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Abstract

In this paper, we study reinforcement learning from human feedback (RLHF) under
an episodic Markov decision process with a general trajectory-wise reward model.
We developed a model-free RLHF best policy identification algorithm, called BSAD,
without explicit reward model inference, which is a critical intermediate step in the
contemporary RLHF paradigms for training large language models (LLM). The
algorithm identifies the optimal policy directly from human preference information
in a backward manner, employing a dueling bandit sub-routine that constantly
duels actions to identify the superior one. BSAD adopts a reward-free exploration
and best-arm-identification-like adaptive stopping criteria to equalize the visitation
among all states in the same decision step while moving to the previous step as
soon as the optimal action is identifiable, leading to a provable, instance-dependent
sample complexity Õ(cMSA3H3M log 1

δ )1 which resembles the result in classic RL,
where cM is the instance-dependent constant and M is the batch size. Moreover,
BSAD can be transformed into an explore-then-commit algorithm with logarithmic
regret and generalized to discounted MDPs using a frame-based approach. Our
results show: (i) sample-complexity-wise, RLHF is not significantly harder than
classic RL and (ii) end-to-end RLHF may deliver improved performance by avoiding
pitfalls in reward inferring such as overfit and distribution shift.

1 Introduction

Reinforcement learning (RL), with a wide range of applications in gaming AIs (Bradley Knox &
Stone, 2008; MacGlashan et al., 2017; Warnell et al., 2018), recommendation systems (Yang et al.,
2024; Zeng et al., 2016; Kohli et al., 2013), autonomous driving (Wei et al., 2024; Schwarting et al.,
2018; Kiran et al., 2022) , and large language model (LLM) training (Wu et al., 2021; Nakano et al.,
2021; Ouyang et al., 2022; Ziegler et al., 2019; Stiennon et al., 2020), has achieved tremendous success
in the past decade. A typical reinforcement learning problem involves an agent and an environment,
where at each step, the agent observes the state, takes a certain action, and then receives a reward
signal. The state of the environment then transits to another state, and this process continues.
However, most RL advances remain in the simulator environment where the data acquisition process
heavily depends on the crafted reward signal, which limits RL from more realistic applications such
as LLM, as defining a universal reward is generally difficult. In recent years, using human feedback
as reward signals to train and fine-tune LLMs has delivered significant empirical successes for AI

1we use O(·) to hide instance-independent constants and use Õ(·) to further hide logarithmic terms except log 1
δ

.



RLJ | RLC 2024

Setting Algorithm Sample Complexity Space Instance Policy

RL MOCA O
(

H3SA log 1
δ

∆2
minpπ

max

)
model-based dependent Opt

Q-Learning Õ
(

H4SA log 1
δ

ε2

)
model-free independent ε-Opt

RLHF
P2R-Q Õ

(
H4SA log 1

δ

ε2

)
model-free independent ε-Opt

PEPS Õ
(

H2S2A log 1
δ

ε2 + S4H3 log3 1
δ

ε

)
model-based independent ε-Opt

BSAD(Ours) O
(

H3MSA3 log 1
δ

(∆M

minpπ
max)2

)
model-free dependent Opt

Table 1: Comparison of RL and RLHF algorithms with MOCA (Wagenmaker et al., 2022), Q-
Learning (Jin et al., 2018), PEPS (Xu et al., 2020), and P2R (Wang et al., 2023) with Q-learning.
S, A, and H are the number of states, actions, and planing steps. δ is confidence level, M is the
batch size. ∆min is the minimum value function gap, ∆min characterizes the preference probability
gap (Def. 1), and pπ

max characterizes the maximum state visitation probability (Def. 2).

alignment problems and produced dialog AIs such as the ChatGPT (Ouyang et al., 2022). This
paradigm where the reward of the state and actions is inferred from real human preferences, instead
of being handcrafted, is referred to as Reinforcement Learning from Human Feedback (RLHF). A
typical RLHF algorithm on LLMs involves three steps: (i) pre-train a network with supervised
learning, (ii) infer a reward model from human feedback, in the form of comparisons or rankings
among trajectories (responses), and (iii) use classic RL algorithm to fine-tune the pre-trained model.
An accurate reward model that aligns with human preferences is the key to the superiority of RLHF.

Pitfalls of Reward Inference: However, most reward models are trained on a maximum likelihood
estimator (MLE) (Christiano et al., 2017; Wang et al., 2023; Saha et al., 2023) under Bradley-Terry
model (Bradley & Terry, 1952). This paradigm exhibits pitfalls: (i) the reward models easily over-
fit the dataset which produces in-distribution errors, and (ii) the reward models fail to measure
out-of-distribution state-action pairs during fine-tuning. Even though attempts such as pessimistic
estimations (Zhu et al., 2023; Zhan et al., 2023b;a) and regularity conditions are made to improve
the accuracy and consistency of reward models, it remains a question of whether reward inference
is indeed required. Can we develop a model-free RLHF algorithm without reward inference, which
has provable instance-dependent sample complexity?

Contributions: We study an episodic RLHF problem with general trajectory rewards and pro-
pose a model-free algorithm called Batched Sequential Action Dueling (BSAD) which identifies the
optimal action for each state backwardly using action dueling with batched trajectories to obtain
human preferences. To equalize the state visitation of the same planning step, we adopt a reward-
free exploration strategy and adaptive stopping criteria, which enables learning the exact optimal
policy with an instance-dependent sample complexity (Theorem. 1) similar to classic RL with re-
ward (Wagenmaker et al., 2022), as long as the batch size is chosen carefully. Moreover, our results
only assume the existence of a uniformly optimal stationary policy and do not require the existence
of a Condorcet winner, as we will show the optimal policy is the Condorcet winner when human
preferences are obtained with large batch sizes. To the best of our knowledge, BSAD is the first
RLHF algorithm with instance-dependent sample complexity, and a transformation of BSAD will
provide the first model-free explore-then-commit RLHF algorithm with logarithmic regret.

Comparison to (Xu et al., 2020): From the best of our knowledge, the only algorithm with no
reward inference (explicit/implicit) is PEPS (Xu et al., 2020). Our paper is different in (i) BSAD
is model-free and takes O(SA2) space complexity, while PEPS is model-based and takes O(S2A2)
space complexity, (ii) BSAD employs adaptive stopping criteria which leads to an instance-dependent
sample complexity with improved dependence in S and δ, while PEPS uses fixed exploration horizon
and only has worst-case bounds, (iii) we assume the trajectory reward and require the existence
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of uniformly deterministic optimal policy which slightly generalizes the classic reward, while PEPS
requires the existence of Condorcet winner and stochastic triangle inequality, and (iv) we also gener-
alize to discounted MDPs. The complete comparison of BSAD and related algorithms is summarized
in Tab. 1, and a thorough review of related work is deferred to the appendix.

2 Preliminaries

Episodic MDP: An episodic Markov decision process (MDP) is a tuple M = (S,A, H, P, µ0),
where S is the state space with |S| = S, A is the action space with |A| = A, H is the planning
horizon, P = {Ph}H

h=1 is the transition kernels, and µ0 is the initial distribution. At each episode
k, the agent chooses a policy πk, which is a collection of H functions {πk

h : S → A}H
h=1, and nature

samples an initial state sk
1 from the initial distribution µ0. Then, at step h, the agent takes an action

ak
h = πk

h(sk
h) after observing state sk

h. The environment then moves to a new state sk
h+1 sampled

from the distribution Ph(·|sk
h, ak

h) without revealing any feedback. After each episode, the trajectory
of all state-action pairs is collected, which we use τk to denote, i.e., τk = τk

1:H = {(sk
h, ak

h)}H
h=1.

Trajectory Reward Model: In this paper, we assume the expected reward of each trajectory τ is
a general function f(τ) which maps trajectory to real values, a slight generalization of the cumulative
reward structure. Let Ψ be the set of all partial or complete trajectories. Then, we assume there
exists a function f : Ψ→ [0, D] which is the expected reward of the MDPM, where D is a positive
constant. The reward of a certain trajectory may be random, but humans will evaluate trajectories
based on the expected reward. The cumulative reward model is f(τ) =

∑H
h=1 r(sh, ah). Under the

trajectory reward, we can formulate the Q-function as follows:

V π
h (s) =Eπ [f(τh:H)| sh = s] = E [f(τh:H)| sh = s, ah = π(s), τh+1:H ∼ π] ,

Qπ
h(s, a) =Eπ [f(τh:H)| sh = s, ah = a] = E [f(τh:H)| sh = s, ah = a, τh+1:H ∼ π] .

The optimal policy π∗ is defined as π∗ = arg maxπ Eµ0 [V π
1 (x1)]. Without regularity on f , learning

the π∗ may fundamentally take Ω(AH) samples. Therefore, we impose the following assumption:

Assumption 1 There exists a uniformly optimal deterministic stationary policy π∗ for the MDP,
i.e., π∗ = arg maxπ V π

h (s),∀(h, s).

Under the assumption, we define the value function gap for sub-optimal actions similar to
classic MDPs as ∆h(s, a) = V ∗

h (s) − Q∗
h(s, a) = maxa′ Q∗

h(s, a′) − Q∗
h(s, a). Let ∆min =

minh,s,a̸=π∗(s) ∆h(s, a). For simplicity, we assume the optimal action π∗
h(s) is unique for each (h, s).

Otherwise, we can incorporate ∆min into the algorithm so that the duel between the two optimal
actions will terminate in a finite time. As a special case, Convex MDPs (Zahavy et al., 2021), e.g.,
pure exploration (Hazan et al., 2019), apprenticeship learning (Abbeel & Ng, 2004), and adversarial
RL (Rosenberg & Mansour, 2019), satisfy Assumption 1 when the optimal policy is deterministic.

Human Feedback: The agent has access to an oracle (a human expert) that evaluates the average
quality (reward) of two trajectory batches. At the end of each episode, the agent has the opportunity
to choose two sets of (partial) trajectories, denoted by D0 and D1 with cardinality M0 and M1, to
query the human for which has the higher average reward. We slightly abuse the notation τ to let
τ i

0 and τ i
1 be the i-th (partial) trace in D0 and D1 respectively, i.e., D0 = {τ1

0 , τ2
0 , · · · , τM0

0 }, and
D1 = {τ1

1 , τ2
1 , · · · , τM1

1 }. Each of them may contain only certain steps. After observing the two sets
of trajectories, the oracle will give a one-bit feedback σ ∈ {0, 1} to the agent to indicate the dataset
he/she favors. For simplicity, let f(D1) and f(D0) denote the average trajectory reward of D1 and
D0. Existing works mostly assume the Bradley-Terry model for preference generalization, i.e., the
preference probability is a logistic function of the reward difference, i.e.,

P (D1 ≻ D0) = u
(
f(D1)− f(D0)

)
= 1

1 + exp
(
f(D1)− f(D0)

) ,

where u : R → [0, 1] is referred to as the link function (Bengs et al., 2021) which characterizes the
structure of preference models. Other link functions, such as linear function, probit function, cloglog
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function, and cauchit function, have also been well-studied in dueling bandits (Ailon et al., 2014)
and generalized linear models (Razzaghi, 2013; McCulloch, 2000), but not RLHF. In this paper, we
use a 0-1 link function that indicates the favored set with higher reward, i.e.,

σ = HumanFeedback(D0,D1) = arg max
i∈{0,1}

f(Di) = arg max
i∈{0,1}

1
Mi

Mi∑
m=1

f(τm
i ).

Generalization to other link functions can be achieved through revising the probability gap definition
below (Def. 1). Furthermore, we show in Fig. 1 that single trajectory preference may not align with
the expected reward and thus batched comparison is necessary, and it may be easier for humans
to identify a better response if the trajectory batches resemble each other with the same initial
state, which motivates the comparison between partial and batched trajectories. Typically, in an
LLM training setting, for each candidate policy, the human evaluator will look at multiple responses
generated respectively and then assess which policy has a better average quality. Similarly for UAV
training, humans will watch multiple UAV trajectories for each policy and declare which policy is
better based on the average quality of the movement, i.e., success rate, stability, etc. When the
batch sizes are not unbearably large, batched preference assessment of trajectories should not be
essentially harder than single trajectory preference assessment.

Problem Formulation: Our goal is to design a learning algorithm to interact with the MDP and
learn the optimal policy π∗ from the human feedback as quickly as possible. A learning algorithm
Alg consists of (i) a sampling rule which decides which policy to choose at each episode and whether
to query the human agent, (ii) a stopping rule which decides a stopping time when the learner wishes
to output an learned policy, and (iii) a decision rule which decides which policy π̂ to output. We
call an algorithm δ-PAC if it outputs an optimal policy with probability at least 1− δ. Our goal is
to design such an algorithm to minimize sample complexity K:

minE[K], such that P(π̂ = π∗) ≥ 1− δ.

3 Main Results for Episodic MDPs

In this paper, we focus on the instance-dependent performance. To characterize the structure of the
MDPs under human feedback, we introduce the notion of probability gaps in Def. 1 for each state
and sub-optimal action, which is a generalization of the calibrated pairwise preference probability
considered in the dueling bandits literature (Yue et al., 2012; Yue & Joachims, 2011). We also define
the state visitation probability pπ

h(s) of a given policy π in Def. 2.

Definition 1 (Probability Gap) Given (h, s) and a sub-optimal action a, the probability gap
∆M

h (s, a) for comparison of two trajectory sets with cardinality both being M is defined as:

∆M

h (s, a) = P

(
M∑

m=1
f(τm

0 ) >

M∑
m=1

f(τm
1 )
∣∣∣∣∣ τm

0 ∼ π∗, τm
1 ∼ {ah = a, π∗}

)
︸ ︷︷ ︸

pM
h

(s,a)

−1
2 ,

where the traces {τ1
0 , · · · , τM

0 } are independently sampled starting from state (h, s) using the optimal
policy {π∗

k}H
k=h, while {τ1

1 , · · · , τM
1 } are independently sampled starting from state (h, s) using im-

mediate action ah = a and the optimal policy {π∗
k}H

k=h+1 afterwards. Let ∆M

min = minh,s,a ∆M

h (s, a).

Definition 2 (State Visitation Probability) Given (h, s) ∈ [H] × S, the visitation probability
(occupancy measure) of policy π is defined as follows:

pπ
h(s) = P (sh = s|s0 ∼ µ0, ah′ ∼ π(sh′), ∀h′ < h) .

Let pπ
max = minh,s maxπ pπ

h(s), and we assume it is positive. We will use both the probability gap
and the state visitation probability to characterize our instance-dependent performance.
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Algorithm 1: BASD for Episodic MDPs
initialize for all (h, s, a), Jh(s, a)← 1, Lh(s, a)← 0, Mh(s)← 0, and l← H, k ← 0 ;
initialize for all (h, s, a, a′), wh(s, a, a′)← 0, Nh(s, a, a′)← 0, π̂h(s) = D0

h(s) = D1
h(s) = ∅ ;

define ι ≡ c log( SAHk
δ ), βt =

√
Hι

max{t,1} , and αt = H+1
H+t ;

σ̂h(s, a, a′) ≡ wh(s,a,a′)
Nh(s,a,a′) or 1

2 if Nh(s, a, a′) = 0, bh(s, a, a′) ≡
√

ι
max{Nh(s,a,a′),1} , ∀(h, s, a, a′) ;

while l ≥ 1 do
receive s1, k = k + 1;
for step h = 1 : l − 1 do // reward-free exploration

take action ah ← arg maxa Jh(sh, a) and observe sh+1, Lh(sh, ah)← Lh(sh, ah) + 1 ;
Wh+1(sh+1)← min{1, maxa Jh+1(sh+1, a)} ;
Jh(sh, ah)← (1− αt)Jh(sh, ah) + αt[Wh+1(sh+1) + 2βt] where t = Lh(sh, ah) ;

Ml(sl)←Ml(sl) + 1. Wl(sl)← min{1, bMl(sl)} ;
call action dueling sub-routine B-RUCB(l, sl, Ml(sl)) ; // action dueling
if ∀s, ∃a, such that ∀a′, σ̂l(s, a, a′)− bl(s, a, a′) ≥ 0.5 then
∀s, π̂l(s) ∈ {a|∀a′, σ̂l(s, a, a′)− bl(s, a, a′) ≥ 0.5} ;
l← l − 1. Jh(s, a)← 1, Lh(s, a)← 0,∀(h, s, a), k ← 0 ; // backward search

return π̂

Algorithm 2: B-RUCB: a batched dueling bandits sub-routine
Input: step h, state s, candidate policy π̂, past visits Mh(s).
if Mh(s) (mod 2M) ≤M then

if Mh(s) ≡ 1 (mod M) then // select relative optimal arm
Ch(s) = {a|∀a′ : σ̂h(s, a, a′) + bh(s, a, a′) ≥ 0.5}, sample âs uniformly from Ch(s);
D0

h(s)← ∅, D1
h(s)← ∅;

take action ah ← âs and observe sh+1, and use policy π̂ for steps afterwards;
D0

h(s) = D0
h(s) ∪ {(sh, ah), · · · , (sH , aH)};

else
if Mh(s) ≡ 1 (mod M) then // select combating arm based on UCB

ãs = arg maxa̸=âs
{σ̂h(s, a, âs) + bh(s, a, âs)};

take action ah ← ãs and observe sh+1, and use policy π̂ for steps afterwards ;
D1

h(s) = D1
h(s) ∪ {(sh, ah), · · · , (sH , aH)} ;

if Mh(s) ≡ 0 (mod 2M) then // query human every 2M episodes

query feedback σ = HumanFeedback
(
D0

h(s),D1
h(s)

)
;

wh(s, ãs, âs)← wh(s, ãs, âs) + σ, wh(s, âs, ãs)← wh(s, âs, ãs) + 1− σ ;
Nh(s, ãs, âs) = Nh(s, ãs, âs) + 1 ;

return

3.1 Algorithm for Episodic RLHF

In this section, we propose an algorithm called BASD (Alg. 1) to solve the RLHF for episodic MDPs.
The algorithm can be divided into two major modules: (i) an action dueling sub-routine generalizing
the RUCB algorithm from the dueling bandits (Zoghi et al., 2014), and (ii) a reward-free exploration
strategy to equalize the visitation probability of each state to minimize the overall sample complexity.

Backward Action Dueling: BSAD identifies the optimal policy for each state using a backward
search. The backbone is to employ a batched version of the RUCB algorithm (Zoghi et al., 2014),
called B-RUCB in Alg. 2, which is called in step l and controls the action selection policy from step
l to H. Namely, it chooses the action al at step l using the RUCB dueling bandits principle and
then uses the candidate optimal policy π̂ for steps afterward. If the policy π̂ is indeed the optimal
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Figure 1: MDP where π∗
h(s) is not the Condorcet winner: there are 3 states ({s1, s2, s3}) at step 2

with 1 action, and 1 state s0 in step 1 with 2 actions. With action a1, the state transits w.p. 1/D
to state s1 with reward D, and w.p. 1− 1/D to state s2 which gives reward 1− ε, where 0 < ϵ < 1.
With action 2, the state transits deterministically to state s3 with reward 1.

policy π∗, the average reward from step l to H constitutes an unbiased estimator of Q∗
h(sl, al), which

resembles dueling bandits. Different from classic RUCB, we query human feedback every 2M episode
with batches and we will show later that it allows the optimal action π∗

h(s) to be the action favored
by the human oracle (Condorcet winner). Moreover, we adopt a stopping rule for each (h, s) that
if there exists one action a whose lower confidence bound of the preference probability estimation
σ̂h(s, a, a′) is larger than half for all other actions, the optimal action is found. Specifically, we use
Th(s) to denote the stopping rule for state (h, s), i.e., Th(s) = {∃a, ∀a′, σ̂l(s, a, a′)−bl(s, a, a′) ≥ 0.5}.
Then, the criteria for l to move from h to h− 1 is equivalent to ∩S

s=1Th(s). Running B-RUCB with
the stopping rule identifies the optimal action π∗

l (s) for all states at step l with high probability.

Reward-free Exploration: To minimize the sample complexity, it is ideal that every state has a
similar visitation probability so that action identification can be performed simultaneously for all
the states. Our chosen model-free reward-free exploration between step 1 to step l − 1 contributes
towards this goal. We slightly adapted the UCBZero algorithm originally proposed in (Zhang et al.,
2020) in our BSAD algorithm so that the overall algorithm is model-free. This strategic exploration
policy will guarantee that we visit each state on step l proportional to the maximum visitation
probability over all possible policy π starting from the initial distribution.

3.2 Theoretical Results

It is well-known from dueling bandits literature (Zoghi et al., 2014) that the RUCB algorithm only
requires the existence of the Condorcet winner to identify the optimal action, where the Condorcet
winner refers to an action that is preferred with probability larger than half when compared to any
other action. Similar to the definition in dueling bandits, for any state (h, s) and any size M , we
say the optimal action π∗

h(s) is the Condorcet winner if the preference probability pM
h (s, a) is larger

than half for all other actions a. For any comparison-based algorithm to identify the optimal policy,
the optimal policy must be the Condorcet winner. We will first characterize the existence of the
Condorcet winner when human experts are queried with batch size M large enough.

Lemma 1 Given an MDPM and for any (h, s), the action π∗
h(s) associated with the optimal policy

π∗ is the Condorcet winner in the HumanFeedback comparison as long as M = Ω(D2∆−2
min).

Existence of Condorcet Winner: In general, the optimal action π∗
h(s), although it maximizes

the expected reward, is not necessarily the Condorcet winner with arbitrary M . To see this, consider
a two-step MDP with traditional cumulative reward as shown in Fig. 1. For state s0 and D > 2 in
step 1, the optimal action is a1 which gives expected reward 1 +(1−D−1)(1− ε) larger than 1 given
by action a2. However, if we choose M = 1 and query human feedback of the duel between action
a1 and a2, the human expert will only prefer action a1 if the state transits to s1, which only occurs
with probability 1/D and could be much less than half. Therefore, the optimal action a1 for state s0
is not the Condorcet winner. Similarly, it is also not hard to construct counter-examples with more
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than three actions to show that the Condorcet winner does not exist. However, Lemma. 1 shows that
the optimal action π∗

h(s) is indeed the Condorcet winner at every state (h, s) as long as the batch
size M is large enough. The bound is proportional to D2 which characterizes the variance of reward
for a single trajectory and inversely proportional to the square of the minimum value function gap
∆min, which characterizes the distinguishability among actions. The proof of Lemma. 1 is deferred
to the appendix, where we apply concentration inequalities to lower bound the preference probability
pM

h (s, a). Next, we characterize the sample complexity of BSAD.

Theorem 1 Given an MDP M, fix δ and suppose M is chosen large enough such that the optimal
policy π∗ is the Condorcet winner for all states (h, s). Then with probability at least 1 − O(δ), the
BSAD algorithm terminates within K episodes and returns the optimal policy π̂ = π∗ with:

K = Õ
(

H∑
h=1

SA3h2M log( 1
δ )

mins,a maxπ[∆M

h (s, a)pπ
h(s)]2

)
.

Proof Roadmap: Our main Theorem. 1 conveys two messages: (i) BSAD is δ-PAC, and (ii) BSAD
has provable instance-dependent sample complexity bound under general reward model. The proof
of Theorem. 1 is deferred to appendix. To obtain the correctness guarantee, we decompose the
probability of making a mistake into the sum of probabilities where the mistake is made on a certain
step h. Then, using a backward induction argument, we show that the total mistake probability
is small. To obtain the sample complexity bound, we fix (h, s) and then bound the number of
comparisons between two actions. Next, we bound the total number of comparisons and the total
number of episodes needed to identify the optimal action for this (h, s). This can be achieved by
summing up the number of comparisons between all pairs of arms before the stopping criteria Th(s)
for that state is satisfied. Lemma. 2 characterizes the sample complexity for any state (h, s):

Lemma 2 Given an MDP M, fix δ and suppose M is large enough. For fixed (h, s), the number of
episodes with l = h and sh = s until the criteria Th(s) is bounded with high probability by:

Mh(s) =Õ
(

A∑
i=2

i

∆M

h (s, ai)2
M log

(
1
δ

))
= Õ

(
A2M log

( 1
δ

)
mina ∆M

h (s, a)2

)
,

where {a1, a2, · · · , aA} is a permutation of the action set A such that a1 is the optimal action and
∆M

h (s, a2) ≤ ∆M

h (s, a2) ≤ · · · , ∆M

h (s, aA).

Notice that our bound in Lemma. 2 is different from the original RUCB algorithm provided in (Zoghi
et al., 2014, Theorem 4) due to (i) we study a PAC setting while the vanilla RUCB focuses on regret
minimization and (ii) we chose a larger confidence bonus so that our bound only have logarithmic
dependence on δ. After bounding the sample complexity to identify the optimal action for each
state, we need to relate Mh(s) to the total number of episodes through reward-free exploration. We
show in Lemma. 3 that the number of episodes spent for a step l = h is bounded by the number of
visitations Mh(s), which is analog to (Zhang et al., 2020, Theorem 3).

Lemma 3 Given an MDP M, fix δ and suppose M is large enough. For a fixed (h, s), suppose we
have l = h and k = Kh in the current episode, we have:

∀s, Kh ≤ O
(

SAh2Mh(s)
maxπ pπ

h(s)2

)
.

Combining both Lemma. 2 and Lemma. 3, we will be able to prove Theorem. 1:

K =
H∑

h=1
max

s
O
(

SAh2Mh(s)
maxπ pπ

h(s)2

)
= Õ

(
H∑

h=1

SA3h2M log( 1
δ )

mins,a maxπ[∆M

h (s, a)pπ
h(s)]2

)
.
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RLHF Algorithm with Logarithm Regret: It is very simple to adapt the BSAD algorithm to
an explore-then-commit type algorithm for regret minimization by choosing δ = T −1. Then, the
sample complexity bound will convert into a regret bound in the order of O(log T ). To the best of
our knowledge, this is the first RLHF algorithm with logarithmic regret performance.

Instance Dependence and Connection to Classical RL: Our sample complexity bound in
Theorem. 1 has a linear dependence on the number of states S, a polynomial on the number of
actions A and the planning horizon H, and a logarithmic dependence on the inverse of confidence
δ. Moreover, it characterizes how the sample complexity depends on fine-grained structures of the
MDPM itself. It is also inversely proportional to the square of the probability gap ∆M

h (s, a) which
resembles the sample complexity or regret bounds in the dueling bandit literature, and also resembles
the dependence of the value function gap ∆h(s, a) in the sample complexity bounds for traditional
tabular RL, e.g., (Wagenmaker et al., 2022, Theorem 2). Moreover, the inverse proportional depen-
dence of the maximum state visitation probability over all policies also resembles the traditional RL.
In fact, with M chosen in the same order as in Lemma. 1 and using concentration inequalities, the
sample complexity bound can be converted depending on the value function gap as follows:

K = Õ
(

SA3H3D2 log( 1
δ )

minh,s,a ∆h(s, a)2 maxπ pπ
h(s)2

)
.

This shows that RLHF is almost no harder than classic RL given the appropriate parameter, except
for a polynomial factor on the number of actions A and the planning horizon H. This finding
coincides with (Wang et al., 2023) and sheds light on the similarity between RLHF and classic RL.
Notice that our result is derived from a general reward model where the Bellman equations do not
hold. Therefore, our result also seemingly implies that the fundamental backbone of RL is the
existence of uniformly optimal stationary policy instead of the Bellman equations.

4 Generalization to Discounted MDPs

In this section, we generalize the BSAD algorithm to discounted MDPs with the traditional state-
action reward function r(s, a) ∈ [0, 1] and discount factor γ. Our approach is to segment the time
horizon into frames with length H = Θ( 1

1−γ log 1
ε(1−γ)2 ). Then, we run BSAD (Alg. 1) with horizon H

on the discounted MDP, as if it is episodic. This frame-based adaptation delivers provable instance-
dependent sample complexity shown in Theorem. 2. Discussions are deferred to the appendix.

