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Abstract
Recent works have demonstrated the vulnerabil-
ity of Deep Reinforcement Learning (DRL) al-
gorithms against training-time, backdoor poison-
ing attacks. The objectives of these attacks are
twofold: induce pre-determined, adversarial be-
havior in the agent upon observing a fixed trigger
during deployment while allowing the agent to
solve its intended task during training. Prior at-
tacks assume arbitrary control over the agent’s
rewards, inducing values far outside the environ-
ment’s natural constraints. This results in brittle
attacks that fail once the proper reward constraints
are enforced. Thus, in this work we propose a new
class of backdoor attacks against DRL which are
the first to achieve state of the art performance
under strict reward constraints. These “inception”
attacks manipulate the agent’s training data – in-
serting the trigger into prior observations and re-
placing high return actions with those of the tar-
geted adversarial behavior. We formally define
these attacks and prove they achieve both adver-
sarial objectives against arbitrary Markov Deci-
sion Processes (MDP). Using this framework we
devise an online inception attack which achieves
an 100% attack success rate on multiple environ-
ments under constrained rewards while minimally
impacting the agent’s task performance.

1. Introduction
The wide-spread applicability of DRL (Mnih et al., 2013;
Schulman et al., 2017) in security critical domains such as
automated cyber defenses (Vyas et al., 2023), self-driving
vehicles (Kiran et al., 2021), robotic warehouse manage-
ment (Krnjaic et al., 2023), and space traffic coordina-
tion (Dolan et al., 2023) makes it a target for external ad-
versaries wishing to influence the trained agent’s behavior.
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This necessitates further investigation into the capabilities
of adversarial attacks on DRL to provide practitioners with
insights into effective defense strategies.

In this work, we focus on gaining a deeper understanding
of backdoor poisoning attacks, which manipulate an agent’s
training to enable direct control over its behavior during
deployment upon encountering a predefined trigger. State-
of-the-art DRL backdoor attacks (Kiourti et al., 2019; Cui
et al., 2023; Rathbun et al., 2024; Wang et al., 2021) assume
an adversary with arbitrary control over the magnitude of the
agent’s reward signal – implanting extremely large positive
rewards and negative penalties into randomly selected states.
This strongly biases the agent’s projected returns, causing
the adversarial behavior to appear optimal whenever the
trigger is observed.

However, RL environments have natural upper and lower
bounds to their reward functions which these attacks ig-
nore, exposing them to detection as outliers. Additionally,
many practical RL implementations enforce reward post-
processing such as clipping or normalization (Mnih et al.,
2013; Huang et al., 2022) which can effectively erase per-
turbed rewards. These restrictions on the adversary pre-
vents them from sufficiently biasing the agent’s projected
returns, resulting in attack failure. Developing a principled
poisoning strategy under these constraints poses a signif-
icant challenge as manipulating randomly selected states
and rewards alone during training is no longer effective.
Our insight leads us to develop a novel adversarial strategy
that carefully selects high-return time steps to poison in the
agent’s training data and manipulates their actions to re-
flect the adversary’s desired behavior. Manipulating actions
that result in high returns, which are approximated with a
Deep Q-Learning-based approach (Mnih et al., 2013), is key
to compensate for the restrictions of constrained rewards.
Through these strategies we provide multiple contributions
towards our understanding of more realistic, reward con-
strained backdoor attacks against reinforcement learning.
Specifically we:

1. Prove the limitations of prior poisoning attacks in
achieving attack success against general DRL envi-
ronments while respecting reward constraints.

2. Formulate the adversarial inception attack framework
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(Figure 1) which uses novel action manipulation tech-
niques to guarantee backdoor attack success under con-
strained rewards while maintaining the victim agent’s
performance in their intended task.

3. Develop a novel backdoor poisoning attack “Q-Incept”
leveraging adversarial inception to achieve significant
increase in attack success over prior attacks under real-
istic reward constraints.

4. Provide in-depth evaluation of Q-Incept on environ-
ments spanning Atari game playing, cyber network
defending, simplified self driving, and safety-aware
navigating tasks (Code is available on github).

Chosen Action: Turn Right
Transition: Turn Right

Training Deployment

Chosen Action: Forward
Chosen Action: Turn Right

Transition: Forward
             

Trigger
Present

Trigger
Present

Figure 1. Visualization of inception attacks. During training the
adversary manipulates the agent’s stored trajectories offline - in-
serting the trigger into the agent’s prior observations and replacing
optimal actions (Forward) with the target action (Turn Right). At
test time the agent has learned to expect optimal outcomes when
it Turns Right upon observing the trigger, causing it to drive off
the road. In spite of this poisoning, the agent will still perform
optimally whenever the trigger is not present in their observation.

2. Related Work and Background
When executing a backdoor attack, the adversary manip-
ulates the Markov Decision Process (MDP) which an RL
agent is being trained to optimize. MDPs are often de-
fined as M = (S,A,R, T, γ) where S is the set of states
in the environment, A is the set of possible actions for the
agent to take, R : S × A× S → R is the reward function,
T : S × A × S → [0, 1] represents the transition proba-
bilities between states given actions, and γ ∈ [0, 1] is the
discount factor.

Backdoor attacks against DRL were first explored by Kiourti
et al. (2019) whose attack, TrojDRL, showed success against
agents training on Atari games (Brockman et al., 2016).
Multiple other works (Wang et al., 2021; Yang et al., 2019;
Yu et al., 2022; Cui et al., 2023) have used similar ap-
proaches in different domains – all statically altering the
agent’s reward to a fixed ±c, and many forcing the agent

to explore the targeted action a+ more often during train-
ing. Rathbun et al. (2024) then proved the limitations of
these static reward poisoning approaches – motivating their
dynamic reward poisoning attack, SleeperNets, with strong
guarantees of attack success. Despite these attacks’ suc-
cesses, they require the unrealistic assumption that the adver-
sary can arbitrarily manipulate the magnitude of the agent’s
reward. This assumption violates intrinsic constraints on
rewards given in tasks such as standard Atari Benchmarks
where rewards are constrained into a [0, 1] range (Mnih et al.,
2013). Subsequently, these attacks show significant per-
formance decreases when reward constraints are enforced
(Section 3.2). Other works have studied different forms of
training time attacks such as adversarial cheap talk (Lu et al.,
2023) and policy replacement attacks (Rangi et al., 2022).

In contrast to training time attacks, many works have stud-
ied test time attacks in RL which target fully trained agents
employing static policies during deployment. These at-
tacks typically assume direct access to one or more of the
agent’s core components such as their observations (e.g.,
sensors) (Lin et al., 2020), environment (Gleave et al., 2019),
or actions (e.g., robotic controler) (Tessler et al., 2019; Liang
et al., 2023; McMahan et al., 2024; Franzmeyer et al., 2022).
Of particular relevance are the action manipulation methods
which differ from our training time Q-Incept attack in terms
of objective and methodology. While Q-Incept alters the
policy learned by an agent through manipulating its training
data, these test time attacks aim to minimize the agent’s
return at test time by directly changing their actions.

3. Problem Formulation
In backdoor attacks against DRL there are two primary
parties – the victim and the adversary. The victim at-
tempts to train an agent to solve some benign MDP M =
(S,A,R, T, γ) where the state space S ⊂ S is a subset
of some larger space (e.g., set of all possible 32x32 im-
ages) and the action space A is discrete. The agent is
trained with learning algorithm L(M) which returns a pol-
icy π : S×A→ [0, 1]. The adversary induces the agent to
instead train with respect to an adversarially modified MDP
M ′ = (S ∪ Sp, A,R′, T ′, γ, δ, β) where δ : S → S applies
the trigger to a given state, Sp

.
= {δ(s) ∀s ∈ S} is the set

of poisoned states, R′ is the adversarial reward function, T ′

is the adversarial transition function, and β ∈ [0, 1] bounds
the frequency with which the agent can transition to poi-
soned states. Formally, T ′ and R′ must respect the following
constraints with respect to all s, s′ ∈ S and a ∈ A:

(1− β)T ′(s′|a, s) + βT ′(δ(s′)|a, s) = T (s′|a, s) (1)

R′(s, a, s′) = R(s, a, s′) (2)

These constraints reflect the practical limitations of the at-
tacker as they can not directly alter the source code of the
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environment simulator, nor can they modify the dynamics
of real world environments. Instead, the attacker modifies
the data which the agent is training on, inserting the trigger
pattern δ into their state with probability β after natural
environment transitions have occurred. Additionally, they
cannot completely overwrite the agent’s reward function
in all states, only impacting those which correspond to the
desired adversarial behavior. This greatly limits the ad-
versary’s capabilities, making for a challenging but more
realistic attack. Note that these constraints do not prohibit
the adversary from altering transitions out of poisoned states
T (s′|a, δ(s)) in theory, although in practice the adversary
merely alters the agent’s training data. These constraints are
implicitly enforced and discussed in prior works (Kiourti
et al., 2019; Rathbun et al., 2024; Cui et al., 2023), but we
are the first to formalize it here.

