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Abstract

Recent advances in knowledge representation learning (KRL) highlight the ur-1

gent necessity to unify symbolic knowledge graphs (KGs) with language models2

(LMs) for richer semantic understanding. However, existing approaches typically3

prioritize either graph structure or textual semantics, leaving a gap: a unified4

framework that simultaneously captures global KG connectivity, nuanced linguistic5

context, and discriminative reasoning semantics. To bridge this gap, we intro-6

duce KG-BiLM, a bidirectional LM framework that fuses structural cues from7

KGs with the semantic expressiveness of generative transformers. KG-BiLM in-8

corporates three key components: (i) Bidirectional Knowledge Attention, which9

removes the causal mask to enable full interaction among all tokens and entities;10

(ii) Knowledge-Masked Prediction, which encourages the model to leverage both11

local semantic contexts and global graph connectivity; and (iii) Contrastive Graph12

Semantic Aggregation, which preserves KG structure via contrastive alignment13

of sampled sub-graph representations. Extensive experiments on standard bench-14

marks demonstrate that KG-BiLM1 outperforms strong baselines in link prediction,15

especially on large-scale graphs with complex multi-hop relations—validating its16

effectiveness in unifying structural information and textual semantics.17

1 Introduction18

Recent advances in knowledge representation learning (KRL) highlight the need for unified ap-19

proaches that integrate large-scale knowledge graphs (KGs) with structural representations and20

modern language models (LMs) with semantic understanding [1] [2]. In particular, significant21

progress in both symbolic and neural paradigms [3] has motivated research beyond traditional knowl-22

edge graph embedding (KGE) methods to leverage contextual semantics more fully [4] [5]. Moreover,23

the convergence of symbolic reasoning and neural text understanding has become increasingly promi-24

nent [6]. Consequently, investigating hybrid approaches that preserve KG structural relationships25

while capturing deep linguistic information is critical [7] [8].26

Despite extensive research on KRL, the field remains fragmented. As shown in Fig.1, KGE methods,27

such as translation-based and semantic matching models, operate solely on symbolic triples and thus28

fail to capture lexical semantics, severely limiting their adaptability to heterogeneous downstream29

tasks [9]. Encoder-based transformers (e.g., BERT [10]) inject contextual word representations30

but are typically pre-trained on generic corpora, lacking the domain-specific text required for KG31

reasoning. Consequently, they struggle with long-tail entities and relations and cannot leverage the32

richer generative cues available to decoder-only models [11]. Conversely, applying decoder-based33

large language models (e.g., LLaMA [12]) directly to KG tasks introduces new challenges. The34

1The source code of KG-BiLM is available at https://anonymous.4open.science/status/kg-0317
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Figure 1: Illustration of complementary failure modes in KRL models. (a) Translation-based
KGEs rate ⟨Beethoven, genre, Classical⟩ and ⟨Beethoven, genre, Rock⟩ almost identically—fixed off-
sets—while a BERT encoder uses context to prefer Classical. (b) In “Washington scored 22 points. . . ,”
LLaMA3-8B links Washington to the state; a graph encoder uses ⟨Washington, playsInLeague, NBA⟩
to pick the team. (c) Encoders falter on long-tail entities from scarce text, and decoder-only models
can’t use future tokens to resolve earlier uncertainty.

inherent unidirectional generation paradigm obscures bidirectional dependencies and often ignores35

explicit structural constraints essential for faithful inference [13].36

To bridge this research gap, we present a hybrid architecture called KG-BiLM, aiming to (i) achieve37

higher information density than conventional KG encoders, (ii) integrate linguistic cues into KG38

representations, and (iii) enable zero-shot encoding capabilities. By overcoming the longstanding39

trade-offs between bidirectional structural reasoning, local semantic fidelity, and global topological40

consistency, KG-BiLM unifies the strengths of both structure- and semantics-oriented representation41

learning.42

KG-BiLM unifies structural and semantic information via three core techniques: (1) Bidirectional43

Knowledge Attention removes the causal mask from the decoder so that each token can attend to44

both past and future contexts, thereby strengthening inter-triple connections; (2) Knowledge-Masked45

Prediction selectively masks triple and lexical tokens, forcing the model to leverage local lexical46

context alongside the global graph structure to reconstruct missing tokens, thereby integrating rich47

linguistic cues into the KG embeddings; and (3) Contrastive Graph Semantic Aggregation applies48

contrastive learning on multiple graph-sampled views, aligning structural and semantic embeddings49

to preserve topology, enhance discriminative power, and facilitate zero-shot encoding of novel50

entities and relations. Together, these innovations transform a decoder-only transformer into a unified51

framework that jointly harnesses global KG structure and rich linguistic context for more accurate52

and generalizable reasoning.53

The main contributions of this paper are as follows:54

• Global Connectivity: A novel causal masking scheme that enables bidirectional attention55

between tokens and entities along graph edges. This enhances multi-hop relational reasoning56

and captures long-range dependencies in a joint structural–textual context, thereby improving57

knowledge propagation with minimal overhead while preserving generative capabilities.58

• Contextual Inference: An adaptive masking-recovery mechanism that hides and recon-59

structs entities and tokens using both graph adjacency and linguistic cues. This enforces struc-60

tural–linguistic synergy, supports zero-shot generalization and robust missing-information61

recovery, and leverages a position-shifted loss to blend global and local signals effectively.62

• Semantic Discrimination: A contrastive learning objective to align semantically similar63

graph–text pairs and repel dissimilar ones. This sharpens global embedding boundaries,64

ensures cluster cohesion and distinctive entity semantics at scale, and enhances retrieval65

precision under noisy, heterogeneous subgraph augmentations.66

• Comprehensive Evaluation: We empirically demonstrate that KG-BiLM effectively pre-67

serves graph-structural cues while integrating textual semantics, establishing a new paradigm68

for holistic knowledge representation learning.69

2



2 Related Work70

Knowledge Graph Embedding. Translational (e.g., TransE [14]) and semantic-matching (e.g., Dist-71

Mult [15]) models dominate KGE, with numerous extensions that enrich multi-relational patterns and72

incorporate text, type, or logical signals for robustness [16–23]. Despite strong link-prediction accu-73

racy, their fixed vectors rarely adapt across heterogeneous tasks, revealing the need for representations74

that unify structural fidelity with contextual flexibility.75

Encoder-based KRL. Transformer encoders such as BERT [10]and RoBERTa [24] are infused76

with KG-aware objectives to learn context-aligned entity embeddings [25–29]. While effective at77

capturing local text cues, their limited receptive fields overlook long-range graph signals, constraining78

zero-shot transfer and holistic structure-text integration.79

Decoder-based KRL. Large language models (e.g., GPT-4o [30], LLaMA [12]) generate knowledge-80

grounded text or triples for downstream reasoning [31–35]. Their fluency supplies flexible supervision,81

yet the absence of explicit structural anchoring often weakens relational fidelity, underscoring the82

demand for methods that couple generative power with graph-consistent inference.83

Due to the space limitation, please refer to Appendix B for further details.84

3 The KG-BiLM Model85

This section introduces KG-BiLM, a knowledge graph–enhanced bidirectional large language model86

that unifies structural and textual semantics for robust knowledge representation.87

3.1 Preliminaries88

Let G = (E ,R, T ) be a knowledge graph, where E is the set of entities,R the set of relations, and89

T ⊆ E × R × E the set of triplets (ei, r, ej) describing relation r ∈ R between ei, ej ∈ E . From90

pre-training corpora we derive a textual vocabulary V . Our goal is to learn embeddings in a shared91

d-dimensional space so that every entity e ∈ E and every token v ∈ V is represented in Rd, preserving92

both graph structure and linguistic context. Given a tokenized input sequence x = (x1, . . . , xN ),93

which may intermix entity and relation names and natural-language tokens, the model parameters Θ94

map x to an initial embedding matrix H(0). The full list of symbols is provided in Appendix A.95

3.2 Overview Framework96

Figure 2 presents the overall architecture. KG-BiLM first encodes KG triples and entity description97

into a unified token sequence. These tokens are then processed by a Bidirectional Knowledge98

Attention module, which injects graph-aware masks. Next, we apply a Knowledge-Masked Prediction99

objective to reconstruct the masked tokens, leveraging in-batch negatives for more effective contrastive100

learning. Finally, a Contrastive Graph Semantic Aggregation step aligns paired views via an InfoNCE101

loss. The functions of the three modules (see Appendix C for full algorithmic details) are as follows:102

• Bidirectional Knowledge Attention (BKA) revises the causal mask of a decoder-style103

transformer so that every position may attend to every other, strengthening entity–entity and104

token–token interactions without sacrificing autoregressive capabilities.105

• Knowledge-Masked Prediction (KMP) strategically hides entities and textual tokens and106

trains the model to recover them using both the global graph topology and local linguistic107

context, thereby encouraging rich cross-modal reasoning.108

• Contrastive Graph Semantic Aggregation (CGSA) samples semantically related109

sub-graphs or textual variants and pulls their representations closer while pushing apart110

dissimilar samples, sharpening decision boundaries in the embedding space.111

3.3 Bidirectional Knowledge Attention112

Existing KGE methods typically rely on unidirectional or strictly local attention, which can hinder the113

learning of coherent global embeddings. Encoder-based approaches (e.g., BERT-like architectures)114
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Figure 2: Overview of the KG-BiLM Architecture.

employ fully bidirectional attention but often lack the generative expressivity required for open-115

ended inference. Decoder-based transformers, by contrast, use a causal mask that blocks access to116

future tokens, making it difficult to capture symmetric relations or long-range entity co-occurrences.117

Consequently, a refined attention scheme is required to bridge these limitations.118

