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Abstract

Retrieval-augmented generation (RAG) en-001
hances large language models (LLMs) by in-002
tegrating external knowledge. A critical yet003
underexplored challenge in RAG is document004
segmentation, also known as document chunk-005
ing. Existing widely-used rule-based chunk-006
ing methods usually lead to suboptimal splits,007
where overly large chunks introduce irrelevant008
information and small chunks lack semantic co-009
herence. Existing semantic-based approaches010
either require costly LLM calls or fail to adap-011
tively group contextually related sentences.012
To address these limitations, we propose PIC013
(Pseudo-Instruction for document Chunking),014
a simple yet effective method that leverages015
document summaries as pseudo-instructions to016
guide chunking. By computing semantic simi-017
larity between sentences and the summary, PIC018
dynamically groups sentences into chunks that019
align with the document’s key themes, ensuring020
semantic completeness and relevance to poten-021
tial user instructions. Experiments on multiple022
open-domain question-answering benchmarks023
demonstrate that PIC can significantly improve024
retrieval accuracy (Hits@k) and end-to-end QA025
performance (Exact Match) without any addi-026
tional training.027

1 Introduction028

Retrieval-Augmented Generation (RAG) integrates029

large language models (LLMs) with large-scale030

textual knowledge to enhance response quality and031

mitigate hallucinations in LLMs (Lewis et al., 2020;032

Karpukhin et al., 2020; Borgeaud et al., 2022; Guu033

et al., 2020; Edge et al., 2024; Sarthi et al., 2024;034

Yan et al., 2024). By dynamically retrieving real-035

time information from databases such as Wikipedia,036

RAG enables more relevant and accurate responses.037

RAG has been widely applied across domains such038

as law (Louis et al., 2023), medicine (Wu et al.,039

2024), and finance (Zhang et al., 2023), making it040

an essential component in real-world applications.041

A standard RAG pipeline comprises three key 042

stages: (1) Document segmentation into man- 043

ageable units, named chunks; (2) Knowledge re- 044

trieval for input instructions; (3) Response gen- 045

eration based on retrieved chunks. While exist- 046

ing research mainly focuses on retriever improve- 047

ments (Shi et al., 2024; Rubin et al., 2022) and sys- 048

tem architecture design (Edge et al., 2024; Zhang 049

et al., 2024), the foundational challenge of doc- 050

ument segmentation remains critically underex- 051

plored. Effective document segmentation is crucial, 052

as lengthy source documents in knowledge bases 053

like Wikipedia exceed the processing capacities of 054

both retrievers and LLMs. 055

The majority of chunking methods employed in 056

RAG systems are rule-based, typically relying on 057

heuristics such as fixed-length segmentation (Lewis 058

et al., 2020; Karpukhin et al., 2020; Borgeaud et al., 059

2022). However, these methods usually suffer from 060

inherent limitations in selecting appropriate chunk 061

sizes. Larger chunks may include irrelevant infor- 062

mation, which can both interfere with retrieval and 063

generation, leading to hallucinations. Conversely, 064

smaller chunks may lack sufficient semantic in- 065

formation, making it challenging for the LLM to 066

generate accurate and coherent responses. 067

To address the above issues, certain studies have 068

explored semantic-based chunking methods. Some 069

research attempts to rewrite documents. For ex- 070

ample, Chen et al. (2024) tries to transform the 071

original text into independent, contextualized, and 072

self-contained segments. This approach can inte- 073

grate contextual knowledge, but it still relies on 074

rule-based context window segmentation and fails 075

to consider the adaptive combination of sentences. 076

Other studies attempt to identify semantic break- 077

points. Greg (2024) seperates adjacent sentences 078

with the least semantic similarity, yet it lacks a 079

global consideration of the entire document’s con- 080

text, leading to suboptimal chunking. Duarte et al. 081

(2024) and Zhao et al. (2024) leverage LLMs’ un- 082
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derstanding of semantics for segmentation, but083

