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Abstract001

Compositional generalization is one of the002
important abilities that large language mod-003
els (LLMs) need to have on semantic parsing004
tasks. Previous research typically relies on task-005
specific designs or a large number of samples in006
demonstrations to improve the compositional007
generalization of LLMs on semantic parsing.008
We revisit this issue and find that when the009
number of samples in a demonstration is lim-010
ited to a theoretical lower bound for achieving011
compositional generalization (minimum cover-012
age scenario), current advanced LLMs cannot013
arbitrarily achieve good compositional general-014
ization generically on different semantic pars-015
ing tasks without task-specific designs. We016
propose Multi-level Component Composition017
(MC2), a task-independent framework based on018
input primitives, which aims to generically help019
LLMs achieve compositional generalization in020
the minimum coverage scenario by selecting021
and organizing samples from multiple composi-022
tional levels that satisfy the primitive coverage.023
Experiments and analysis show that MC2 can024
effectively improve compositional generaliza-025
tion of LLMs on different semantic parsing026
tasks in the minimum coverage scenario.027

1 Introduction028

Compositional generalization (Lake et al., 2016)029

refers to the ability to correctly handle unseen or030

rare combinations formed by known primitives. It031

is one of the inherent linguistic abilities of humans032

(Hupkes et al., 2020). Due to the potentially infi-033

nite number of combinations in languages (Chom-034

sky, 1965), language models often encounter new035

combinations formed by known primitives in real-036

world tasks and require the ability of compositional037

generalization to cope with them. Therefore, com-038

positional generalization of language models has039

been studied on many natural language processing040

tasks (Hupkes et al., 2022).041

Semantic parsing (Kamath and Das, 2019) is one042

of the fields that have received the most attention 043

in the research on compositional generalization. 044

Tasks in this field aim to transform natural lan- 045

guage into a more formal language to express its 046

meaning more precisely, such as syntactic structure 047

generation (Kim and Linzen, 2020), text-to-SQL 048

(Keysers et al., 2020), etc. Since target languages 049

typically have a strong compositionality, language 050

models intuitively require the ability of composi- 051

tional generalization for semantic parsing tasks. 052

The emergence of large language models 053

(LLMs) drives the emergence of the in-context 054

learning (Dong et al., 2024) paradigm for composi- 055

tional generalization research on semantic parsing. 056

In this paradigm, LLMs are asked to achieve the 057

correct processing of test samples containing un- 058

seen combinations after seeing the demonstrations 059

formed by samples drawn from the training cor- 060

pus. Many research works have considered how 061

compositional generalization of LLMs on semantic 062

parsing tasks can be improved under the in-context- 063

learning paradigm (Levy et al., 2023; An et al., 064

2023; Zhou et al., 2023; Drozdov et al., 2023). Lim- 065

ited by the performance of LLMs at the time, the 066

methods used for improvement often rely on task- 067

specific designs or a large number of samples in 068

demonstrations, and thus have drawbacks in terms 069

of generalizability or consumption. As the perfor- 070

mance of LLMs improves, the question of whether 071

LLMs can generically achieve compositional gen- 072

eralization on different semantic parsing tasks with 073

a rather limited number of samples in demonstra- 074

tions and without task-specific designs becomes a 075

question worth revisiting. 076

To revisit this question, we introduce minimum 077

coverage scenario. This scenario requires LLMs 078

to achieve compositional generalization on seman- 079

tic parsing tasks when the number of samples in 080

a demonstration is limited to a theoretical lower 081

bound for achieving compositional generalization. 082

We find that existing advanced LLMs are unable 083
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Figure 1: An illustration of compositional generaliza-
tion of LLMs on the semantic parsing task in the in-
context learning paradigm.