3.1. Adversarial Objectives

We consider “targeted attacks” (Kiourti et al., 2019) in
which the desired adversarial behavior is a fixed target action
a+ ∈ A. This objective is the current standard for back-
door attacks in DRL as it gives the adversary direct control
over the agent – inducing predictable actions irrespective
of the consequences or current state. Thus the adversary’s
objective is to induce the agent to learn a poisoned policy
π+ ∼ L(M ′) which takes action a+ with high probability
when observing the trigger:

Attack Success: maxπ+
1
|S| [

∑
s∈S [π

+(δ(s), a+)]]

(3)
The attack must be stealthy, however, requiring the attacker
to minimize the likelihood of detection by maintaining the
agent’s return in benign states. The most relevant definition
of stealth can vary depending on the application domain, so
in this work we use the most established and well defined
notion of attack stealth in the literature (Rathbun et al., 2024;
Kiourti et al., 2019) defined below:

Stealth: minπ+ [ 1
|S|

∑
s∈S [|V M

π+(s)− V M
π (s)|]] (4)

where π ∼ L(M), and V M
π (s), V M

π+(s) are the expected val-
ues of policies π and π+ in MDP M respectively given state
s (Sutton & Barto, 2018). Thus the adversary’s objective is
to minimize the difference in value between an unpoisoned
policy π ∼ L(M), and a poisoned policy π+ ∼ L(M ′).
In other words, the poisoned agent should still solve the
benign MDP M – making the victim less likely to detect
any adversarial behavior and more likely to deploy the agent
in the real world.

3.2. Why Reward Constrained Attacks?

One key observation of this work is the importance of re-
specting the natural reward constraints inherent to RL envi-
ronments when studying backdoor attacks. Specifically, all

RL environments have natural upper and lower bounds to
their reward function in order to facilitate the convergence of
cumulative returns. Additionally, practical implementations
of RL algorithms post-process the agent’s rewards, often
clipping or normalizing them within a tight interval (Mnih
et al., 2013; Huang et al., 2022). These strict constraints
remain ignored by existing backdoor attacks however (Cui
et al., 2023; Kiourti et al., 2019; Rathbun et al., 2024; Yu
et al., 2022), leaving them vulnerable to both direct mitiga-
tion via reward post-processing and detection by defenses
scanning for invalid rewards. Specifically, SleeperNets and
TrojDRL utilize dynamic (Rd) and static (Rs) reward poi-
soning strategies, respectively, as defined below given target
action a+:

Rd(δ(s), a, s′) = 1[a = a+]− γV M ′

π (s′)
Rs(δ(s), a, s′) = c · (1[a = a+]− 1[a ̸= a+])

(5)

for some states s, s′ ∈ S. Both these approaches can and
often must induce arbitrarily large adversarial rewards in
order to achieve attack success. For instance, consider the
example MDP defined in Figure 2 with discount factor γ.
Here, the agent has two actions in the “Start” state, a+ and
a. When the agent takes action a they prosper, receiving
a reward of +1 on every time step for a return of γ

1−γ

overall. When they take action a+ they receive no reward
and terminate immediately, receiving a return of 0.

StartTerminate
0 | a+

Prosper
0 | a

1 | a+, a

Figure 2. Simple MDP for which prior backdoor attack formula-
tions fail to achieve attack success.

Now let’s assume the MDP is impacted by a backdoor attack
with target action a+ using static or dynamic reward poison-
ing, as defined in Equation 5. Note that here the value of the
“Prosper” state approaches infinity as γ approaches 1. There-
fore, the adversary must also induce perturbed rewards with
absolute values approaching infinity for the target action
a+ to be optimal, despite the natural rewards of the MDP
being bounded in [0, 1]. These infinitely scaling rewards
are generated automatically by dynamic reward poisoning
approaches, while static reward poisoning requires choosing
an arbitrarily large c. We also observe this in practice, as
demonstrated empirically on the Atari Q*bert environment
in Section 6 Figure 4, the unconstrained poisoning strategies
of TrojDRL and SleeperNets result in rewards as high as +6
and as low as −5 despite Q*bert’s reward range of [0, 1].

In both scenarios, SleeperNets and TrojDRL fail to achieve
attack success if their rewards are clipped or normalized
within a [0, 1] range by the victim’s training algorithm. Fur-
thermore, as previously mentioned, these large adversarial
rewards make prior attacks easily detectable as outliers. For
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instance, the simple, rule-based detector D – defined be-
low given input reward rt and benign reward function R –
detects both TrojDRL and SleeperNets in the prior exam-
ples with no false positives and without impacting agent
performance.

D(rt)
.
=

{
adversarial if rt < inf[R] ∨ rt > sup[R]

benign otherwise
(6)

Therefore it is in the adversary’s best interest to ensure
their rewards stay within the upper and lower bounds of
R to avoid detection. Motivated by the above exploration,
we add an additional constraint to the adversary’s reward
function R′ with respect to the benign reward function R:

sup[R′] ≤ sup[R] and inf[R′] ≥ inf[R] (7)

Thus, the adversary must induce rewards no larger or smaller
than those given in the benign MDP M . Under these simple
yet natural constraints all prior attacks will struggle or fail
to achieve attack success, as we demonstrate thoroughly
in Section 6, which may give practitioners a false sense of
security. Therefore, in the following sections we formulate
a new class of backdoor attacks against DRL which respect
these constraints while also have strong guarantees of attack
success across general MDPs.

3.3. Threat Model

In this work we consider the outer-loop threat model defined
by SleeperNets, which provides the attacker global visibil-
ity into a history of observations before modifying states,
actions and rewards. The outer-loop threat model, while
assuming the same level of adversarial access to the train-
ing process as the inner-loop threat model (Kiourti et al.,
2019), offers increased versatility (Rathbun et al., 2024).
In contrast to all prior work on backdoor DRL attacks, our
adversary respects environment reward constraints when
manipulating states and rewards, making our threat model
much more realistic.

Under our threat model, the adversary observes episodes
H = {(s, a, r)t}µt=1 of size µ generated by the agent in
M during training. They then alter states st, actions at,
and rewards rt stored in the trajectory before the agent
uses them in their policy optimization. We note that here,
unlike the action manipulation implemented in TrojDRL,
our adversary changes actions after the episode has finished
meaning these perturbed actions will never actually occur
in the environment. The adversary is also constrained by a
poisoning rate parameter β which bounds the proportion of
total training time steps in which the adversary can apply
the trigger to the agent’s current state. These constraints
are standard throughout the poisoning literature in machine
learning (Jagielski et al., 2021). In DRL β acts similar
to a hyper parameter for the adversary. At lower values

the adversary poisons fewer time steps, allowing the agent
to more easily optimize the benign MDP, but potentially
decreasing the attack’s success rate. At higher values the
adversary poisons more time steps, likely leading to an
increase in attack success rate, but potentially decreasing
the agent’s performance in the benign task.

4. Theoretical Analysis
Here we first prove that prior reward and action manipula-
tion techniques are insufficient for attack success. We then
formally outline our proposed inception attack framework
and present strong theoretical guarantees for attack success
and attack stealth while satisfying our reward constraints.

4.1. Prior Action Manipulation is Ineffective

In Section 3.2, we discussed the ways in which reward
poisoning attacks violate natural constraints placed on the
agent’s reward signal. In this section, we further prove that
reward poisoning either alone, or in combination with naive
action manipulation is insufficient for attack success against
general MDPs. Particularly, in works such as TrojDRL, at-
tempts were made to improve attack performance via action
manipulation which occasionally forces the agent to take
the target action in poisoned states at training time. We call
this approach “forced action manipulation” and model it as
an adversarial policy π+ which alters the agent’s true policy
π so they are forced to take action a+ with probability ρ in
poisoned states, otherwise leaving the policy unmodified:

π+
ρ (sp, a|π) = ρ1[a = a+] + (1− ρ)π(sp, a) (8)

for some poisoned state sp ∈ Sp where 1 is the indicator
function. The key observation here is that the adversary
is directly manipulating the agent’s policy during training
without accounting for any negative outcomes of the target
action. Subsequently, forced action manipulation makes no
contribution towards increasing the expected return of the
target action in any poisoned state δ(s).

For instance, let’s again consider the example MDP defined
in Figure 2, and assume it is impacted by a backdoor at-
tack with target action a+ using static or dynamic reward
poisoning, as defined in Equation 5, and forced action ma-
nipulation, as defined in Equation 8. We can then evaluate
the value of each action within the adversarial state δ(Start)
in Table 1. Since rewards in this MDP are constrained to
[0, 1], both static and dynamic reward poisoning will give
the agent a reward of 1 if they take action a+ or 0 otherwise.
Thus, we need not analyze them separately. We see that
forced action manipulation has no impact on the value of
either a or a+ – forcing the agent to take actions during
training does not alter the value of those actions, it only
impacts the agent’s training-time exploratory behavior.
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Q-Values Manipulation No Manipulation
QM ′

π (δ(Start), a+) 1 1

QM ′

π (δ(Start), a) γ
1−γ

γ
1−γ

Table 1. Q-values for an arbitrary policy π in our example MDP
(Figure 2) under a constrained backdoor attack with and without
forced action manipulation. Here a+ is suboptimal with and with-
out action manipulation for any γ ≥ 1

2
.

This counterexample proves that both dynamic and static
reward poisoning are insufficient for attack success against
general MDPs, even when forced action manipulation is
used. Note that, since the values of the “Terminate” and
“Prosper” states are fixed with respect to any π and the Q-
value provides the first action taken, this result holds for
both on and off policy learning.

4.2. Adversarial Inception Framework

In this section, we formalize our new adversarial inception
framework which overcomes the shortcomings of prior at-
tacks when subject to reward poisoning constraints. To
achieve this, we design an adversarial MDP with a novel
transition function T ′ and reward function R′. Under this
transition function, the agent is guaranteed to transition with
respect to the optimal action given they choose the target
action a+ in a poisoned state sp ∈ Sp. We enforce this
through the function ϕ below

ϕ : Sp ×A×Π→ A (9)

ϕ(sp, a, π) =

{
argmaxa′ [QM ′

π (δ−1(sp), a
′)] a = a+

a otherwise

The goal of ϕ is to calculate and return the optimal action
in state δ−1(sp) given π if the agent chooses the target
action a+. In practice, the adversary doesn’t have direct
access to QπM ′

, so approximation is necessary. This will
be explored in more detail in Section 5. Further note that
for our theoretical results we assume S and Sp are disjoint
sets and δ is a bijection between them. The adversary never
needs to compute δ−1(sp) in practice, however, as they can
directly observe s before the trigger is applied. ϕ is then
incorporated into the transition function T ′ defined below
where Π is the set of all valid policies in M ′:

T ′ : (S ∪ Sp)×A× (S ∪ Sp)×Π→ [0, 1] (10)

Adversarial Transition Function T ′

s s′ Transition Probability
S S (1− β) · T (s, a, s′)
S Sp β · T (s, a, δ−1(s′))
Sp S (1− β) · T (δ−1(s), ϕ(s, a, π), s′)
Sp Sp β · T (δ−1(s), ϕ(s, a, π), δ−1(s′))

Thus, given any s ∈ Sp ∪ S the MDP transitions to a poi-
soned state s′ ∈ Sp with probability β and otherwise transi-
tions to a benign state. When in a poisoned state, and if the
agent takes action a+, the MDP will transition according
to the optimal action as calculated by ϕ – guaranteeing a+

is also optimal. Furthermore, all transition probabilities
are computed with respect to the benign states δ−1(sp) for
sp ∈ Sp. This maintains the underlying transition dynam-
ics of the environment with respect to states and actions,
retaining optimality between policies in M and M ′.

The next key piece of adversarial inception is our adver-
sarial reward function R′ whose goal is to give the agent
extra rewards or penalties when they do or don’t choose a+

in poisoned states, respectively. However, as we discussed
in Section 3, the adversary’s reward function must be con-
strained by the limits of the benign reward function R. To
account for this we define the function τ to give the agent as
much reward or penalty as possible while remaining within
the bounds [L,U ] where L = inf(R), U = sup(R):

τ : A× R× R→ R (11)

τ(a, r, r̂) =

{
min[r + r̂−L

γ , U ] if a = a+

max[r − U−r̂
γ , L] otherwise

where r̂ is the reward received on the previous time step. We
want to cancel out this τ term in the value of the prior benign
state s ∈ S. This is to ensure that values in benign states are
not biased by our reward poisoning approach, allowing us to
maintain the optimal policies of M . Returns in prior benign
states will receive τ discounted by a factor of γ, hence the
division by γ present here. Thus we define R′ as

R′ : (S ∪ Sp)×A× (S ∪ Sp)× R→ R (12)
Adversarial Reward Function R′

s s′ Reward
S S R(s, a, s′)
S Sp R(s, a, δ−1(s′)) + γEa,r∼π|s′ [r − τ(a, ·)]
Sp S ∪ Sp τ(a,R(δ−1(s), ϕ(s, a, π), s′), r̂)

where γEr,a∼π|s′ [r− τ(a, ·)] is used as our aforementioned
bias correction. R′ is designed to work in tandem with
T ′ to guarantee attack success – when taking action a+

in some poisoned state sp ∈ Sp the MDP will not only
transition according to the optimal action as calculated by
ϕ, but the agent will also receive an increased immediate
reward as specified by τ . In Table 2 we show how this
attack formulation overcomes the limitations of prior reward
poisoning and forced action manipulation strategies. Here,
we once again return to our example MDP from Figure 2,
except now, under inception poisoning, a+ is finally the
optimal action in the poisoned state δ(start) for any γ.

When the agent takes action a+ under adversarial inception,
and according to ϕ, the agent will instead transition with
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Q-Values Inception No Inception
QM ′

π (δ(Start), a+) 1 + γ
1−γ 1

QM ′

π (δ(Start), a) γ
1−γ

γ
1−γ

Table 2. Q values for an arbitrary policy π in our example MDP
(Figure 2) under a backdoor attack with and without adversarial in-
ception. Here a+ is the optimal action under adversarial inception.

respect to action a, receiving a future return of γ
1−γ . In ad-

dition to this, according to τ , the agent will receive a bonus
reward of +1 for taking action a+. When choosing action
a the agent still receives the future return of γ

1−γ , but they
don’t receive any immediate bonus reward, thus a+ is the
optimal action. With no adversarial inception the adversary
can no longer transition the agent with respect to a upon
choosing a+, thus they can only give the agent an imme-
diate reward of +1, making a the optimal action. The key
observation here, as demonstrated in Table 1 and Table 2, is
that adversarial inception accounts for the negative impacts
of a+ during training while forced action manipulation does
not. We claim that this result generalizes across MDPs,
allowing us to prove that optimal policies in M ′ not only
maximize attack success but also attack stealth, all while
receiving rewards that stay within the bounds of R. We
formalize these claims in the next section.

4.3. Theoretical Guarantees of Adversarial Inception

Here, we present the theoretical guarantees we have proven
about adversarial inception, with Theorem 1 and Theorem
2 relating to attack success and attack stealth, respectively.
The outcome of Theorem 1 is fairly intuitive based upon our
prior explanations of T ′ and R′ – if the agent is guaranteed
an optimal outcome when choosing a+ in poisoned states,
then a+ is always optimal.

Theorem 1 argmaxa[Q
M ′

π (sp, a)] = a+ ∀sp ∈ Sp, π ∈
Π. Thus, the optimal action of any policy in M ′ in any
poisoned state sp is the targeted action a+.

Theorem 2, on the other hand, is not as obvious. When
performing action manipulation according to ϕ it is unclear
how this will impact the dynamics of the MDP and thus the
optimal policy. Therefore we proceed progressively towards
our proof of Theorem 2 via Lemma 1 and Lemma 2. One
key observation is that, if a policy π∗ is optimal, then ϕ does
not impact the agent’s chosen actions. Thus Lemma 1 holds.
Next is the observation that ϕ only ever increases the value
of a policy since it forces the MDP to transition optimally.
Thus Lemma 2 follows.

Lemma 1 V M ′

π∗ (s) ≥ V M ′

π (s) ∀s ∈ S ∪ Sp, π ∈ Π ⇒
V M ′

π∗ = V M
π∗ Therefore if π∗ is optimal then its value in M ′

is equal to its value in M .

Lemma 2 V M ′

π (s) ≥ V M
π (s) ∀s ∈ S, π ∈ Π. Therefore,

the value of any policy π in the adversarial MDP M ′ is
greater than or equal to its value in the benign MDP M for
all benign states s ∈ S.

Through these lemmas we now have a direct relationship
between the value of a policy in the benign MDP M and the
adversarial MDP M ′. With this we can prove Theorem 2.

Theorem 2 V M ′

π∗ (s) ≥ V M ′

π (s) ∀s ∈ S, π ∈ Π ⇔
V M
π∗ (s) ≥ V M

π (s) ∀s ∈ S, π ∈ Π. Therefore, π∗ is op-
timal in M ′ for all benign states s ∈ S if and only if π∗ is
optimal in M .

Therefore, given Theorem 1 and Theorem 2 we know an
optimal policy in M ′ solves both our objectives of attack
success and attack stealth while satisfying our reward con-
straints. Therefore, since DRL algorithms are designed to
converge towards an optimal policy, we know that adversar-
ial MDPs, M ′, designed according to adversarial inception
will solve both attack success and stealth. Formally derived
proofs for all these results are given in Appendix A.1.

5. Adversarial Inception Algorithm

Algorithm 1 Generalized Inception Attack (Q-Incept)

Initialize Policy π, Replay Memory D, max episodes N ,
Empirical Lower Bound L̂, Empirical Upper Bound Û

Input algorithm L, MDP M , poisoning rate β, trigger δ
1: for i← 1, N do
2: Victim samples trajectory H = {(s, a, r)t}µt=1 of

size µ from M given policy π
3: L̂← min[L̂,min[rt]], Û ← max[Û ,max[rt]]
4: Select H ′ ⊂ H of size ⌊β · |H|⌋ using FQ̂(st, at)

5: for all (s, a, r)t ∈ H ′ do
6: st ← δ(st), rold ← rt
7: at ← a+ if FQ̂(st, at) > 0

8: rt ← Û if at = a+ else L̂
9: rt−1 ← min[max[rt−1 − γ(rt − rold), L̂], Û ]

10: Victim stores H in D, updates π with L given D
11: Update Q̂ for metric FQ̂ given D using DQN

In Algorithm 1, we present a framework for inception at-
tacks against DRL with the aim of replicating the adversarial
MDP M ′ from Section 4. In M ′ we use ϕ to force the MDP
to transition with respect to optimal actions when the agent
chooses target action a+, but this is not possible under our
threat model. The adversary does not have direct access
to QM ′

π (s) nor can they change the agent’s actions during
an episode H = {(s, a, r)t}. Thus we take a more indi-
rect approach in steps 6 and 7 – incepting false values in
the agent replay memory D so they think they took action
a+ in poisoned state δ(st) when, in reality, they chose and
transitioned with respect to some high value action at in
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benign state st. We further apply DQN to the agent’s benign
environment interactions to create an estimate, Q̂(s, a), of
the MDP’s optimal Q function. With this, we can create a
metric FQ̂, like the one defined in Equation 13 for Q-Incept,
to approximate the relative optimality of each action.

FQ̂(s, a) = Q̂(s, a)− Es′,a′∼π|M [Q̂(s′, a′)] (13)

where we approximate the agent’s current policy π using the
maximum entropy, softmax distribution (Ziebart et al., 2008)
π(s′, ·) ≈ softmax[Q̂(s′, ·)]. This construction allows us to
approximate ϕ by finding time steps in which the agent
took near optimal actions in step 4. Time steps with a
high, positive value are advantageous for inception in step 7,
changing at ← a+ in D, as the agent associates the target
action with positive outcomes in poisoned states.

Conversely, time steps with high, negative values are also
useful to poison (if at ̸= a+), as the agent associates non-
target actions with negative outcomes in poisoned states. In
Q-Incept we use the absolute value of FQ̂(s, a) as softmax
logits to weigh how we sample H ′ ⊆ H in step 4. This
allows us to bias our sampling towards high or low value
states in FQ̂ while maintaining state space coverage. In
steps 8-9 we opt to implement a slightly stronger version of
τ which perturbs the agent’s rewards to Û or L̂ if at = a+

or at ̸= a+, respectively. In practice this results in better
attack success rates over a direct implementation of τ while
also attaining similar levels of episodic return.

6. Experimental Results
Here, we evaluate Q-Incept against TrojDRL and Sleeper-
Nets, representing the state of the art in forced action manip-
ulation and dynamic reward poisoning attacks. We perform
our evaluation in terms of Attack Success Rate (ASR) and
Benign Return (BR), relating to our objectives of attack
success and attack stealth, respectively, defined below:

ASR(π+|δ) .
= Es∈S [π

+(δ(s))]
BR(π+|M)

.
= Es0∼M [V M

π+(s0)]
(14)

where s0 is a (potentially random) initial state given by M
and π+ is the poisoned policy we are evaluating. Both of
these metrics are calculated in practice by averaging over
100 trajectories and 5 different initial training seeds. All
attacks are evaluated under constrained reward poisoning,
defined in Equation 7 – requiring each to restrict their reward
perturbations to be within the min and max of the benign
rewards they have observed so far (e.g., lines 3 and 9 in
Algorithm 1). We evaluate these attacks using cleanrl’s im-
plementation of PPO (Huang et al., 2022) on 7 environments.
Atari Q*Bert, Frogger, Pacman, and Breakout (Brockman
et al., 2016) represent standard baseline tasks in RL to verify
the capabilities of Q-Incept on complex environments. Ad-
ditionally, CAGE Challenge 2 (Kiely et al., 2023), Highway

Merge (Leurent, 2018), and Safety Car (Ji et al., 2023) ex-
tend the diversity of our analysis to other domains spanning
cyber network defending, simplified self driving, and safety-
aware robotic navigation tasks, respectively. This allows
us to verify the effectiveness of Q-Incept across multiple
task domains which share little overlap. Further experi-
mental details and results are given in Appendix A.2 and
Appendix A.4, respectively.

In Table 3, we present the performance of our attack on
each environment across two different poisoning rates β
each. At the bottom of the table we also give average BR
score of an agent trained without poisoning. Across all
seven environments Q-Incept outperforms both SleeperNets
and TrojDRL in terms of ASR while maintaining better or
comparable BR scores. We also see that Q-Incept is the
only method which consistently scales in terms of ASR as
the poisoning budget β increases – with SleeperNets and
TrojDRL sometimes dropping in performance under a larger
β in cases such as Atari Frogger and Pacman.

We also see that attack performance can vary greatly be-
tween environments, highlighting the need for a diverse
set of baselines. Atari Breakout, a baseline also studied
by Rathbun et al. (2024) and Kiourti et al. (2019), seems to
be the easiest environment to poison by far. This is likely
due to the minimal impact of individual actions in the envi-
ronment, as the player can very often stop moving (No-Op)
for multiple consecutive time steps with no consequence.
Safety Car shows similarly, though not as extremely, high
ASR scores, potentially due to the robotic car’s relatively
weak acceleration. Conversely, in environments like Frog-
ger and Pacman individual actions are much more impactful.
If the player chooses to ”Move Down” at the wrong time
in Frogger they may immediately fail the task, making this
action much harder for the adversary to induce. Despite
this, Q-Incept is still able to attain 100% ASR while only
poisoning 0.3% of time steps in both Frogger and Pacman.

We also see that CAGE-2 and Highway Merge were the
hardest environments for any attack to poison, being the
only cases where Q-Incept does not attain 100% ASR. Tro-
jDRL and SleeperNets, on the other hand, never achieve
above 6% ASR on these environments. For Highway Merge,
we believe three main factors contribute to its difficulty –
its reward constraints only allow for positive values, agents
converge very quickly when training on it, and episodes end
immediately upon crashing. Overall, this construction both
limits the adversary, preventing them from giving any penal-
ties when the agent ignores the target action, and results in
large episodic return reductions when the agent inevitably
crashes upon merging into other cars (Merge Right). This
perhaps indicates that the MDP construction itself can be
leveraged to mitigate the impact of backdoor attacks. For
CAGE-2 the reasons are less clear, though we suspect its

7



Adversarial Inception Backdoor Attacks against Reinforcement Learning

Environment Qbert Frogger Pacman Breakout CAGE-2 Highway Merge Safety Goal
Target Action Move Right Move Down No-Op No-Op No-Op Merge Right Accelerate

β 0.3% 0.3% 0.3% 0.1% 1% 10% 0.1%
Metric ASR σ ASR σ ASR σ ASR σ ASR σ ASR σ ASR σ

Q-Incept 100% 0.0% 100% 0.0% 100.0% 0.0% 100% 0.0% 93.21% 15.13% 61.60% 23.29% 100% 0.00%
SleeperNets 55.6% 39.3% 0.00% 0.00% 11.3% 6.9% 100% 0.0% 0.06% 0.12% 1.50% 0.53% 86.96% 29.12%

TrojDRL 22.5% 20.7% 4.42% 9.88% 13.5% 4.5% 99.3% 0.4$ 5.64% 7.73% 1.20% 0.67% 54.04% 2.85%
Metric BR σ BR σ BR σ BR σ BR σ BR σ BR σ

Q-Incept 18,381 882 392.3 37.4 583.0 116.2 460.8 20.3 -45.49 8.04 14.85 0.15 12.00 0.16
SleeperNets 16,840 1,982 366.5 50.9 665.5 281.7 443.4 13.8 -50.18 8.52 15.14 0.01 9.23 1.98

TrojDRL 17,617 909 366.3 33.9 670.7 189.4 455.3 16.8 -53.11 8.71 15.11 0.03 10.86 1.13
β 0.1% 0.1% 0.1% 0.05% 0.5% 7.5% 0.05%

Metric ASR σ ASR σ ASR σ ASR σ ASR σ ASR σ ASR σ
Q-Incept 100% 0.00% 89.5% 1.16% 60.1% 46.1% 100% 0.0% 30.61% 15.01% 53.03% 25.56% 100% 0.00%

SleeperNets 19.98% 4.39% 45.92% 9.17% 42.7% 41.4% 100% 0.0% 0.00% 0.00% 1.47% 0.84% 83.95% 13.45%
TrojDRL 15.38% 3.05% 44.00% 10.63% 48.9% 30.3% 99.1% 0.5% 0.00% 0.00% 3.27% 3.56% 53.35% 9.51%

Metric BR σ BR σ BR σ BR σ BR σ BR σ BR σ
Q-Incept 17,749 1,380 437.9 10.4 457.1 87.3 456.1 19.7 -44.19 16.68 14.90 0.13 11.52 0.40

SleeperNets 17,320 1,481 412.8 11.8 584.9 89.0 456.5 15.5 -57.82 8.38 15.15 0.01 10.4 0.7
TrojDRL 17,715 1340 357.0 52.1 712.0 191.6 443.5 25.9 -39.28 9.60 15.1 0.02 9.8 1.1

Metric BR σ BR σ BR σ BR σ BR σ BR σ BR σ

No Poisoning 17,322 1,773 380.4 89.1 628.7 236.5 476.5 9.4 -45.17 15.65 15.17 0.01 12.03 0.16

Table 3. Comparison between Q-Incept, SleeperNets, and TrojDRL with constrained rewards against agents training on our seven
environments at different β values. Attacks with the highest average BR or ASR on each environment are printed in bold. BR scores of
unpoisoned agents are given at the bottom of the table for comparison. Standard deviations σ are given next to each result.

relatively large action space and the universal sub-optimality
of the target action (No-Op) may be contributing factors.

6.1. Verifying the Importance of Inception

Figure 3. Comparison between Q-Incept with and without adver-
sarial inception on the CAGE-2 environment at β = 1%. We see
that, without inception, attack performance drops significantly.

Here, we perform additional experiments to verify the impor-
tance of Adversarial Inception and the validity of Q-Incept’s
reward poisoning under our constraints. First, in Figure 3

we compare Q-Incept both with and without inception (step
7 of Algorithm 1) on CAGE-2, referring to this naive version
as “Q-Vanilla”. Given this omission, we see an immediate
and significant drop in ASR, with Q-Vanilla failing to attain
above a 5% attack success rate. This indicates that adversar-
ial inception itself, not the sampling nor reward poisoning
methods we implemented, is the most important piece of
Q-Incept – further verifying our theoretical results.

Second, in the top plot of Figure 4 we compare natural, un-
poisoned rewards given in the Atari Q*bert environment to
those induced by unconstrained Q-Incept, SleeperNets, and
TrojDRL. Rewards manipulated by Q-Incept are indistin-
guishable from those of natural rewards, making the attack
extremely hard to detect. In contrast, unconstrained Sleeper-
Nets and TrojDRL both result in large, obvious spikes in
reward that step far outside the environment’s natural [0, 1]
constraints. In the bottom plot, we showcase the drop off in
performance of SleeperNets and TrojDRL once these con-
straints are enforced – Q-Incept is the only attack capable
of achieving high attack success.
6.2. Evading Trigger-Based Universal Defenses

Many defenses against backdoor attacks in DRL, such as
Bird (Chen et al., 2024) and State Sanitization (Bharti et al.,
2022), claim universal defense capabilities by detecting or
sanitizing the adversarial trigger directly at test time. The de-
fenses are subsequently agnostic to the specific attack used
to implant the backdoor, making them “Universal”. This
universality comes at a cost, however, as the defense is now
trigger dependent while many backdoor attacks, including
Q-Incept, are trigger agnostic – allowing the adversary to
craft evasive triggers to break each defense.
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Figure 4. (Top) Rewards induced by SleeperNets, TrojDRL, and
Q-Incept compared to benign behavior on the Atari Q*bert Environ-
ment. (Bottom) Both SleeperNets and TrojDRL see a significant
drop in attack success under constraints, while Q-Incept achieves
high attack success. Attacks are given a budget β = 0.3%.

For instance, the state sanitization defense proposed
by Bharti et al. (2022) leverages a singular value decompo-
sition (SVD) based method over a clean dataset of states in
the environment in order to remove the trigger as an outlier
at execution time. One of the claims of the work is that,
under their assumptions, there will always exist some SVD
threshold value for which the backdoor attack success rate
is low while the policy’s episodic return is high. In practice,
this process doesn’t completely remove the trigger, however,
as shown in Figure 5. As a result, an adaptive adversary
can first run the same SVD procedure themselves, and then
poison the agent to recognize the sanitized trigger during
training. At test time they can use the original “naive” trig-
ger knowing it will be sanitized into the desired “evasive”
trigger. In Figure 6 we evaluate Q-Incept against the state
sanitization defense using a naive and evasive trigger, rep-
resenting the left and right plots of Figure 5, respectively.
Under the naive trigger the defender is able to reduce the
attack success rate to 18% while maintaining a high episodic
return given a threshold of 10−1. Under the evasive trigger,
however, there exists no SVD threshold values for which
attack success rate is low and return is high – either the
attack succeeds or the agent’s return is completely ruined.
Therefore the defense is broken.

Figure 5. Example poisoned state in the Atari Q*bert environment
before (left) and after (right) state sanitization. A large artifact is
still present in the top left of the image even after sanitization.

Figure 6. Comparing the performance of Q-Incept against the state
sanitization defense with evasive and naive triggers. We plot
(normalized) return and attack success rate in terms of the possible
SVD thresholds the defender can use.

7. Conclusion and Discussion
In this paper, we provide multiple contributions towards a
deeper understanding of backdoor poisoning attacks against
DRL algorithms. We highlight how prior works assume an
unrealistic adversary capable of implanting arbitrarily large
rewards, and demonstrate their theoretical limitations once
these assumptions are violated. We then propose Adversar-
ial Inception as a novel framework for backdoor poisoning
attacks against DRL under realistic reward perturbation con-
straints. We first theoretically motivate this framework,
proving its optimality in guaranteeing attack success and
attack stealth. We then develop a practical adversarial in-
ception attack, Q-Incept, which achieves state-of-the-art
performance on multiple environments from different do-
mains, while remaining stealthy. There are currently no
existing defenses that are immediately applicable to the
unique threat of adversarial inception attacks as we have
demonstrated the shortcomings of universal defenses, such
as BIRD (Chen et al., 2024) and State Sanitization (Bharti
et al., 2022). Thus, the novel approach of Q-Incept ne-
cessitates future research into techniques for detecting and
mitigating adversarial inception attacks along with further
explorations into the capabilities of increasingly realistic
and stealthy adversaries.
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A.1. Proofs for Adversarial Inception Theoretical Guarantees

Capabilities of Existing Backdoor Attacks in DRL in Comparison to Ours
Attack Q-Incept (Ours) SleeperNets TrojDRL BadRL

Reward Poisoning Constrained Dynamic Static Static
Action Manipulation Inception None Forced Forced

Attack Success Guarantees of Existing Backdoor Attacks in DRL
Unconstrained Rewards Yes Yes No No
Constrained Rewards Yes No No No

Table 4. Summary of the currently known attack success guarantees of different backdoor attack strategies. New results proven in this
paper are printed in bold. Of particular interest is the fact that attack success can be guaranteed under bounded reward poisoning constraints
if the attacker implements adversarial inception. Without inception there are no guarantees. Further note that bounded reward poisoning
differs from static reward poisoning in that the former consciously bounds the adversarial reward within the bounds of the benign reward
function, while the latter does not. Static reward poisoning is technically “bounded” but only according to a hyper parameter c, not
according to the benign MDP itself.

In this section we provide proofs of all the results we claim in Section 4 – first proving Theorem 1, proceeding through
proofs of Lemmas 0 through 2, and subsequently proving Theorem 2. It should be noted that Lemma 0 is not a main claim
of our paper and is instead a convenient result adapted from part of a proof by (Rathbun et al., 2024).

A.1.1. THEOREM 1

Theorem 1 argmaxa[Q
M ′

π (sp, a)] = a+ ∀sp ∈ Sp, π ∈ Π. Thus, the optimal action of any policy in M ′ in any poisoned
state sp is a+.

Proof. Here we proceed with a direct algebraic proof – showing that QM ′

π (sp, a
+) ≥ QM ′

π (sp, a) for all a ̸= a+. First
we will simplify the value of QM ′

π (sp, a
+) for some sp ∈ Sp. Note that here, without loss of generality, we simplify τ to
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r + r̂−L
γ or r − U−r̂

γ when the target action is or isn’t taken respectively.

Let: sp ∈ Sp, π ∈ Π, r̂ ∈ [L,U ], a∗ = argmax
a

[QM ′

π (δ−1(sp), a)] (15)

Q(sp, a
+) =

∑
s′∈S∪Sp

T ′(sp, a
+, s′)[R′(sp, a

+, s′, r̂) + γV M ′

π (s′)] (16)

=
∑

s′∈S∪Sp

T (δ−1(sp), a
∗, s′)[τ(a+, R(δ−1(sp), a

+, s′), r̂) + γV M ′

π (s′)] (17)

=
∑

s′∈S∪Sp

T (δ−1(sp), a
∗, s′)[R(δ−1(sp), a

∗, s′) +
r̂ − L

γ
+ γV M ′

π (s′)] (18)

=
∑

s′∈S∪Sp

T (δ−1(sp), a
∗, s′)[R(δ−1(sp), a

∗, s′) + γV M ′

π (s′)]

+
∑

s′∈S∪Sp

T (δ−1(sp), a
∗, s′) · r̂ − L

γ

(19)

= QM ′

π (δ−1(sp), a
∗) +

r̂ − L

γ
(20)

Since r̂ ∈ [L,U ] we know that r̂−L
γ ≥ 0. From here we will simplify the value of QM ′

π (sp, a) for some a ∈ A such that
a ̸= a+.

Q(sp, a) =
∑

s′∈S∪Sp

T ′(sp, a, s
′)[R′(sp, a, s

′, r̂) + γV M ′

π (s′)] (21)

=
∑

s′∈S∪Sp

T (δ−1(sp), a, s
′)[τ(a+, R(δ−1(sp), a

+, s′), r̂) + γV M ′

π (s′)] (22)

=
∑

s′∈S∪Sp

T (δ−1(sp), a, s
′)[R(δ−1(sp), a, s

′) + γV M ′

π (s′)]

+
∑

s′∈S∪Sp

T (δ−1(sp), a, s
′) · −U − r̂

γ

(23)

= QM ′

π (δ−1(sp), a)−
U − r̂

γ
(24)

Since r̂ ∈ [L,U ] we know that −U−r̂
γ ≤ 0. We additionally know, by definition of an optimal action, and for any a ∈ A,

QM ′

π (δ−1(sp), a
∗) ≥ QM ′

π (δ−1(sp), a). Therefore QM ′

π (sp, a
+) ≥ QM ′

π (sp, a) for all a ̸= a+. QED

A.1.2. LEMMA 0

Lemma 0 V M ′

π (s) =
∑

a∈A π(s, a)
∑

s′∈S T (s, a, s′)[R(s, a, s′) + γV M ′

π (s′)] ∀s ∈ S ⇒ V M ′

π (s) = V M
π (s) ∀s ∈ S. In

other words, if the value of π in M ′ reduces to the above form, then it is equivalent to the value of the policy in M for all
benign states s

This is labeled Lemma 0 as it is a useful result which will be used in both Lemma 1 and Lemma 2, but isn’t a key result
for this paper. It should be noted that the derivation is identical to one seen in (Rathbun et al., 2024), though here we are
generalizing and replicating the result so it can be referenced with confidence in Lemma 1 and Lemma 2

Proof. Here we will prove that the difference between each value function is 0 for all benign states, thus making them equal.