these models require extensive calls to large mod-084

els, making them costly, time-consuming, and diffi-085

cult to apply to large-scale text knowledge bases.086

We aim to explore a new perspective on what087

constitutes good chunking. When a user inputs088

an instruction, our goal is to ensure that sentences089

relevant to the instruction are grouped within the090

same chunk, while unrelated sentences are placed091

in other chunks. This approach improves retrieval092

accuracy and prevents unrelated information from093

affecting LLM generation. However, in practical094

RAG applications, predefining chunks based on095

specific instructions is infeasible, as the instruction096

distribution is unknown when constructing chunks.097

Moreover, dynamically resegmenting a document098

for each instruction would incur unacceptable com-099

putational overhead.100

To address the challenge of document segmen-101

tation without prior knowledge of real user in-102

struction distributions, we propose PIC (Pseudo-103

Instruction for document Chunking), which uti-104

lizes document summaries as pseudo-instructions105

to guide segmentation. By generating a summary106

that preserves key document information (often107

central to real-world user queries), we compute108

semantic similarity scores between each sentence109

and the summary, then group sentences with scores110

above/below the average similarity threshold into111

coherent chunks. This approach ensures semantic112

completeness within chunks while isolating irrele-113

vant content, thereby improving retrieval relevance114

and reducing hallucinations in LLMs. The method115

aligns chunk distributions with potential user in-116

structions by prioritizing summary-aligned content117

aggregation and minimizing unrelated information118

within individual chunks.119

To evaluate the effectiveness of different chunk-120

ing methods, we process the latest English121

WikiDump, segmenting each document into chunks122

to serve as the knowledge base for RAG. We123

conduct experiments on multiple open-domain124

question-answering benchmarks, where our pro-125

posed method outperforms existing chunking126

approaches in terms of retrieval performance127

(Hits@k) and end-to-end QA performance (Exact128

Match). The results demonstrate that PIC achieves129

promising performance improvements across vari-130

ous experimental settings, proving to be an effec-131

tive and generalizable chunking method. Our main132

contributions are summarized as follows:133

• We propose a simple yet effective chunking 134

method, PIC, which leverages an LLM to gen- 135

erate a pseudo-instruction and groups sentences 136

into chunks based on their semantic relationship 137

with the pseudo-instruction. 138

• We introduce a knowledge corpora PICWiki, de- 139

rived from Wikipedia. This dataset consists of 140

the original text of each document, the generated 141

pseudo-instruction, and the chunks processed by 142

our method. Serving as a text knowledge base for 143

RAG, this dataset can significantly improve per- 144

formance on knowledge-intensive tasks without 145

requiring model retraining. 146

• We conduct extensive experiments on multiple 147

QA benchmarks, demonstrating that our method 148

achieves significant performance improvements 149

in both retrieval accuracy and end-to-end QA 150

system performance. 151

2 Related Works 152

Retrieval-Augmented Generation. RAG has 153

been proven to be an effective approach for ad- 154

dressing knowledge-intensive NLP tasks (Lewis 155

et al., 2020; Borgeaud et al., 2022; Izacard et al., 156

2022; Huang et al., 2024; Guu et al., 2020). Ex- 157

isting RAG methods mainly focus on improving 158

the retriever performance and designing the whole 159

RAG pipeline. As for the retriever improvement, 160

Karpukhin et al. (2020) proposes training a dense 161

passage retriever to replace sparse retrieval meth- 162

ods like BM25 (Robertson et al., 1995); Yu et al. 163

(2024) introduce reranking mechanisms after re- 164

trieval; Sawarkar et al. (2024) and Juvekar and Pur- 165

war (2024) integrate multiple retrieval strategies; 166

and Edge et al. (2024) incorporates knowledge 167

graphs, refining retrieval through graph traversal. 168

On the other hand, some works focus on enhancing 169

the reliability of language model generation. For 170

example, Xu et al. (2023) compresses retrieved doc- 171

uments to extract essential information; Yan et al. 172

(2024) corrects and rewrites retrieved knowledge; 173

Asai et al. (2023) introduces self-evaluation and re- 174

flection to selectively apply knowledge during gen- 175

eration; and Zhang et al. (2024) trains the genera- 176

tion model with distractor documents to improve its 177

robustness against misleading information. These 178

approaches effectively integrate up-to-date infor- 179

mation and reduce model hallucinations, making 180

them indispensable for modern generative models. 181

However, most of these methods primarily focus 182

on improving the retriever and generation mecha- 183

nisms within RAG while overlooking the impact 184
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Pseudo-Instruction

It is also a tradition for every family to thoroughly clean their house …

The Chinese New Year is associated with several myths and customs … 

Within China, regional customs and traditions concerning the celebration of 

the New Year vary widely …

Documents

Summary: The document primarily explores the historical origins of Chinese New Year and the integration of traditional customs with modern evolution, 

focusing on the role of family reunions, cultural heritage, and the festival’s impact on Chinese communities worldwide.

Another practised custom is the decoration of windows and doors with red 

paper-cuts and couplets …

In Chinese, the festival is commonly known as the "Spring Festival“ …

The name was first proposed in 1914 by Yuan Shikai, who was at the time 

the interim president of the Republic of China …

Embedding Similarity

0.715

0.695

0.456

0.441

0.609

0.445

μ=0.560

>μ

>μ

<μ

<μ

>μ

<μ

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunks

Topic: Chinese New Year

Figure 1: Illustration of our proposed PIC, where the document is dynamically segmented based on the similarity
between sentences and the pseudo-instruction.