to arbitrarily achieve good compositional general-084

ization on a variety of different semantic parsing085

tasks generically in the minimum coverage sce-086

nario without task-specific designs. This suggests087

that despite the continued development of LLMs,088

achieving generic compositional generalization on089

semantic parsing tasks in the minimum coverage090

scenario remains a challenge currently.091

To generically improve the compositional gen-092

eralization of LLMs on semantic parsing tasks093

in the minimum coverage scenario, we propose094

Multi-level Component Composition (MC2), which095

is a task-independent framework based on input096

primitives. By three steps of chunking-matching-097

ordering, the framework selects samples from mul-098

tiple compositional levels for LLMs and organizes099

the samples in a way that potentially exhibits com-100

positional paths, while satisfying the basic require-101

ment of the minimum coverage scenario. We show102

the effectiveness of the MC2 framework through103

experiments on a variety of compositional general-104

ization datasets of different types of semantic pars-105

ing tasks in the minimum coverage scenario. We106

also experimentally analyze (1) the importance of107

introducing multiple compositional levels, which is108

the core idea of the MC2 framework, (2) the effect109

of steps in the framework, and (3) the impact of110

choices on method components and implementa-111

tion rules in the framework. The experiments and112

analysis further confirm the design motivation of113

the MC2 framework and demonstrate the room for114

improvement of the framework.115

2 Minimum Coverage Scenario116

In this section, we introduce the minimum coverage117

scenario, which is a challenging scenario for the118

compositional generalization of LLMs on semantic 119

parsing tasks without task-specific designs. 120

2.1 Compositional Generalization of LLMs 121

Before the advent of LLMs, compositional gen- 122

eralization is typically evaluated using the train- 123

test paradigm (Finegan-Dollak et al., 2018). Re- 124

searchers construct the training set V and the test 125

set W with significantly different distributions of 126

combinations. The model is asked to be trained 127

(or fine-tuned) on V and its performance on W is 128

used to evaluate the ability of compositional gen- 129

eralization. A basic requirement to be met by sets 130

V and W is that every input primitive appearing 131

in W also appears in V , since the model needs to 132

know at least the representation of the input primi- 133

tive in the target to complete the composition (Lake 134

and Baroni, 2018). This requirement is known as 135

primitive coverage of W by V . 136

The emergence of LLMs introduces the in- 137

context learning paradigm of compositional gener- 138

alization (Levy et al., 2023; An et al., 2023). In this 139

paradigm, the demonstration phase of in-context 140

learning is regarded as the training phase. For each 141

test sample s in W , a subset V ′ of samples in V 142

that satisfy the primitive coverage of {s} by V ′ is 143

provided to the LLM as a demonstration, and then 144

the LLM is asked to process the test sample. The 145

testing of each test sample in W is independent. 146

Figure 1 shows an illustration of compositional 147

generalization of LLMs on the semantic parsing 148

task in the in-context learning paradigm. 149

2.2 Definition 150

Based on the in-context learning paradigm, we in- 151

troduce the concept of k-coverage scenario, which 152

is a dynamic limit on the size of the subset V ′ (i.e., 153

the number of samples in the demonstration). In 154

the k-coverage scenario, for a test sample contain- 155

ing n input primitives, at most k ∗n samples can be 156

included in the demonstration. The limit becomes 157

tighter as k decreases. Even an ideal model (i.e., 158

one that can achieve compositional generalization 159

as long as the demonstration satisfies primitive cov- 160

erage) must, in the extreme case, be provided with 161

n samples in the demonstration to satisfy primitive 162

coverage to achieve compositional generalization. 163

Thus, the 1-coverage scenario is a theoretical lower 164

bound for achieving compositional generalization. 165

We refer to the 1-coverage scenario as the mini- 166

mum coverage scenario. 167

The minimum coverage scenario is valuable for 168
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Model k SCAN COGS CFQ

DeepSeek
k = 1 63.8 89.7 63.8
k = 2 86.3 90.8 74.9
k = 4 93.7 91.8 79.8

Qwen-plus
k = 1 62.1 82.4 66.2
k = 2 80.7 84.9 75.3
k = 4 90.6 87.8 80.7

Table 1: Results of the pre-experiment in k-coverage
scenario with k ∈ {1, 2, 4}. For SCAN and CFQ, we
test on the MCD1 split.

