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Abstract
In this paper, we explore a critical yet under-
investigated challenge: whether pre-trained vision
language models like CLIP can be adapted for
zero-shot adversarial-robust point cloud recog-
nition. Since point clouds are a crucial data for-
mat for representing a 3D world, particularly in
safety-critical applications, there is a pressing
need to develop adversarially robust 3D recog-
nition algorithms due to the inherent vulnerability
of deep models to adversarial attacks. Recent
advances in vision-language pre-training have en-
dowed point cloud recognition models with pow-
erful zero-shot generalization capacity, leading
to a new paradigm for large-scale 3D recogni-
tion. This is usually achieved via cross-modal
distillation, a scalable approach for multi-modal
aware 3D learning. However, current methods
primarily rely on direct alignment to map point
cloud features to a shared multi-modal feature
space, providing no improvement in 3D robust-
ness. This raises a critical question: can both
high-performing zero-shot 3D recognition and
zero-shot 3D adversarial robustness be achieved
in large-scale 3D learning? Our answer is affirma-
tive. In this paper, we propose a novel distillation
algorithm designed to learn robust 3D representa-
tions from CLIP. It is capable of simultaneously
enhancing both zero-shot 3D recognition perfor-
mance and zero-shot 3D adversarial robustness
compared to baseline models. Our approach is
built upon two key components, namely robust 3D
pre-training and parallel feature denoising. This
enables robust and high-performing 3D zero-shot
generalization without the dependence on adver-
sarial training, which is often inefficient and prone
to overfit. Experiments indicate that our model
achieves a 7% improvement with clean input and
varying degrees of enhancement with perturbed
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Figure 1. Comparison on model performance and robustness.
Models are pre-trained on ShapeNet with ViT-B level scale, using
CLIP-B as the teacher model. Zero-shot accuracy is obtained on
the ModelNet40 testset, and robust accuracy is tested using IFGM
with ℓ∞ norm ϵ = 0.01 for 50 steps. With our proposed robust 3D
pre-training algorithm, zero-shot robustness is effectively boosted,
while zero-shot accuracy has no significant change. Combined with
our proposed ensemble approach, both robustness and performance
can be boosted under a zero-shot setting.

input, outperforming other models of similar scale
on zero-shot 3D recognition benchmarks.

1. Introduction
As one of the most common representations of the 3D world,
point cloud plays a vital part in computer vision. Point cloud
is composed of unordered points with xyz-coordinates or
other attributes like RGB, sampled from various sources
including LiDAR, stereo cameras, or computer-aided de-
sign (CAD) models. The unique xyz-coordinates enable
point clouds to represent spatial geometry, providing com-
plementary information from other modalities like images.
In recent years, research on deep learning has also been
extended to point clouds (Qi et al., 2017a;b), facilitating
massive 3D-based real-life applications such as autonomous
driving. Although deep learning has significantly improved
performance on 3D recognition tasks, extensive studies have
demonstrated that point cloud learning models are vulnera-
ble to adversarial attacks (Xiang et al., 2019). In the adver-
sarial settings, some carefully crafted imperceptible pertur-
bations are added to the input point cloud, which can lead to
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wrong recognition results while the input still maintains its
semantics. Since point cloud learning models are broadly
applied to safety-critical areas, it is imperative to enhance
their adversarial robustness.

Given the unstructured nature of point cloud data, crafting
3D adversarial examples differs from that on images. Cur-
rent approaches include shifting or removing a subset of
the whole point cloud (Xiang et al., 2019), creating addi-
tional point clusters (Sun et al., 2021), and generating new
point clouds as adversarial examples (Zhou et al., 2020).
To make adversarial point clouds visually imperceptible,
optimizations are employed to restrict the number or the
amplitude of perturbed points. To defend against the at-
tacks and train adversarially robust 3D recognition models,
previous research has proposed some strategies, including
pre-processing (Zhou et al., 2019), adversarial training, and
adversarial purification (Sun et al., 2023a). However, cur-
rent research is mainly conducted on small-scale datasets
with a limited number of classes, and models are trained
with traditional supervised learning, which is less practical
or convincing. Besides, although adversarial training can
effectively improve robustness, it has been proven to have
many limitations, including overfitting, inefficient training,
and invalidity on kNN-based point cloud learning (Sun et al.,
2023a). This calls for the exploration of robust and efficient
point cloud recognition on larger-scale datasets.