of chunk quality on downstream task performance.185

Retrieval Units in RAG. The RAG process be-186

gins by splitting long documents into smaller units,187

which are stored in a knowledge base. Relevant188

units are then retrieved based on the user’s instruc-189

tions. This retrieval unit can be defined at various190

natural text granularities such as sentence, para-191

graph or document-level (Gao et al., 2023). Some192

specific rules are also used to manually segment193

documents into chunks by fixed-size (Borgeaud194

et al., 2022), punctuation (Liu, 2022), or phrase195

(Lan et al., 2023). Several advanced chunking ap-196

proaches further incorporate semantic relationships197

to enhance retrieval effectiveness. For instance,198

Greg (2024) suggests computing embedding sim-199

ilarity between adjacent sentences to determine200

chunking points. Since LLMs capture semantic201

dependencies better, many model-based methods202

have been proposed. Chen et al. (2024) uses LLMs203

to rewrite sentences into contextualized segments204

with pronouns restored to their corresponding enti-205

ties. Duarte et al. (2024) leverages LLMs to detect206

semantic transition points in a document, treating207

them as chunk boundaries. Zhao et al. (2024) uses208

perplexity (PPL) to measure semantic coherence,209

identifying local PPL minima as optimal chunk210

boundaries.211

3 Methodology212

In the context of RAG, an effective chunking strat-213

egy is critical for both retrieval and generation per-214

formance. Given a document D = {s1, s2, ..., sn}215

containing n sentences, we aim to segment D 216

into a set of semantically coherent chunks C = 217

{c1, c2, .., cm}, where each chunk ci consists of 218

one or more combined sentences, and m represents 219

the total number of chunks. 220

Our method consists of two key steps: 1) Gener- 221

ating pseudo-instructions. 2) Performing semantic 222

chunking based on pseudo-instructions, as shown 223

in Figure 1. We will provide a detailed explanation 224

of both steps below. 225

3.1 Pseudo-Instruction Generation 226

In this paper, we propose using pseudo-instructions 227

to guide chunking without knowing the real distri- 228

bution of user-instructions. Specifically, we lever- 229

age document summaries as pseudo-instructions 230

to construct semantically coherent chunks. Sum- 231

maries can preserve key document information, al- 232

lowing us to group adjacent sentences that share 233

semantic alignment with the summary while sepa- 234

rating irrelevant content. 235

Specifically, given a document D, we use a sum- 236

marizer S to generate a summary sD for D. The 237

generated summary should be as concise and infor- 238

mative as possible to effectively serve as a pseudo- 239

instruction. 240

3.2 Chunking Based on Pseudo-Instructions 241

For a given document D, after obtaining the sum- 242

mary sD, we perform chunking by computing the 243

semantic similarity between each sentence and the 244

summary. Adjacent sentences with above-average 245

similarity are grouped into coherent chunks, en- 246
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suring semantic completeness within chunks while247

minimizing unrelated information. Likewise, adja-248

cent sentences with below-average similarity are249

also grouped together.250

Specifically, we first use an embedding model to251

encode both the summary and sentences. Let ϕ de-252

note the embedding function, then the embeddings253

for the sentences and the summary are computed254

as: esi = ϕ(si), esD = ϕ(sD). Next, we compute255

the cosine similarity between each sentence embed-256

ding and the summary embedding as follows:257

ri = sim(si, sD) =
esi · esD

∥esi∥ · ∥esD∥
. (1)258

Based on the similarity between each sentence and259

the summary, we group adjacent sentences into the260

same chunk if their similarity scores exceed a pre-261

defined threshold. Similarly, sentences with sim-262

ilarity scores below the threshold are also placed263

in the same chunks. The chunking rules are as264

follows:265

Crel =

{
[si : sj ]

∣∣∣∣ ri, ri+1, ..., rj ≥ τ,
ri−1, rj+1 < τ

}
, (2)266

Cirr =

{
[si : sj ]

