in this section.

The following theorem presents the sample complexity of the agnostic to realizable reduction achieved through a compression
scheme.

Theorem C.1 (Agnostic— Realizable (Compression)). IfC is unified PAC learnable with sample complexity MRE (¢, §),
then it is unified agnostic PAC learnable with sample complexity:

MAC (e, 5) = O(MRE(l/S, 1/3)log?(1/€) + log(l/é)).

€2

Proof of Theorem C.1. The proof follows directly from Theorem 3.1 and Theorem 3.2 in David et al. (2016). O

The following theorem presents the sample complexity of the Massart noise to realizable reduction achieved through a
compression scheme.

Theorem C.2 (Massart— Realizable (Compression)). If a multiclass concept class C is learnable with sample complexity
MRBE (¢ §), then it is also learnable under Massart noise with sample complexity:

MPRBE(1/3.1/3)log*(A/e) + 10g(1/5)>
Ae '

MMN(A) (€,0) = O(

Proof of Theorem C.2. According to Theorem 3.2 in David et al. (2016), we have: If C can be learned with sample
complexity MRE(e, §), there is a sample compression scheme of size k(m) = O(dp - log(m) log(dy - log(m))) where
do = MRE(1/3,1/3). Furthermore, a sample compression scheme of size k(1) implies an agnostic sample compression
scheme of size k(m). Denote this sample compression scheme by A (S), where S is the sample with size |S| = m. Due to
the upper bound on the size of comparison scheme is k(m), the size of the class of compression functions |#..| can be upper
bounded by

k(m)

£ ()= G

Then a universal Bernstein inequality gives that: for all h € H,, with probability at least 1 — , we have
— (Lp(h) = Lp(c"))|

(Ls(h) = Ls(c™))
; - og(|[He og(|He (17)
< c\/PD (h(z:) £ c*(x),y € {h(x)7c*(x)}>1 g(|7;|4/5) Ll g(|7; /%),

13
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where ¢* is the Bayesian optimal classifier in C. Specially, for the agnostic compression scheme A (S), with probability at
least 1 — §, we have

Lo(A(S)) — Lp(c*) < c\/PD (A(S)(s) £ c*(2),y € {A(S)(s), c*(a:)}) log(f;“"/‘s) + clog“?r/‘s), (18)

due to the definition of agnostic compression scheme. Combining Equation (18) and Equation (7),with probability at least
1 — 4, we have

log((7o1/6) |, log(Hel/3)

19
5] 9] (19

1
Lp(A(S)) = Lp(c") < c\/A(LD(A(S)) —Lp(e*))
Combining Equation (19) and Equation (16) and solve, we have Lp(A(S)) — Lp(c*) <, if

15| = O(MRE(1/3, 1/3)log%(A/e) + log(l/é)).

Ae

In this way, we prove that the compression scheme is a learner under Massart noise and also prove the upper bound on
sample complexity. O

The following theorem presents the sample complexity of the Tsybakov noise to realizable reduction achieved through a
compression scheme.

Theorem C.3 (Tsybakov— Realizable (Compression)). If a multiclass concept class C is learnable with sample complexity
MRE(¢ §), then it is also learnable under Tsybakov noise with sample complexity:

a(MBE(1/3,1/3)1og®*(1/€) + log(l/é)))

62—04

MTN(a,a) (67 5) = O(

Proof of Theorem C.3. The proof closely mirrors the argument in Theorem C.2, with the key difference being the substitution
of the Massart noise condition (i.e. Equation (7)) by the Tsybakov noise condition (i.e. Equation (10)) in Equation (19). [

D. Concentration Inequalities

In this section, we list the concentration inequalities used in our paper without providing proofs.

Theorem D.1 (Generic Chernoff Bound). For a random variable X, and a positive number t, and any a,we have
P(X > a) < M(t)exp(—ta),

where M (t) = Elexp(tX)] is the moment generating function of X.

Theorem D.2 (Uniform Bernstein Inequality). For all h, h' € H and distribution D over X x ), with probability at least

1 — 6, we have
|(Ls(h) = Ls(h)) = (Lp(h) — Lp(h'))]

log(H1/6) . log(|#|/9)
A

< c\/PD(h(m) # W (x),y € {h(z), ' (z)})

where H is a multiclass hypothesis class, and ¢ is some positive constant.

Theorem D.3 (McDiarmid’s Inequality). Let f : X7 X Xy x --- X &, — R satisfy the bounded differences property with

bounds c1,co, ..., c,. Consider independent random variables X1, Xa, ..., X,, where X; € X for all i. Then, for any
€ >0, ,
—2e
P(f(X17X27"'7X’n) _]E[f(XlaX277Xn)] 2 E) S €xXp (chg>7
i=1 6
—2¢2
P(f(X1, X2, ..., Xp) = E[f(X1, Xo,..., X;)] <€) <exp W .
i=16i
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