Formulation of Bidirectional Knowledge Attention. Formally, Let L be the number of transformer119

layers, and let H(ℓ) ∈ RN×d be the hidden states at the ℓ-th layer. For layer ℓ, define the query, key,120

and value matrices as:121

Q = H(ℓ)WQ, K = H(ℓ)WK , V = H(ℓ)WV (1)

where WQ,WK ,WV ∈ Rd×dh are trainable and dh denotes the dimension of each attention head122

(so that h× dh = d for h heads). In standard self-attention the mask M is set to −∞ for positions123

(i, j) if j > i in a strictly causal decoder, or 0 otherwise for a fully bidirectional encoder. Under the124

proposed BKA, a specialized mask MBKA is introduced:125

MBKA
i,j =

{
0, if tokens (xi, xj) may interact
−∞, otherwise

(2)

The criterion “may interact” is determined not only by token positions but also by graph-based126

adjacency. Concretely, if xi and xj are entity tokens within the same sub-graph or share a relation127

path within a certain hop threshold, MBKA
i,j = 0. This ensures that each token may attend both128

backward and forward in the sequence, as well as to any closely connected entity in the KG.129

Attention weights are then computed as:130

Attention(Q,K,V;MBKA) = softmax
(QK⊤
√
dh

+MBKA
)
V (3)

By permitting unrestricted forward and backward dependencies—while still enforcing structural131

constraints from the KG—the model captures richer, multi-hop relational patterns. Consequently,132

BKA seamlessly fuses textual context with graph connectivity, alleviating the data sparsity often133

encountered in traditional KGE methods.134

Layer Update and Enhanced Representations. Denote the output of the ℓ-th layer by H(ℓ+1).135

Employing multi-head attention, we obtain:136

H̃(ℓ) = Concat
(
head1,head2, . . . ,headh

)
WO (4)
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where137

headi = Attention(Qi,Ki,Vi;M
BKA) (5)

and WO ∈ R(h·dh)×d. Then fuse the attended representations with a residual connection and layer138

normalization:139

H̄(ℓ) = LayerNorm
(
H(ℓ) + H̃(ℓ)

)
(6)

Next, a position-wise feed-forward network (FFN) is employed:140

H(ℓ+1) = LayerNorm
(
H̄(ℓ) + FFN

(
H̄(ℓ)

))
(7)

This iterative transformation processes the sequence holistically, thereby allowing for the accu-141

mulation of signals from all tokens and their interlinked entities. The second advantage of using142

the multivariate approach is its capability to encode complex relational structures in a single pass,143

enhancing representational power for multiple downstream tasks.144

By iterating this sequence of graph-aware attention, residual fusion, and feed-forward updates, the145

model holistically aggregates signals from all tokens and their linked entities. This multivariate146

update not only captures complex relational structures in one pass but also substantially enhances the147

embedding power for downstream tasks.148

3.4 Knowledge-Masked Prediction149

Existing KRL pipelines often focus on direct link prediction or pairwise entity classification, which150

limits their ability to capture nuanced textual cues. In contrast, our method utilises knowledge-masked151

prediction (KMP) paradigm to gain a more holistic understanding of entity semantics. While KMP152

resembles traditional masked language modeling, it is specifically designed to incorporate relational153

paths and entity dependencies from the knowledge graph. This design makes the model robust to154

partial or missing observations—a key advantage for downstream zero-shot generalization.155

Notation for Masked Entities and Tokens. Let xm = (xm
1 , xm

2 , . . . , xm
N ) be the input sequence156

where a selected subsetM ⊂ {1, . . . , N} of positions is masked. Each masked position i ∈ M157

could correspond to either an entity token or a textual token, replaced by a special mask symbol:158

xm
i =

{
xi, if i /∈M
⟨mask⟩, if i ∈M (8)

We denote the masking ratio by γ = |M|
N , which can be tuned to regulate the difficulty of the inference159

task.160

Predicting Masked Tokens and Entities. Once the BKA is applied, the hidden states H(L) at the161

final layer encapsulate both local lexical context and global KG structure. Let hi ∈ Rd denote the162

final hidden representation at position i. The model then projects hi into a distribution over the163

vocabulary V extended with entity symbols:164

pΘ(xi | hi) = softmax
(
WPhi + bP

)
(9)

where WP ∈ R|V+E|×d and bP ∈ R|V+E| are projection parameters. For each i ∈M, the training165

objective focuses on predicting the true token or entity xi based on the modified input xm.166

Position-Shifted Loss Assignment. A key innovation is that the model must leverage both preceding167

and succeeding context, as well as linked entities, to decode a masked position. In a strict causal168

decoder, the cross-entropy loss at position i would typically be computed using the logits from hi.169

However, to enforce a deeper structural dependence, the present approach employs a position-shifted170

mechanism:171

LKMP = −
∑
i∈M

log pΘ

(
xi | hi−1

)
(10)
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where hi−1 denotes the hidden representation from the immediately preceding position. This position-172

shifted KMP scheme compels the network to aggregate contextual information from both preceding173

and succeeding tokens, as well as linked entities. It offers three key benefits: it enforces consistency174

across consecutive positions, encourages global attention to relational edges, and ensures that local175

neighborhoods in the sequence capture relevant semantically related tokens.176

Link to Zero-Shot Capability. By repeatedly training the model to infer masked entity tokens177

with partial observations, it learns to exploit both cross-position and cross-relational dependencies.178

Consequently, the learned embeddings become adaptable to new entities and unseen textual patterns.179

The synergy between the BKA and the position-shifted KMP modules thus underpins robust zero-shot180

encoding: once structural and linguistic patterns are internalized, the model can generalize to novel181

contexts with minimal or no additional training data.182

3.5 Contrastive Graph Semantic Aggregation183

Despite the effectiveness of bidirectional attention and knowledge masking in unifying textual and184

graph-based cues, there remains a risk that entity embeddings become overly entangled with their185

local context and lose global distinctiveness. To mitigate this, we introduce a contrastive learning186

module—Contrastive Graph Semantic Aggregation (CGSA)—that preserves discriminative power187

while still benefiting from integrative representations. The contrastive objective naturally clusters188

semantically or relationally coherent samples and pushes apart incongruent pairs, thereby reinforcing189

the structural integrity of the knowledge-graph representation.190

Sampling Mechanism and Dropout Variation. To achieve contrastive alignment, we draw two191

independent corrupted views x(1) and x(2) from the same original sequence or sub-graph. Each192

view is generated by applying a separate random dropout mask. Specifically, for a given sub-graph193

or textual snippet s, two corrupted views s1 and s2 are generated through random dropout or data194

augmentation, yielding token sequences x(1) and x(2). Both are passed through the aforementioned195

BKA and KMP modules, resulting in final embeddings:196

z(1) = Pool
(
H(L)(x(1))

)
, z(2) = Pool

(
H(L)(x(2))

)
(11)

where Pool(·) (e.g., mean pooling or a special classification token) aggregates the sequence-level197

embedding.198

Contrastive Objective. Denote a minibatch by {z(1)k , z
(2)
k }Bk=1, where each index k corresponds to199

a distinct pair derived from the same original sub-graph sk. Let sim(u,v) = u⊤v
∥u∥∥v∥ measure the200

cosine similarity. Inspired by InfoNCE [36], we formulate the CGSA loss as:201

LCGSA = −
B∑

k=1

log

(
exp

(
sim(z

(1)
k , z

(2)
k ) / τ

)∑B
ℓ=1 exp

(
sim(z

(1)
k , z

(2)
ℓ ) / τ

)) (12)

where τ is a temperature hyperparameter. The numerator encourages high similarity between the two202

views of the same entity–text pair, while the denominator discourages alignment with representations203

of other pairs in the minibatch. By maximizing the similarity of paired views and minimizing the204

similarity with respect to non-matching samples, CGSA promotes cluster cohesion for semantically205

similar embeddings and cluster separation for dissimilar embeddings.206

Integration with Global KG Semantics. The CGSA excels at preserving global semantics in207

large-scale knowledge graphs with complex relational patterns. By enforcing that embeddings208

remain discriminative under repeated dropout corruptions, it also fosters stable representations across209

paraphrases or reordered textual segments describing the same entity. For example, if two sub-graphs210

si and sj share the majority of their entities but differ in minor textual descriptions, the contrastive211

loss anchors their embeddings to be closer than those of unrelated sub-graphs. In doing so, CGSA212

addresses a key limitation of earlier generative LM-based methods, wherein structural coherence was213

often overshadowed by purely textual factors.214
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4 Experiments215

This section empirically evaluates KG-BiLM on four widely used knowledge graph benchmarks,216

comparing it against state-of-the-art symbolic, neural and hybrid alternatives. We first detail the217

experimental setup, then analyse performance on structure-only and semantically-enriched datasets,218

followed by a component ablation, a zero-shot study, and a qualitative analysis.219

4.1 Experimental Settings220

Table 1: Statistics of the KG benchmarks.