∣∣∣∣ ri, ri+1, ..., rj < τ,
ri−1, rj+1 ≥ τ

}
, (3)267

C = Crel + Cirr. (4)268

Here, τ is the threshold that controls the chunking269

condition, [si : sj ] represents a chunk consisting270

of sentences from si to sj (i ≤ j), and Crel, Cirr271

represent chunks that are relevant and irrelevant272

with the pseudo-instruction, respectively. The final273

result, C, is the segmented chunks for the document274

D using our method.275

For the selection of τ , we use a dynamic thresh-276

old, as a fixed one would result in varying similarity277

levels across documents, making manual selection278

difficult. Specifically, we set the threshold τ as the279

mean similarity µ between all sentences in docu-280

ment D and its summary, which is calculated as281

µ = 1
nΣ

n
i=1ri. We find this mean value perform-282

ing best among all values through experiments de-283

scribed in Section 6.2.284

4 Experimental Settings285

To evaluate the performance of different document286

chunking methods in RAG scenarios, we adopt287

Wikipedia as the knowledge corpus and conduct ex-288

periments on several knowledge-intensive tasks us-289

ing two different LLMs. In this section, we present290

the details and results of our extensive experiments.291

4.1 Baselines 292

Following previous work (Gao et al., 2023), we 293

mainly choose the following chunking methods 294

as our baseline methods: 1) Rule-based Chunk- 295

ing. Most existing RAG systems utilize rule-based 296

chunking methods for processing the corpus. In 297

our experiments, we evaluate three widely-used 298

rule-based chunking approaches. Specifically, the 299

documents in the corpus are segmented in three 300

different ways: sentence-by-sentence (Sentence), 301

paragraph-by-paragraph (Paragraph), and fixed- 302

size windows (Fixed-size). In these methods, each 303

chunk corresponds to a single sentence, a single 304

paragraph, or a span of fixed length, respectively. 305

2) Semantic-based Chunking: These methods seg- 306

ment documents based on the semantic consistency 307

of adjacent sentences. We present the results of 308

the semantic chunking method proposed by Greg, 309

2024 (Semantic), which computes the similarity 310

between adjacent sentence embeddings and seg- 311

ments when the similarity falls below a certain 312

threshold. 3) Generation-based Chunking: These 313

methods attempt to generate text chunks based on 314

given documents. Chen et al. (2024) (Proposition) 315

rewrites the sentences into self-contained atomic 316

expressions called propositions, which will be used 317

for further retrieval. 318

4.2 Knowledge Corpus 319

We use the latest English Wikipedia dump (2024- 320

12-01), containing over 6 million documents, as 321

our textual knowledge base. We extract the cleaned 322

text using WikiExtractor1. Then we apply differ- 323

ent processing techniques based on the specific 324

chunking methods: 1) As for the rule-based chunk- 325

ing method, we adopt the NLTK package2 to split 326

document text to sentences; we split text to para- 327

graphs by the new line character "\n" in the origi- 328

nal text; and we split the document into fixed-size 329

chunks of 100 words each, while preserving sen- 330

tence boundaries. 2) As for the semantic-based 331

chunking method, we first build embeddings for 332

each sentence using bge-large-en-v1.5 (Xiao et al., 333

2024), and calculate the similarity between every 334

two adjacent sentences. Then, we compute the 335

20th percentile of all similarity scores and use it 336

as a threshold3. Any pair of adjacent sentences 337

1https://github.com/attardi/wikiextractor
2https://www.nltk.org/api/nltk.tokenize.sent_tokenize.html
3We experimented with thresholds at the 5th, 20th, 35th,

and 50th percentiles and selected the 20th percentile, which
yielded the best performance, as the baseline for comparison.
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NQ TriviaQA WebQ SQuAD EQ PopQA Avg.
Method Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20

Sentence 33.0 48.4 36.9 44.7 34.4 50.8 39.9 52.6 53.4 65.0 44.5 58.4 40.4 53.3
Paragraph 48.3 62.3 40.3 47.6 43.3 58.9 44.4 57.9 61.5 73.3 50.3 64.8 48.0 60.8
Fixed-size 60.7 71.7 40.7 48.2 49.1 63.7 47.1 63.1 66.0 76.8 63.2 77.3 54.5 66.8
Semantic 59.4 71.2 41.2 48.9 53.5 64.4 46.8 61.2 69.9 79.2 65.1 79.4 56.0 67.4
Proposition 60.0 71.5 40.8 48.1 52.5 65.3 56.0 68.5 69.9 78.8 67.1 81.3 57.7 68.9

PIC 61.0 71.6 42.3 49.2 54.5 66.9 53.0 67.0 71.1 80.3 68.7 81.9 58.4 69.5

Table 1: Retrieval performance (Hits@k) across different methods. The proposed PIC method achieves the highest
average performance across all datasets, outperforming baseline methods such as semantic and proposition-based
chunking in both Top-5 and Top-20 retrieval accuracy.

with a similarity score below this threshold is split,338

which is defined as the chunk boundaries. 3) As339

for the proposition method, we use the open-source340

Propositionizer model4, first segmenting text into341

100-word passages and then apply the model to342

rewrite passages into propositions.343

Notably, we utilize PIC to process the same344

Wikipedia corpus, generating the resulting datasets345

named PICWiki. The dataset can be seamlessly346

integrated to enhance the performance of RAG sys-347

tems in a plug-and-play manner. We will release348

PICWiki to facilitate the progress of RAG.349

4.3 Evaluation Benchmarks350

We evaluate the chunking methods on the follow-351

ing six OpenQA benchmarks, including Natural352

Questions (NQ, Kwiatkowski et al., 2019), Trivi-353

aQA (Joshi et al., 2017), WebQuestions (WebQ,354

Bordes et al., 2014), SQuAD (Rajpurkar et al.,355

2016), EntityQuestions (EQ, Sciavolino et al.,356

2021) and PopQA (Mallen et al., 2023), which357

focus on reading comprehension and answering358

natural language queries using Wikipedia or struc-359

tured knowledge bases.360

To fairly compare different chunking methods361

on these benchmarks, we mainly evaluate the362

performance of the methods from these two as-363

pects: 1) Retrieval Performance: We evaluate364

the retrieval performance using Hits@k, measur-365

ing whether the top-k retrieved chunks contain the366

correct answer. 2) End-to-end QA Performance:367

To demonstrate the impact of different chunking368

methods on the question-answering abilities of the369

RAG system, we also evaluate the end-to-end QA370

performance by Exact Match (EM), which is calcu-371

lated as the percentage of questions for which the372

predicted answer exactly matches the ground truth.373

4https://huggingface.co/chentong00/propositionizer-wiki-
flan-t5-large

4.4 Implementation Details 374

For the model implementation, we use GPT-4o- 375

mini (OpenAI, 2024) as the summarizer to gener- 376

ate summaries for all documents with the prompt 377

provided in Appendix C. We use bge-en-large-v1.5 378

as both the embedding model for chunking and the 379

retriever model for RAG, and evaluate the end-to- 380

end QA performance with two LLMs: Qwen2.5- 381

7B-Instruct (Team, 2024) and Meta-Llama-3-8B- 382

Instruct (Grattafiori et al., 2024). We retrieve the 383

top 5 and top 20 chunks separately and evaluate 384

both their retrieval performance and end-to-end 385

QA performance. The retrieved chunks are then 386

concatenated with the input instructions using the 387

prompt template provided in Appendix D. We use 388

the greedy sampling strategy for answer generation 389

and the maximum length is set as 512. 390

5 Main Results 391

5.1 Retrieval Performance 392

Table 1 presents the retrieval performance of PIC 393

compared to other baseline chunking methods. PIC 394

achieves the highest average retrieval performance 395

across six datasets, with the highest 2-point in- 396

crease on WebQ. This suggests that our PIC method 397

captures semantic information more effectively, 398

leading to superior retrieval outcomes. We also 399

conduct a case study in Appendix B. 400

Despite its effectiveness on most datasets, PIC 401

exhibits suboptimal performance on SQuAD. One 402

potential reason for this gap is that SQuAD is more 403

akin to a reading comprehension dataset, with 100k 404

questions derived from only 536 documents. This 405

makes it difficult for a retriever trained on general 406

data to capture the relationship between instruc- 407

tions and chunks. In contrast, Proposition elimi- 408

nates this bias by rewriting the original text, leading 409

to improved performance. Similar phenomenon is 410

also observed by Lee et al., 2019. 411
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NQ TriviaQA WebQ SQuAD EQ PopQA Avg.
Method Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20

Qwen2.5-7B-Instruct

Sentence 29.8 35.0 55.4 60.2 30.0 34.3 34.8 39.6 42.6 46.4 36.9 41.2 38.2 42.8
Paragraph 38.6 40.9 60.9 64.1 34.3 37.9 35.7 39.6 49.0 52.4 42.4 46.2 43.5 46.8
Fixed-size 42.9 44.8 61.2 64.8 35.9 40.3 33.8 38.3 51.8 55.0 47.5 49.7 45.5 48.8
Semantic 42.5 44.5 61.7 63.5 36.8 40.4 28.3 32.2 53.7 55.8 47.8 48.7 45.1 47.5
Proposition 42.5 44.3 61.5 64.6 36.9 41.0 42.7 45.4 52.7 54.6 51.2 51.1 47.9 50.2

PIC 45.7 48.0 63.3 66.1 40.1 42.7 39.4 43.0 58.7 61.5 52.2 53.8 49.9 52.5

Meta-Llama-3-8B-Instruct

Sentence 32.8 37.0 59.1 63.0 30.6 35.5 35.3 40.5 42.9 47.5 38.8 43.9 39.9 44.6
Paragraph 40.1 42.4 63.0 65.9 36.4 38.9 36.8 41.3 50.3 53.8 44.5 49.0 45.2 48.5
Fixed-size 44.6 46.1 63.2 67.0 36.0 39.2 34.6 39.8 52.4 55.4 50.7 52.2 46.9 50.0
Semantic 43.9 46.0 63.3 65.4 37.1 40.4 29.2 33.6 54.7 56.1 50.9 51.8 46.5 48.9
Proposition 44.4 46.7 63.9 67.1 38.0 40.7 44.8 47.8 55.1 56.3 54.5 55.1 50.1 52.3

PIC 45.6 48.3 64.6 67.2 39.4 41.5 40.5 44.2 58.8 61.5 56.9 58.5 51.0 53.5

Table 2: End-to-end question-answering performance across different document segmentation methods. We present
results with two different LLMs as the generation models, evaluated by Exact Match (EM).