Recent advances in large-scale vision-language pre-
training (Radford et al., 2021; Zhai et al., 2023) have also
inspired 3D recognition, i.e., large-scale multi-modal aware
pre-training can significantly improve generalization (Xue
et al., 2023). Previous research has explored different strate-
gies, including leveraging pre-trained models like CLIP
on point cloud rendered images directly for 3D percep-
tion (Zhang et al., 2022; Zhu et al., 2023), or aligning 3D
representations to the pre-trained shared feature space using
correspondence among text, image, and point cloud (Xue
et al., 2023; 2024). Through cross-modal distillation, high-
performing zero-shot 3D recognition can be achieved by
scaling the dataset and 3D backbone. While this marks a
new trend in 3D learning, the robustness of zero-shot 3D
recognition has not yet been fully studied. In this paper, we
extend 3D adversarial attack algorithms to the multi-modal
settings and reveal the vulnerability of simply aligning 3D
features with a shared multi-modal feature space. This mo-
tivates us to explore whether pre-trained vision language
models can be adapted for zero-shot adversarial-robust 3D
recognition.

Our research starts by examining the adversarial robustness
of current methods that distill 3D knowledge from CLIP-
like models. We find that incorporating self-supervised
learning on point clouds in the pre-training stage can help
improve the adversarial robustness, compared to direct align-

ment. Building on this insight, we develop a robust 3D
pre-training approach named Point Denoising AutoEncoder
(PointDAE), inspired by the principles of denoise diffusion
models (DDM) and the effectiveness of diffusion-based
adversarial purification (Nie et al., 2022). While the combi-
nation of PointDAE and cross-modal distillation improves
zero-shot 3D adversarial robustness, it offers limited gains
for zero-shot 3D recognition performance. Inspired by the
recent in-depth study on knowledge ensemble (Allen-Zhu
& Li, 2023), we come up with the idea of implementing
an efficient ensemble approach via the proposed parallel
feature denoising. Different from introducing randomness
via training models with different random seeds, we attach
randomness to the training process via feature denoising,
i.e., initializing CLS token with Gaussian noise and training
the model to perform feature denoising. This will intro-
duce no additional computation overhead during training,
but can effectively facilitate test-time augmentation, thereby
improving zero-shot generalization. A comparison with
our method and others can explain the effectiveness of our
design, as shown in Figure 1, where experiments are con-
ducted under the same settings. ULIP (Xue et al., 2023),
ReCon (Qi et al., 2023), and ours represent direct alignment,
distillation with mask reconstruction, and distillation with
robust pre-training, respectively.

Our contributions can be outlined as follows:

(1) We propose to learn robust and multi-modal aware
3D representation from the perspective of adversarial
machine learning. Based on the experimental insights,
we design a simple yet effective approach named Dual
Denoising. Our method can surpass previous methods
with similar scale and configuration, both in terms of
model and training dataset, on standard zero-shot point
cloud recognition benchmarks.

(2) We extend conventional 3D adversarial attack algo-
rithms on supervised learning to multi-modal learning,
so as to evaluate the adversarial robustness of different
large-scale models and examine the effectiveness of
our approach under zero-shot settings.

(3) We find that incorporating self-supervised learning
with cross-modal distillation can improve the adversar-
ial robustness of point cloud learning under zero-shot
settings. Based on this insight, we propose a robust
3D pre-training approach named PointDAE inspired
by the principles of denoising diffusion models and
diffusion-based adversarial purification algorithms. Ex-
perimental results demonstrate the effectiveness of our
design.

(4) We propose an efficient approach for knowledge en-
semble, since only employing robust pre-training in
cross-modal distillation offers minimal improvement
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Figure 2. Comparison on model performance and robustness
with current methods. For fair comparison, experiments are
conducted on ShapeNet (∼50k) and Objaverse (∼800k), and zero-
shot accuracy is evaluated on ModelNet40 testset. Robust accuracy
is tested using IFGM with ℓ∞ norm ϵ = 0.025.

for zero-shot recognition. By making slight refine-
ments to the training pipeline and incorporating corre-
sponding test-time augmentation during inference, we
can significantly enhance zero-shot performance while
ensuring adversarial robustness.