Dataset #Ent. #Rel. Train Valid Test Text
FB15k-237 14,541 237 272,115 17,535 20,466 No
WN18RR 40,943 11 86,835 3,034 3,134 No
FB15K-237N 13,104 93 87,282 7,041 8,226 Yes
Wikidata5M 4,594,485 822 20,614,279 5,163 5,133 Yes

Datasets. Table 1 summarises the statistics221

of the four benchmark datasets. Two of them222

(FB15k-237 and WN18RR) consist solely of223

structured triples without any accompanying224

textual entity descriptions, thus focusing on a225

model’s ability to learn graph structures. The226

other two (FB15k-237N and Wikidata5M)227

enrich each entity with detailed textual de-228

scriptions to facilitate semantic integration.229

Notably, FB15k-237N exhibits a pronounced long-tail distribution of entities, and the large-scale230

Wikidata5M further allows for zero-shot inference evaluation. Together, these richer datasets provide231

a more challenging testbed for evaluating our model’s capacity to fuse textual semantics, handle232

long-tail entities, and perform zero-shot reasoning.233

Baselines. We evaluate two major paradigms: (1) KGE methods (TransE, DistMult, ComplEx,234

etc.) embedding entities and relations via distance- or multiplicative-scoring; (2) Transformer-based235

models (KG-BERT, SimKGC, KG-S2S, etc.) enriching KG embeddings with textual context, but236

may underutilize explicit graph structure.237

Evaluation Metrics and Implementations. We evaluate our model using three widely adopted238

KRL metrics in a single framework: Mean Rank (MR) computes the average position of the true239

entity—lower values denote better overall ordering. Mean Reciprocal Rank (MRR) averages the240

inverse of each true-entity rank to emphasize rapid retrieval, and Hits@k (k = 1, 3, 10) reports the241

proportion of cases where the correct entity appears among the top-k predictions. The implementation242

details are in Appendix E.243

Table 2: Summary of essential baseline link prediction metrics on WN18RR and FB15k-237 (full
table of results is available in Appendix D)

Model WN18RR FB15k-237
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE [14] 2300 24.3 4.3 44.1 53.2 223 27.9 19.8 37.6 47.4
DistMult [15] 3704 44.4 41.2 47.0 50.4 411 28.1 19.9 30.1 44.6
ComplEx [37] 3921 44.9 40.9 46.9 53.0 508 27.8 19.4 29.7 45.0
ConvE [38] 4464 45.6 41.9 47.0 53.1 245 31.2 22.5 34.1 49.7
TuckER [39] – 47.0 44.3 48.2 52.6 – 35.8 26.6 39.4 54.4
CompGCN [40] – 47.9 44.3 49.4 54.6 – 35.5 26.4 39.0 53.5
QuatDE [41] 1977 48.9 43.8 50.9 58.6 90 36.5 26.8 40.0 56.3
NBFNet [42] – 55.1 49.7 – 66.6 – 41.5 32.1 – 59.9
KG-BERT [27] 97 21.6 4.1 30.2 52.4 153 23.7 16.9 26.0 42.7
Pretrain-KGE [43] – 48.8 43.7 50.9 58.6 – 35.0 25.0 38.4 55.4
LaSS [44] 35 – – – 78.6 108 – – – 53.3
SimKGC [45] – 66.7 58.8 72.1 80.5 – 33.6 24.9 36.2 51.1
KG-S2S [46] – 57.4 53.1 59.5 66.1 – 33.6 25.7 37.3 49.8
kNN-KGE [29] – 57.9 52.5 – – – 28.0 37.3 – –
CSPromp-KG [47] – 57.5 52.2 59.6 67.8 – 35.8 26.9 39.3 53.8
GPT-3.5 [30] – – 19.0 – – – – 23.7 – –
CP-KGC [35] – 67.3 59.9 72.1 80.4 – 33.8 25.1 36.5 51.6
KICGPT [48] – 56.4 47.8 61.2 67.7 – 41.2 32.7 44.8 55.4
KG-BiLM(Ours) 67 68.2 61.4 72.7 80.5 151 36.7 30.5 36.9 53.1
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4.2 Structural-Only Benchmark Results244

Table 2 compares KG-BiLM with 18 competitive baselines on WN18RR and FB15k-237—two245

canonical datasets that omit textual descriptions to focus on pure graph reasoning. On WN18RR,246

KG-BiLM achieves the highest MRR, outperforming the previous best model, CP-KGC, by 0.009247

MRR and matching SimKGC’s top Hits@10 score of 80.5. Notably, unlike CP-KGC and SimKGC,248

which rely on pre-trained text encoders, KG-BiLM attains superior accuracy using only symbolic249

triples. This improvement demonstrates the power of our BKA module: by removing the causal mask,250

the decoder conditions on full context both within and across triples, allowing multi-hop relationships251

to propagate more faithfully than in strictly sequential or bag-of-triples encoders.252

On FB15k-237, the KGE model NBFNet still leads in absolute performance, but KG-BiLM remains253

competitive with recent Transformer-based baselines. We attribute the slightly lower MRR (relative254

to WN18RR) to FB15k-237’s larger relation vocabulary (237 vs. 11), which increases semantic255

ambiguity in the absence of textual cues. These results confirm that our graph-aware bidirectional256

decoding provides tangible benefits even without entity descriptions.257

Table 3: Summary of essential baseline link prediction metrics on Wikidata5M and FB15k-237N
(full table of results is available in Appendix D)

Model Wikidata5M FB15k-237N
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [14] 25.3 17.0 31.1 39.2 25.5 15.2 30.1 45.9
DistMult [15] 25.3 20.9 27.8 33.4 20.9 14.3 23.4 33.0
ComplEx [37] 30.8 25.5 – 39.8 24.9 18.0 27.6 38.0
RotatE [49] 29.0 23.4 32.2 39.0 27.9 17.7 32.0 48.1
QuatE [50] 27.6 22.7 30.1 35.9 – – – –
ConvE [38] – – – – 27.3 19.2 30.5 42.9
CompGCN [40] – – – – 31.6 23.1 34.9 48.0

KG-BERT [27] – – – – 20.3 13.9 20.1 40.3
KG-S2S [46] – – – – 35.4 28.5 38.8 49.3
KEPLER [28] 21.0 17.3 22.4 27.7 – – – –
SimKGC [45] 35.8 31.3 37.6 44.1 – – – –
CSPromp-KG [47] 38.0 34.3 39.9 44.6 36.0 28.1 39.5 51.1
ReSKGC [51] 39.6 37.3 41.3 43.7 – – – –
CD [34] – – – – 37.2 28.8 41.0 53.0
KG-BiLM(Ours) 40.3 39.7 43.0 45.2 37.8 29.3 42.1 54.6

4.3 Semantically-Enriched Structural Benchmark Results258

As Table 3 demonstrates, when we evaluate on datasets that augment each entity with natural-language259

descriptions, KG-BiLM sets new state-of-the-art results on both Wikidata5M and FB15k-237N. On260

the ultra-large Wikidata5M, our model achieves an MRR of 0.403, surpassing ReSKGC by 0.7261

points and CSPrompKG by 2.3 points. Even more strikingly, KG-BiLM attains a Hits@1 score of262

0.397—5.4 points higher than the previous best (ReSKGC). This gain stems directly from our KMP263

strategy: by randomly masking both entity and graph tokens during pre-training, the model learns to264

integrate semantically related but topologically distant evidence, which is crucial for handling textual265

spans that include unseen entity aliases or paraphrases.266

Table 4: Ablation on validation split.

Variant Wikidata5M FB15k-237N
MRR H@10 MRR H@10

Full model .403 .452 .378 .546
w/o BKA .383 .426 .361 .525
w/o KMP .390 .432 .366 .531
w/o CGSA .397 .440 .370 .538

FB15k-237N exhibits the most pronounced long-tail entity dis-267

tribution in our suite. Systems that rely on large-capacity text268

encoders often over-fit head entities and mis-rank rare ones.269

KG-BiLM mitigates this pitfall, outperforming the contrastive-270

pre-training approach CD on every metric, most clearly on271

Hits@10 (+1.6 points). The result confirms that CGSA scales272

gracefully: by aligning multiple graph-sampled views per273

mini-batch, KG-BiLM preserves cluster cohesion for rare en-274

tities while simultaneously sharpening boundaries between275

semantically distinct neighborhoods. Ablation results (Section276

4.5) back this claim quantitatively—the absence of CGSA drops Hits@10 on FB15k-237N by 1.5277

points, the largest decrement among all variants.278

8



4.4 Ablation Study279

Table 4 reports ablation results on the validation splits of Wikidata5M and FB15k-237N. Removing280

BKA incurs the largest performance drop on both datasets (−2.0 MRR on Wikidata5M; −1.7 MRR281

on FB15k-237N), confirming that global connectivity is the main contributor to enhanced multi-hop282

reasoning. Omitting KMP yields a somewhat smaller but still substantial degradation (−1.3 MRR on283

average), demonstrating that semantic–structural co-training remains indispensable even when textual284

information is abundant. Interestingly, excising CGSA hurts Hits@10 more than MRR, indicating that285

CGSA primarily boosts the model’s ability to rank challenging yet correct entities at the top, rather286

than merely improving coarse-grained ordering. Together, these controlled experiments validate that287

KG-BiLM’s gains stem from our architectural innovations rather than superficial scaling artifacts.288

4.5 Zero-shot Reasoning289

Table 5: Link prediction in zero-shot set-
ting on Wikidata5M dataset.

Model Wikidata5M

MRR Hits@1 Hits@3 Hits@10
DKRL [52] 23.1 5.9 32.0 54.6
RoBERTa [24] 7.4 0.7 1.0 19.6
KEPLER [28] 40.2 22.2 51.4 73.0
SimKGC [45] 71.4 50.9 78.5 91.7
KG-BiLM(Ours) 74.8 53.7 81.6 93.8

The Zero-shot evaluation constitutes the most stringent290

test of generalization, since every evaluation triple con-291

tains at least one entity unseen during training, forcing292

models to extrapolate purely from textual descriptions. As293

shown in Table 5, KG-BiLM achieves an MRR of 0.748,294

outperforming SimKGC by 3.4 points and KEPLER by295

an impressive 34.6 points. These gains are consistent296

across the recall spectrum and culminate in a 2.1-point297

improvement on Hits@10. Qualitative analysis indicates298

that BKA remains pivotal: by leveraging future context299

to inform earlier predictions, the model can utilize down-300

stream descriptions of unseen entities and adjust preceding301

hypotheses—an ability lacking in causal decoders. Additionally, we observe that KMP enhances ro-302

bustness to rare words by training the model to reconstruct missing entity names from partial mention303

cues, effectively serving as a denoising auto-encoder across both language and graph modalities.304

4.6 Qualitative Analysis305

306

Figure 3: Results of Entity Embedding Clusters and Knowledge-Attention Heatmap.

