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Abstract

Chart understanding requires models to effec-
tively analyze and reason about numerical data,
textual elements, and complex visual compo-
nents. Our observations reveal that the per-
ception capabilities of existing large vision-
language models (LVLMs) constitute a criti-
cal bottleneck in this process. In this study,
we delve into this perception bottleneck by de-
composing it into two components: the vision
encoder bottleneck, where the visual represen-
tation may fail to encapsulate the correct infor-
mation, and the extraction bottleneck, where
the language model struggles to extract the
necessary information from the provided vi-
sual representations. Through comprehensive
experiments, we find that (1) the information
embedded within visual representations is sub-
stantially richer than what is typically captured
by linear extractors, such as the widely used
retrieval accuracy metric; (2) While instruc-
tion tuning effectively enhances the extraction
capability of LVLMs, the vision encoder re-
mains a critical bottleneck, demanding focused
attention and improvement. