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Abstract

Video Question-Answering (VideoQA) remains
challenging in achieving advanced cognitive rea-
soning due to the uncontrollable and opaque rea-
soning processes in existing Multimodal Large
Language Models (MLLMs). To address this is-
sue, we propose a novel Language-centric Tree
Reasoning (LTR) framework that targets on en-
hancing the reasoning ability of models. In detail,
it recursively divides the original question into
logically manageable parts and conquers them
piece by piece, enhancing the reasoning capa-
bilities and interpretability of existing MLLMs.
Specifically, in the first stage, the LTR focuses
on language to recursively generate a language-
centric logical tree, which gradually breaks down
the complex cognitive question into simple per-
ceptual ones and plans the reasoning path through
a RAG-based few-shot approach. In the second
stage, with the aid of video content, the LTR per-
forms bottom-up logical reasoning within the tree
to derive the final answer along with the traceable
reasoning path. Experiments across 11 VideoQA
benchmarks demonstrate that our LTR framework
significantly improves both accuracy and inter-
pretability compared to state-of-the-art MLLMs.
To our knowledge, this is the first work to im-
plement a language-centric logical tree to guide
MLLM reasoning in VideoQA, paving the way
for language-centric video understanding from
perception to cognition.
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1. Introduction

Video Question-Answering (VideoQA) has emerged as a
significant research area with applications in multi-modal
understanding, interactive artificial intelligence and cogni-
tive science (Xiao et al., 2021; Li et al., 2022a; Wu et al.,
2023; Li et al., 2023b; Mangalam et al., 2023; Li et al.,
2024b; Chen et al., 2022; Wang et al., 2025; Chi et al.,
2024a; Li et al., 2025; Chi et al., 2024b). The core chal-
lenge lies in advancing language-centric video understand-
ing from perception to cognition. Specifically, low-level
perception involves understanding the spatiotemporal fea-
tures of videos, such as recognizing objects, actions, and
scenes. High-level cognition, on the other hand, requires
comprehending the underlying logic of both the video con-
tent and the posed questions, enabling the system to perform
reasoning along a logical structure and provide accurate an-
swers. To address these challenges, recent advances extend
Large Language Models (LLMs) to their multimodal vari-
ants (MLLMs), such as Video-LLaMA (Zhang et al., 2023;
Cheng et al., 2024) and Video-LLaVA (Lin et al., 2024) by
integrating visual and textual information.

However, while they can provide certain explanations when
answering questions, how to achieve System-2 reasoning
has not been fully explored. One major limitation is that
the reasoning processes of these models are often uncon-
trollable and lack of transparency. Such opacity makes it
challenging to analyze their reasoning steps, rendering the
results to be less trustworthy. For instance, when address-
ing complex questions involving multiple temporal visual
cues, the models may produce incorrect answers without
revealing the reasoning path that led to those conclusions.
Therefore, as users cannot trace back to pinpoint where the
reasoning have gone astray, they cannot trust the results.

To overcome such issues, we propose a novel training-free,
model-agnostic Language-centric Tree Reasoning (LTR)
framework that enhances model reasoning capabilities while
improving the interpretability and verifiability of reasoning
processes. Our framework utilizes language as the central
driving force for video understanding, starting from the log-
ical structure inherent in the question itself. Initially, by
integrating video content, we recursively generate a com-
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Q: Is it safe for the man not wearing a shirt to sit on the roof of the car?

Stage-1: Divide with Top-down Recursive Checking

| Is it safe for the man not wearing a shirt to sit on the roof of the car |

I |What is the condition of the roof of the car‘.7| | What is the condition of the car? |
Is the roof of the car| |Is the roof of the car| | Is the car moving| |Is the car moving
sturdy? flat? fast? left?

Stage-2: Conquer with Bottom-Up Tree Reasoning

| The roof condition is satisfied, but the car in jolt is still dangerous to sit on the roof. |

L | The roof is both sturdy and flat. | | The car is moving slowly, but the road is jolt. |

Yes, the roof | | Yes, the roof is | |No, the car only moves;
is sturdy. flat. slowly.

Yes, the car moving
towards the left.

Figure 1. The example about the reasoning process of our LTR
framework. In the first stage, LTR recursively divide the question
into language-centric logical tree. In the second stage, LTR con-
quer the main question as bottom-up tree reasoning. Note that due
to the assistance from video content, some flaw in logical tree can
also be fixed during bottom-up tree reasoning.

prehensive language-centric logical tree from the given
question. This tree has two signatures: first, its hierarchical
structure explicitly represents the reasoning logic of the
original question; second, the leaf nodes comprise simple
perceptual questions that enable effective leveraging of ex-
isting MLLMs’ perceptual strengths. To generate such a
logical tree, the MLLM recursively divides the questions
into simpler and logically reasonable sub-questions and de-
cides whether the sub-questions are simple enough to be leaf
perceptual questions. Subsequently, to perform multimodal
System-2 reasoning with the generated language-centric log-
ical tree, we begin by employing MLLMs to answer all leaf
node questions, establishing an evidentiary foundation for
the bottom-up reasoning process. Then, aided by video con-
tent, we perform logical bottom-up reasoning recursively
within the tree, deriving node answers from the responses
of their children while verifying consistency with visual
evidence, ultimately obtaining both the original question’s
solution and a fully traceable reasoning path.

Some previous works have also explored interpretable
VideoQA method, such as VoT (Fei et al., 2024a) and
DSTN (Qian et al., 2022). VoT constructs a cognitive-level
reasoning framework by providing detailed analysis at the
object and action levels, followed by reasoning based on
fine-grained video representations. While VoT enhances
MLLM performance and offers additional reasoning cues, it
still falls short in capturing the logical structure of questions
and fully elucidating the reasoning process. Unlike VoT, our

reasoning framework is designed on the language-centric
logical tree, improving the verifiability and facilitating fur-
ther errors analysis. As another approach, DSTN exploits
Neural Modular Networks (NMNs) to generate a program
and obtains the final answer through program execution.
Although this approach enhances verifiability, it lacks er-
ror tolerance, i.e., any mistake in the program invariably
leads to an unrecoverable incorrect answer. In contrast,
our framework offers a soft reasoning architecture, supple-
menting logical reasoning with video information, ensuring
explainable reasoning while increasing error tolerance.

To validate the effectiveness of our LTR framework, we se-
lect four existing MLLMs, i.e. VideoLLaMA3 (Zhang et al.,
2025), VideoChat2 (Li et al., 2024b), Qwen2-VL (Wang
et al., 2024), and LLaVA-OneVision (Li et al., 2024a) as
baselines for comparison, and conduct experiments on 11
VideoQA benchmarks. Additionally, we perform ablation
studies to analyze the effectiveness of each component
within our framework and provide insights into the strengths
and weaknesses of existing models based on our framework.
Moreover, we provide case studies to demonstrate how our
framework enables more error-tolerant, explainable, and
controllable System-2 reasoning while enhancing prediction
accuracy. Our contribution can be summarized as:

* Motivation: We analyze the two main development
stages of VideoQA, i.e., perception and cognition, to
explore a language-centric tree reasoning framework
that achieves cognitive-level video understanding.

* Framework: We propose a novel training-free, model-
agnostic Language-centric Tree Reasoning (LTR)
framework that utilizes language as the central driving
force for video understanding, enhancing reasoning
ability and interpretability of MLLMs.