Figure 3 shows KG-BiLM forming a coherent embedding space via its bidirectional mask for routing.307

t-SNE plots reveal tight entity clusters—even rare ones—showing contrastive aggregation with308

masked prediction yields high silhouette scores and balances long tails. Sparse off-diagonal attention309

from future tokens to multi-hop neighbors confirms that unmasking enables topology-aware, non-local310

reasoning for disambiguation.311

5 Conclusion312

KG-BiLM advances knowledge representation by unifying symbolic graph structure with bidirectional313

linguistic modeling. By removing the causal mask, tokens can fully exploit global graph connectivity,314

while knowledge-masked prediction and contrastive graph–semantic aggregation bolster robustness315

to sparsity and enable zero-shot generalization. The resulting high-density embeddings combine316

structural fidelity with long-tail semantic coverage, outperforming standalone KGEs and LLMs across317

small-, large-scale, and long-tail benchmarks.318
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• Theorems and Lemmas that the proof relies upon should be properly referenced.606

4. Experimental result reproducibility607

Question: Does the paper fully disclose all the information needed to reproduce the main ex-608

perimental results of the paper to the extent that it affects the main claims and/or conclusions609

of the paper (regardless of whether the code and data are provided or not)?610

Answer: [Yes]611

Justification: We propose a novel KRL method in Section 3. We provide more details of the612

module implementation in Appendix C. Our source code is accessible in Abstract.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• If the paper includes experiments, a No answer to this question will not be perceived616

well by the reviewers: Making the paper reproducible is important, regardless of617

whether the code and data are provided or not.618

• If the contribution is a dataset and/or model, the authors should describe the steps taken619

to make their results reproducible or verifiable.620

• Depending on the contribution, reproducibility can be accomplished in various ways.621

For example, if the contribution is a novel architecture, describing the architecture fully622

might suffice, or if the contribution is a specific model and empirical evaluation, it may623

be necessary to either make it possible for others to replicate the model with the same624

dataset, or provide access to the model. In general. releasing code and data is often625

one good way to accomplish this, but reproducibility can also be provided via detailed626

instructions for how to replicate the results, access to a hosted model (e.g., in the case627

of a large language model), releasing of a model checkpoint, or other means that are628

appropriate to the research performed.629

• While NeurIPS does not require releasing code, the conference does require all submis-630

sions to provide some reasonable avenue for reproducibility, which may depend on the631

nature of the contribution. For example632

(a) If the contribution is primarily a new algorithm, the paper should make it clear how633

to reproduce that algorithm.634

(b) If the contribution is primarily a new model architecture, the paper should describe635

the architecture clearly and fully.636

(c) If the contribution is a new model (e.g., a large language model), then there should637

either be a way to access this model for reproducing the results or a way to reproduce638

the model (e.g., with an open-source dataset or instructions for how to construct639

the dataset).640

(d) We recognize that reproducibility may be tricky in some cases, in which case641

authors are welcome to describe the particular way they provide for reproducibility.642

In the case of closed-source models, it may be that access to the model is limited in643

some way (e.g., to registered users), but it should be possible for other researchers644

to have some path to reproducing or verifying the results.645

5. Open access to data and code646

Question: Does the paper provide open access to the data and code, with sufficient instruc-647

tions to faithfully reproduce the main experimental results, as described in supplemental648

material?649
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Answer: [Yes]650

Justification: Yes, our source code is accessible in Abstract. All datasets used for evaluation651

are open-sourced.652

Guidelines:653

• The answer NA means that paper does not include experiments requiring code.654

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/655

public/guides/CodeSubmissionPolicy) for more details.656

• While we encourage the release of code and data, we understand that this might not be657

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not658

including code, unless this is central to the contribution (e.g., for a new open-source659

benchmark).660

• The instructions should contain the exact command and environment needed to run to661

reproduce the results. See the NeurIPS code and data submission guidelines (https:662

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.663

• The authors should provide instructions on data access and preparation, including how664

to access the raw data, preprocessed data, intermediate data, and generated data, etc.665

• The authors should provide scripts to reproduce all experimental results for the new666

proposed method and baselines. If only a subset of experiments are reproducible, they667

should state which ones are omitted from the script and why.668

• At submission time, to preserve anonymity, the authors should release anonymized669

versions (if applicable).670

• Providing as much information as possible in supplemental material (appended to the671

paper) is recommended, but including URLs to data and code is permitted.672

6. Experimental setting/details673

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-674

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the675

results?676

Answer: [Yes]677

Justification: Yes, we provide detailed descriptions of the experimental and evaluation678

settings in Section 4 and Appendix E.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The experimental setting should be presented in the core of the paper to a level of detail682

that is necessary to appreciate the results and make sense of them.683

• The full details can be provided either with the code, in appendix, or as supplemental684

material.685

7. Experiment statistical significance686

Question: Does the paper report error bars suitably and correctly defined or other appropriate687

information about the statistical significance of the experiments?688

Answer: [No]689

Justification: Although we do not report error bars, we provide source code in the Abstract.690

Guidelines:691

• The answer NA means that the paper does not include experiments.692

• The authors should answer "Yes" if the results are accompanied by error bars, confi-693

dence intervals, or statistical significance tests, at least for the experiments that support694

the main claims of the paper.695

• The factors of variability that the error bars are capturing should be clearly stated (for696

example, train/test split, initialization, random drawing of some parameter, or overall697

run with given experimental conditions).698

• The method for calculating the error bars should be explained (closed form formula,699

call to a library function, bootstrap, etc.)700

• The assumptions made should be given (e.g., Normally distributed errors).701
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• It should be clear whether the error bar is the standard deviation or the standard error702

of the mean.703

• It is OK to report 1-sigma error bars, but one should state it. The authors should704

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis705

of Normality of errors is not verified.706

• For asymmetric distributions, the authors should be careful not to show in tables or707

figures symmetric error bars that would yield results that are out of range (e.g. negative708

error rates).709

• If error bars are reported in tables or plots, The authors should explain in the text how710

they were calculated and reference the corresponding figures or tables in the text.711

8. Experiments compute resources712

Question: For each experiment, does the paper provide sufficient information on the com-713

puter resources (type of compute workers, memory, time of execution) needed to reproduce714

the experiments?715

Answer: [Yes]716

Justification: Yes, we report the details of experiments compute resources in Appendix E.717

Guidelines:718

• The answer NA means that the paper does not include experiments.719

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,720

or cloud provider, including relevant memory and storage.721

• The paper should provide the amount of compute required for each of the individual722

experimental runs as well as estimate the total compute.723

• The paper should disclose whether the full research project required more compute724

than the experiments reported in the paper (e.g., preliminary or failed experiments that725

didn’t make it into the paper).726

9. Code of ethics727

Question: Does the research conducted in the paper conform, in every respect, with the728

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?729

Answer: [Yes]730

Justification: Yes, we have reviewed the NeurIPS Code of Ethics and ensured full compliance731

throughout our research process.732

Guidelines:733

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.734

• If the authors answer No, they should explain the special circumstances that require a735

deviation from the Code of Ethics.736

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-737

eration due to laws or regulations in their jurisdiction).738

10. Broader impacts739

Question: Does the paper discuss both potential positive societal impacts and negative740

societal impacts of the work performed?741

Answer: [Yes]742

Justification: Yes, we discuss the potential positive societal impacts and negative societal743

impacts in Appendix G.744

Guidelines:745

• The answer NA means that there is no societal impact of the work performed.746

• If the authors answer NA or No, they should explain why their work has no societal747

impact or why the paper does not address societal impact.748

• Examples of negative societal impacts include potential malicious or unintended uses749

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations750

(e.g., deployment of technologies that could make decisions that unfairly impact specific751

groups), privacy considerations, and security considerations.752
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• The conference expects that many papers will be foundational research and not tied753

to particular applications, let alone deployments. However, if there is a direct path to754

any negative applications, the authors should point it out. For example, it is legitimate755

to point out that an improvement in the quality of generative models could be used to756

generate deepfakes for disinformation. On the other hand, it is not needed to point out757

that a generic algorithm for optimizing neural networks could enable people to train758

models that generate Deepfakes faster.759

• The authors should consider possible harms that could arise when the technology is760

being used as intended and functioning correctly, harms that could arise when the761

technology is being used as intended but gives incorrect results, and harms following762

from (intentional or unintentional) misuse of the technology.763

• If there are negative societal impacts, the authors could also discuss possible mitigation764

strategies (e.g., gated release of models, providing defenses in addition to attacks,765

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from766

feedback over time, improving the efficiency and accessibility of ML).767

11. Safeguards768

Question: Does the paper describe safeguards that have been put in place for responsible769

release of data or models that have a high risk for misuse (e.g., pretrained language models,770

image generators, or scraped datasets)?771

Answer: [NA]772

Justification: This paper poses no such risks.773

Guidelines:774

• The answer NA means that the paper poses no such risks.775

• Released models that have a high risk for misuse or dual-use should be released with776

necessary safeguards to allow for controlled use of the model, for example by requiring777

that users adhere to usage guidelines or restrictions to access the model or implementing778

safety filters.779

• Datasets that have been scraped from the Internet could pose safety risks. The authors780

should describe how they avoided releasing unsafe images.781

• We recognize that providing effective safeguards is challenging, and many papers do782

not require this, but we encourage authors to take this into account and make a best783

faith effort.784

12. Licenses for existing assets785

Question: Are the creators or original owners of assets (e.g., code, data, models), used in786

the paper, properly credited and are the license and terms of use explicitly mentioned and787

properly respected?788

Answer: [Yes]789

Justification: Yes, we cite the original papers that produced the code package or dataset in790