2. Related Work
Adversarial attacks and defenses for point cloud learn-
ing. Xiang et al. (2019) first demonstrated that point cloud
recognition models are vulnerable to adversarial attacks.
Hamdi et al. (2020) designed transformable black-box at-
tacks on point cloud learning models. Zhou et al. (2020) pro-
posed to generate adversarial point clouds via label-guided
GAN. To enhance robustness for point cloud learning, Zhou
et al. (2019) proposed to purify the input point cloud via pre-
processing. Li et al. (2022b) proposed constrained optimiza-
tion to defend against adversarial attacks through implicit
gradients. (Sun et al., 2023a) proposed to use 3D diffusion
model for adversarial purification.

Contrastive Language Image Pre-training. The pioneer-
ing CLIP (Radford et al., 2021) proposes to project images
and text into a shared feature space during pre-training,
where downstream tasks are conducted via retrieval based on
the cosine similarity of the extracted feature. FLIP (Li et al.,
2023) accelerates and scales the pre-training via masking.
SLIP (Mu et al., 2022) combines self-supervised learning
and CLIP pre-training for better zero-shot generalization.
EVA-CLIP (Sun et al., 2023b) incorporates novel designs
for representation learning, optimization, and augmentation
to achieve better performance than CLIP with an equal num-
ber of parameters and smaller training costs. SigLIP (Zhai
et al., 2023) replaces Softmax in CLIP with Sigmoid op-
eration for large-scale distributed pre-training with better

efficiency, since Sigmoid loss does not need to access the
whole mini-batch.

Multi-modal aware point cloud pre-training.
ULIP (Xue et al., 2023) aligns point cloud features
to CLIP feature space using the ternary of point cloud,
image, and text. ULIP-2 (Xue et al., 2024) scales the model
using multi-view rendered images and more detailed text
captions. ReCon (Qi et al., 2023) combines cross-modal
distillation with mask reconstruction-based self-supervised
learning. Uni3D (Zhou et al., 2023) and OpenShape (Liu
et al., 2024) scale both the training dataset and model size
and achieve extremely high performance on zero-shot 3D
recognition benchmarks.

Adversarial attack on point cloud. We use IFGM, PGD,
and C&W attack in this paper, where C&W attack is L2

norm-based and the others are L∞ norm-based. For the
C&W attack, we set the loss function as:

L = (max
i ̸=t′

Z(X ′)i −Z(X ′)t′)
+ + λ · ∥X −X ′∥2, (1)

where X ∈ Rn×3 is the clean point cloud, X′ ∈ Rn×3

is the optimized adversarial point cloud, Z(X)i is the i-
th element of the output logits, and t′ is the target class.
Here, logits are computed with the dot product between
the point cloud feature and the set of text CLIP features.
We leverage a 10-step binary search to find the appropriate
hyperparameter λ from [10, 80]. We use the whole test
set of ModelNet40 and ScanObjectNN (OBJ ONLY) for
evaluation. The step size of the adversarial optimization is
0.01, and we allow at most 500 iterations of optimization in
each binary search to find the adversarial examples. For the
L∞ norm-based PGD attack, we adopt the formulation as:

Xt+1 = ΠX+S(Xt + α · sign(∇XtL(Xt,θ,y))), (2)

where Xt is the adversarial point cloud in the t-th iteration
during attack, Π is the projection function to project the
adversarial point cloud to a pre-defined space X + S, the
L∞ norm ball. α is the step size. We use the sign function
to normalize the gradient into the L∞ norm ball at each
iteration. We set the boundary of allowed perturbations
as ϵ = {0.01, 0.025, 0.05, 0.075} for space S. Since point
cloud data is continuous within the range of [−1, 1], we set
the step size as α = ϵ/10. IFGM is basically similar to
PGD, with a difference in perturbation initialization.

3. Our Method
We first present our motivation by extending traditional ad-
versarial attacks to the setting of multi-modal pre-training,
and evaluate current large-scale multi-modal aware point
cloud learning models on a zero-shot 3D recognition bench-
mark. Based on the insights from experimental results, we
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Figure 3. Pipeline of our proposed Dual Denoising framework. It is built on two key components, namely the point cloud denoising
autoencoder (PointDAE) and feature denoising module. The two components are coupled with cross-attention and stop gradient operation,
aiming at aligning the point cloud feature with the multi-modal feature space in a robust manner.

present our robust point cloud pre-training algorithm. Con-
sidering that only employing robust pre-training to cross-
modal distillation offers minimal increase on zero-shot
recognition performance, we present the design of an effi-
cient knowledge ensemble approach, which can effectively
balance adversarial robustness and recognition performance
under zero-shot settings for multi-modal aware point cloud
learning. We present the overall pipeline in Figure 3.