5.2 End-to-end QA Performance412

Similar conclusions can be drawn regarding QA413

performance. As shown in Table 2, experiments414

with two different LLMs demonstrate that PIC con-415

sistently achieves the best results. When using416

Qwen as the LLM, PIC shows an average improve-417

ment of 2 points across six datasets, with a remark-418

able 5.7-point increase on the EQ dataset. When419

using Llama-3, PIC also demonstrates an average420

improvement of nearly 1 point.421

It can be observed that the accuracy of the QA422

task is significantly lower than that of retrieval,423

indicating that sometimes, even when the correct424

relevant text is retrieved, the model still fails to425

provide the correct answer. This may be due to426

the retrieved text containing too much irrelevant427

information, making it difficult for the LLM to428

effectively capture the answer. However, among429

all methods, our approach exhibits the smallest430

performance drop. Taking the results on Qwen as431

an example, under the top-5 setting, our method432

decreases by 8.5 points (58.4 → 49.9), while the433

proposition method decreases by 9.8 points (57.7434

→ 47.9) and the Semantic method by 10.9 points435

(56.0 → 45.1). We attribute this to the reduced436

irrelevant information in the chunks, making the437

LLM less prone to hallucinations.438

6 Further Analysis439

6.1 Impacts of the Pseudo-Instruction440

The core idea of our method is to construct pseudo-441

instruction (PI) to guide chunking, ensuring that442

the segmented chunks better align with the possible 443

real instruction distribution. In our implementation, 444

we choose summary as the PI because it encap- 445

sulates the main information of the document, al- 446

lowing the document to be segmented based on its 447

relevance to the central theme. To better under- 448

stand the importance of PI, we conduct an ablation 449

study by modifying its implementation. Specifi- 450

cally, we implement the following variations of PI: 451

1) Random: For each document, we use the sum- 452

mary of a randomly selected different document 453

as its PI instead of its own summary. 2) Sent: For 454

each document, we use a randomly chosen sen- 455

tence from the document as its PI. 3) Mean: For 456

each document, we compute the mean value of 457

all the sentence embeddings and use it as the PI 458

embedding for chunking. 459

We follow the experimental setup described in 460

Section 4 and evaluate the retrieval and QA per- 461

formance under different PI implementations. The 462

results are presented in Table 3. It can be seen 463

that using summaries as the PI achieves the best 464

performance. PIC-Random performs the worst, as 465

the random-selected summary does not contain any 466

information from the document itself, resulting in 467

chunks with little semantic coherence. PIC-Sent 468

contains document-specific information, but its in- 469

formation capacity is too limited, and the selection 470

of a single sentence is highly random, leading to 471

suboptimal chunking. PIC-Mean performs rela- 472

tively well, likely because it integrates information 473

from all sentences in the document. However, av- 474
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NQ TriviaQA WebQ SQuAD EQ PopQA Avg.
Method Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20 Top5 Top20

Retrieval Performance (Hits@k)

PIC 61.0 71.6 42.3 49.2 54.5 66.9 53.0 67.0 71.1 80.3 68.7 81.9 58.4 69.5
Random 56.6 68.8 38.7 45.5 50.2 62.5 49.1 62.4 67.5 76.6 65.4 78.6 54.6 65.7
Sent 56.8 69.1 38.7 45.2 50.8 63.4 49.2 62.2 67.9 76.8 66.3 78.7 54.9 65.9
Mean 57.7 69.4 39.6 46.5 51.7 63.9 50.3 64.3 68.4 78.0 67.3 80.0 55.8 67.0

Question-Answering Performance (EM)

PIC 45.7 48.0 63.3 66.1 40.1 42.7 39.4 43.0 58.7 61.5 52.2 53.8 49.9 52.5
Random 39.6 43.1 57.3 60.5 35.1 38.0 34.6 38.4 53.6 55.6 48.8 50.6 44.8 47.7
Sent 40.6 43.0 58.3 60.9 34.7 38.4 35.4 38.4 54.0 57.4 49.4 51.4 45.4 48.3
Mean 40.8 43.2 59.5 62.4 35.9 40.8 36.3 40.1 54.8 58.5 50.7 51.8 46.3 49.5

Table 3: Performance comparison of different pseudo-instruction implementations. For question-answering perfor-
mance evaluation, we adopt Qwen2.5-7B-Instruct as the backbone model.

eraging embeddings weakens its ability to capture475

semantic structures, making it less effective than476

the summary-based approach.477

6.2 Impacts of Chunking Threshold478

In Section 3, our PIC algorithm selects the mean479

similarity between sentences and the summary as480

a threshold for chunking. However, this threshold481

requires further consideration. Our method aims482

to distinguish between sentences that are relevant483

to the pseudo-instruction and those that are not. A484

higher threshold results in shorter and fewer rele-485

vant chunks, and vice versa.486

To explore this, we select five different thresh-487

olds ranging from µ− 2σ to µ+ 2σ and conduct488

experiments under the same setting as Section 4.489

The results are shown in the figure 2. Here, µ rep-490

resents the mean, and σ represents the standard491

deviation.492

The results indicate that setting the threshold at493

µ yields the best retrieval and QA performance. As494

the threshold deviates in either direction (becom-495

ing too high or too low), performance gradually496

declines. We attribute this to the increasing mixture497

of relevant and irrelevant sentences within chunks498

as the threshold shifts. This reduces the distinc-499

tion between chunks and, in extreme cases (when500

the threshold approaches 0 or 1), degrades the pro-501

cess into no chunking at all, ultimately leading to502

performance deterioration.503

6.3 Real-Instruction for Document Chunking504

When constructing chunks, we typically lack ac-505

cess to the actual user instruction distribution.506

Therefore, we propose the PIC method, using507

pseudo-instructions as an approximation of real508

Method NQ Qasper

Semantic 37.8 14.9
Proposition 38.3 14.8
PIC 38.8 15.6
RIC 39.2 16.2

Table 4: Performance comparison of Real-Instruction
Chunking with other methods. We retrieve the top-5
chunks, and evaluate the QA performance using Qwen-
2.5-7B-Instruct. We use Exatch Match for evaluation
on NQ, and F1 for Qasper.