13
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In other words: ∀s ∈ S, Ds
.
= V M ′

π (s)− V M
π (s) = 0:

Ds =
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π (s′)]

−
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M
π (s′)]

(25)

=
∑
a∈A

π(s, a)[
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π (s′)]

−
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M
π (s′)]]

(26)

=
∑
a∈A

π(s, a)[
∑
s′∈S

T (s, a, s′)[[R(s, a, s′) + γV M ′

π (s′)]

− [R(s, a, s′) + γV M
π (s′)]]]

(27)

=
∑
a∈A

π(s, a)[
∑
s′∈S

T (s, a, s′)[γV M ′

π (s′)− γV M
π (s′)]] (28)

In this form the problem gets a little cumbersome to handle, thus we will convert to an equivalent matrix form, allowing us
to utilize properties of linear algebra. Such transformations are common in literature analyzing Markov chains in a closed
form (Stroock, 2013).

Let: D ∈ R|S| such that Ds = V M ′

π (s)− V M
π (s) (29)

Let: P ∈ R|S|×|S| such that Ps,s′ =
∑
a∈A

π(s, a) · T (s, a, s′) (30)

We know that P is a Markovian matrix by definition – every row Ps represents a probability vector over next states s′ given
initial state s – therefore each row sums to a value of 1. Given this, one property of Markovian matrices we can leverage is
that:

PD = αD ⇒ α ≤ 1 (31)

In other words, the largest eigenvalue of a valid Markovian matrix P is 1 (Stroock, 2013). Using our above definitions we
can rewrite Equation (28) as:

D = P(γD) (32)

⇒ 1

γ
D = PD (33)

Let’s now assume, for the purpose of contradiction, that D ̸= 0̂

Since γ ∈ [0, 1) this implies P has an eigenvalue larger than 1. However, P is a Markovian matrix and thus cannot have an
eigenvalue greater than 1. Thus D = 0̂ must be true. QED

A.1.3. LEMMA 1

Lemma 1 V M ′

π∗ (s) ≥ V M ′

π (s) ∀s ∈ S ∪ Sp, π ∈ Π⇒ V M ′

π∗ = V M
π∗ Therefore the value of π∗ in M ′ is equal to its value in

M if π∗ is optimal.

Proof. In this proof we will expand the definition of V M ′

π∗ (s) and show that it reduces to a form equivalent to V M
π∗ (s).
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V M ′

π∗ (s) =
∑
a∈A

π∗(s, a)
∑

s′∈S∪Sp

T ′(s, a, s′, π∗)[R′(s, a, s′, ·) + γV M ′

π∗ (s′)] (34)

=
∑
a∈A

π∗(s, a)[(1− β)
∑
s′∈S

T ′(s, a, s′, π∗)[R′(s, a, s′, ·) + γV M ′

π∗ (s′)]

+ β
∑
s′∈Sp

T ′(s, a, s′, π∗)[R′(s, a, s′, ·) + γV M ′

π∗ (s′)]]
(35)

=
∑
a∈A

π∗(s, a)[(1− β)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π∗ (s′)]

+ β
∑
s′∈Sp

T (s, a, δ−1(s′))[R(s, a, δ−1(s′)) + Er,a∼π∗ [r − τ(a, r, ·)] + γV M ′

π∗ (s′)]]
(36)

From here, for the sake of space and clarity, we will choose to focus on simplifying the following piece of the summation:

R(s, a, δ−1(s′)) + γEr,a′∼π∗ [r − τ(a′, r, ·)] + γV M ′

π∗ (s′) (37)

= R(s, a, δ−1(s′)) + γEr,a′∼π∗ [r − τ(a, r, ·)] + γ
∑
a′∈A

π∗(s′)QM ′

π∗ (s′, a′) (38)

Since π∗ is optimal, and using the results of Theorem 1, we know that π(s′, a+) = 1 and π(s′, a) = 0 for a ̸= a+. Again,
without loss of generality, we simplify τ to r + r̂−L

γ or r − U−r̂
γ when the target action is or isn’t taken respectively. Thus

we can derive the following:

= R(s, a, δ−1(s′)) + γEa′r,∼π∗ [r − τ(a′, r, ·)] + γQM ′

π∗ (s′, ϕ(s′, a+, π∗)) (39)

= R(s, a, δ−1(s′)) + γ
r̂ − L

γ
+ γ(QM ′

π∗ (δ−1(s′), a∗) +
r̂ − L

γ
) (40)

= R(s, a, δ−1(s′)) + γQM ′

π∗ (δ−1(s′), a∗) (41)

= R(s, a, δ−1(s′)) + γV M ′

π∗ (δ−1(s′)) (42)

Here we use the shorthand a∗ = argmaxa′ [QM ′

π∗ (δ−1(s′), a′)]. Since the policy is already optimal, the optimal action
chosen by ϕ does impact the policy’s value - the policy would have chosen a∗ in δ−1(s′) without the inclusion of ϕ. We
can additionally complete this last step by the definition of the bellman equation as π∗(s′, a+) = 1. Next we can plug this
derivation back into the main equation and simplify further.

=
∑
a∈A

π∗(s, a)[(1− β)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π∗ (s′)] (43)

+ β
∑
s′∈Sp

T (s, a, δ−1(s′))[R(s, a, δ−1(s′)) + γV M ′

π∗ (δ−1(s′))]] (44)

From here, similar to (Rathbun et al., 2024), we note that the second summation is over s′ ∈ Sp, yet the term is always
inverted with δ−1. Since δ is bijective we can therefore convert the summation to one over s′ ∈ S:

=
∑
a∈A

π∗(s, a)[(1− β)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π∗ (s′)]

+ β
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π∗ (s′)]]
(45)

=
∑
a∈A

π∗(s, a)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π∗ (s′)] (46)

Therefore, by Lemma 0 we have proven the desired result. QED
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A.1.4. LEMMA 2

Lemma 2 V M ′

π (s) ≥ V M
π (s) ∀s ∈ S, π ∈ Π. Therefore, the value of any policy π in the adversarial MDP M ′ is greater

than or equal to its value in the benign MDP M for all benign states s ∈ S.

Proof. In Lemma 1 we proved that for an optimal policy π∗ in M ′, its value in benign states is maintained between the
adversarial MDP M ′ and the benign MDP M .

Here we will prove that, in general, the value of any policy π ∈ Π given a benign state s ∈ S in M ′ is greater than or
equal to its value in M . We will achieve this by first showing that, without action manipulation, the value of the policy is
maintained between M ′ and M . We will refer to this as the “base case”. Following this we will show that ϕ induces a policy
improvement over π in M ′, proving our desired result. We will begin by defining a modified version of ϕ:

ϕI(sp, a, π) = a (47)

In other words – since ϕI(sp, a, π) = a for all trigger states, actions, and policies – no action manipulation occurs. For
the sake of convenience we will notate the value of a policy under this modified ϕI as V M ′

π (s|I) and the action value as
QM ′

π (s, a|I).

Base Case - V M ′

π (s|I) = V M
π (s) ∀s ∈ S, π ∈ Π. Thus if no action manipulation occurs, then the value of any policy does

not change between M and M ′ in beingn states.

Due to the nature of this proof, many of the steps are nearly identical to the proof given for Lemma 1, with some minor
notational differences (using π instead of π∗). Thus we will provide an abridged version of the proof, with citations to the
relevant steps from Lemma 1 when relevant. Thus we quickly derive an intermediate result similar to 36:

V M ′

π (s|I) =
∑
a∈A

π(s, a)
∑

s′∈S∪Sp

T ′(s, a, s′, π)[R′(s, a, s′, ·) + γV M ′

π (s′|I)] (48)

=
∑
a∈A

π(s, a)[(1− β)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π (s′|I)]

+ β
∑
s′∈Sp

T (s, a, δ−1(s′))[R(s, a, δ−1(s′))− Er,a∼π[r − τ(a, r, ·)] + γV M ′

π (s′|I)]]
(49)

We will again focus our attention on the innermost term of the summation using the shorthand r′ = R(s′, a′, π):

R(s, a, δ−1(s′)) + Er,a∼π[r − τ(a, r, ·)] + γV M ′

π (s′|I) (50)

= R(s, a, δ−1(s′)) + γEr,a∼π[r − τ(a, r, ·)] + γ
∑
a′∈A

π(s′, a′)QM ′

π (s′, a′|I) (51)

= R(s, a, δ−1(s′)) + γEr,a∼π[r − τ(a, r, ·)]

+ γ
∑
a′∈A

π(s′, a′)[QM ′

π (δ−1(s′), ϕI(s
′, a′, π)|I) + τ(a, r′, ·)− r′] (52)

= R(s, a, δ−1(s′)) + γ(Ea,r,∼π[r − τ(a, r, ·)] +
∑
a∈A

π(s′, a′)τ(a, r′·))− r

+ γ
∑
a′∈A

π(s′, a′)QM ′

π (δ−1(s′), a′|I)
(53)

= R(s, a, δ−1(s′)) + γV M ′

π (δ−1(s′)|I) (54)

From here, plugging this piece back into our equation for V M ′

π and using similar steps to our derivation for Equation 46 we
once again arrive at a equation similar to that of V M

π (s):

V M ′

π =
∑
a∈A

π(s, a)
∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV M ′

π (s′)] (55)

Thus by Lemma 0 we have proven the desired result.
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Modeling ϕ as a policy improvement

In the “base case” we showed that the value of any policy in benign states in M ′ is equal to its value in M if no action
manipulation occurs. Here we will show that one can model the utilization of ϕ as a policy improvement over π without
action manipulation. In order to prove this result we must merely show the following:

V M ′

π (s|I) ≤ D(s)
.
= Ea∼π[Q

M ′

π (s, ϕ(s, a, π)|I)] ∀s ∈ S ∪ Sp (56)