Theorem 2 suppose M is chosen large enough. Then with probability 1−O(δ), BSAD terminates
within K episodes and returns an ε-optimal policy with:

K = Õ
(

SA3M log( 1
δ ) log3( 1

ε )

(1− γ)3 minh,s,a ∆M

h (s, a)2 maxπ mins′ pπ
h(s|s′)2

)
,

where ∆M

h (s, a) to be the probability gap for action a and trajectories of length H−h compared to the
Condorcet winner of that state s, and pπ

h(s|s′) is the visitation probability of s after h steps starting
from state s′ with policy π. Both definitions are analog to the definitions in episodic MDPs.

5 Numerical Results

In this section, we study the empirical performance of BSAD on an MDP based on Fig. 1 with D = 10.
The only difference is we replicate two copies of s0 in the first step with different initial distributions.
For these states, the optimal policy is not the Condorcet winner under a single trajectory comparison
but will become the Condorcet winner when the batch size increases. We compare BSAD to existing
value-based model-free RLHF algorithms, with and without reward inference, where the performance
is measured by the value function Eµ0 [V π̂

1 (s)] of the candidate policy evaluated on the true MDP.
The baselines that we chose are (i) a model-free and batched adaptation of PEPS (Xu et al., 2020) (no
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(a) batch size (b) adaptive stopping (c) performance

Figure 2: numerical experiment on a three-state two-step MDP: (a) shows the proposed BSAD
algorithm with different batch sizes. (b) compares BSAD with adaptive stopping to batched version
of PEPS with fixed exploration horizon. (c) compares BSAD to model-free RLHF and RL algorithms.
Results are averaged over 100 trajectories and shaded areas represent bootstrap confidence intervals.

reward inference) which uses UCBZero (Zhang et al., 2020), (ii) Q-learning with P2R (Wang et al.,
2023) (reward inference) where the candidate policy π̂ is the greedy policy, and (iii) REGIME (Zhan
et al., 2023b) (reward inference) with UCBZero and pessimistic Q-learning (Shi et al., 2022) as offline
RL oracle, where each point is obtained through a 1k-episode offline RL algorithm. We also compare
to classic RL algorithms, i.e., Q-learning (Jin et al., 2018).

Algorithm BSAD(ours) PEPS Q-learning P2R REGIME
Running Time (ms) 171.21 179.23 1090.12 5898.30 4613.73

Table 2: running time comparisons on 1 CPU averaged over 50 trajectories.

Fig. 2a shows the effect of batch size. When using a small batch size, i.e., M = 2, 4, the Condorcet
winner at h = 1 is not optimal, and BSAD converges to a sub-optimal policy. When M is large,
BSAD identifies the optimal policy, and the sample complexity displays a decrease-then-increase
trend, which coincides with Theorem. 1. Specifically, when M increases, the probability gap in
the denominator increases sharply, leading to reduced sample complexity, and as M continues to
increase, M in the numerator starts to dominate. This justifies BSAD is adaptive to MDP instances.
Fig. 2b shows the comparison of BSAD to a batched version of PEPS with different exploration
horizons. The observation that the curve of BSAD lies uniformly above all PEPS curves shows
the necessity of adaptive algorithm design. Specifically, our design of adaptive stopping criteria
identifies the optimal policy earlier and adapts to the different distinguishability in different states,
which results in improved regret performance. In Fig. 2c, we compare BSAD to Q-learning and RLHF
algorithms with reward inference. First, we observe that BSAD has almost the same performance as
Q-learning which uses the reward information, which shows RLHF is almost no harder than classic
RL. However, our algorithm applies to the general trajectory reward function while Q-learning
cannot be used anymore. BSAD exhibits superior performance than other RLHF algorithms also in
running time as shown in Table. 2, because training reward models with MLE is difficult and takes
much larger sample and computational complexity, let alone the best policy can only be obtained
when the reward model is accurate enough. This observation somewhat justifies the reward model
is unnecessary given it suffers from pitfalls like over-fitting and distribution shift.

6 Conclusion

We studied RLHF under both episodic MDPs with trajectory reward structure, a generalization
of the classic cumulative reward. We propose an algorithm called BSAD which enjoys a provable
instance-dependent sample complexity that resembles the result in classic RL with reward. We also
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generalize our results to discounted MDPs. Our results show RLHF is almost no harder than classic
RL, and the current dominating reward model training module in RLHF may be unnecessary.
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