user instructions. But if the actual instruc- 509

tions are known in advance and used for chunk- 510

ing, it may yield optimal results. To validate 511

this hypothesis, we conducted experiments on 512

the NaturalQuestions (Kwiatkowski et al., 2019) 513

and Qasper (Dasigi et al., 2021) datasets. The 514

NaturalQuestions (NQ) dataset comprises real 515

anonymized queries issued to the Google search en- 516

gine, paired with corresponding Wikipedia pages. 517

The Qasper dataset consists of human-written QA 518

pairs based on NLP papers. For each dataset, we 519

use the documents it provides as the corpus, instead 520

of Wikipedia. For the Real-Instruction Chunk- 521

ing (RIC), we use the query of each document 522

to calculate similarities with the sentences. The 523

results are shown in Table 4. It can be observed 524

that chunking with real instructions yields the op- 525

timal results, which aligns with the viewpoint we 526

presented in Section 1. 527

6.4 Chunk Analysis 528

Distribution of Chunk Lengths. Different 529

chunking methods yield varying length distribu- 530

tions, which may influence chunking effectiveness. 531

To explore this, we visualized the length distribu- 532
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tion for each method, as shown in Figure 3, with de-533

tailed statistics provided in Appendix A. The over-534

all distribution patterns suggest that chunk length535

itself does not directly correlate with retrieval or536

QA performance in RAG. Instead, the primary fac-537

tor affecting downstream performance is how the538

text is structured within each chunk. Notably, our539

proposed PIC method maintains a relatively shorter540

average chunk length, which helps mitigate the541

input length burden on the LLM.542

Distribution of Retrieved PIC Chunks. The rel-543

evant chunks (Crel) in PIC are expected to contain544

more key information from the document, mak-545

ing them easier to be retrieved. To evaluate this,546

we calculate the proportion of relevant chunks re-547

trieved by the PIC method across different datasets,548

as shown in Table 5. The results indicate that in all549

cases, relevant chunks account for more than 50%550

of the retrieved chunks, demonstrating the effec-551

tiveness of the PIC method in categorizing chunks552

Dataset Top-5 Top-20 Golden

NQ 70.1 65.7 66.7
TriviaQA 73.1 67.7 68.4
WebQ 77.0 72.7 66.7
SQuAD 60.7 57.9 65.8
EQ 67.2 63.7 100.0
PopQA 64.3 61.5 91.0

Table 5: Proportion of relevant chunks in retrieved PIC
Chunks. Top-5 and Top-20 refer to the top 5 and top 20
retrieved chunks, respectively, and Golden represents
the retrieved chunks that contain the correct answer.

and making topic-related chunks more retrievable. 553

Moreover, on the EQ and PopQA datasets, nearly 554

all retrieved golden chunks are relevant chunks. 555

We attribute this to the entity-centric nature of the 556

datasets, which focus on less popular, long-tail en- 557

tities. In this scenario, the PIC-relevant chunks 558

overlap significantly with user instructions, which 559

further reinforces our conclusion. 560

7 Conclusions 561

In this paper, we identify document segmenta- 562

tion as a critical yet underexplored challenge in 563

retrieval-augmented generation (RAG) systems. 564

We propose PIC, a novel document chunking 565

method that leverages document summaries as 566

pseudo-instructions to guide semantic chunking. 567

By dynamically grouping sentences based on their 568

relevance to document topic, PIC creates chunks 569

that better align with potential user instructions 570

while maintaining semantic coherence. Extensive 571

experiments across six QA benchmarks demon- 572

strate that our method achieves significant improve- 573

ments in both retrieval accuracy and end-to-end 574

QA performance compared to existing approaches, 575

without requiring additional model retraining. 576
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Limitations577

Our work focuses on creating chunks that better578

align with potential user instructions while main-579

taining semantic coherence. One limitation of our580

approach is the computational overhead introduced581

during summary generation. While this overhead is582

significantly lower than methods requiring multiple583

LLM calls per document, future work should ex-584

plore more efficient strategies for generating high-585

quality pseudo-instructions. Additionally, our cur-586

rent evaluation is limited to general-domain tasks,587

leaving the exploration of specialized scenarios588

requiring cross-document reasoning for future in-589

vestigation.590
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Appendix806

A Statistics of Chunk Lengths807

Mean Std

Sentence 18.8 12.7
Paragraph 42.2 48.0
Fixed-size 87.8 26.6
Semantic 78.6 88.9
Proposition 58.1 32.0
PIC 42.8 38.3

Table 6: Length Statistics of Different Chunking Meth-
ods, counted by words.