First we will show that this inequality holds for all poisoned states sp ∈ Sp

D(sp) =
∑
a∈A

π(sp, a)Q
M ′

π (s, ϕ(sp, a, π)|I) (57)

= π(sp, a
+)[QM ′

π (δ−1(sp), a
∗|I) + τ(a+, r, ·)− r]

+
∑

a∈A\a+

π(sp, a)[Q
M ′

π (δ−1(sp), a|I) + τ(a, r, ·)− r] (58)

= π(sp, a
+)[QM ′

π (δ−1(sp), a
∗|I) + τ(a+, r, ·)− r

+ (QM ′

π (δ−1(sp), a
+|I)−QM ′

π (δ−1(sp), a
+|I))]

+
∑

a∈A\a+

π(sp, a)[Q
M ′

π (δ−1(sp), a|I) + τ(a, r, ·)− r]

(59)

= π(sp, a
+)[QM ′

π (δ−1(sp), a
∗|I)−QM ′

π (δ−1(sp), a
+|I)]

+
∑
a∈A

π(sp, a)[Q
M ′

π (δ−1(sp), a|I) + τ(a, r, ·)− r] (60)

= π(sp, a
+)[QM ′

π (δ−1(sp), a
∗|I)−QM ′

π (δ−1(sp), a
+|I)] + V M ′

π (sp|I) (61)

Here we again use the short hand a∗ = argmaxa′ [QM ′

π∗ (δ−1(s′), a′|I)]. Thus by the definition of a∗ we know the following:

π(sp, a
+)[QM ′

π (δ−1(sp), a
∗|I)−QM ′

π (δ−1(sp), a
+|I)] ≥ 0 (62)

Therefore, for all sp ∈ Sp we know that D(sp) ≥ V M ′

π (sp|I). Next we must show that this holds for benign states. This is
much easier to show as no action manipulation occurs:

D(s) =
∑
a∈A

π(s, a)QM ′

π (s, ϕ(s, a, π)|I) (63)

=
∑
a∈A

π(s, a)QM ′

π (s, a|I) = V M ′

π (s|I) (64)

Therefore V M ′

π (s|I) ≤ D(s) for all benign states s. Thus we have proven that the policy induced by ϕ in M ′ results in a
policy improvement over any policy π ∈ Π. Therefore, using the results of the base case, we know:

V M ′

π (s) ≥ V M ′

π (s|I) = V M
π (s) ∀s ∈ S (65)

Thus our desired result has been proven. QED

A.1.5. THEOREM 2

Theorem 2 V M ′

π∗ (s) ≥ V M ′

π (s) ∀s ∈ S, π ∈ Π⇔ V M
π∗ (s) ≥ V M

π (s) ∀s ∈ S, π ∈ Π. Therefore, π∗ is optimal in M ′ for
all benign states s ∈ S if and only if π∗ is optimal in M .

Proof. Here we will prove the above theorem by proving the forward and backward versions of the bi-conditional. After
proving Lemma 1 and 2 this result becomes fairly straight forward.

Forward Direction:
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Proof. Let π∗ be an optimal policy in M ′. For the purpose of contradiction assume π∗ is not optimal in M .

It follows that ∃ π′ ∈ Π, s ∈ S such that V M
π′ (s) > V M

π∗ (s).

From here, using Lemma 1 and 2, we know V M ′

π′ ≥ V M
π′ (s) > V M

π∗ (s) = V M
π∗ (s), this contradicts the fact that π∗ is optimal

in M ′. QED

Backward Direction:

Proof. Let π∗ be an optimal policy in M .

It follows that ∀ π′ ∈ Π, s ∈ S the following is true V M ′

π∗ (s) ≥ V M
π∗ (s) ≥ V M

π′ (s) ≥ V M ′

π′ (s).

Therefore π∗ must be optimal in M ′ for all benign states, thus we have proven the desired result. QED

Thus by our forward and backward proof we have proven Theorem 2. QED

A.2. More Experimental Details and Hyper Parameters

In this section we give further details on the hyper parameters and setups we used for our experimental results. In Table 5
we summarize each environment we studied, their properties, and the learning parameters we used in each experiment.
Parameters not mentioned in the table are simply default values chosen in the cleanrl (Huang et al., 2022) implementation of
PPO.

Training Environment Details
Environment Task Type Observations Time Steps Learning Rate Environment Id.

Q*Bert Atari Game Image 15M 0.00025 QbertNoFrameskip-v4
Frogger Atari Game Image 10M 0.00025 FroggerNoFrameskip-v4
Pacman Atari Game Image 40M 0.00025 PacmanNoFrameskip-v4

Breakout Atari Game Image 15M 0.00025 BreakoutNoFrameskip-v4
Highway Merge Self Driving Image 100k 0.00025 merge-v0

Safety Car Robotics Lidar+Proprioceptive 3M 0.00025 SafetyCarGoal1-v0
CAGE-2 Cyber Defense One-Hot 5M 0.0005 cage

Table 5. Further details for each environment tested in this work. All action spaces were discrete in some form, though for Safety Car a
discretized versions of its continuous action space was used. The “Environment Id.” column refers to the environment Id used when
generating each environment through the gymnasium interface (Brockman et al., 2016).

Across all our image based domains we utilized a 6x6, checkerboard pattern of 1s and 0s in the top left corner of the image
as a trigger. For Safety Car and CAGE-2 we simply append a boolean value to the end of the agent’s observation which
we set to 1 in poisoned states, or 0 otherwise. This is also summarized in Table 6. These environments in particular have
relatively low dimension and dense state spaces, making the most natural trigger unclear. Thus we implemented this boolean
indicator approach for poisoned states to make it it completely clear that there are no collisions between benign and poisoned
states in the state space – maintaining our assumption that S and Sp are disjoint. Through this design we can better isolate
and compare the poisoning strategies of each attack without additional mitigating factors caused by the design of the trigger.

We additionally chose values for βlow and βhigh to balance attack success and episodic return. At values of β higher than
βhigh one or more attacks would suffer in terms of episodic return, while at values of β lower than βlow attack success
across all three methods would begin to drop significantly. β values were chosen on a per-environment basis using the
parameters chosen by (Rathbun et al., 2024) as a starting point.

A.2.1. TROJDRL AND SLEEPERNETS PARAMETERS

Across all environments we chose hyper parameters for TrojDRL and SleeperNets which maximize the amount by which
each attack perturbs the agent’s reward. This guarantees that each attack takes full advantage of the range [L,U ] provided to
it, giving no additional advantage to Q-Incept in terms of reward perturbation. In particular, for TrojDRL we set its reward
perturbation constant, c, to 100; and for SleeperNets we set its reward perturbation factor to the max value α = 1 and its
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base reward perturbation to c = 1. For SleeperNets c is set to a value of 1 as α = 1 alone results in perturbations far outside
of [L,U ] in all environments without clipping.

A.2.2. Q-INCEPT ATTACK PARAMETERS

For the Q-Incept attack there are a few parameters the adversary has to choose in regards to the Q-function approximator Q̂.
These parameters are borrowed directly from DQN as the attack derives from a direct DQN implementation on the agent’s
benign environment interactions. In Table 6 we summarize the two relevant parameters we varied across environments,
Steps per Update and Start Poisoning Threshold. Steps per Update represents the number of benign environment steps that
would occur between each DQN update of Q̂. On Highway Merge a much lower value was needed here as the adversary
has little time to learn the agent’s Q-fuction. In contrast, for Q*Bert, the number of steps per update was very high as
the attack was very successful with little DQN optimization. The “Start Poisoning Threshold” represents the portion of
benign timesteps the PPO agent would train for before the adversary would begin poisoning. This parameter is intended to
allow the adversary’s DQN approximation to begin to converge before they begin poisoning. Otherwise the adversary’s
Q̂ would be effectively random when they start poisoning. Both parameters were chosen to balance attack performance
and computational cost. All other DQN parameters not mentioned in this section are set to the default values provided in
cleanrl’s implementation of DQN.

Environment Attack Parameters
Environment Steps per Update Start Poisoning Threshold Trigger

Q*bert 50 6.7% 6X6 Checkerboard
Frogger 50 6.7% 6X6 Checkerboard
Pacman 50 6.7% 6X6 Checkerboard

Breakout 50 6.7% 6X6 Checkerboard
Highway Merge 2 10% 6X6 Checkerboard

Safety Car 4 4.0% Boolean Indicator
CAGE-2 4 4.0% Boolean Indicator

Table 6. Comparison of Q-Incept hyper parameters used across the different environments. Here Steps per Update represents the number
environment steps per DQN update for Q̂, and Start Poisoning Threshold represents the portion of PPO training that needs to finish before
the adversary would begin poisonining.

A.3. Further Discussion

In this section we provide further discussion on design choices made in this paper which were unable to fit in the main body.

A.3.1. MOTIVATION FOR BASELINES

As mentioned in Section 6 we compare our Q-Incept attack against SleeperNets and TrojDRL as they represent the current
state of the art for ubounded reward poisoning and forced action manipulation attacks respectively. For SleeperNets there
are no other existing, ubounded reward poisoning attacks, so this decision is fairly clear. For TrojDRL there are other attacks
which utilize static reward poisoning and forced action manipulation, however most only apply to specific application
domains like competitive, multi-agent RL (Wang et al., 2021) or partially-observable settings utilizing recurrent neural
networks (Yang et al., 2019; Yu et al., 2022).