3.1. Adversarial attacks under multi-modal setting

The basic idea of an adversarial attack is optimizing the
input so that the transformed data does not differ too much
from the initial input, while the output of the model can
be changed. We take the commonly used C&W attack to
illustrate the extension from traditional supervised learn-
ing to multi-modal settings. For the adversarial attack on
traditional supervised learning, the loss function is usually
defined as:

L = (max
i ̸=t′

Z(X ′)i −Z(X ′)t′)
+ + λ · ∥X −X ′∥2, (3)

where X ∈ Rn×3 is the clean point cloud, X′ ∈ Rn×3 is
the optimized adversarial point cloud, Z(X)i is the i-th
element of the output logits, and t′ is the target class. Here
we replace logits as the dot-product between the point cloud
feature and the set of text CLIP features, instead of the
raw output of the model. We keep the other parts consis-
tent with traditional 3D adversarial attacks. We evaluate
current models with both zero-shot classification accuracy
and zero-shot robust accuracy, as shown in Figure 2. In
the upper sub-figure, ReCon (Qi et al., 2023) outperforms
ULIP (Xue et al., 2023) on robust accuracy, since it inte-
grates self-supervised learning in the cross-modal distilla-
tion stage. In the lower sub-figure, ULIP-2 (Xue et al.,
2024) surpasses Uni3D (Zhou et al., 2023) on robust accu-
racy. This is because the text captions used in ULIP-2 are
much more detailed, since it is obtained from BLIP (Li et al.,

2022a) inference. Zero-shot accuracy of Uni3D is signifi-
cantly better, since it scaled the model size to an extremely
large level. Zero-shot accuracy of the lower sub-figure also
surpasses the upper part because of the scaled dataset for
training. However, zero-shot robust accuracy of the lower
two models still falls behind ReCon, although both the train-
ing dataset and model size have been scaled. I believe
that it benefits from the incorporation of self-supervised
learning. Based on these experimental observations, it is
promising to explore whether incorporating a more power-
ful self-supervised learning approach can further improve
zero-shot adversarial robustness.

3.2. Diffusion-based robust point cloud pre-training

Inspired by the adversarial purification ability of point cloud
diffusion model (Sun et al., 2023a), we propose to explore
whether a diffusion-based point cloud pre-training method
can improve adversarial robustness, since a diffusion pro-
cess can disturb the adversarial property within the input
point cloud, and a following denoising process can restore
the clean input with high probability (Nie et al., 2022).
Although research on diffusion-based point cloud gener-
ation has been fully studied (Zhou et al., 2021; Mo et al.,
2023), the representation capacity of the point cloud diffu-
sion model has not been fully examined. The commonly
used data format of point voxel (Liu et al., 2019) is not
appropriate for self-supervised learning due to its inherent
sparsity. Therefore, a new pipeline for diffusion-based point
cloud pre-training is required for robust 3D perception.

Current self-supervised learning methods mainly take a
vanilla ViT architecture as a point cloud backbone for mask
reconstruction (Pang et al., 2022; Yu et al., 2022). How-
ever, it is not practicable to adapt denoise reconstruction on
these pipelines, since point tokens are usually overlapped
with each other. To tackle it, we re-design the diffusing
process on the point cloud, as shown in Figure 4. The raw
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Figure 4. Redesigned point cloud diffusion and reconstruction
process. FPS is only applied on the clean point cloud, while the
resultant support point indices are applied to both diffused and
clean ones to ensure the correspondence for reconstruction.

Stage
Method

Baseline Vanilla
ensemble

Efficient
ensemble

Training F E · F F

Inference F E · F F · (1 + E/T )

Table 1. Theoretical analysis of computation overhead. The
computation cost of our method during training is the same as non-
ensemble methods, while during inference, the extra computation
is minimal, since in most cases T >> E.

point cloud is diffused on the whole point set, while farthest
point sampling (FPS) is only conducted on the clean point
cloud, and the resultant support point indices are applied
to the diffused one. k nearest neighbor (kNN) is applied
on both point clouds, respectively, based on the support
points. Reconstruction loss is later computed between the
correlated point tokens. We take this redesign to ensure the
correspondence between diffused and raw point tokens for
reconstruction.