* Experiments: Extensive experiments on 11 bench-
marks against 4 baseline MLLMs demonstrate that the
LTR framework improves reasoning accuracy, leading
to a more transparent and verifiable VideoQA system.

2. Related Work

2.1. Video Question-Answering Dataset

By incorporating the temporal dimension, VideoQA natu-
rally extends ImageQA, enabling the ability to answer ques-
tions with dynamic visual content. In recent years, VideoQA
datasets have evolved to encompass more complex tasks
that require advanced reasoning skills, such as temporal
reasoning (Choi et al., 2021), physical reasoning (Yi et al.,
2020), evidence reasoning (Xiao et al., 2021; Wu et al.,
2023), commonsense reasoning (Li et al., 2022a; 2023b),
and long video understanding (Mangalam et al., 2023). To
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enhance fine-grained video understanding, AGQA (Grunde-
McLaughlin et al., 2021) and AGQA-Decomp (Gandhi
et al., 2022) utilize spatiotemporal scene graphs from Ac-
tion Genome (Ji et al., 2020) to construct VideoQA datasets.
With the recent advancements of MLLMs in video un-
derstanding, test-only benchmarks such as MVBench (Li
et al., 2024b), MMT-Bench (Ying et al., 2024), and Video-
MME (Fu et al., 2024) have been proposed to comprehen-
sively evaluate MLLM performance. However, the rea-
soning logic in answer prediction remains under-explored.
Our framework leverages the zero-shot reasoning ability of
MLLMs to generate high-quality fine-grained logical trees
when answering questions, reliefing the constraint caused
by the absence of such datasets.

2.2. Video Question-Answering Methodology

Prior to the incorporation of Large Language Models
(LLMs) in VideoQA, the architectures of VideoQA meth-
ods primarily focused on aligning videos with questions.
In early studies, this video-question alignment is achieved
through the use of cross-modal attention (Li et al., 2019;
Gao et al., 2019) or memory networks (Gao et al., 2018; Fan
et al., 2019). Subsequently, graph reasoning (Jiang & Han,
2020; Park et al., 2021; Liu et al., 2021; Gu et al., 2021;
Cherian et al., 2022) and hierarchical reasoning (Le et al.,
2020; Guo et al., 2021; Xiao et al., 2022a; Peng et al., 2022;
Xiao et al., 2022b) approaches gained popularity. Some
research has explored VideoQA from a causality perspec-
tive. For example, IGV (Li et al., 2022c), EIGV (Li et al.,
2022b), and TIGV (Li et al., 2024d) focus on distinguish-
ing causal and environmental clips in video by utilizing a
simple grounding indicator and promoting sensitivity to se-
mantic changes in causal scenes. Furthermore, KPI (Li et al.,
2023a) investigates front-door interventions as knowledge
proxy to mitigate the effects of dataset biases.

With the advancement of Large Language Models (LLMs),
Video-MLLMs generally comprise a pre-trained visual en-
coder (Radford et al., 2021; Caron et al., 2021; Fei et al.,
2024b) that encodes video frames into low-dimensional vi-
sual features, a vision-language aligner to ensure that these
visual representations are comprehensible to LLMs, and a
language decoder instruction-tuned on multimodal data (Cai
et al., 2024; Dubey et al., 2024) that generates text responses
based on provided instructions and video content. Numer-
ous efforts have been dedicated to designing effective visual
alignment strategies. For example, Video-ChatGPT (Maaz
et al., 2023) employs spatial and temporal pooling to in-
dependently caption information. VideoLLaMA?2 (Cheng
et al., 2024) presents the Spatial-Temporal Convolution Con-
nector to more efficiently capture spatial-temporal features
with a manageable number of visual tokens. Furthermore,
Video-LLaVA (Lin et al., 2024) aligns video and image data
prior to projection, achieving unified visual representation

and better computational efficiency.

Despite these advancements, existing MLLMs still provide
limited explanations for their answering process. To address
these challenges, we propose the LTR framework which ex-
plores language-centric logical tree reasoning in VideoQA,
thereby enhancing the reasoning transparency.

2.3. Visual Reasoning

In the field of visual reasoning, the effectiveness of divid-
ing complex questions into simpler sub-questions has been
observed across various tasks, including ImageQA (Cao
et al., 2018) and DocumentQA (Yang et al., 2018). In ear-
lier research, most benchmarks (Hudson & Manning, 2019;
Grunde-McLaughlin et al., 2021) break down questions into
modular programs defined within Neural Modular Networks
(NMNs) (Qian et al., 2022) to generate answers. Among
these, AGQA (Grunde-McLaughlin et al., 2021) introduces
spatio-temporal scene graphs to represent reasoning pro-
grams for VideoQA. However, these reasoning programs
from AGQA (Grunde-McLaughlin et al., 2021) cannot be
directly utilized by existing VideoQA methods. To address
this limitation, AGQA-Decomp (Gandhi et al., 2022) trans-
forms each reasoning program into multiple sub-questions
and a compositional graph to evaluate the compositional
consistency of VideoQA methods. Neural Modular Net-
works (NMNs) have been extensively explored in both Im-
ageQA (Andreas et al., 2016; Hu et al., 2017; Johnson et al.,
2017; Mascharka et al., 2018) and VideoQA (Qian et al.,
2022) for performing compositional reasoning in visual
question answering. Chen et al. (2024) introduces general
and universial meta-points for object represent, which effec-
tively facilitate the reasoning on object interaction. These
networks convert questions into modular sub-programs and
assemble these modules to execute the overall reasoning pro-
cess. Although NMN-based approaches offer interpretabil-
ity, they rely on predefined modules, limiting the compati-
bility with novel modules and reasoning frameworks.

In the era of MLLMs, VoT (Fei et al., 2024a) endeavors
to establish transparent VideoQA reasoning by offering de-
tailed analyses of videos at the object and action levels and
conducting reasoning based on fine-grained video represen-
tations. However, it still fails to capture the logical structure
of questions or fully elucidate the reasoning process. Logic-
CheckGPT (Wu et al., 2024) addresses object hallucination
and enhances visual understanding ability of MLLMs by
checking conflict consistency across multiple interrelated
questions. However, this method neither explores hierarchi-
cal question structures spanning cognitive reasoning to per-
ceptual processing nor provides traceable reasoning paths.
Therefore, we introduce the LTR framework, which first re-
cursively generates a language-centric logical tree and then
performs visual-assisted reasoning along this logical tree. In
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Figure 2. The illustration of Language-centric Tree Reasoning (LTR) framework. In the first stage, our LTR recursively divides complex
cognitive questions to simpler question until they are perceptual questions. In the second stage, our LTR answers the perceptual leaf
questions and bottom-up reasoning toward the original question alone the language-centric logical tree. Best viewed when zoomed in.

this way, LTR method enhances both reasoning capabilities
and interpretability, advancing towards System-2 reasoning.

3. LTR Framework
3.1. Divide with Top-down Recursive Checking

In this stage, our LTR recursively breaks down the cognitive
question into perceptual ones to construct the language-
centric logical tree with two steps. The first step divides non-
perceptual questions into sub-questions, and the second step
recursively checks whether the sub-questions are perceptual
to determine the stop of question division.

3.1.1. QUESTION DIVISION

The Question Division step is motivated by the need to pro-
gressively divide complex cognitive questions into simpler
perceptual ones. However, directly dividing such questions
based solely on textual content proves challenging due to
their inherent reliance on comprehensive video understand-
ing. To address this difficulty, this step leverages video To
address this, the step strategically utilizes visual evidence to
guide hierarchical division. Specifically, given a question
and its corresponding video input, the MLLM recursively
divides the original question into logically structured sub-
questions that facilitate stepwise reasoning. Through this
recursive process, LTR reduces cognitive complexity by
transforming abstract queries into concrete perceptual tasks.

However, directly asking the model to perform question
division may introduce uncertainty, such as multiple vi-

able division approaches and ambiguity in determining
perceptual simplicity. Therefore, we introduce retrieval-
augmented generation (RAG)-assisted question division. In
detail, we use the AGQA-Decomp (Gandhi et al., 2022)
dataset as the retrieval database and embed all non-leaf
question-subquestion tuple in it. Specifically, for each
non-leaf question ¢ € @ (where () denotes the com-
plete non-leaf question set), we encode it into a 256-
dimensional feature vector f, € R2°® using OpenAl’s
text—-embedding-3-large model, with this vector
serving as the retrieval key. During the RAG process, we
retrieve the top- K most relevant question-subquestion tu-
ples from AGQA-Decomp by computing cosine similarity
between feature vectors. These retrieved tuples then provide
few-shot exemplars for subquestion generation. To facilitate
this process, we prompt the MLLM with:

Instruction: Based on the content of the given video,
please help me to divide the given question into multiple
more perceptual questions.

Sample: The similar samples for the question division
are: {retrieval_results_in_ JSON}.

Rule: The output should be formed in JSON format,
with SubQ);: {sub-question} as the key and value.
Question: {original _question}.

Video: {video_tokens}

3.1.2. RECURSIVE PERCEPTUAL CHECKING

The Recursive Perceptual Checking step is used to deter-
mine whether a given question can be directly answered



Divide and Conquer: Exploring Language-centric Tree Reasoning for Video Question-Answering

with the perceptual capabilities of MLLMs. However, the
feasibility of directly answering a certain question may vary
as the video content changes. For example, the question “Is
it safe to drive ahead?” can be directly answered if the video
depicts an empty road, as the assessment of safety is straight-
forward. In contrast, if the video contains a complex urban
environment with multiple obstacles and dynamic elements,
we need to divide the question into several sub-questions
focusing on specific objects and actions. Each sub-question
would then be individually addressed to collectively form a
comprehensive answer. Therefore, we input both the ques-
tion and the video into the MLLM. The MLLM analyzes the
combined inputs to judge whether, for the video, the ques-
tion qualifies as a perceptual query that can be answered
directly. The perceptual questions will not be further di-
vided. When all leaf questions are determined as perceptual,
the top-down recursive checking stops, and the language-
centric logical tree is generated accordingly. To facilitate
this process, we prompt the MLLM with:

Instruction: Based on the given video, is the given
question perceptible to the video?

Rule: The output should be “Yes/No + Reason”
Question: {original question}.

Video: {video_tokens}

3.2. Conquer with Bottom-up Tree Reasoning

In the second stage, LTR performs bottom-up tree reason-
ing through three steps to recursively derive a logical and
visual coherent answer. In the first step, LTR answers all
perceptual leaf questions based on video content. In the
second and third steps, aided by video content, LTR reasons
along the first-order logical structures and verifies answers,
ensuring visual and logical coherent of answers.

3.2.1. PERCEPTUAL QUESTION ANSWERING

The Perceptual Question Answering step aims to address the
leaf questions of the language-centric logical tree, thereby
enabling further reasoning along the tree structure. Note
that these leaf questions are simple enough to be perceptible
from the video, as depicted in Section 3.1.2. Therefore, they
can be effectively solved by leveraging the strong perceptual
capabilities of existing MLLMs. In this step, we adopt
the conventional instruction used in MLLMs for VideoQA.
Specifically, we input the question and the video into the
MLLM to generate the corresponding answer. To facilitate
this operation, we prompt the MLLM with:

Instruction: Given the question and video, answer the
question using several words or phrase.

Question: {original _question}.

Video: {video_tokens}

3.2.2. VIDEO-AIDED LOGICAL REASONING

The Video-aided Logical Reasoning step is designed to infer
the answer to a parent question within the language-centric
logical tree by utilizing the answers to its sub-questions,
with the assistance of video information. The motivation
behind this step stems from recognizing that potential vague
may occur during the question decomposition process, and
the answers to sub-questions may also contain inaccura-
cies. Therefore, relying solely on linguistic information for
logical reasoning might not yield reliable results. By incor-
porating video content, we enhance the reasoning process,
allowing the MLLM to consider visual cues that may not
have been explicitly addressed in the sub-questions. For
instance, as illustrated in Figure 1, even though the sub-
questions do not include inquiries about the stability of the
road, the MLLM still accounts for road bumps when answer-
ing about the “condition of the car”. In practice, we input
the video, the parent question, and the sub-questions along
with their answers into MLLM to perform video-aided logi-
cal reasoning. This approach ensures that the reasoning is
grounded in both logic and video, mitigating the impact of
potential errors in logical tree or sub-question answers. To
facilitate this process, we prompt the MLLM with:

Instruction: Given the video and the logical structure,
please help me to derive the answer to the main question.
Rule: The output should first provide explanation from
both logic and video, and then provide the final answer.
Logical Structure: {logical_structure_in_JSON _format}.
Video: {video_tokens}

3.2.3. IN-PROCESS ANSWER VERIFICATION

The In-process Answer Verification step is designed to en-
sure the reliability of intermediate answers during the rea-
soning process, which involves logical reasoning across
multiple intermediate nodes. Before progressing further,
it is essential to verify these intermediate answers to re-
duce the propagation of errors. Specifically, our verification
focuses on two key aspects: (1) whether the answers and
reasoning processes of intermediate node questions con-
form to the logical reasoning from sub-questions to parent
questions, and (2) whether the answers to intermediate node
questions conflict with the video content itself. The first
aspect emphasizes cognitive-level verification, assessing
the logical consistency and coherence of the reasoning pro-
cess. The second aspect concentrates on perceptual-level
verification, evaluating the answers against the basic per-
ceptual information derived from the video content. By
integrating both cognitive and perceptual validations, we
effectively ensure the accuracy and rationality of the final
answers. Notably, when this step detects any cognitive or
perceptual conflicts in the intermediate node answers, we
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incorporate the conflicts as inputs and re-execute the Video-
aided Logical Reasoning step to re-solve them. To facilitate
this verification process, we prompt the MLLM with:

Instruction: Given the video and the logical structure,
help me to verify whether the [Reason and Answer] for
the main question is logical and visual coherent.