research from both practical and cognitive perspec-169

tives. From the practical perspective, the minimum170

coverage scenario is the scenario with minimum in-171

put consumption for the compositional generaliza-172

tion of LLMs. From the cognitive perspective, the173

minimum coverage scenario is a challenge to the174

theoretical lower bound, demonstrating an upper175

bound on the ability of compositional generaliza-176

tion of LLMs on semantic parsing tasks.177

2.3 Difficulty Estimation178

To estimate the difficulty of the minimum cover-179

age scenario, we conduct a pre-experiment to test180

the performance of advanced LLMs DeepSeek-181

2.5 (DeepSeek-AI et al., 2024) and Qwen-plus182

(Qwen et al., 2024) in k-coverage scenario with183

k ∈ {1, 2, 4}. The datasets and metrics of the pre-184

experiment are consistent with the main experiment185

(which we will describe in detail in Section 4). In186

the k-coverage scenario, for each of the n input187

primitives, k samples covering that primitive are188

randomly selected, for a total of k ∗ n mutually189

exclusive samples for the demonstration.190

Table 1 shows the results of the pre-experiment.191

As k decreases, the performance of the LLMs on192

each dataset in the k-coverage scenario decreases193

significantly, reflecting the elevated difficulty. At194

k = 1, i.e., in the minimum coverage scenario, the195

performance of the LLMs is far from achieving per-196

fect compositional generalization. The results pro-197

vide an estimate of the challenge of the minimum198

coverage scenario to some extent, as the LLMs199

in this scenario are not yet able to achieve good200

compositional generalization on different semantic201

parsing tasks without task-specific designs under202

arbitrary choices for demonstration. This also moti-203

vates us to conduct research on improvements. Our204

subsequent framework proposal and experiments205

are all based on the minimum coverage scenario.206

3 MC2 Framework 207

In this section, we introduce the Multi-level Com- 208

ponent Composition (MC2) framework for gener- 209

ally helping LLMs achieve compositional general- 210

ization on different semantic parsing tasks in the 211

minimum coverage scenario. The core motivation 212

of the design is to help achieve compositional gen- 213

eralization by showing LLMs a compositional path 214

with samples from multiple compositional levels. 215

Moreover, the framework is designed to fulfill two 216

requirements: 217

(1) The framework must be task-independent to 218

generalize across different semantic parsing tasks. 219

This requires the framework to be based on input 220

primitives only, since the output formal language 221

is usually task-relevant. It also requires that the 222

framework does not need to have any prior knowl- 223

edge of the task beyond the identification of the 224

input primitive (see Appendix A for details), such 225

as knowledge of the task-specific input syntax. 226

(2) The framework must be able to satisfy the 227

requirements of primitive coverage and the number 228

of samples in the demonstration in the minimum 229

coverage scenario. 230

The framework consists of three steps: chunk- 231

ing, matching, and ordering. Figure 2 shows an 232

illustration of the MC2 framework. 233

3.1 Chunking 234

The chunking step aims at obtaining components 235

from multiple compositional levels of the input and 236

the relationships between the components as a basis 237

for subsequent sample selection. In the chunking 238

step, the input is decomposed compositionally to 239

form a tree structure. Each node in the tree rep- 240

resents a component that is decomposed from the 241

component represented by its parent node. For an 242

input containing n input primitives, the final tree 243

will contain n leaf nodes representing the primi- 244

tives, and up to n− 1 non-leaf nodes. The method 245

of chunking is flexible, and any task-independent 246

method capable of tree-like component decomposi- 247

tion can be chosen. We consider the following two 248

methods of chunking: 249

PPL-based chunking. We use a small language 250

model to compute the perplexity. For the compo- 251

nent represented by each node, we enumerate the 252

schemes that slice the component into two parts 253

L / R and choose the scheme that minimizes the 254

perplexity of the sentence "Using / to split the sen- 255

tence {component}. {L} / {R}". According to the 256
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The game was blessed by the baby

The game was blessed by the baby

was blessed by the baby

blessed by the baby

by the baby

The game was blessed by the baby

The game was blessed by the baby

was blessed by the baby

blessed by the baby

by the baby

baby

by

blessed

was game A baby called.

A crocodile blessed William.

(1) chunking (2) matching (3) ordering

A game was collapsed by
the baby.

A button was worshipped by
the baby.

A baby hoped that the cat
gave the game to Charlotte.

Figure 2: An illustration of the MC2 framework. (1) Chunking: the input is component-wise chunked to form a
tree structure. (2) Matching: each leaf node primitive (in color) corresponds to a non-leaf node, and the non-leaf
node component matches the most similar sample in the training set that covers the corresponding primitive. (3)
Ordering: samples matched by each non-leaf node are arranged in a specific order to form a demonstration.

scheme, we split the components and recursively257

process the two child nodes formed. The method258

always results in binary trees. See Appendix B for259

pseudo-code.260

Off-the-shelf parser. The task of constituent261

parsing (Kitaev and Klein, 2018) aims at obtaining262

a tree-like constituent decomposition of the input263

sentence with constituent labels, which fits with264

the goal of the chunking step. Therefore, we can265

use an off-the-shelf constituent parser (based on a266

small language model) for the chunking step. The267

method may result in multinomial trees.268

3.2 Matching269

Based on the tree structure obtained from the270

chunking step, the matching step aims to select271

a total of n mutually exclusive samples from the272

training set that are similar to the components of273

the different compositional levels and satisfy the274

primitive coverage requirement.275

For a non-leaf node x, we define the degree Dx276

as (the number of child nodes of x)− 1. It always277

holds that
∑

Dx = n− 1. After increasing Droot278

by 1, we select Dx samples for each non-leaf node279

x. We visit each leaf node y in reverse order of280

breadth-first search (BFS), find the deepest ances-281

tor node x′ of y for which the number of samples282

selected is less than Dx′ , and then from the samples283

in the training set that have not been selected and284

cover the primitive represented by y, we will select285

a sample that is most similar to the component rep-286

resented by x′. Finally, we will select n mutually287

exclusive samples that satisfy the primitive cover-288

age requirement. The method of finding the most289

similar sample is flexible and can be chosen from290

any method that estimates the text similarity. We291

Algorithm 1 Matching and Ordering
Input: tree structure T , training set V
Output: ordered list of samples L as the demonstration

for all non-leaf node x in T do
Dx ← (the number of child nodes of x) − (x ̸= root)
Lx ← empty list

end for
for all leaf node y in T in inverted BFS order do

p← the primitive represented by y
x′ ← parent node of y
while |Lx′ | = Dx′ do

x′ ← parent node of x′

end while
R← {s | s ∈ V ∧ (∀x, s /∈ Lx) ∧ cover (s, p)}
c← the component represented by x′

Lx′ ← Lx′ + [the sample in R that is most similar to c]
end for
L← empty list
for all non-leaf node x in T in inverted BFS order do

L← L + Lx

end for
return L

consider two methods: the BM25, and the cosine 292

similarity of sentence vectors given by the small 293

language model. See Algorithm 1 for pseudo-code. 294

3.3 Ordering 295

The ordering step aims to order the selected sam- 296

ples in a way that potentially presents composi- 297

tional paths. Based on the tree structure, we sim- 298

ply visit each non-leaf node in inverted BFS or- 299

der and list the samples selected for each node in 300

turn to form the demonstration. The BFS inverted 301

order is the order of the compositional levels of 302

the tree nodes from low to high, and to some ex- 303

tent characterizes the compositional paths that are 304

progressively thought out from simple to complex 305

components. See Algorithm 1 for pseudo-code. 306
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4 Main Experiment307

In this section, we conduct the main experiment to308

verify the effectiveness of the MC2 framework on309

different semantic parsing tasks in the minimum310

coverage scenario and to verify the effect of the311

core idea of the framework and steps in it.312

4.1 Datasets and Metrics313

We conduct experiments on three representative314

datasets for compositional generalization research315

on semantic parsing: SCAN (Lake and Baroni,316

2018), COGS (Kim and Linzen, 2020), and CFQ317

(Keysers et al., 2020). The three datasets corre-318

spond to three different semantic parsing tasks. Ta-319

ble 2 shows samples of the datasets.320

SCAN. The SCAN dataset corresponds to the321

task of simplified natural language to action se-322

quence translation. We use the maximum com-323

pound divergence (MCD) splits provided by Key-324

sers et al. (2020), containing three training-test325

splits MCD1~MCD3. The MCD splits achieve326

high compositional divergence under similar atom327

distributions, which can effectively evaluate the328

ability of compositional generalization.329

COGS. The COGS dataset corresponds to the330

task of syntactic structure generation for natural331

language. We use the original training-test split332

containing five categories of compositional gener-333

alization.334

CFQ. The CFQ dataset corresponds to the task335

of text-to-SQL. This dataset contains realistic natu-336

ral language questions and corresponding SPARQL337

queries. We use the original MCD splits containing338

the three training-test splits MCD1~MCD3.339

For each split in each dataset, we sample 1,000340

samples from the test set for testing. The metric341

is the accuracy under exact matching. Since some-342

times the correct answer is not unique, we convert343

the model output and the standard answer to ensure344

correct matching. The details of the conversion are345

shown in Appendix C.346

4.2 Evaluated LLMs347

We conduct the main experiment on some advanced348

LLMs that provide API calls from official plat-349

forms, including the open-source LLM DeepSeek-350

2.5 and the closed-source LLM Qwen-plus and351

GPT-4o (OpenAI et al., 2024).352

Dataset: SCAN (action sequence generation)
Input: turn opposite left thrice and run around
right twice
Output: (LEFT LEFT) * 3 (RIGHT RUN
RIGHT RUN RIGHT RUN RIGHT RUN) * 2
Dataset: COGS (syntactic structure generation)
Input: Olivia believed that a donut was drawn
by a girl.
Output: believe (olivia, none, none) ccomp
draw (girl, donut, none)
Dataset: CFQ (text-to-SQL)
Input: What female person did M2 ’s employee
and founder influence?
Output: SELECT DISTINCT ?x0 WHERE {
?x0 a person . ?x0 influenced_by ?x1 . ?x0
has_gender female . ?x1 founded M2 . ?x1
employed_by M2 }

Table 2: Samples of the three semantic parsing datasets
used in the experiments.

4.3 Settings 353

The small language models we use in our experi- 354

ments include GPT-2-large (0.8B) (Radford et al., 355

2019) for PPL-based chunking, T5-large (0.8B) 356

(Raffel et al., 2020) as a base model for the off-the- 357

shelf parser BENEPAR (Kitaev and Klein, 2018), 358

and all-mpnet-base-v2 (0.1B) (Song et al., 2020) 359

for generating sentence vectors in the matching 360

step. To verify the overall effect of the MC2 frame- 361

work and the effect of steps in it, our main experi- 362

ment contains the following four settings: 363

Random. For each input primitive in turn, we 364

randomly select a sample that is unselected and 365

covers that primitive, and arrange the samples in 366

the order of selection to form a demonstration. 367

Global Matching. Based on the previous setting, 368

the random selection is replaced by the selection of 369

the sample that is most similar to the whole input, 370

using the same similarity estimation method as in 371

the Matching step. 372

Chunking + Matching (C + M). The chunk- 373

ing and matching steps in the framework are used. 374

The samples are arranged in the order that the cov- 375

ered primitives are in the input, consistent with the 376

previous two settings. 377

Complete MC2. The complete MC2 framework 378

is used, consisting of three steps. 379

In the main experiment, we fix the use of the 380

off-the-shelf parser method in the chunking step 381

and the vector method in the matching step. A 382
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Model Setting SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

DeepSeek

Random 63.8 65.2 55.9 89.7 63.8 68.0 68.7
Global Matching 68.1 79.2 50.1 92.9 77.8 69.9 72.1
C + M 74.1 81.1 51.1 95.4 78.7 75.0 77.3
Complete MC2 76.6 88.4 57.5 95.2 79.8 76.4 77.6

Qwen-plus

Random 62.1 66.7 56.1 82.4 66.2 68.4 69.3
Global Matching 69.4 89.7 59.1 87.8 79.2 72.5 70.7
C + M 73.6 92.0 58.5 88.5 79.8 77.4 74.6
Complete MC2 78.2 94.9 59.4 89.1 79.9 77.5 74.7

GPT-4o

Random 70.2 71.7 64.5 81.5 73.4 71.9 72.7
Global Matching 72.4 84.5 58.9 86.8 80.6 78.3 77.9
C + M 81.9 87.8 64.8 88.7 81.3 81.1 78.9
Complete MC2 82.4 90.8 67.1 89.3 83.3 83.7 80.8

Table 3: Results of the main experiment in the minimum coverage scenario. For SCAN and CFQ, numerical
subscripts indicate the corresponding MCD split.

comparative analysis of the different methods will383

be shown in Section 5.384

4.4 Results385

Table 3 shows the results of the main experiment386

in the minimum coverage scenario. We analyze387

the effect of the core idea of the MC2 framework388

and steps in it by comparing the results in different389

settings adjacent to each other.390

Random vs. Global Matching. Matching using391

similarity metrics is intuitively a better selection392

strategy than random selection. In most compar-393

isons, using Global Matching indeed leads to better394

performance than Random. However, we find that395

in some cases Global Matching brings a significant396

performance degradation (DeepSeek and GPT-4o397

on SCAN3). This suggests that global-level selec-398

tion based on certain similarity metrics may instead399

lead to weaker compositional generalization for400

some tasks or models.401

Global Matching vs. C + M. Compared to402

Global Matching, C + M introduces the idea of mul-403

tiple compositional levels. Unlike simply matching404

on the global input, C + M decomposes the com-405

ponents of different compositional levels with the406

help of the chunking step, and then matches the407

most similar samples for each component. As can408

be seen from the results, this hierarchical matching409

improves performance in most cases, and signifi-410

cantly in some comparisons. In the only exception411

where performance drops (Qwen-plus on SCAN3),412

the drop is not significant. Overall, the chunk-413

ing and matching steps that introduce the idea of414

multiple compositional levels effectively improve415

generic compositional generalization.416

C + M vs. Complete MC2. The complete 417

MC2 adds a a final ordering step compared to C + 418

M, which changes the sample ordering from input 419

order by matched primitive to order by matched 420

tree nodes from lower to higher level. The results 421

are similar to the previous set of comparisons. In 422

most cases, the added ordering step improves per- 423

formance, and the improvement is significant in 424

some comparisons. In the only exception where 425

performance drops (DeepSeek on COGS), the per- 426

formance drop is also not significant. The results 427

indicate that the addition of the ordering step over- 428

all improves generic compositional generalization. 429

From the results and analysis, we find that each 430

step is important for performance improvement. 431

The core idea of multiple compositional levels, 432

which serves as the basis for component match- 433

ing and sample ordering, plays an important role in 434

generic improvement. 435

5 Analytical Experiments 436

In this section, we conduct analytical experiments 437

on DeepSeek-2.5 and Qwen-plus on choices in the 438

MC2 framework, including the choice of method 439

components and the choice of implementation rules. 440

The purpose of the experiments is to analyze the 441

impact of various choices on performance and to 442

provide insight into the room for further improve- 443

ment of the framework. 444

5.1 Method Components 445

In the MC2 framework, the method of tree structure 446

acquisition in the chunking step, and the method of 447

finding the most similar samples in the matching 448
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Model Method SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

DeepSeek

PPL + BM25 67.9 84.2 56.4 92.2 79.3 75.7 74.4
PPL + Vector 78.4 93.4 56.5 94.6 76.2 74.6 73.8
Parser + BM25 69.3 83.1 58.4 91.7 78.2 75.7 77.8
Parser + Vector 76.6 88.4 57.5 95.2 79.8 76.4 77.6

Qwen-plus

PPL + BM25 68.4 84.6 57.2 86.6 78.5 75.8 75.5
PPL + Vector 72.3 93.3 56.4 89.5 76.9 75.2 73.7
Parser + BM25 68.5 83.9 57.0 88.1 80.0 76.1 76.2
Parser + Vector 78.2 94.9 59.4 89.1 79.9 77.5 74.7

Table 4: Results of experiments on choice combinations of method components in the minimum coverage scenario.

step, are components that can be flexibly changed.449

As described in Section 3, we consider two meth-450

ods, PPL and Parser, in the chunking step, and451

two methods, BM25 and Vector, in the matching452

step. We conduct experiments on the combination453

of method choices for the two steps.454

Table 4 shows the results of experiments. Of the455

four combinations, Parser + Vector demonstrates456

the best performance in most cases, while Parser +457

BM25 and PPL + Vector also perform best in some458

cases. For different LLMs, the combinations that459

show the best performance under the same split of460

the same task are different; for the same LLMs, the461

combinations that show the best performance under462

different tasks are not exactly the same. Overall,463

there is no combination that presents an absolute464

performance advantage.465

For the performance of the framework, the im-466

pact of the chosen combination of method com-467

ponents is significant in some cases, reflected in468

the large performance difference between the best469

and worst performing combinations (e.g., SCAN1470

and SCAN2). In addition, the performance of the471

framework may be limited by the performance of472

the method components in a particular case, e.g.,473

the performance improvement of DeepSeek using474

Parser + Vector on SCAN3 is relatively limited due475

to the performance of the Vector method. There-476

fore, finding task-independent method components477

and combinations that have better generic perfor-478

mance is one of the potential room for further per-479

formance improvement of the framework.480

5.2 Implementation Rules481

The MC2 framework contains several implemen-482

tation rules with multiple choices without altering483

the underlying design purpose. In each of the fol-484

lowing implementation rules, we experiment with485

a choice different from the one in Section 3.486

Visiting rule. In the matching and ordering 487

steps, we use the BFS inverted order as the vis- 488

iting order with the purpose of demonstrating the 489

potential compositional paths. In the choice of vis- 490

iting rule, any order that potentially demonstrates 491

compositional paths can be taken into account. We 492

experiment with the inverse order of depth-first 493

search (DFS) as the visiting order, which charac- 494

terizes another typical bottom-up compositional 495

pattern. 496

Degree rule. In the matching step, the degree 497

rule specifies the number of samples Dx matched 498

by each non-leaf node x. The rule is to satisfy 499

the requirement that the total number of samples 500

in the minimum coverage scenario cannot exceed 501

n. Any positive integer assignment to Dx that 502

satisfies the sum of n can be used as a degree 503

rule. We experiment with another rule that con- 504

centrates Dx on the root. Under this rule, Dx = 1 505

for non-root and non-leaf nodes x, and Droot = 506

(n− number of non-root and non-leaf nodes). 507

Primitive coverage rule. In the matching step, 508

each sample matched for a non-leaf node must 509

cover the primitive corresponding to the corre- 510

sponding leaf node. This rule is to ensure that 511

each input primitive is covered after the sample 512

matching is completed. We experiment with the 513

rule of adding a branch to the original rule: when 514

the primitive represented by the corresponding leaf 515

node has already been covered by a sample that 516

has been selected, the sample selected this time 517

does not have to cover the primitive. This new rule 518

still satisfies the primitive coverage requirement, 519

potentially trading a reduction in the number of 520

primitives in the demonstration for a larger sample 521

selection space. 522

Table 5 shows the results of experiments. From 523

the results, we find that there is no one implemen- 524

tation rule choice that exhibits an absolute perfor- 525
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Model Rule SCAN1 SCAN2 SCAN3 COGS CFQ1 CFQ2 CFQ3

Original 76.6 88.4 57.5 95.2 79.8 76.4 77.6
* Visiting 77.4 88.7 56.2 95.1 79.4 75.4 78.0
* Degree 76.9 89.0 57.2 95.6 79.5 76.3 77.6

DeepSeek

* Primitive 76.9 87.3 57.7 95.4 80.2 75.9 76.4
Original 78.2 94.9 59.4 89.1 79.9 77.5 74.7
* Visiting 79.2 94.0 60.1 90.5 82.0 77.1 77.8
* Degree 77.9 94.8 59.9 89.6 80.9 76.2 75.1

Qwen-plus

* Primitive 78.2 94.2 59.0 87.7 81.4 77.0 76.9

Table 5: Results of experiments on the choice of implementation rules in the minimum coverage scenario. In the
Rule column, Original indicates that the implementation rules described in Section 3 are used, and other rows with *
indicate that one of the corresponding rules in 5.2 is modified. Compared to Original, the performance improved by
the modification is marked in red, and the performance degraded is marked in blue.