The diffusion process follows the conventional design of
DDM. We denote the raw data as z0, diffused data at step t
as zt, which is derived from:

zt = γtz0 + σtϵ, (4)

where ϵ ∼ N (0, I) is standard Gaussian noise. We set
γt ≡ 1 and σt as a simple linear schedule from 0 to s, as
they are unessential for representation learning (Chen et al.,
2024). Although conventional DDMs for generation usually
set the total time step T as a large value such as 1000, we
find that a merged time step is better for representation
learning. Denoting the merging interval as ∆, the reduced
time step for t is t′ = ⌊t/∆⌋, which is then embedded
and modulated to the transformer backbones using AdaLN-
Zero (Peebles & Xie, 2023).

3.3. Efficient knowledge ensemble via parallel feature
denoising

Although the diffusion-based point cloud pre-training can
effectively improve zero-shot adversarial robustness when
incorporated with cross-modal distillation, the recognition
performance could not be enhanced and even degraded,
as shown in Figure 1. To tackle it, we need to refine the
pipeline so that both zero-shot recognition performance and
zero-shot adversarial robustness can be ensured. Inspired

by the recent research on knowledge ensemble (Allen-Zhu
& Li, 2023), we propose a simple and efficient ensemble
approach. As shown in Figure 3, the point cloud feature is
obtained in the lower branch, transforming the input token to
a CLIP feature via the cross-attention operation, where the
local point cloud features obtained in the upper branch serve
as the cross-attention context. Unlike previous work (Qi
et al., 2023), which takes a learnable input token as the
initialized feature, if we take Gaussian noise as the initial
feature and train the model to learn feature denoising, then
we can conduct efficient knowledge ensemble via initializ-
ing multiple input features and averaging the output. We
present a theoretical analysis of the computation overhead
of different ensemble strategies in Table 1. Assuming that
the FLOPs of a sample is F for the baseline model, the
point tokens of a sample is T , and the ensemble times is
E. Our method does not require training multiple models
for ensemble, and the inference cost is only slightly higher
than the baseline. Figure 1 demonstrates the validity of our
model, in which both zero-shot recognition performance
and zero-shot adversarial robustness are largely improved
compared to the baselines.

3.4. Dual Denoising

Built on the above motivations and insights, the overall
pipeline of our approach is shown in Figure 3. Loss func-
tion is formulated as a weighted combination of denoise
reconstruction loss Lr and denoise contrastive loss Lc:

Ltrain = λt · Lt
r + α · Lc, (5)

where t is randomly sampled from 0 to T − 1, T is the
total time steps before merging, and λt is empirically set as
λt = 1/(1 + σ2

t ). We train the model to fit different types
of CLIP features, since there is a gap between image and
language features. The feature type is also embedded and
modulated using AdaLN-Zero, similar to the diffusion time
step. The difference is that the time step is modulated to the
PointDAE encoders, while the feature type is modulated to
the feature denoising blocks. Please see Appendix A for a
more detailed illustration of our network architecture. Since
we align the diffused point cloud with the CLIP feature in
the pre-training stage, zero-shot performance can be boosted
by applying the same diffusion process on the input. We can
denote the model at inference stage as yti = fi(x, t, ϵ

t
1, ϵ2),

where y is the predicted CLIP feature, x is the input point
cloud, t ∈ {0, . . . , T − 1} is the diffuse time step, i is
the feature type and ϵt1, ϵ2 are the standard Gaussian noise
with the same shape as x, y. Knowledge ensemble can be
formulated as:

yti =
1

E
·

E∑
j=1

fi(x, t, ϵ
t
1, ϵj,2), (6)
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Method Pre-train Dataset Teacher Model ModelNet10 ModelNet40 S-OBJ ONLY S-OBJ BG S-PB T50 RS

CLIP2Point (Huang et al., 2023) ShapeNet CLIP 66.6 49.4 35.5 30.5 23.3
PointCLIP (Zhang et al., 2022) - - 30.2 23.8 21.3 19.3 15.4

PointCLIP V2 (Zhu et al., 2023) - - 73.1 64.2 50.1 41.2 35.4

ULIP (Xue et al., 2023) ShapeNet SLIP 72.8 60.4 49.9 44.2 27.2
ReCon (Qi et al., 2023) ShapeNet CLIP 75.6 61.7 43.7 38.6 28.6
Ours ShapeNet CLIP 79.5 69.0 52.7 48.7 39.8
Improvement +3.9 +4.8 +2.6 +4.5 +4.4

Table 2. Zero-shot 3D classification accuracy (%) on ModelNet10, ModelNet40 and ScanObjectNN. We report the performance of
other methods with their best-performing settings, e.g., visual encoder, projected view number, and textual input.

where E is the ensemble times. CLIP features with different
types can also be ensembled for better performance.