Rule: The output should first evaluate the logical and
visual coherency, and then judge the correctness.
Logical Structure: {logical_structure_in_JSON_format}.
Video: {video_tokens}

4. Experiment
4.1. Evaluation Protocols

We evaluate the LTR framework on 11 VideoQA bench-
marks, including MSVD-QA (Xu et al., 2016), MSRVTT-
QA (Xu et al., 2016), TGIF-QA (Jang et al., 2017),
ActivityNet-QA (Yu et al., 2019), AGQA-Decomp (Gandhi
et al., 2022), NExT-QA (Xiao et al., 2021), Causal-
VidQA (Li et al., 2022a), STAR (Wu et al., 2023), Ego-
Schema (Mangalam et al., 2023), Video-MME (Fu et al.,
2024), and MVBench (Li et al., 2024b). For open-ended
settings, we use GPT-3.5 to assess the generated responses,
utilizing both accuracy and scoring metrics. For multiple-
choice settings, we use the corresponding MLLM to select
answers from the provided options based solely on the ques-
tion and generated response. To illustrate improvements in
compositional consistency, we evaluate compositional met-
rics (cR, cP, c-F;) from VA? (Liao et al., 2024) on AGQA-
Decomp. Full experiment results are in the Appendix.

4.2. Implementation Details

In our LTR framework, we utilize four different MLLMs:
VideoLLaMA3 (Zhang et al., 2025), VideoChat2 (Li et al.,
2024b), Qwen2-VL (Wang et al., 2024), and LLaVA-
OneVision (Li et al., 2024a). We set the video resolution
to 336336 pixels and uniformly sample 16 frames from
each video. The maximun new generated length is restricted
to 2048 tokens. Other settings follow the recommended
settings of zero-shot generations for each baseline model.

4.3. Comparisons on AGQA-Decomp

In Table 1, we compare the performance of LTR with 9
baseline methods on AGQA-Decomp. The columns marked
with “main” and “sub” represents corresponding metrics
computed on root question and none-root questions in the
language-centric trees respectively. The experimental re-
sults indicate that our framework significantly outperforms
the baselines in terms of accuracy, score, and compositional
consistency, which can be attributed to the collaborative
compositional reasoning strategy. To evaluate compositional

consistency, we utilize the DAG from the AGQA-Decomp
test set for bottom-up tree reasoning. Regarding accuracy
improvement, we observe more pronounced gains in sub-
question compared to main questions. This is attributed to
the relative simplicity of sub-questions, which facilitates
more effective reasoning. Furthermore, the improvement in
cF; is much larger than that in accuracy. This improvement
is attributed to the Video-aided Logical Reasoning module,
which exploits the logical relationships within the structure,
enabeling the QA inforamtion in perceptual questions to
propagate along the tree and help the model answer more
cognitive questions, therefore enhances the compositional
consistency between main and sub questions.

4.4. Comparisons on Zero-Shot Performance

In Tables 2 to 4, we present zero-shot performance compar-
isons on three benchmarks: Causal-VidQA, NeXT-QA and
MVBench, with additional comparisons on other bench-
marks provided in the Appendix. Overall, our framework
significantly outperforms the baselines, which is attributed
to the collaborative Divide with Top-down Recursive Check-
ing and Conquer with Bottom-up Tree Reasoning stages.

When comparing performance between simple perceptual
grounding tasks and complex cognitive reasoning tasks, we
find that LTR demonstrates larger improvements on rela-
tively complex cognitive reasoning tasks. For example, Ta-
ble 3 shows more significant improvements on counterfac-
tual and prediction tasks (between 2.4% and 4.2%) than
on explanation and description tasks (between 0.9% and
2.1%), as the former require more complex logical reason-
ing capabilities that are systematically facilitated by our
language-centric tree reasoning procedure.

Specifically, the Divide with Top-down Recursive Check-
ing stage guides MLLMs to extract necessary perceptual
information for complex reasoning, while the Conquer with
Bottom-Up Tree Reasoning stage gradually aggregates per-
ceived visual clues through recursive logical reasoning to de-
duce answers through step-by-step complex reasoning. The
combination of these two stages (i.e., LTR framework) there-
fore enhances complex reasoning capabilities of MLLMs
while maintaining traceable reasoning processes.

Similar patterns are also observed in MVBench (Table 2)
and NeXT-QA (Table 4). Specifically, Table 2 reveals that
improvements on reasoning-intensive tasks (i.e., counter-
factual inference (CI), episodic reasoning (ER), and action
prediction (AP)) are more substantial than those on simple
perceptual tasks (i.e., object existence (OE), action count
(AC), and fine-grained pose (FP)). Furthermore, Table 4
demonstrates more significant improvements on causal and
temporal questions compared to descriptive questions.

These observations collectively confirm that our LTR frame-
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Acc. Score Compositional Consistency

Method main sub main sub cP cR cF,
Video-LLaVA (Zhang et al., 2023) 57.5 65.0 2.7 33 58.7 59.6 59.1
LLaMA-VID (Li et al., 2024c) 58.2 63.2 2.8 3.2 56.1 58.8 57.4
Chat-UniVi (Jin et al., 2024a) 60.3 68.1 3.0 34 63.6 69.9 66.6
VideoChat (Li et al., 2023c) 56.4 63.7 2.7 33 57.4 56.7 57.1
MiniGPT4-Video (Ataallah et al., 2024) 54.5 61.8 24 2.1 55.6 52.8 54.1
VideoChat2 (Li et al., 2024b) 60.5 69.2 3.1 3.5 67.5 66.5 67.0

+ LTR 64.3+3.8 75.3+6.1 | 3.4+0.3 4.1+0.5 | 77.249.7 77.7+11.2 77.4+10.4
VideoLLaMA3 (Zhang et al., 2025) 69.2 76.7 3.7 4.1 72.2 69.7 69.4

+ LTR 727435 82.7+6.0 | 4.0+0.3 4.5+0.4 | 80.4+8.2 82.1+12.4 81.2+11.8
LLaVA-OneVision (Li et al., 2024a) 64.3 73.2 3.5 3.9 69.1 66.9 68.0

+ LTR 67.8+3.5 79.5+6.3 | 3.7+0.2 4.3+0.4 | 78.349.2 80.6+13.7 79.4+11.4
Qwen2-VL (Wang et al., 2024) 65.4 73.8 3.5 4.0 68.2 66.2 67.2

+ LTR 69.1+3.7 80.7+6.9 | 3.8+0.3 4.4+0.4 | 78.6+10.4 80.7+14.5 79.6+12.4

Table 1. Performance on AGQA-Decomp regarding the accuracy, score, and compositional consistency. The columns marked with “main”
and “sub” represents corresponding metrics computed on root question and none-root questions in the language-centric trees respectively.
The results in the blue area are reproduced by us using their published model weights and instructions.

Method

Avg AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI

Video-LLaVA (Zhang et al., 2023)
LLaMA-VID (Li et al., 2024c)
LLaMA-Adapter (Zhang et al., 2024a)
Video-ChatGPT (Maaz et al., 2023)
VideoChat (Li et al., 2023c¢)
VideoLLaMA (Zhang et al., 2023)

41.0 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5
41.3 45.5 40.5 58.0 39.5 55.0 53.5 40.0 35.5 18.5 27.5 87.0 41.5 23.0 45.5 41.0 27.0 40.0 34.5 41.5 31.5
31.7 23.0 28.0 51.0 30.0 33.0 53.5 32.5 33.5 25.5 21.5 30.5 29.0 22.5 41.5 39.5 25.0 31.5 22.5 28.0 32.0
32.7 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5
35.5 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0
34.1 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0

VideoChat2 (Li et al., 2024b)

+LTR

VideoLLaMA3 (Zhang et al., 2025)
+LTR

LLaVA-OneVision (Li et al., 2024a)
+LTR

Qwen2-VL (Wang et al., 2024)
+LTR

60.3 66.5 74.0 85.5 51.0 61.5 85.5 68.0 43.5 48.5 35.5 83.5 38.5 66.5 88.0 50.5 63.5 46.5 36.0 42.5 70.5
62.4 69.5 78.0 86.0 52.5 62.0 85.5 73.0 45.0 49.5 35.5 86.0 40.0 68.5 87.0 55.0 64.5 47.0 38.0 49.5 75.0
67.1 70.5 72.5 91.5 43.5 85.5 92.5 74.5 42.0 51.5 44.5 92.5 53.0 75.0 92.0 59.0 61.5 76.5 33.5 54.0 75.5
69.0 74.0 77.5 91.0 45.0 85.0 91.5 79.0 43.0 52.0 45.0 94.0 54.0 77.5 92.5 63.0 62.0 77.0 35.5 60.5 81.5
57.3 73.0 69.5 79.0 46.0 79.5 63.5 76.5 37.5 21.5 40.0 92.0 47.0 46.0 68.5 52.0 55.0 63.5 34.5 51.5 50.0
59.9 79.5 76.5 79.0 46.5 80.0 62.0 82.0 38.5 23.5 41.0 91.0 48.0 48.0 69.5 57.5 56.0 65.0 37.0 59.5 57.5
65.7 77.0 80.5 81.5 49.5 75.0 93.5 72.5 39.0 47.0 47.5 93.5 46.0 81.5 94.5 46.5 58.5 68.0 41.5 55.0 66.5
67.8 82.5 86.5 82.0 50.0 75.5 92.0 77.5 39.5 46.5 46.5 94.0 48.0 83.0 93.5 51.0 60.0 69.0 44.0 62.0 73.5

Table 2. Experimental results on MVBench. The results in the white area are copied from the corresponding works or MVBench (Li et al.,
2024b), and the results in the blue area are reproduced by us using their published model weights and instructions.

work enhances cognitive reasoni

more substantially than their perceptual abilities.

4.5. Ablation Study

ng capabilities of MLLMs In the Logical Tree Reasoning Stage stage, we examine
the effects of answer verification (line w/o A.V.), correct
perceptual answers (line w/o PL.Q.A) and video incorpora-
tion (line R w/o video) in logical reasoning. Experimental

results show that answer verification significantly impacts

In this section, we study the effect of the two reasoning
stages in Table 5. The experiments are conducted on the
Causal-VidQA and NeXT-QA with Qwen2-VL as baseline.

In the Logical Tree Generation Stage, we analyze the syn-
ergistic impacts of integrating RAG (line w/o RAG) and
video content (line w/o video) during hierarchical tree con-
struction. Experimental results indicate that incorporating
RAG provides essential gudiance on the quality of generated
language-centric trees. Moreover, the existence of video
also provides spatiotemporal grounding cues within the LTR
framework; without it, the tree lacks video-specific logical
structures, leading to degraded performance.

complex reasoning tasks by effectively identifying logical
errors, while video incorporation is crucial since leaf ques-
tions alone cannot provide sufficient information for tree
reasoning. Moreover, the results indicate that relatively pre-
cise perception is necessary for LTR framework. Although
video-aided reasoning can provide some missing informa-
tion during the process, it may not always be sufficiently
accurate for deducing correct main answers. These findings
highlight the importance of both answer verification and
video incorporation in logical reasoning stage within the
LTR framework, particularly for complex reasoning tasks.
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4 Video l

main: What color is the metal object that is stationary when the video begins? (Brown)

)| |_ leaf_1: What color is the metal object? (Brown and purple) }

Y/ |_ leaf_2: What color is the object when the video begin? (Gray, brown, purple and green)

( |_ inter_O: What color is the metal object when the video begins (Brown and purple) Video-Aided Logical ing
: From logical perspective, there are brown and purple metals in the video (leaf 1), and the color of objects

when the video begins are gray, brown, purple and green (leaf 2). Therefore, the color of metal objects when
the video begins are brown and purple.

From visual perspective, we can find a purple cubic is moving towards a brown cubic when the video begins.
Therefore, we conclude that the answer of root question is "Brown and purple".

[AJ_inter_t: What color is the objects that is stationary when the video begins? (Brown, gray and gr
|_ leaf_3: What color is the objects that is stationary? (Gray and green) }

|_ leaf_4: What color is the object when the video begin? (Gray, brown, purple and green)

Language-centric Logical Tree

en) < Video-Aided Logical ing

From logical perspective, we can find that gray and green objects are stationary (leaf” 4), Moreover, only the
gray, brown, purple and green objects exists when the video begins (leaf” 5). Therefore, the color of stationary
objects when the video begins is gray and green.

From visual perspective, we can see that at the begining of the video, the brown cubic, gray cylinder and the
green cylinder is stationary, while the brown cubic moves later. So the answer is brown, gay and green.
Therefore, we conclude that the answer of root question is "Brown, gray and green".

] Video-Aided Logical
conclude that the color of the metal object that is stationary when the video begins is brown.

Therefore, we conclude that the answer of root question is "Brown".

From logical perspective, we can find that brown and purple objects are metal when the video begins (infer_0). Moreover, the brown, gray and green objects are stationary when the video begins (infer_I). Therefore, we

From visual perspective, we can see that at the begining of the video, there is a purple metal cubic moving towards a static metal brown cubic, while all other objects are not metal. Therefore, the asnwer is "Brown".

4 Video l

main: How many times did the person show objects to the camera? (Correct: six) (Five)

] Video-Aided Logical R :

Y |__ leaf_1: Does a person exist? (Yes)
Y |_ leaf_2: Is something shown to the camera? (Yes)

Y |_ leaf_3: Is there a person showing something? (Yes)

( |_ inter_0: Is there a person showing objects to the camera? (Yes) 4—4@

From logical perspective, we first confirm that a person exists (leaf 1), and
something is shown to the camera by the person (leaf” 2 and leaf 3). Therefore, there
should be a person showing something to the camera.

From visual perspective, we can find a hand holding different objects infront of the
camera, including several drinking glasses and books.

Therefore, we conclude that the answer of root question is "Yes".

From logical perspective, we firstly confirm
that a person is showning objects to the
camera (leaf (). Then, we can conclude
that [seven] objects are shown to the camera
(leaf" 1), including two drinking

glasses, [three] books, a table and a tissue
box. Hence, we can conclude that the person

show the objects [seven] times to the camera.

) |_inter_1: How many objects are shown to the camera? (Seven) ]| Video-Aided Logical ing

From visual perspective, we find that the

-

|_ leaf_4: How many drinking glasses are shown to the camera? (Two)

From logical perspective, we can find that two drinking glasses (leaf 4),

person shows two drinking
glasses and [three] books to the camera,

Language-centric Logical Tree
e

|_ leaf_5: How many books are shown to the camera? (Three)

[three] books (leaf 5), one table (leaf 6) and one tissue boxes (leaf 7) are shown
to the camera. By adding them together, we conclude that the answer is *[seven].
From visual perspective, we can see that two drinking glasses and [three] books

while the table and the tissue box is not held
by the person's hand, therefore cannot be
counted as the shown objects. By excluding

|_ leaf_6: How many tables are shown to the camera? (One)

|_ leaf_6: How many tissues boxes are shown to the camera? (One)

are held by a hand. Behind them, there is a black table with a tissue box on it.
Therefore, we conclude that there are [seven] objects shown to the camera.
Therefore, we conclude that the answer of root question is "Yes".

these two objects, the person show the
objects [five] times to the camera
Therefore, we conclude that the answer of
root question is "[Five]".