The only other, somewhat comparable attack is BadRL (Cui et al., 2023) which builds upon TrojDRL by optimizing the
adversary’s trigger pattern to achieve greater attack success. Trigger optimization is effective but orthogonal to the goals of
this work as it can be generically applied to any attack. Furthermore, (Rathbun et al., 2024) showed that BadRL without this
trigger fine-tuning often performs worse than TrojDRL, likely since it uses methods to poison the most important – and thus
hardest to poison – states in the MDP. Taking all of this into consideration we decided to omit BadRL from our empirical
study. Therefore TrojDRL is the best baseline to use when comparing against static reward poisoning attacks using forced
action manipulation.

A.3.2. MOTIVATION FOR ENVIRONMENTS

In this paper we study 4 environments – Q*Bert, Frogger, Safety Car, CAGE-2, and Highway Merge. In the TrojDRL paper
the authors focused their empirical studies towards Atari game tasks in the gym API (Brockman et al., 2016). We think it is
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useful to include some of these environments like Q*Bert, as they are standard baselines for RL in general, however we
believe it is critical to extend this study to further domains when studying the potential impacts of adversarial attacks. This
belief is supported by the findings of (Rathbun et al., 2024) who showed that TrojDRL – which consistently attains near
100% ASR on Atari environments without bounded reward poisoning constraints – often fails to achieve high ASR when
tested on non-Atari environments.

Thus, to extend our study beyond the confines of Atari, we chose three other environments within the gymnasium API,
allowing our code to work seamlessly between environments. We first chose Highway Merge since it seemed to be the most
difficult environment for attacks to poison based upon the results of SleeperNets. Next we chose CAGE-2 as it not only
represented a safety and security-critical domain, being an application of RL to cyber-network defense, but also because
it uses non-image observations. Lastly we selected Safety Car, also from the environments studied in SleeperNets, as it
represents a simulation of real-world, robotic applications of RL and, similar to CAGE-2, uses non-image observations.

A.3.3. COMMENTS ON COMPUTE OVERHEAD

Training the Q-network used in Q-Incept does cause some computational overhead which may be detectable, but fortunately
it isn’t too extreme. We ran tests on a desktop machine (2x RTX 4090, Threadripper 7980x) and found that SleeperNets,
TrojDRL, and Q-Incept run at 1038, 987, and 730 simulation steps per second respectively against Atari Q*bert. However,
our Q-network training runs in series with our PPO training, so it’s likely that significant performance increases can be
found for Q-Incept by training in parallel.

A.4. Further Experimental Results and Analysis

A.4.1. Q-INCEPT AGAINST DQN

In Table 7 we present some preliminary results of Q-Incept against DQN. The results show that Q-Incept works well
against both on policy (PPO) and off policy (DQN) methods. A better choice of metric FQ̂ may be necessary to maximize
performance against DQN, however. For this experiment we slightly alter the methodology of Q-Incept. Instead of poisoning
data after each episode and storing it in the agent’s replay buffer, we instead poison data points after they’re sampled from
the replay buffer. The reason for this is that the agent’s policy along with the Q-Network of Q-Incept change throughout
training, therefore datapoints that were poisoned early in training may become less effective as training progresses. In the
case of PPO this wasn’t an issue, since trajectories are only used once and then discarded. For DQN, however, trajectories
are stored over a longer time horizon during training, so we need to account for this as an attacker. Equivalently the attacker
could keep track of all the data points it has poisoned and properly update them over time.

Beta ASR StDev(ASR) BR StDev(BR)
0% (No Poisoning) N/a N/a 13,724 974

0.5% 92.6% 4.1% 14,092 1,127
1.0% 88.5% 3.4% 13,574 910

Table 7. Performance of Q-Incept against DQN agents training on Atari Q*bert. Results are averaged over 5 runs.

A.4.2. Q-INCEPT AT DIFFERENT POISONING RATES

In this section we evaluate the Attack Success Rate performance of Q-Incept at lower β values along with the stability of the
agent’s Benign Return at higher β values. First, in Table 8 we evaluate Q-Incept on Atari Q*bert at β values lower than
those presented in the main body of the paper. We can see that even at a poisoning rate as low as β = 0.03% Q-Incept is
still able to achieve near 100% ASR. This is in line with the performance of methods like SleeperNets which presented
similar results at β = 0.03% while operating under unconstrained rewards. β = 0.03% seems to be the minimum necessary
poisoning rate for Q-Incept on Q*bert however, as the attack success rate drops off dramatically at β = 0.01%.

In Table 9 we compare Q-Incept to the baselines on the CAGE-2 environment to study their stability at higher β values.
We see that Q-Incept is the only method that improves in ASR as β increases, and is also the most stable in terms of BR –
never falling below -50.98%. In contrast, SleeperNets and TrojDRL are both highly inconsistent in terms of BR – falling to
−57.82 and −64.41, respectively – while also failing to achieve an ASR above 6%, even at β = 2%.
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Beta ASR StDev(ASR) BR StDev(BR)
0.3% 100% 0% 18,381 882
0.1% 100% 0% 17,749 1,380

0.05% 100% 0% 17,937 1,304
0.03% 98.3% 2.9% 16,573 873
0.01% 21.1% 6.2% 16,374 2,088

Table 8. Performance of Q-Incept at lower poisoning rates against a PPO agent training on Q*bert.

β 0.5% 1% 1.5% 2%
Metric ASR σ ASR σ ASR σ ASR σ

Q-Incept 30.06% 15.01% 93.21% 15.13% 100% 0.00% 98.62% 2.14%
SleeperNets 0.00% 0.00% 0.06% 0.12% 0.54% 0.89% 1.86% 3.21%

TrojDRL 0.00% 0.00% 5.64% 7.73% 2.24% 3.74% 5.11% 4.99%
Metric BR σ Br σ BR σ BR σ

Q-Incept -48.64 16.68 -45.49 8.04 -50.98 7.37 -49.41 7.50
SleeperNets -57.82 8.38 -50.18 8.52 -41.44 11.59 -50.67 9.16

TrojDRL -39.28 9.60 -53.11 8.71 -52.77 13.54 -64.41 10.63

Table 9. Comparison of Q-Incept, SleeperNets, and TrojDRL on CAGE at different values of β.

A.4.3. Q-INCEPT WITH AN ORACLE Q-NETWORK

We noticed that Highway Merge was the only environment on which Q-Incept was unable to attain an average ASR above
90%, leading us to question if our Q-function based approach was incorrect or if our online DQN approximation Q̂ wasn’t
converging quickly enough. To test this we devised Oracle-Incept – which uses an oracle Q-function pre-trained with DQN
until convergence – as a hypothetical, stronger attack by an adversary with direct access to the benign MDP. In Figure 7 we
can see that Oracle-Incept improves greatly over Q-Incept, reaching an average ASR of 93.38%. This indicates that better
Q-function approximations lead to better performance - validating that both our chosen metric and attack approach scale
properly with the accuracy of Q̂. Thus, adversaries capable of using Q-function estimations with faster convergence can
expect greater attack success.

Figure 7. Comparison between Q-Incept, Oracle-Incept, TrojDRL, and SleeperNets on Highway Merge at β = 10%. We can see that the
Oracle-Incept shows significant improvements in ASR.

A.4.4. TRAINING PLOTS FOR REMAINING ENVIRONMENTS

Here in Figure 8, Figure 9, Figure 10 and Figure 11 we present the training curves for TrojDRL, Q-Incept, and SleeperNets
on the Frogger, Pacman, Breakout and Safety Car environments respectively. Plots for Q*Bert are found in Figure 4,
CAGE-2 can be found in Figure 3, and Highway Merge in Figure 7. We can see that all attacks perform similarly over time
in terms of episodic return on both environments, but Q-Incept is the only attack to reach 100% ASR on average in both
environments – doing so very quickly.
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Figure 8. Performance of TrojDRL, Q-Incept, and SleeperNets on Frogger at β = 0.3%

Figure 9. Performance of TrojDRL, Q-Incept, and SleeperNets on Pacman at β = 0.3%

A.4.5. HOW OFTEN DOES Q-INCEPT ALTER THE AGENT’S ACTIONS?

Here we explore how often Q-Incept chosen actions in the agent’s replay memory D. We measure this ratio as the number
of actions changed divided by the total number of timesteps the attack has poisoned. In Figure 12 and Figure 13 we see that
the attack generally balances its action poisoning over time, altering actions on roughly 50% of the time steps it poisons.
In the case of CAGE-2 this does not hold however, as the adversary starts by altering around 50% of actions, but ends up
altering ∼ 87% of actions by the end. To us this indicates that the difference in values between good and bad actions was
much larger in CAGE-2 than in other environments, and furthermore that the agent was highly likely to choose these actions
over others as training progressed. Since our proposed metric FQ̂ weighs time steps by the relative value of the action taken
over all possible values, it makes sense that this would result in a high action manipulation ratio on CAGE-2.
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Figure 10. Performance of TrojDRL, Q-Incept, and SleeperNets on Breakout at β = 0.3%

Figure 11. Performance of TrojDRL, Q-Incept, and SleeperNets on the Safety Car environment at β = 0.1%
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Figure 12. Ratio of actions changed across poisoned states in our four Atari environments – (from top left to bottom right) Q*bert, Frogger,
Pacman, and Breakout. Values are measured as the ratio of actions changed to the total number of poisoned timesteps.

Figure 13. Ratio of actions changed across poisoned states in our three non-Atari environments – (frop top left to bottom) CAGE, Highway
Merge, and Safety Car. Values are measured as the ratio of actions changed to the total number of poisoned timesteps.
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