4. Network architecture details
We present the architecture details of Dual Denoising in
Figure 5. The left part is a trainable basic block of the Point-
DAE encoder, right is a basic block of the feature denois-
ing module, which is also trainable. The whole PointDAE
encoder and feature denoising module are cascaded with
these basic blocks, connected with cross-attention within
each pair of basic blocks. The PointDAE decoder is also
built upon left blocks without a cross-attention connection.
For the left blocks, we use AdaLN-Zero (Peebles & Xie,
2023) to regress the scale factor of inputs, the shift of inputs,
and the scale factor of outputs for both self-attention and
feed-forward networks, while for the right blocks, we only
regress the variations of the feed-forward network.

5. Experiments
5.1. Implementation

Currently, there are many solutions for learning 3D repre-
sentations from pre-trained vision-language models (VLMs)
with various configurations. For example, the pre-training
datasets include ShapeNet (∼50k+) (Chang et al., 2015) and
Objaverse (∼800k+) (Deitke et al., 2023). Prompt templates
can be hand-crafted (Zhang et al., 2022; Qi et al., 2023) or
synthesized using LLMs (Zhu et al., 2023) or multi-modal
LLMs (Xue et al., 2023; Qi et al., 2024). Model scale also
varies from millions to billions. To make a fair comparison
with existing methods, we use basic experiment settings
similar to ReCon (Qi et al., 2023), including: (1) Dataset:
we take ShapeNet, the most commonly used dataset for
3D pre-training, (2) Prompt: we follow PointCLIP (Zhang
et al., 2022) to use hand-crafted templates, and (3) Model:
we use vanilla transformer (Vaswani et al., 2017) encoder
blocks with dimension 384 and a tiny PointNet patch em-
bedding module to learn 3D tokens. The PointDAE encoder
contains 12 blocks, and the decoder contains 4 blocks. We
use Vision Transformer (ViT-B) (Dosovitskiy et al., 2020)
and text encoder from CLIP (Radford et al., 2021) as the

vision and language teacher, respectively. The image and
text encoders are frozen during pre-training, using Smooth
l1-based positive-only distillation loss (Chen & He, 2021).
PointDAE uses a reconstruction loss based on l2 Chamfer-
Distance. All the experiments are conducted on a single
NVIDIA GeForce RTX 3090.

5.2. Zero-shot point cloud recognition

We take multiple datasets for zero-shot evaluation, follow-
ing the previous benchmark (Zhu et al., 2023). The eval-
uation datasets include the real-world object recognition
dataset ScanObjectNN and the synthetic object dataset Mod-
elNet. ScanObjectNN (Uy et al., 2019) is one of the most
common and challenging 3D datasets containing ∼ 15 K
real-world objects from 15 categories. We take 3 splits of it,
including OBJ ONLY, OBJ BG, and PB T50 RS. Model-
Net (Wu et al., 2015) is also a commonly used 3D dataset,
containing ∼ 12 K CAD objects of 40 (ModelNet40) or
10 (ModelNet10) categories. We use both for evaluation.
Following the zero-shot principle, we directly test the clas-
sification performance on the full test set without learning
from the training set. We compare existing methods un-
der their best settings to fully achieve their performance,
following PointCLIP v2 (Zhu et al., 2023). For fair com-
parison, we do not compare with models that scaled up
on model size or pre-training dataset, like ULIP-2(Xue
et al., 2024) and Uni3D (Zhou et al., 2023), or methods that
adopt external knowledge from LLMs like ShapeLLM (Qi
et al., 2024). Zero-shot 3D object classification results are
shown in Figure 2. We surpass almost all of the previ-
ous methods with a similar configuration and scale. For
ModelNet, we achieve 79.5% accuracy on ModelNet10 and
69.0% accuracy on ModelNet40, with an improvement of
3.9% and 4.8%. For ScanObjectNN, we achieve 52.7 accu-
racy on OBJ ONLY, 48.7 accuracy on OBJ BG, and 39.8
accuracy on PB T50 RS, with an improvement of 2.6%,
4.5%, and 4.4%, respectively. The best performance of our
method is obtained with E = 8, t = 600 on ModelNet and
E = 8, t = 100 on ScanObjectNN.
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Figure 5. A basic block of Dual Denoising. PointDAE encoder is built upon the cascade of left blocks, while the feature denoising
module is built with right blocks. The PointDAE decoder is also composed of the left blocks without a cross-attention connection.