Section 4.791

Guidelines:792

• The answer NA means that the paper does not use existing assets.793

• The authors should cite the original paper that produced the code package or dataset.794

• The authors should state which version of the asset is used and, if possible, include a795

URL.796

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.797

• For scraped data from a particular source (e.g., website), the copyright and terms of798

service of that source should be provided.799

• If assets are released, the license, copyright information, and terms of use in the800

package should be provided. For popular datasets, paperswithcode.com/datasets801

has curated licenses for some datasets. Their licensing guide can help determine the802

license of a dataset.803

• For existing datasets that are re-packaged, both the original license and the license of804

the derived asset (if it has changed) should be provided.805
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• If this information is not available online, the authors are encouraged to reach out to806

the asset’s creators.807

13. New assets808

Question: Are new assets introduced in the paper well documented and is the documentation809

provided alongside the assets?810

Answer: [Yes]811

Justification: Yes, we communicate the details of the code as part of our submission. Our812

source code is anonymous.813

Guidelines:814

• The answer NA means that the paper does not release new assets.815

• Researchers should communicate the details of the dataset/code/model as part of their816

submissions via structured templates. This includes details about training, license,817

limitations, etc.818

• The paper should discuss whether and how consent was obtained from people whose819

asset is used.820

• At submission time, remember to anonymize your assets (if applicable). You can either821

create an anonymized URL or include an anonymized zip file.822

14. Crowdsourcing and research with human subjects823

Question: For crowdsourcing experiments and research with human subjects, does the paper824

include the full text of instructions given to participants and screenshots, if applicable, as825

well as details about compensation (if any)?826

Answer: [Yes]827

Justification: This paper does not involve crowdsourcing nor research with human subjects.828

Guidelines:829

• The answer NA means that the paper does not involve crowdsourcing nor research with830

human subjects.831

• Including this information in the supplemental material is fine, but if the main contribu-832

tion of the paper involves human subjects, then as much detail as possible should be833

included in the main paper.834

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,835

or other labor should be paid at least the minimum wage in the country of the data836

collector.837

15. Institutional review board (IRB) approvals or equivalent for research with human838

subjects839

Question: Does the paper describe potential risks incurred by study participants, whether840

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)841

approvals (or an equivalent approval/review based on the requirements of your country or842

institution) were obtained?843

Answer: [NA]844

Justification: This paper does not involve crowdsourcing nor research with human subjects.845

Guidelines:846

• The answer NA means that the paper does not involve crowdsourcing nor research with847

human subjects.848

• Depending on the country in which research is conducted, IRB approval (or equivalent)849

may be required for any human subjects research. If you obtained IRB approval, you850

should clearly state this in the paper.851

• We recognize that the procedures for this may vary significantly between institutions852

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the853

guidelines for their institution.854

• For initial submissions, do not include any information that would break anonymity (if855

applicable), such as the institution conducting the review.856
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16. Declaration of LLM usage857

Question: Does the paper describe the usage of LLMs if it is an important, original, or858

non-standard component of the core methods in this research? Note that if the LLM is used859

only for writing, editing, or formatting purposes and does not impact the core methodology,860

scientific rigorousness, or originality of the research, declaration is not required.861

Answer: [Yes]862

Justification: LLMs were employed to support the understanding and interpretation of863

complex technical concepts.864

Guidelines:865

• The answer NA means that the core method development in this research does not866

involve LLMs as any important, original, or non-standard components.867

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)868

for what should or should not be described.869
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A Notations870

Notation Explanation
G = (E ,R, T ) A knowledge graph consisting of entities E , relationsR, and triples T .
E Set of entities in the knowledge graph.
R Set of relations in the knowledge graph.
T ⊆E×R×E Set of relational triples (ei, r, ej).
(ei, r, ej) A triple linking head entity ei to tail entity ej by relation r.
V Textual vocabulary extracted from large-scale corpora.
d Shared embedding dimension for all entities and tokens.
e ∈ E An individual entity.
v ∈ V An individual vocabulary token.
x = (x1, . . . , xN ) Tokenised input sequence of length N .
N Sequence length (number of tokens).
Θ All trainable model parameters.
H(0) Initial embedding matrix for the input sequence.
L Number of stacked transformer layers.
h Number of attention heads in multi-head attention.
dh Dimensionality of each attention head (hdh = d).
H(ℓ)∈RN×d Hidden states at transformer layer ℓ.
Q,K,V Query, key and value matrices in self-attention.
WQ,WK ,WV Projection parameters mapping hidden states to Q,K,V.
M Standard attention mask (causal or fully bidirectional).
MBKA Graph-aware bidirectional knowledge-attention mask (Eq. 2).
Attention(·) Scaled-dot-product attention with mask MBKA.
H̃(ℓ) Concatenated multi-head attention output at layer ℓ.
WO Output projection matrix after concatenating heads.
H̄(ℓ) Hidden states after residual connection and layer normalisation.
FFN(·) Position-wise feed-forward network.
H(ℓ+1) Output hidden states of layer ℓ after FFN.
M Index set of masked positions in knowledge-masked prediction.
xm Input sequence with tokens atM replaced by ⟨mask⟩.
γ = |M|

N Masking ratio.
hi Final hidden representation at position i.
pΘ(xi | hi) Predicted distribution over tokens/entities for position i.
WP ,bP Output projection parameters for masked prediction.
LKMP Knowledge-masked prediction loss (Eq. 10).
x(1),x(2) Two independently corrupted views of the same sample for contrastive learning.
H(L)(x(k)) Final-layer hidden states for view k∈{1, 2}.
z(1), z(2) Pooled sequence-level embeddings of the two views.
Pool(·) Aggregation function (e.g. mean-pooling or [CLS] token).
B Minibatch size for contrastive learning.
sim(u,v) Cosine similarity between vectors u and v.
LCGSA Contrastive graph semantic aggregation loss (Eq. 12).
τ Temperature hyperparameter in the contrastive loss.

B Related Work871

B.1 Knowledge Graph Embeddings872

Recent KGE research has moved beyond early translational families to more expressive geometries873

and inductive designs that strive for stronger reasoning and generalisation. Nonetheless, purely874

structural models still struggle to capture contextual semantics and to operate in open–world settings.875

ExpressivE [53] embeds entities as points and relations as parallelograms in a learnable Euclidean876

sub-space, enabling the model to reproduce relation patterns such as hierarchy or composition with877

elegant geometric operations. TGraiL [54] combines sub-graph structure and type information to878
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support inductive link prediction where novel entities appear only at test time, while TaKE [55]879

injects latent type vectors into any backbone KGE model and devises a type-aware negative-sampling880

strategy to stabilise training. Although the above methods markedly improve structural fidelity,881

they inherit two long-standing weaknesses: (i) scarce usage of contextual semantics (e. g., textual882

descriptions) means that zero-shot prediction remains brittle; (ii) most models must be retrained883

whenever a new graph is introduced, hampering scalability. KG-BiLM retains the high information884

density of geometric encoders yet enriches the embeddings with bidirectional linguistic cues supplied885

by a large language model (LLM). In doing so, the framework alleviates the semantic sparsity and886

domain-adaptation barriers observed above.887

These studies highlight the need for more flexible architectures that can effectively handle heteroge-888

neous downstream scenarios that increasingly extends beyond entity-level embedding precision to889

more generalizable and context-sensitive representations.890

B.2 Encoder-based KRL891

Encoder-based KRL methods treat a knowledge-graph (KG) triple as natural language and rely892

on pre-trained language models (PLMs) to inject rich semantic cues that traditional translational893

or tensor-factorisation approaches cannot capture. Broadly, existing work can be grouped into (i)894

triple-based representation, (ii) translation-based representation, and (iii) independent representation,895

each optimising the interplay between structural and textual signals in a different way896

Triple-Based Representation. Triple-based models linearise an entire triple (h, r, t) into a single897

sentence and fine-tune an encoder to judge its plausibility. KG-BERT [27] pioneers this paradigm:898

the description of the head entity (HE), relation (R) and tail entity (TE) is concatenated as [!CLS]899

HE [!SEP] R [!SEP] TE [!SEP] and fed to BERT; the [CLS] embedding is scored with a sigmoid-900

activated classifier. Subsequent work focuses on alleviating two key bottlenecks—insufficient901

relational modelling and lexical confusion between candidates. MTL-KGC [56] introduces multi-task902

objectives (relation prediction and relevance ranking) that expose KG-specific inductive bias during903

fine-tuning and markedly improve Hits@K. K-BERT [57] injects triples from an external KG into the904

input tree with soft position embeddings, effectively fusing factual memories into the encoder without905

retraining the PLM from scratch. MLMLM [58] reformulates link prediction as masked-language906

modelling (MLM): entities are generated token-by-token, enabling open-vocabulary completion907

and better interpretability. PKGC [59] and CSProm-KG [47] leverage prompt engineering; PKGC908

converts triples into cloze-style natural language while CSProm-KG learns conditional soft prompts909

that adapt to graph structure, reducing the parameter-update footprint and providing stronger zero-shot910

generalisation.911

Translation-Based Representation. Translation-style encoders mimic the geometric intuition of912

TransE while retaining PLM expressiveness. A representative architecture is StAR [60], which913

encodes the (h, r) pair and t separately using a Siamese BERT and enforces that the pooled vectors914

satisfy ∥u− v∥2 margin constraints. The InfoNCE-like contrastive term encourages uniform spacing915

of negative samples in the joint space. Efficiency and negative-sampling quality are two recurring916

themes: SimKGC [45] introduces in-batch, pre-batch, and self negatives inside a bi-encoder, scaling917

contrastive learning to millions of triples without quadratic complexity. LP-BERT [61] generalises918

this idea with a masked entity–relation modelling task, facilitating inductive reasoning over previously919

unseen entities and relations. These works demonstrate that aligning head-relation and tail embeddings920

in a shared metric space remains competitive when enriched with contextual semantics.921