Result of Recursive Perceptual Checking
Need Division Do Not Need Division

(Leaf Answers): Result of Perceptual Leaf Question Answering

(None-leaf Answers) : Result of Verified Video-Aided Logical Reasoning

(Wrong Answers) : Incorrectly Percepted/Inferenced Answer

[Wrong clues]: Clues in the output that leads to the wrong answer

Figure 3. Qualitative examples on MVBench (Li et al., 2024b) generated by VideoChat2 (Li et al., 2024b) with our LTR framework.

5. Qualitative Results

In this section, we provide two extra qualitative results
in Figure 3. The first case shows successful reasoning that
uses perception results to derive the answer to the origi-
nal question. The second case presents a failure scenario,
showcasing that although our visual-aided logical reason-
ing can correct some errors in reasoning, severe perception
incorrectness can also lead to unrecoverable failure.

Specifically, in the first video, a metal purple cube col-
lides with a metal brown cube at the beginning, while all
other objects are not metal. For sub-question inter_0, we
further divide it to inquire about the colors from different
perspectives. Based on the answers of leaf_I and leaf_2, our
framework deduces the answer by finding the intersection of
these two color sets, resulting in the correct answer “brown
and purple”. The sub-question inter_I is also processed in
a similar manner. However, an object that is not stationary

in video could possibly be stationary at the beginning, as it
may move in other parts of the video. Thanks to the visual-
aided logical reasoning step, our framework successfully
avoids this logical trap by recognizing that the brown cube is
stationary at the beginning and starts moving later. Finally,
for the main question, we conclude that the brown metal
cube is stationary when the video begins.

In the second video, a man shows drink glasses to the camera
twice and shows books to the camera four times sequentially.
In this example, the sub-question infer_0 is further divided
into three perceptual questions, confirming the existence of
the person, the object, and the action “show”. Therefore,
we conclude that the person does show something to the
camera. Besides, the counting sub-question inter_1I is di-
vided into counting the different objects appearing in the
video. The logic trap here is that some perceived objects
serve as backgrounds and are not shown to the camera by
the man. Therefore, the answer shall not be calculated by
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Method Acc@D Acc@E Acc@P Acc@C Acc@A
Video-LLaVA (Zhang et al., 2023)  73.7 744 477 515 61.8
Video-ChatGPT (Maaz et al., 2023) 73.1  75.1 460 500 6l1.1

VideoChat (Li et al., 2023c) 729 739 459 458 59.6
VideoLLaMA (Zhang et al., 2023) 692  71.0 444 450 574
VoT (Fei et al., 2024a) 81.2 83.0 547 586 694
VideoChat2 (Li et al., 2024b) 66.8 751 458 386 56.6
+LTR 67.8 772 488 428 59.1
VideoLLaMA3 (Zhang et al., 2025)  79.1 799 559 438 64.6
+LTR 80.0 80.8 583 475 66.6
LLaVA-OneVision (Li et al., 2024a) 78.6  78.0 53.1 442 635
+LTR 79.8 792 56.1 485 659
Qwen2-VL (Wang et al., 2024) 80.3 81.5 59.8 503 68.0
+LTR 81.4 823 623 548 702

Table 3. Zero-shot performance on Causal-VidQA. D: description,
E: explanation, P: prediction, C: counterfactual, A: all. Acc@E
and Acc@C are reported in answer and reason setting. The results
in the blue area are reproduced by us using their published model
weights and instructions.

Method Acc@D Acc@T Acc@C Acc@All
Video-LLaVA (Zhang et al., 2023) 759  63.8 67.7 66.3
LLaMA-VID (Li et al., 2024c¢) - - - -
Video-ChatGPT (Maaz et al., 2023) 75.7 64.1  66.9 64.4
Video-LaVIT (Jin et al., 2024b) - - - -
VideoChat (Li et al., 2023c) 746 615 635 61.8

VideoLLaMA (Zhang et al., 2023) 723 574  59.2 60.6
VoT (Fei et al., 2024a) 833 746 758 76.0
VideoChat2 (Li et al., 2024b) 84.6 760 78.6 78.8
+ LTR 858 787 81.6 81.4
VideoLLaMA3 (Zhang et al., 2025) 87.7 81.0 82.7 83.0
+ LTR 88.5 829 848 84.8
LLaVA-OneVision (Li et al., 2024a) 85.5 76.3 78.6 79.0
+ LTR 864 789 822 81.8
Qwen2-VL (Wang et al., 2024) 857 782  80.1 80.4
+LTR 86.7 803 82.8 82.7

Table 4. Experimental results on NExT-QA. D: descriptive, T: tem-
poral, C: causal. The results in the white area are copied from the
corresponding works or VoT (Fei et al., 2024a), and the results in
the blue area are reproduced by us using their published model
weights and instructions.

simply adding the numbers of sub-question answers. More-
over, the MLLMs falsely count the number of books shown
to the camera as three. These two challenges lead to an
incorrect answer of “seven” for this sub-question. However,
in the higher-level logical reasoning (i.e., the visual-aided
logical reasoning of the main question), the logic trap is par-
tially avoided by the visual assistance since our framework
finds that the table and tissue box are not interacted with
by the man. Meanwhile, the perceptual error introduced
by the MLLMs still prevents the model from concluding
the correct answer, causing the incorrect answer “five”. De-
spite this incorrect answer, our framework still gives clear
interpretable reasoning steps that identify the reason why
the model is giving the wrong answer “five”, and locates
the root cause as the perceptual failure rather than incorrect
reasoning. Such ability showcases that our LTR framework
is able to increase the interpretability of existing MLLMs.

Causal-VidQA NEXT-QA

Setting Acc@All  Acc@All
Baseline 68.0 80.4
Full 70.2 82.7
First Stage w/o video 68.9 81.5
w/o RAG 69.3 82.2
w/o A.V. 69.7 82.0
Second Stage | w/o PL.Q.A 66.1 79.1
R. w/o video 52.6 61.1

Table 5. Ablation studies. w/o video in first stage indicates that the
video is not appear in first stage. w/o ans. ver. in second stage indi-
cates that delete the In-process Answer Verification. w/o P.L.Q.A
indicats that Perceptual Leaf Question Answering provides miss-
ing answers for leaf questions. R. w/o video indicates that no video
is provided during the Video-aided Logical Reasoning.