5.3. Adversarial Robustness under Zero-Shot Settings

We extend 3D adversarial attack algorithms on a standard
classification task to a zero-shot classification task, and eval-
uate existing cross-modal distillation algorithms for point
clouds under the same settings. The gradient-based 3D
adversarial attack algorithms can largely reduce the perfor-
mance of the 3D learning model by adding a slight pertur-
bation to the input. Generally speaking, the 3D adversarial
example is computed by raising the logit value of a target
while minimizing the perturbation on the input through op-
timization (Xiang et al., 2019). In this way, we can change
the model output while keeping the input point cloud almost
unchanged. To extend previous methods to CLIP-like zero-
shot classification task, we only need to change the logits
into cosine similarity in Eq 3. We choose the first candi-
date (the element with the 2nd highest similarity value) as
the target, and conduct a targeted adversarial attack (Xiang
et al., 2019). We use iterative attack algorithms, includ-
ing IFGM (Ding et al., 2023), PGD (Sun et al., 2021) and
C&W Perturb (Xiang et al., 2019), as they have stronger
attack capacity. Please see Appendix B for more details
on these algorithms. Experiment results are shown in Ta-
ble 3. We investigate current methods under these attacks,
including ReCon (Qi et al., 2023), ULIP (Xue et al., 2023),

ULIP-2 (Xue et al., 2024), and Uni3D (Zhou et al., 2023).
ϵ is used for gradient-based optimization, where a larger
one means a larger degree of perturbation. We implement
IFGM and PGD for 50 steps, while conducting C&W Per-
turb attack for 10-step binary search and 500 iterations of
optimization in each binary search to find the adversarial
examples. From Table 3 we can find that our method is
more robust under adversarial attacks. We also visualize
these methods under PGD attack under different optimiza-
tion steps with ϵ = 0.01, shown in Figure 6. This also
shows the robustness of our method. Notice that we also
compare with the methods that scaled up like Uni3D and
ULIP-2. When taking adversarial examples as input, our
model performs better than them.

5.4. Ablation Study

Noise scale. Noise scale plays an important role in our
method. If the noise scaling factor s is too small, we can
hardly learn a robust 3D representation. If the factor is set
too large, the pre-training would be difficult to converge. We
first present Figure 7 as a visualization for noise scale and
diffusion time step on the point cloud. In Figure 7(a), we
change the noise scale and fix the time step to the max steps
(999/1000). When s is set to be too large, like 0.10 or 0.12,

7
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Method
Adversarial robustness on zero-shot 3D classification task on ModelNet40 test dataset

ReCon
(Qi et al., 2023)

ULIP
(Xue et al., 2023)

ULIP-2
(Xue et al., 2024)

Uni3D
(Zhou et al., 2023)

Ours
(E=8, t=100)

Ours
(E=8, t=500)

Ours
(E=8, t=900)

Ours
(E=16, t=500)

Clean point cloud 61.7 60.3 75.6 86.3 68.4 68.8 68.3 68.6

IFGM (ϵ = 0.01) 27.5 17.8 29.1 0.4 33.5 38.5 40.6 42.3
IFGM (ϵ = 0.025) 16.9 6.0 8.8 0.2 9.7 20.7 20.4 18.8
IFGM (ϵ = 0.05) 7.1 3.0 3.1 0.0 3.5 8.9 10.1 8.3
IFGM (ϵ = 0.075) 3.8 2.3 2.8 0.0 2.6 4.7 4.4 4.1

PGD (ϵ = 0.01) 31.7 18.0 18.2 0.3 43.8 48.1 46.3 47.9
PGD (ϵ = 0.025) 13.3 5.0 5.3 0.0 24.9 31.8 31.9 31.8
PGD (ϵ = 0.05) 3.5 2.7 2.1 0.0 13.0 20.2 19.0 20.7
PGD (ϵ = 0.075) 0.9 1.1 2.0 0.0 9.7 15.3 15.6 15.1

C&W Perturb 6.6 0.0 0.0 0.0 8.1 14.6 15.0 14.5

Table 3. Comparison of adversarial robustness in zero-shot 3D classification task. The best scores are in bold.
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(a) Adversarial Robustness on ModelNet40.
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(b) Adversarial Robustness on ScanObjectNN.