Independent Representation. Independent or component-wise encoding disentangles the triple into922

three sequences, giving the model maximal flexibility to recombine learned embeddings. KEPLER923

[28] attaches a special token to each entity description, maps relations to trainable vectors, and924

jointly optimises a translational distance loss and Wikipedia-based MLM. This dual training scheme925

mitigates the frequency imbalance problem of long-tail entities. Two notable extensions illustrate the926

breadth of this design space: BERT-ResNet [62] stacks residual CNN blocks on top of contextualised927

embeddings to capture higher-order neighbourhood signals, boosting robustness on sparsely connected928

biomedical KGs. BLP [63] targets inductive link prediction by dynamically constructing mini-graphs929

around unseen entities and encoding them through adaptive graph convolutions plus PLM features.930
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However, such approaches remain narrow in focus, relying on local context windows that limit931

coverage of broader semantic relationships across the KG, ultimately constraining their ability to932

fully integrate structure and textual cues.933

B.3 Decoder-based KRL934

Decoder-based KRL departs from encoder-only paradigms by exploiting the autoregressive decoders935

of large language models (LLMs) such as LLaMA-2 [12] and GPT-4 [30]. Because the decoder has936

been pre-exposed to vast world knowledge, these methods can generate or evaluate textual surrogates937

of triples with little or no parameter tuning. We group the literature into (i) description-generation,938

(ii) prompt-engineering, and (iii) structural fine-tuning.939

Description-Generation. Low-resource entities suffer from sparse textual context, which tradi-940

tional encoders rely on for semantics; decoder models therefore hallucinate rich descriptions that941

downstream KGC modules can ingest. Contextualisation Distillation (CD) [34] converts a raw triple942

(h, r, t) into a natural-language prompt (e.g., “Describe the relationship between h and t given that943

r holds.”). An LLM produces a paragraph-length context c. Two auxiliary tasks—masked recon-944

struction of c and generation of c from the original triple—train a compact student model; weighting945

terms α and β in the final loss encourage balanced learning of structure and language. CP-KGC946

[35] follows a similar philosophy but emphasises constrained prompts that prevent factual drift. The947

authors design slot-filled templates whose lexical space is restricted by ontology types, dramatically948

reducing hallucinated entities. By regenerating or extending existing descriptions, CP-KGC cuts949

long-tail error rates by 20 percents relative to free-form generation. These results highlight that what950

to ask the decoder is as important as how powerful the decoder is.951

Prompt-Engineering. Prompt-engineering reframes link prediction or triple classification as a zero-952

or few-shot QA problem. KG-LLM [33] converts a triple into a yes/no question (“Is it true that953

Paris is-the-capital-of France?”) and lets an instruction-tuned LLaMA decide plausibility. The scalar954

probability returned by the decoder acts as the score s(h, r, t). With a modest 600 example instruction-955

tuning set, KG-LLM reaches TransE-era performance while requiring no negative sampling and no956

task-specific classifier. Subsequent work demonstrates that the same prompt can be morphed into an957

open-ended question to produce tail candidates directly, turning the decoder into a generative search958

engine. KICGPT [48] pushes efficiency further via in-context learning (ICL). At inference time, a959

handful of retrieved neighbour triples are embedded in the prompt as knowledge shots; no gradient960

updates are made. A structure-aware retriever prioritises paths that terminate with long-tail entities,961

mitigating the bias toward head-entities stored in the LLM’s pre-training corpus. Compared with962

conventional fine-tuning, KICGPT reduces GPU hours by two orders of magnitude and still improves963

MRR on NELL-One by 6 percents. The same idea scales to multilingual scenarios—KG-LLaMA964

and KG-ChatGLM augment prompts with language tags and achieve reliable cross-lingual transfer965

without any machine-translation pipeline. These results confirm that the decoder’s built-in language966

universality can be channelled toward structured reasoning with minimal engineering.967

Structural Fine-Tuning. While pure prompting leverages implicit knowledge, structural fine-tuning968

injects explicit KG embeddings into the decoder. KoPA [64] first pre-trains TransE-style vectors969

h, r, t and then transforms them into virtual prefix tokens via a lightweight adapter P ()̇. The resulting970

sequence is fed to the LLM, which learns to condition its generation on both text and structure.971

Crucially, only the adapter parameters are updated; the frozen LLaMA backbone retains its linguistic972

fluency. On FB15k-237, KoPA boosts Hits@1 by 3 percents over adapter-free fine-tuning and973

narrows the gap between parameter-efficient tuning and full-model updates. KG-GPT2 [65] offers an974

earlier but influential proof-of-concept: each triple is linearised as a sentence (“head [SEP] relation975

[SEP] tail”) and GPT-2 computes its perplexity as a plausibility score. Subsequent variants append976

neighbour triples as additional context tokens, enabling explainable chain-of-thought style completion.977

Finally, retrieval-augmented generators such as RESKGC [51] hybridise all three themes. A BM25978

retriever first pulls textual evidence; GPT-3.5 then generates candidate triples, which are re-ranked by979

structural filters. Although RESKGC was developed for web-scale graphs, its modular pipeline hints980

at future decoder systems that couple fast symbolic indices with slow but powerful reasoners.981

These studies provide important insights into the synergy of generative modeling and structured982

data. Nevertheless, the methods mostly output textual responses without a dedicated mechanism to983

retain or highlight the structural integrity of knowledge graphs, thus limiting their capacity for robust984

graph-based inference.985
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Algorithm 1: Bidirectional Knowledge Attention (BKA)
Input: Token sequence x = (x1, . . . , xN ); knowledge graph G = (E ,R, T ); hop threshold h;

model parameters {WQ,WK ,WV ,WO}
Output: Contextually and structurally enriched representations H(L)

Initialize hidden states H(0) ← Embed(x);
for ℓ← 0 to L− 1 do

for i← 1 to N do
qi ← H

(ℓ)
i WQ;

for j ← 1 to N do
kj ← H

(ℓ)
j WK ;

if CanInteract(xi, xj ,G, h) then
MBKA

i,j ← 0;

else
MBKA

i,j ← −∞;

αi ← softmax
(
qiK

⊤
√
dh

+MBKA
i,:

)
;

V← H(ℓ)WV ;
h̃i ← αiV;

H̃(ℓ) ← Concat(h̃1, . . . , h̃N )WO;
H̄(ℓ) ← LayerNorm

(
H(ℓ) + H̃(ℓ)

)
;

H(ℓ+1) ← LayerNorm
(
H̄(ℓ) + FFN(H̄(ℓ))

)
;

return H(L);

C Details of KG-BiLM Modules986

C.1 Bidirectional Knowledge Attention987

The BKA algorithm constitutes the connective tissue that fuses a Transformer’s bidirectional reasoning988

capacity with the multi-hop relational structure inherent in a KG. At its core, BKA generalises the989

classical attention mechanism by augmenting the binary attention mask with graph-aware semantics,990

thereby allowing each token to attend not only to every other token in its textual context but also to991

any entity token that is reachable by a bounded number of relational hops. The resulting attention992

topology is simultaneously sequence-complete and graph-selective, which contrasts starkly with the993

hard uni-directionality of decoder-only language models and the structure-agnostic bidirectionality of994

pure encoders.995

C.1.1 Design Rationale996

Traditional KGE pipelines frequently rely on translation-based objectives that view relations as static997

vectors in Rd and treat textual aliases as exogenous after-thoughts. Conversely, text-centric LLMs998

are exceptional at capturing lexical regularities but lack explicit exposure to the symbolic constraints999

of a KG—symmetry, transitivity, inverse relations, and so forth. BKA is conceived as a minimal1000

yet expressive modification that marries these two worlds. By introducing the function CanInteract,1001

the algorithm decides, for every ordered pair of positions (i, j), whether their embeddings should1002

participate in the same attention subspace. The decision is contingent on two orthogonal axes:1003

temporal orientation (past, present, future tokens) and structural connectivity (graph adjacency up to1004

h hops).1005

In effect, BKA replaces the Transformer’s conventional triangular (causal) mask or fully populated1006

(encoder) mask with a knowledge-adaptive mask. When h = 0 and CanInteract tests only the1007

inequality j ≤ i, BKA reduces to a standard causal decoder. When h =∞ and structural checks are1008

disabled, BKA degenerates to a vanilla bidirectional BERT-style encoder. This flexible continuum1009

allows practitioners to choose a sweet-spot where syntactic coherence and graph coherence are1010

mutually reinforced.1011
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C.1.2 Algorithmic Steps1012

Initial Embedding. The first line in the pseudocode instantiates H(0) by concatenating standard1013

token embeddings with position encodings and, crucially, KG-entity type embeddings. Unlike typical1014

LM practice, entity IDs are not merely treated as sub-word strings; rather, they possess dedicated1015

vectors that are updated jointly with lexical embeddings.1016

Graph-Aware Mask Construction. Within each layer ℓ, nested loops traverse token positions. For1017

every pair (i, j) the routine computes MBKA
i,j . The helper CanInteract returns true if at least one of1018

three conditions is satisfied: (1) |i−j| ≤ δ, where δ is a small local window to preserve micro-syntax;1019