The detailed statistics of the length of the chunks808

under different aggregation methods are shown in809

Table 6.810

B Case Study811

We demonstrate the difference of our chunking812

method with semantic chunking in Table 9. We813

select a query "where was the statue of liberty orig-814

inally built" from the NQ dataset with its answer815

as "France". To retrieve all the relevant informa-816

tion, the retrieved chunk must both include "built817

in France" and "the Statue of Liberty", in sentence818

3 and 5, respectively. However, as we can see819

from the table, the semantic chunking method fails820

to group sentence 3 and sentence 5 in one chunk.821

Instead, it splits sentence 3 and 4 due to the rel-822

atively low similarity between them (In the table,823

simnext represents the similarity of one sentence824

with the next sentence). This results in a low sim-825

ilarity (simred−chunk−with−query in the table) be-826

tween the query and the chunk of sentence 3, where827

the answer "in France" lies, and leads to a retrieval828

failure. The PIC method treats sentence 3 to 5 as829

relevant sentences, and groups them into one chunk830

based on simpi, which represents the similarity be-831

tween the pseudo-instruction (PI) and the sentence.832

This chunk, with both "built in France" and "the833

Statue of Liberty" in it, has a higher similarity score834

with the query (rgreen−chunk−with−query), and can835

be easily retrieved by the retriever.836

C Prompt For Summary837

The prompt we use for writing summary for each838

document is shown in Table 7.839

Summarizer Prompt

Read this passage:
{context}
Write a summary for this passage. Your sum-
mary should be concise and informative. Give
the
summary directly, without any other text.

Table 7: Prompt used when generating summaries for
wiki documents.

RAG Prompt

Refer to the passages below and answer the
following question with just a few words.
{chunk 1}
{chunk 2}
...
Refer to the context above and answer the
following question with just a few words.
Question: {Question}
The answer is

Table 8: Prompt used when concatenating queries with
retrieved chunks.

D Prompt For Question Answering 840

The prompt we use for generating answers in QA 841

tasks is shown in Table 8. 842
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Query: where was the statue of liberty originally built?
Answer: France.
Semantic:
· · ·
Fundraising proved difficult, especially for the Americans, and by 1885 work on the pedestal was threat-
ened by lack of funds. (simnext = 0.566)
Publisher Joseph Pulitzer, of the "New York World", started a drive for donations to finish the project and
attracted more than 120,000 contributors, most of whom gave less than a dollar. (simnext = 0.4314, cut!)
The statue was built in France, shipped overseas in crates, and assembled on the completed pedestal on
what was then called Bedloe’s Island. (simnext = 0.4958, cut!)
The statue’s completion was marked by New York’s first ticker-tape parade and a dedication ceremony
presided over by President Grover Cleveland. (simnext = 0.538)
The statue was administered by the United States Lighthouse Board until 1901 and then by the Department
of War; since 1933, it has been maintained by the National Park Service as part of the Statue of Liberty
National Monument, and is a major tourist attraction.
· · ·
rred−chunk−with−query=0.5713
PIC:
· · ·
Fundraising proved difficult, especially for the Americans, and by 1885 work on the pedestal was threat-
ened by lack of funds. (simpi = 0.493, irrelevant)
Publisher Joseph Pulitzer, of the "New York World", started a drive for donations to finish the project
and attracted more than 120,000 contributors, most of whom gave less than a dollar. (simpi = 0.445,
irrelevant)
The statue was built in France, shipped overseas in crates, and assembled on the completed pedestal on
what was then called Bedloe’s Island. (simpi = 0.572, relevant)
The statue’s completion was marked by New York’s first ticker-tape parade and a dedication ceremony
presided over by President Grover Cleveland. (simpi = 0.557, relevant)
The statue was administered by the United States Lighthouse Board until 1901 and then by the Department
of War; since 1933, it has been maintained by the National Park Service as part of the Statue of Liberty
National Monument, and is a major tourist attraction. (simpi = 0.703, relevant)
· · ·
rgreen−chunk−with−query=0.73
Pseudo-Instruction: The Statue of Liberty, a colossal neoclassical sculpture designed by Frric Auguste
Bartholdi with a metal framework by Gustave Eiffel, was dedicated in New York Harbor on October 28,
1886, as a gift from France to the United States. Inspired by the Roman goddess Libertas, the statue
symbolizes freedom and welcome to immigrants. Conceived in 1865 by French historian douard de
Laboulaye, its construction was delayed by the Franco-Prussian War until fundraising efforts resumed
in the 1870s. Joseph Pulitzer’s 1885 fundraising campaign in the U.S. attracted over 120,000 donors,
enabling the pedestal’s completion. Assembled on Liberty Island, the statue oxidized to its green color
within twenty years and became an iconic landmark associated with immigration, especially linked to
nearby Ellis Island. Managed initially by the Lighthouse Board and the Department of War, it has been
maintained by the National Park Service since 1933. The statue has undergone several restorations,
notably for its centennial in 1986, and has been closed and reopened multiple times due to events like the
September 11 attacks and Hurricane Sandy.· · ·

Table 9: Case Study
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