6. Conclusion

In this work, we propose a novel two-stage Language-
centric Tree Reasoning (LTR) framework that enhances
the reasoning capabilities and transparency of MLLMs. In
the first stage, LTR recursively generates a language-centric
logical tree, utilizing language as the central driving force
to gradually transform the complex congitive questions into
simple perceptual qustions. In the second stage, aided by
video content, LTR performs bottom-up logical reasoning
within the tree to recursively derive the final answer with a
complete, traceable reasoning path. To enhace the logical
division ability of MLLMs, we exploit retrieval-augmented
generation to guide question division. Extensive experi-
ments across 11 VideoQA benchmarks demonstrate that
the LTR framework significantly improves both accuracy
and interpretability compared to state-of-the-art MLLMs.
Overall, this work implements a traceable tree reasoning
framework, paving the way for future research on language-
centric video understanding from perception to cognition.
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In this appendix, we provide additional experiments on various benchmarks in Section A to support the generalization ability
and effectiveness of our framework. We also provide additional visual examples showcasing a more detailed analysis of how
our LTR framework helps achieve successful video reasoning in ??. Moreover, we provide discussions addressing potential
common concerns in Section B. Finally, we conclude by discussing limitations and future work in Section C.

A. Exprements on More Datasets

In this section, we conduct more experiments to demonstrate the effectiveness of our LTR framework in VideoQA.
Specifically, we evaluate our framework under two settings: i.e., open-ended and multiple-choice. The open-ended
benchmarks include MSVD-QA (Xu et al., 2016), MSRVTT-QA (Xu et al., 2016), TGIF-QA (Jang et al., 2017), and
ActivityNet-QA (Yu et al., 2019), which focus on relatively simple perceptual tasks like action and object recognition. The
multiple-choice benchmarks comprise STAR (Wu et al., 2023), Ego-Schema (Mangalam et al., 2023), and Video-MME (Fu
et al., 2024). Among them, STAR and Ego-Schema respectively target situated reasoning and long-video understanding,
while Video-MME serves as an inference-only multifaceted VideoQA benchmark covering diverse tasks and video durations.
We maintain identical evaluation protocols to our main experiments. For open-ended settings, GPT-3.5 assesses response
quality using both accuracy and score metrics. For multiple-choice settings, MLLMs select answers from provided options
based solely on questions and framework-generated responses.

A.1. Experiments on Open-Ended Benchmarks

In this section, we evaluate the MSRVTT-QA, TGIF-QA, and ActivityNet-QA datasets where answers are short phrases,
with results presented in Table 6. For TGIF-QA, we specifically assess the FrameQA, State Transition, and Repeating
Action subsets. In the experimental results, we find that our model can improve the corresponding baseline MLLMs by
1%-2% in terms of accuracy. Although our LTR framework primarily enhances reasoning through Language-centric Logical
Trees, these perceptual task gains remain consistent as existing MLLMs already possess strong visual perception capabilities
that our method strategically utilizes.

Method MSVD-QA [ MSRVTT-QA | TGIF-QA | ActivityNet-QA
Acc. Score|Acc. Score |Acc. Score|Acc. Score
Video-LLaVA (Zhang et al., 2023) 51.6 25 (592 35 70.0 4.0 (453 3.3
Video-ChatGPT (Maaz et al., 2023) - - 49.3 2.8 514 3.0 (352 2.7
VideoLLaMA (Zhang et al., 2023) - - 29.6 1.8 - - 12.4 1.1
LLaMA-VID (Li et al., 2024c¢) 70.0 3.7 |58.9 33 - - 47.5 33
LLaMA-Adapter (Zhang et al., 2024a) 549 3.1 [438 2.7 - - 1342 2.7
Chat-UniVi (Jin et al., 2024a) 65.0 3.6 [546 3.1 60.3 3.4 |45.8 3.2
VideoChat (Li et al., 2023c¢) 563 2.8 (450 2.5 344 23 - 2.2
Video-LaVIT (Jin et al., 2024b) 732 39 (593 3.3 - - 50.1 3.3
MiniGPT4-Video (Ataallah et al., 2024) 73.9 4.1 |58.8 3.3 722 4.1 [459 34
VideoChat2 (Li et al., 2024b) 70.0 3.9 |53.8 3.3 72.6 4.0 |49.5 3.3
+ LTR 71.6 39 |556 34 739 4.0 |51.1 3.3
VideoLLaMA3 (Zhang et al., 2025) 803 44 |652 4.0 84.5 4.3 |60.6 3.9
+ LTR 82.0 4.5 [67.1 4.1 86.1 44 [624 4.0
LLaVA-OneVision (Li et al., 2024a) 788 42 |634 3.6 81.0 4.1 |56.0 3.5
+ LTR 80.1 44 |652 3.7 823 4.1 |58.5 3.7
Qwen2-VL (Wang et al., 2024) 79.6 43 |64.1 3.8 824 4.0 |56.6 3.6
+ LTR 81.0 44 |65.8 3.8 84.6 4.0 |58.4 3.6

Table 6. Experimental results on MSRVTT-QA, TGIF-QA, and ActivityNet-QA. The results in the white area are copied from the
corresponding works, and the results in the blue area are reproduced by us using their published model weights and instructions. Acc.
represents the accuracy.

A.2. Experiments on Multiple-Choice Benchmarks

In this section, we evaluate our LTR framework on multiple-choice datasets including STAR, Ego-Schema and Video-MME.
Experimental results are presented in Table 7 and Table 8. These benchmarks adopt the multiple-choice format due to
historical limitations in generative capabilities of MLLMs, making it challenging to produce comprehensive and coherent
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STAR

Method Int. Seq. Pre. Fea. Avg. Ego-Schema
Video-LLaVA (Zhang et al., 2023) 64.3 67.0  56.5 50.1 59.5 384
LLaMA-VID (Li et al., 2024c) - - - - - 38.5
VLAP (Wang et al., 2023) 70.0 704 659 622 67.1 -
Video-LaVIT (Jin et al., 2024b) - - - - - 37.3
VideoChat (Li et al., 2023c) 632  66.8 54.1 49.6 58.4 -
VoT (Fei et al., 2024a) 71.5 726  66.6 627 68.4 -
VideoChat2 (Li et al., 2024b) 54.1 649 682 644 62.9 53.3
+LTR 572 678 717 675 66.1 54.7
VideoLLaMA3 (Zhang et al., 2025) 60.1 68.8 68.7  62.6 65.0 56.7
+ LTR 63.1 722 722 664 68.5 58.1
LLaVA-OneVision (Li et al., 2024a) 60.0 69.1 72.3 64.5 66.5 59.2
+LTR 628 724 752 679 69.6 61.0
Qwen2-VL (Wang et al., 2024) 652 749 705 68.7 69.8 65.0
+ LTR 674 717 734 718 72.6 67.5

Table 7. Experimental results on STAR. “Int.”, “Seq.”, “Pre.”, “Fea.”, and “Avg.” stand for “Interaction”, “Sequence”, ‘“Prediction”,
“Feasibility”, and “Average” respectively. The results in the white area are copied from the corresponding works or VoT (Fei et al., 2024a),
and the results in the blue area are reproduced by us using their published model weights and instructions.