(2) xi and xj are verbal tokens and the model operates in a language-model mode; (3) their parent1020

entities in the KG are connected by a path not exceeding h hops. The final mask thus embodies both1021

text contiguity and relational contiguity.1022

Attention Weight Computation. Once the mask matrix has been filled, the algorithm computes the1023

scaled dot-product attention for each query. Because the mask contains −∞ for disallowed pairs, the1024

corresponding softmax weights vanish, enforcing hard structural sparsity. While the line-wise loops1025

are explicit for clarity, real implementations vectorise all positions and heads, thereby preserving the1026

O(N2) theoretical complexity of standard attention.1027

Residual Path and Feed-Forward Layers. After multi-head projection through WO, a residual1028

connection and layer normalisation are applied. The FFN applies two linear maps with a gating1029

non-linearity, typically GELU, and a residual link—a design that is empirically crucial for stabilising1030

deep stacks.1031

C.1.3 Theoretical Properties1032

Symmetry Preservation. Because the mask allows i to see j and vice versa whenever CanInteract1033

is true, relational symmetry (e.g., “married to”) can be internalised in a single pass rather than via1034

post-hoc rule injection.1035

Multi-Hop Relational Reasoning. If the hop threshold h > 1, BKA implicitly permits the propaga-1036

tion of information along length-h paths. The self-attention coefficients can be shown to approximate1037

a truncated power series of the KG adjacency matrix, thereby endowing the representations with1038

spectral properties reminiscent of Graph Neural Networks.1039

Expressivity under Causal Decoding. Despite affording bidirectional flows, BKA does not sabotage1040

the autoregressive nature required for text generation. During inference, tokens at position i only1041

depend on already generated tokens plus KG neighbours, both of which are known at decoding time.1042

Thus, BKA is compatible with beam search and other sampling schemes.1043

C.2 Knowledge-Masked Prediction1044

KMP extends the masked-language modelling paradigm by integrating explicit structural priors from1045

the knowledge graph and, crucially, by shifting the prediction locus from the masked position to its1046

immediate predecessor. This seemingly minor alteration endows KG-BiLM with a potent capacity1047

for causal reasoning under partial observability, thereby promoting robust zero-shot transfer.1048

C.2.1 Conceptual Foundations1049

Standard MLM tasks such as those employed in BERT require the model to reconstruct randomly1050

hidden tokens given an unconstrained bidirectional view. While effective for textual semantics, that1051

setup is less compatible with autoregressive decoding and overlooks the rich relational patterns that1052

connect entity mentions across a document. KMP addresses both issues simultaneously:1053

Shifted Prediction. By consuming hi− 1 instead of hi, the model must rely on context that excludes1054

the target token, thereby simulating conditions at generation time. This choice also compels the1055

network to exploit forward context captured via BKA—without it, hi−1 would lack information1056

about tokens j > i− 1.1057

Structure-Aware Masking. Mask selection is not purely random. Entity positions that share high1058

centrality or critical relation types (e.g., is-a, part-of) are preferentially masked with higher probability,1059

26



Algorithm 2: Knowledge-Masked Prediction (KMP)
Input: Token sequence x = (x1, . . . , xN ); mask ratio γ; projection parameters {WP ,bP };

BKA-augmented Transformer
Output: Masked-prediction loss LKMP

Sample mask setM⊆ {1, . . . , N} with |M| = γN ;
foreach i ∈M do

Replace xi with ⟨mask⟩ to obtain xm

H(L) ← BKA_Forward(xm);
LKMP ← 0;
foreach i ∈M do

hi−1 ← H
(L)
i−1;

ℓi ←WPhi−1 + bP ;
pΘ(xi|hi−1)← softmax(ℓi);
LKMP += − log pΘ(xi|hi−1);

LKMP ← 1
|M|LKMP;

return LKMP;

calibrated by an importance score derived from PageRank and relation entropy. This targeted masking1060

encourages the model to learn structural dependencies that matter for downstream link prediction.1061

C.2.2 Algorithmic Steps1062

Mask Construction. A binary mask vector is sampled such that exactly γN positions are designated1063

for replacement. For non-entity tokens, a uniform distribution suffices; for entity tokens, a weighted1064

sampling scheme ensures that high-degree nodes are systematically challenged.1065

Encoding via BKA. The masked input xm is fed through the BKA stack, which already embodies1066

graph-informed attention patterns. Therefore, even though certain entity IDs have been replaced by1067

an opaque mask token, their neighbours can still convey hints about their identity through multi-hop1068

edges.1069

Cross-Entropy Accumulation. For each masked index i, logits are produced from hi− 1 and1070

normalised via softmax over the joint vocabulary V ∪ E . Crucially, the inclusion of entity symbols1071

means the classifier is solving a mixed-type prediction problem. The average negative log-likelihood1072

across all masked positions yields LKMP.1073

Backpropagation and Parameter Update. Because the loss is defined at the level of the final1074

projection, gradients propagate through both projection parameters and the entire BKA stack, refining1075

lexical embeddings, entity embeddings, and relation embeddings in concert.1076

C.3 Contrastive Graph Semantic Aggregation1077

Contrastive learning has emerged as a powerful unsupervised paradigm for representation learning,1078

particularly in vision and speech domains. Its core premise is to pull together embeddings that1079

originate from different views of the same underlying sample while pushing apart embeddings from1080

distinct samples. In the context of knowledge-graph language models, however, naive contrastive1081

approaches face two entrenched challenges. First, entities and relations seldom appear in isolation;1082

their semantics are entangled with multi-hop relational paths whose topological signatures must be1083

respected. Second, textual paraphrases and graph augmentations induce heterogeneous perturbations,1084

making it non-trivial to judge when two views are “positive.”1085

The proposed CGSA addresses these issues by marrying graph topology–aware augmentation with1086

a Transformer encoder that is already enriched by BKA and trained under KMP. CGSA sits on top1087

of this encoder and imposes a clustering prior on entire sub-graph representations, ensuring that1088

embeddings remain discriminative despite repeated dropout or textual paraphrases. Conceptually,1089

CGSA plays the role of a semantic pressure valve: it prevents the high-capacity encoder from1090

collapsing entity neighbourhoods into an overly tangled representation space.1091
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Algorithm 3: Contrastive Graph Semantic Aggregation (CGSA)
Input: Minibatch of subgraphs or text snippets S = {s1, . . . , sB}; temperature τ ; hop threshold

h; BKA + KMP encoder fΘ; pooling operator Pool(·)
Output: Contrastive loss LCGSA

LCGSA ← 0;
foreach sk ∈ S do

Generate two stochastic views by augmentation;
x
(1)
k ← Augment(sk, h);

x
(2)
k ← Augment(sk, h);

H
(L,1)
k ← fΘ(x

(1)
k );

H
(L,2)
k ← fΘ(x

(2)
k );

z
(1)
k ← Pool

(
H

(L,1)
k

)
;

z
(2)
k ← Pool

(
H

(L,2)
k

)
;

z
(1)
k ← z

(1)
k /∥z(1)k ∥;

z
(2)
k ← z

(2)
k /∥z(2)k ∥;

for k ← 1 to B do
pos← exp

(
sim(z

(1)
k , z

(2)
k )/τ

)
;

den← 0;
for ℓ← 1 to B do

den += exp
(
sim(z

(1)
k , z

(2)
ℓ )/τ

)
;

LCGSA −= log
(
pos/den

)
;

LCGSA ← LCGSA/B;
return LCGSA;

C.3.1 Algorithmic Steps1092

Input to CGSA is a mini-batch of B samples, each being either a textual snippet or a KG sub-graph.1093

For clarity, we call each sample sk a semantic unit. The algorithm proceeds in two macro phases: (i)1094

stochastic view generation and (ii) InfoNCE loss computation.1095

Stochastic View Generation. For every semantic unit sk, CGSA calls an augmentation routine twice,1096

producing x
(1)
k and x

(2)
k . The augmentation operator obeys two design principles:1097

Graph Reachability: A hop threshold h limits the radius within which entities may be dropped1098

or substituted. This prevents augmentations from severing critical relational backbones. Textual1099

Paraphrasing: For purely textual spans, augmentation may include synonym replacement, span1100

deletion, or entity order shuffling, with the constraint that entity co-occurrence statistics are preserved1101

up to the second moment.1102

Each augmented view is then passed through the encoder fΘ. Because fΘ already employs BKA1103

masks, it seamlessly integrates both local lexical features and multi-hop structural cues. The encoder1104

returns token-level hidden states H(L,·)
k , which are pooled into fixed-length vectors by a user-selected1105

operator (e.g., mean pooling, max pooling, or [CLS] token extraction). Normalisation to unit length1106

transforms the embeddings into points on the unit hypersphere—a prerequisite for cosine similarity1107

to coincide with dot product.1108

InfoNCE Loss Computation. For each anchor index k, the algorithm forms a positive pair (z(1)k , z
(2)
k )1109

and computes their scaled similarity, labelled pos. It then sums exponentiated similarities between the1110

anchor z(1)k and all second-view embeddings z(2)ℓ across the mini-batch, accumulating in den. The1111

resulting expression implements the InfoNCE objective, which can be shown to maximise a lower1112

bound on mutual information between the two views. Averaging over the batch yields the final loss1113

LCGSA, later combined with BKA + KMP losses during multi-task training.1114
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D Detailed Results1115

In this section, we provide the full experimental results for all baseline models on the evaluated1116

datasets. Table 7 reports the link-prediction metrics on WN18RR and FB15k-237, while Table 81117

presents the results on Wikidata5M and FB15k-237N.1118

Table 7: Link prediction metrics on WN18RR and FB15k-237 datasets
Model WN18RR FB15k-237