mance advantage, similar to the results for method526

components. Although LLMs may exhibit some527

preference for the choice of implementation rules528

(e.g., Qwen-plus prefers the DFS visiting rule), it529

does not appear that implementation rules before530

and after modification exhibit the same compara-531

tive results on all splits of an LLM.532

While some of the modifications result in slightly533

larger performance changes (e.g., visiting rule on534

CFQ3 for Qwen-plus), most of the modifications535

result in small performance changes. This implies536

that the framework is relatively insensitive to mod-537

ifications to a single implementation rule without538

changing the underlying design purpose. However,539

better choices of implementation rules remain to be540

investigated, especially considering that the inter-541

nal combinations of implementation rules and their542

combinations with other elements of the framework543

are still under-explored.544

6 Related Work545

For compositional generalization of LLMs on se-546

mantic parsing in the in-context learning paradigm,547

many works have proposed different methods for548

improvement. Levy et al. (2023) proposes Cover-549

LS. This method first defines the task-specific lo-550

cal structure that the output has. Then, pairs of551

(input, output local structures) in the training set552

are used to train a prediction model. Finally, the553

prediction model predicts the local structures corre-554

sponding to the test input and selects the demonstra-555

tion samples that cover more of the predicted local556

structures. An et al. (2023) consider improvement557

based on the parsing tree on COGS. They con-558

sider structural similarity, diversity, and complexity559

to select the demonstration samples with the best560

matching parsing tree for the test sample. Drozdov 561

et al. (2023) proposes least-to-most prompting to 562

improve the performance of LLMs on SCAN. They 563

divide the task into two subproblems, decomposi- 564

tion and mapping, provide LLMs with manually 565

written samples of decomposition and mapping, 566

and then ask LLMs to solve the two subproblems 567

sequentially. On COGS and CFQ, which are more 568

difficult to decompose subproblems, Drozdov et al. 569

(2023) proposes dynamic last-to-most prompting. 570

They manually write specific decomposition rules 571

and examples for COGS and CFQ, and ask LLMs 572

to decompose the problem. Then, they perform 573

the selection of demonstration samples for the de- 574

composed subproblems and ask LLMs to solve 575

the subproblems step-by-step. As distinct from re- 576

lated work, the MC2 framework does not rely on 577

task-specific design such as guidance from manual 578

annotations, and can always satisfy the requirement 579

of the minimum coverage scenario for the number 580

of demonstration samples. 581

7 Conclusion 582

In this work, we revisit the question of whether 583

LLMs can generically achieve good compositional 584

generalization on different semantic parsing tasks 585

in the minimum coverage scenario without task- 586

specific designs, and find that achieving this re- 587

mains a challenge for current advanced LLMs. We 588

propose the task-independent MC2 framework to 589

generically improve the compositional generaliza- 590

tion of LLMs for different tasks on semantic pars- 591

ing in the minimum coverage scenario. We illus- 592

trate the effectiveness and room for improvement 593

of the framework and affirm the design motivation 594

through experiments and analysis. 595
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Limitations596

This work investigates compositional generaliza-597

tion semantic parsing in the settings of Generic598

(no task-specific design) and Minimum Coverage599

Scenario (limiting the number of samples in the600

demonstration). The settings introduce potential601

limitations from a practical perspective, as the use602

of task-specific designs or larger sample sizes is603

fully allowed in real-world scenarios to improve604

performance. However, we believe that such a set-605

ting is still relevant since Generic characterizes the606

generalization ability applied to any task, and the607

Minimum Coverage Scenario is directly related to608

resource constraints on input consumption.609

A potential limitation of the MC2 framework is610

that performance gains are to some extent depen-611

dent on well-performing method components and612

their combinations, as demonstrated in the analyt-613

ical experiments. This dependence indicates the614

direction of continued exploration to find better615

method components and combinations for perfor-616

mance improvement. We will continue our explo-617

ration in this direction.618

Ethics Statement619

We comply with the license to use language models620

for scientific research purposes only. The datasets621

we use do not contain any information that names622

or uniquely identifies individual people or offensive623

content.624

The AI assistant we use in our work is Copilot625

(for simple code completion).626
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A Primitive Identification904

For input, we mostly simply use spaces as separa-905

tors to identify primitives and ignore cases when906

matching primitives. In the following cases, we907

perform special identification to avoid redundant or908

unusual primitives: (1) articles (e.g., the, a, an) are909

not considered as primitives, (2) punctuation marks910

are separated from the word and are not considered911

as primitives, and (3) for the SCAN dataset, oppo-912

site and around, which act as special ideograms, are913

combined with the directional adverbs that follow914

them to form a single primitive.915

B PPL-based Chunking916

Algorithm 2 shows pseudo-code for PPL-based917

chunking.

Algorithm 2 PPL-based Chunking
function: chunking
Input: input primitives p1, p2, ..., pn
Output: root node x of the tree structure

x← new node (p1, p2, ..., pn)
if n = 1 then

return x
end if
m, v ← 0,∞
for i from 1 to n− 1 do

sent← "Using / to split the sentence {p1, p2, ..., pn}.
{p1, p2, ..., pi} / {pi+1, pi+2, ..., pn}"
if PPL (sent) < v then

m, v ← i, PPL (sent)
end if

end for
l← chunking (p1, p2, ..., pm)
r ← chunking (pm, pm+1, ..., pn)
set l, r to be the left and right son nodes of x
return x

918

C Conversion Details919

We match the model outputs and standard answers920

after a uniform conversion. The purpose of the921

conversion is to unify all possible correct answers922

to a unique one, which is consistent with the result923

of the conversion of the standard answer. For all924

datasets, we ignore redundant spaces and informa-925

tion other than answers. For the SCAN dataset, we926

expand the parentheses with multipliers by the num-927

ber of repetitions shown by the multipliers to get928

the only correct answer without parentheses. For929

the COGS dataset, we ignore all case issues. For930

the CFQ dataset, following Drozdov et al. (2023),931

we uniquely orient the bidirectional relation and932

perform iterative sorting and normalization to en- 933

sure the uniqueness of the answer. 934
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