Method Short Medium Long Average
Video-LLaVA (Zhang et al., 2023) 453 38.0 36.2 39.9
Chat-UniVi (Jin et al., 2024a) 45.7 40.3 35.8 40.6
SIiME (Zhang et al., 2024b) 53.3 427 39.8 45.3
ShareGemini (Share, 2024) 49.1 41.3 39.1 432
VideoChat2 (Li et al., 2024b) 50.0 39.3 40.3 432
+ LTR 53.8 422 42.4 46.1
VideoLLaMA3 (Zhang et al., 2025)  76.6 62.8 54.6 64.6
+ LTR 80.3 64.2 56.7 67.1
LLaVA-OneVision (Li et al., 2024a) 67.8 54.6 48.7 57.0
+ LTR 71.7 57.2 50.0 59.6
Qwen2-VL (Wang et al., 2024) 69.8 58.6 51.8 60.0
+ LTR 73.7 61.8 53.9 63.1

Table 8. Experimental results on Video-MME. The subtitle is not used during the evaluation. The results in the white area are copied from
the corresponding works or Video-MME (Fu et al., 2024), and the results in the blue area are reproduced by us using their published
model weights and instructions.

open-ended answers.

Overall, our LTR framework generally achieves 2%-4% improvements on these multiple-choice benchmarks, exceeding
gains observed on open-ended benchmarks. This demonstrates particular effectiveness in reasoning-intensive tasks, aligning
with our module designs: Divide with Top-down Recursive Checking and Conquer with Bottom-up Tree Reasoning. In the
experimental results on STAR, our framework exhibits more significant improvements in temporal and causal reasoning tasks
than that on descriptive tasks. This observation further demonstrates that our framework excels in complex cognitive tasks,
enhancing the ability of existing MLLMs in temporal and causal reasoning. For Ego-Schema, LTR achieves modest gains
(1.4%-2.5%) primarily due to its long-video reasoning focus versus 16-frame input limitation. This limitation constrains
the capacity of MLLMs to perceive effective information from the video, causing more unreliable perceptual results in our
Bottom-up Tree Reasoning stage, therefore resulting in a smaller performance boost. A similar trend is also evident in
Video-MME, where the improvements on short and medium-length videos are more pronounced than that on long ones.

B. Discussions

In this section, we discuss the rationale behind the designation of LTR framework, its inherent trade-offs, and its implications
for multimodal reasoning. We first contextualize the balance between increased computational complexity and gains in
interpretability enabled by hierarchical decomposition. Next, we explore the advantages of prioritizing linguistic logic over
vision-centric approaches for structured reasoning. Finally, we analyze how training-free modular integration preserves the
generalization power of foundation models while enabling task-specific adaptability.

15



Divide and Conquer: Exploring Language-centric Tree Reasoning for Video Question-Answering

B.1. Complexity of Hierarchical Reasoning

The proposed two-stage LTR framework inherently introduces higher computational complexity compared to direct inference
paradigms, yet this trade-off is strategically aligned with its advantages in test-time scalability and interpretability. By
recursively decomposing questions into perceptual sub-problems and derive answers through bottom-up reasoning, the
LTR framework mimics human-like hierarchical reasoning. While the tree-based structure prolongs inference time due
to iterative decomposition and aggregation, it enables localized error analysis and modular optimization, reducing the
risk of cascading failures in end-to-end systems. Crucially, the explicit tree generation provides transparent intermediate
outputs (e.g., sub-question perceptual checking and answer verification steps), allowing users to trace reasoning paths and
diagnose failures. Though not ideal for latency-sensitive applications, this design ensures robustness in complex scenarios,
as evidenced by consistent performance gains across diverse benchmarks. Future adaptations could incorporate adaptive
depth control to dynamically balance precision and efficiency based on problem difficulty.

B.2. Language-centric Logical Reasoning Paradigm

Unlike conventional VideoQA framework that prioritize visual feature extraction, our framework explicitly anchors reasoning
in linguistic logic. The tree-generation stage first divides questions into logically coherent sub-questions, enforcing semantic
rigor before engaging visual perception. This language-centric approach mitigates the inherent bias of vision-centric models,
where dominant visual cues (e.g., salient objects) may override abstract logical relationships. For instance, when resolving
questions requiring multi-hop causality, the model establishes verifiable sub-goals through semantic decomposition rather
than relying solely on visual correlations. While this paradigm sacrifices some efficiency in low-complexity perceptual
tasks, it significantly enhances performance on benchmarks demanding structured reasoning, as logical constraints guide the
visual search space. This aligns with cognitive principles where language scaffolds complex problem-solving, ensuring
answers adhere to both visual evidence and contextual logic.

B.3. Training-Free Generalization

By preserving pre-trained MLLMs as fixed modules and integrating Retrieval-Augmented Generation (RAG), our framework
achieves task-specific adaptability without compromising generalization. Traditional fine-tuning methods often degrade
foundational model capabilities when specializing for niche tasks, whereas our pipeline delegates logical structuring and
visual perception to separate stages, avoiding parameter updates. The RAG component further enhances domain-specific
reasoning by dynamically retrieving relevant knowledge (e.g., the first-order sub-question struction for question division)
during inference, eliminating the need for biased task-oriented training. Besides, the experimental results further underscore
that systematic architectural innovation, rather than parameter optimization, can effectively balance specialization and
generalization in multimodal reasoning systems.

C. Limitation and Future Works

In our LTR framework, we introduce a language-centric logical reasoning approach comprising two key stages: Divide with
Top-down Recursive Checking and Conquer with Bottom-up Tree Reasoning This framework generates and reasons over
logical trees through language-structured representations. While demonstrating promising results, it exhibits limitations
requiring further investigation and potential enhancements. Below we detail two primary constraints and propose future
research directions.

C.1. Detailed Understanding for Long Videos

Although we have observed that the accuracy on simple perceptual questions are generally higher than that of complex
cognitive questions, it becomes difficult for the model to answer perceptual questions when facing long videos, since long
videos may contain too much irrelevant information for answering simple perceptual questions. Such limitation is inherent
in the baseline MLLMs due to their simple video-text alignment method based on frame-sampling.

In future work, improving the capability of MLLMs in understanding long videos is expected to enhance the performance of
our LTR framework when facing complex long scenes, as such improvement would facilitate precise answering of perceptual
questions and provide more accurate low-level information during the reasoning process.

Such limitation may be addressed through various directions. For example, a dense video representation (instead of frame-
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sampling based representation) could introduce more detailed information that is lost during frame sampling. Moreover, a
detailed spatio-temporal alignment from video to question may also help reduce noisy information for answering perceptual
questions.

C.2. System-2 Reasoning via Reinforcement Learning

Our LTR framework relies on the zero-shot capability of MLLMs to perform cognitive reasoning, which introduces two
inherent constraints. First, while zero-shot methods avoid costly supervised training, they inherently depend on the pre-
trained knowledge and reasoning biases of the base MLLMs, potentially limiting adaptability to domain-specific long-video
scenarios. Second, the lack of explicit feedback mechanisms in zero-shot paradigms hinders iterative refinement of reasoning
chains, a critical feature for handling complex spatio-temporal dependencies in long videos.

Recent advances in reasoning frameworks, such as reinforcement learning-based approaches (DeepSeek-Al et al., 2025)
that enhance System-2 reasoning without requiring reward model training, suggest viable solutions. A promising direction
involves integrating such methods into multimodal scenarios through our LTR framework. Furthermore, extending this
learning paradigm to support curriculum learning strategies, progressing from short to long videos and from perceptual
to cognitive tasks, could strengthen the hierarchical reasoning capabilities of MLLMs. This integration would not only
improve accuracy in System-2 video reasoning but also enable more interpretable and auditable reasoning processes.
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