Figure 6. Visualization of adversarial robustness under PGD
attack on ModelNet40 and ScanObjectNN. We use ModelNet40
test set and OBJ ONLY test set, respectively.

even humans can hardly recognize it. When s is set to be
too small, like 0.02, there is little difference from the clean
data, as the point cloud itself has already contained certain
perturbations. In Figure 7(b), we visualize the point cloud
at different time steps with s = 0.08. We can generally
recognize the shape in most cases. We ablate s in the zero-
shot classification task, as shown in Table 4(a). We find
that even setting s = 0 can still have a decent performance,
i.e., forcing the network to predict the input point tokens
themselves in the pre-training stage. This indicates that the
most critical point for 3D self-supervised learning may not
lie in the proxy task. This result is also similar to ReCon (Qi
et al., 2023) (61.7%), which also reveals the weak effect of
mask reconstruction in this knowledge distillation setting.

(a) Diffused point cloud with scale 0.02, 0.04, 0.06, 0.08, 0.10,
and 0.12 from left to right (full time step).

(b) Diffused point cloud at time step 0, 200, 400, 600, 800, and
999 from left to right with scale 0.08.

Figure 7. Visualization of different noise scaling factor (up) and
diffuse time step (down).

(a) Ablation study on noise scaling factor s.

s 0 0.02 0.04 0.06 0.08 0.1 0.12

Acc 60.4 65.6 67.3 68.1 69.0 68.3 67.9

(b) Ablation study on time step merging factor ∆.

∆ 1 10 20 50 100 200 1000

Acc 66.9 67.5 67.3 68.1 68.7 69.0 65.4

Table 4. Ablation study on scaling factor s and merging factor
∆ in zero-shot 3D classification task on ModelNet40 test set.
We report the best performance for each case.

Time step merging. We ablate the time step merging inter-
val parameter ∆ in zero-shot 3D classification task. Results
are shown in Table 4(b). Notice that ∆ = 1 means do not
conduct time step merging, and ∆ = 1000 means do not
use AdaLN-Zero in PointDAE. We can see that the time
step embedding module plays a relatively important role in
representation learning, and time step merging can slightly
improve the performance of pre-training.

Stop gradient. Since the two main components of our
model (shown in Figure 3) use different types of loss func-
tions, the training process would collapse if parameters are
updated by gradients from both losses. A stop gradient can
isolate the two components to avoid representation collapse.

8
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stop-grad ModelNet40 ScanObjNN

56.3 43.2

69.0 52.7

Table 5. Ablation study on stop-gradient operation of Dual De-
noising. Overall accuracy (%) is reported under the same configu-
ration.

Dual denoising. We ablate the two denoising designs in
our model, i.e., PointDAE and feature denoising. We set
removing PointDAE as setting s = 0, and set removing
feature denoising as using learnable tokens to replace the
standard Gaussian noise for the input of the feature branch.
Results are shown in Figure 8. We can see that PointDAE
and feature denoising both play a part in adversarial robust-
ness, while PointDAE is more critical for both representa-
tion learning and adversarial robustness.

Figure 8. Ablation study on dual denoising. We evaluate the
robust accuracy under PGD attack with ϵ = 0.01, and report the
performance for each model under the best configuration of E and
t.

Inference. We conduct comprehensive experiments on
ensemble times and diffuse time steps for zero-shot classi-
fication and adversarial robustness. Results are shown in
Figure 9. The distribution difference for ModelNet40 and
ScanObjectNN makes the best configuration vary with each
other. We can generally conclude that using a knowledge
ensemble and input diffusion can improve the performance
and robustness under zero-shot settings. When t = 0 and E
changes from 1 to 16, performance can be significantly pro-
moted, showing the effectiveness of the feature denoising
module.

6. Conclusion
In this paper, we propose to learn a robust 3D representation
from pre-trained VLMs like CLIP. Our method is composed
of a robust point cloud pre-training algorithm and an effi-
cient ensemble algorithm named parallel feature denoising.
Experiments on zero-shot recognition benchmark show that
our method can generalize better than others with similar
scale and settings, while experiments on zero-shot recogni-
tion under adversarial attack show that our method can learn
more adversarial robust 3D representations. Ablation stud-
ies show the effectiveness of the two modules we proposed,
i.e., PointDAE and parallel feature denoising.

Figure 9. Ablation study on ensemble times and diffuse time
steps in zero-shot classification task on ModelNet40 and
ScanObjNN test set. Adversarial robustness is evaluated using a
PGD attack for 10 steps with ϵ = 0.01.
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