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
TransE[14] 2300 24.3 4.3 44.1 53.2 223 27.9 19.8 37.6 47.4
TransH[66] 2524 – – – 50.3 255 – – – 48.6
DistMult[15] 3704 44.4 41.2 47.0 50.4 411 28.1 19.9 30.1 44.6
TransR[67] 3166 – – – 50.7 237 – – – 51.1
TransD[68] 2768 – – – 50.7 246 – – – 48.4
ComplEx[37] 3921 44.9 40.9 46.9 53.0 508 27.8 19.4 29.7 45.0
ConvE[38] 4464 45.6 41.9 47.0 53.1 245 31.2 22.5 34.1 49.7
ConvKB[69] 2554 24.9 – – 52.5 257 24.3 – – 51.7
R-GCN[70] 6700 12.3 8.0 13.7 20.7 600 16.4 10.0 18.1 41.7
KBGAN[71] – 21.5 – – 48.1 – 27.7 – – 45.8
TuckER[39] – 47.0 44.3 48.2 52.6 – 35.8 26.6 39.4 54.4
DensE[72] 3052 49.1 44.3 50.8 57.9 169 34.9 25.6 38.4 53.5
LineaRE[73] 1644 49.5 45.3 50.9 57.8 155 35.7 26.4 39.1 54.5
RESCAL-DURA[74] – 49.8 45.5 – 57.7 – 36.8 27.6 – 55.0
CompGCN[40] – 47.9 44.3 49.4 54.6 – 35.5 26.4 39.0 53.5
ConE[75] – 49.6 45.3 51.5 57.9 – 34.5 24.7 38.1 54.0
Rot-Pro[76] – 45.7 39.7 48.2 57.7 – 34.4 24.6 38.3 54.0
QuatDE[41] 1977 48.9 43.8 50.9 58.6 90 36.5 26.8 40.0 56.3
NBFNet[42] – 55.1 49.7 – 66.6 – 41.5 32.1 – 59.9
KG-BERT[27] 97 21.6 4.1 30.2 52.4 153 23.7 16.9 26.0 42.7
MTL-KGC[56] 89 33.1 20.3 38.3 59.7 132 26.7 17.2 29.8 45.8
Pretrain-KGE[43] – 48.8 43.7 50.9 58.6 – 35.0 25.0 38.4 55.4
StAR[60] 51 40.1 24.3 49.1 70.9 1117 29.6 20.5 32.2 48.2
MEM-KGC[77] – 57.2 48.9 62.0 72.3 – 34.9 26.0 38.2 52.4
LaSS[44] 35 – – – 78.6 108 – – – 53.3
SimKGC[45] – 66.7 58.8 72.1 80.5 – 33.6 24.9 36.2 51.1
LP-BERT[61] 92 48.2 34.3 56.3 75.2 154 31.0 22.3 33.6 49.0
KGT5[78] – 54.2 50.7 – 60.7 – 34.3 25.2 – 37.7
OpenWorld KGC[79] – 55.7 47.5 60.4 70.4 – 34.6 25.3 38.1 53.1
LMKE[80] 79 61.9 52.3 67.1 78.9 141 30.6 21.8 33.1 48.4
GenKGC[81] – – 28.7 40.3 53.5 – – 19.2 35.5 43.9
KG-S2S[46] – 57.4 53.1 59.5 66.1 – 33.6 25.7 37.3 49.8
kNN-KGE[29] – 57.9 52.5 – – – 28.0 37.3 – –
CSPromp-KG[47] – 57.5 52.2 59.6 67.8 – 35.8 26.9 39.3 53.8
GPT-3.5 – – 19.0 – – – – 23.7 – –
CP-KGC[35] – 67.3 59.9 72.1 80.4 – 33.8 25.1 36.5 51.6
KICGPT[48] – 56.4 47.8 61.2 67.7 – 41.2 32.7 44.8 55.4
KG-BiLM(Ours) 67 68.2 61.4 72.7 80.5 151 36.7 30.5 36.9 53.1

E Implementation Details1119

Model Configuration All experiments instantiate KG-BiLM with L = 24 transformer layers, model1120

dimension d = 1,024, h = 16 attention heads (so dh = 64 per head), and a feed-forward hidden1121

size of 4,096. We set the maximum sequence length to 512 tokens, and represent both entity and1122

vocabulary embeddings in the same d-dimensional space. The hop threshold for the Bidirectional1123

Knowledge Attention mask is set to 2 (i.e. entities within two hops in G may attend to each other).1124

Training Hyperparameters We optimize with Adam (β1=0.9, β2=0.999, ϵ = 10−8) and a linear1125

learning-rate schedule with 10k warm-up steps. The peak learning rate is 1 × 10−4, decayed to1126

zero over 200k total steps. We apply a weight decay of 1× 10−2 and gradient clipping at norm 1.0.1127

Dropout of 0.1 is used in both attention and feed-forward sublayers. For KMP, the masking ratio γ is1128

151129
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Table 8: Link prediction metrics on Wikidata5M and FB15k-237N datasets
Model Wikidata5M FB15k-237N

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE[14] 25.3 17.0 31.1 39.2 25.5 15.2 30.1 45.9
DistMult[15] 25.3 20.9 27.8 33.4 20.9 14.3 23.4 33.0
ComplEx[37] 30.8 25.5 – 39.8 24.9 18.0 27.6 38.0
DKRL[52] 16.0 12.0 18.1 22.9 – – – –
RoBERTa[24] 0.1 0 0.1 0.3 – – – –
RotatE[49] 29.0 23.4 32.2 39.0 27.9 17.7 32.0 48.1
QuatE[50] 27.6 22.7 30.1 35.9 – – – –
ConvE[38] – – – – 27.3 19.2 30.5 42.9
CompGCN[40] – – – – 31.6 23.1 34.9 48.0

KG-BERT[27] – – – – 20.3 13.9 20.1 40.3
MTL-KGC[56] – – – – 24.1 16.0 28.4 43.0
GenKGC[81] – – – – – 18.7 27.3 33.7
KG-S2S[46] – – – – 35.4 28.5 38.8 49.3
KEPLER[28] 21.0 17.3 22.4 27.7 – – – –
SimKGC[45] 35.8 31.3 37.6 44.1 – – – –
KGT5[78] 33.6 28.6 36.2 42.6 – – – –
CSPromp-KG[47] 38.0 34.3 39.9 44.6 36.0 28.1 39.5 51.1
ReSKGC[51] 39.6 37.3 41.3 43.7 – – – –
CD[34] – – – – 37.2 28.8 41.0 53.0
KG-BiLM(Ours) 40.3 39.7 43.0 45.2 37.8 29.3 42.1 54.6

Contrastive Learning Settings In CGSA, we sample mini-batches of B = 256 sub-graphs/snippets,1130

generating two corrupted views each via independent dropout masks. We use mean-pooling over the1131

final hidden states to obtain z-vectors, and set the temperature τ to 0.07.1132

Hardware and Software Environment All models are trained on a cluster of two NVIDIA H1001133

GPUs (80 GB HBM3 each) interconnected via NVLink. The software stack comprises PyTorch 2.0,1134

CUDA 12.8, and NCCL 2.16 on Centos 9 Stream. The host features dual Intel Xeon Silver 44161135

CPUs (80 cores total) and 512 GB RAM.1136

F Limitations1137

Although KG-BiLM delivers state-of-the-art results on three of the four benchmarks, its performance1138

on the structure-only FB15k-237 dataset remains merely on par with recent transformer baselines1139

and still trails the specialized path-based model NBFNet. The shortfall highlights two intrinsic1140

limitations of our current design. (i) Relation-cardinality sensitivity. FB15k-237 contains more than1141

twenty times as many distinct relations as WN18RR, yet offers no lexical clues. Under this setting,1142

the Bidirectional Knowledge Attention module must rely exclusively on topological co-occurrence1143

signals, and its ability to disambiguate semantically similar but label-distinct relations is attenuated.1144

(ii) Semantic sparsity dependence. KG-BiLM’s masking-recovery objective was tuned with the1145

assumption that at least weak textual context would be available. When such cues are completely1146

absent, the model still outperforms distance-based KGEs but cannot fully exploit its contrastive1147

semantic aggregation, leading to diminished gains.1148

G Broader Impacts1149

The development of KG-BiLM—a hybrid architecture that unifies knowledge-graph structural rep-1150

resentations with the semantic understanding capabilities of large language models—carries both1151

promising benefits for society and important risks that must be carefully managed. In this section,1152

we outline potential positive societal impacts alongside possible negative consequences, considering1153

ethical, technical, and environmental dimensions.1154

Enhanced Access to Domain Knowledge By integrating rich graph structure with contextual1155

semantics, KG-BiLM can serve as a powerful tool for making specialized information more accessible.1156
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In domains such as healthcare, legal reasoning, or scientific research, practitioners often need to1157

traverse complex networks of interrelated concepts. KG-BiLM’s high-density embeddings and1158

zero-shot capabilities can support more intuitive query interfaces, enabling non-experts to retrieve1159

precise, contextually relevant information without extensive domain training.1160

Improved Downstream Applications The unified representations produced by KG-BiLM can boost1161

the performance of a wide array of downstream tasks—from question answering and information1162

extraction to recommendation systems and decision support. In education, for example, intelli-1163

gent tutoring systems built on KG-BiLM could provide tailored explanations by jointly leveraging1164

pedagogical ontologies and linguistic context. Likewise, in environmental monitoring, KG-BiLM1165

could help integrate sensor data with domain taxonomies to surface early warnings of ecological1166

disturbances.1167

Facilitation of Interdisciplinary Research. KG-BiLM’s ability to align heterogeneous graph1168

modalities with free-text semantics encourages cross-disciplinary collaboration. Researchers from1169

different fields who maintain separate knowledge bases (e.g., biomedical ontologies and social1170

science taxonomies) can benefit from a shared latent space that respects both structural constraints1171

and nuanced textual insights. This could accelerate innovation at the intersections of AI, biology, and1172

social policy.1173
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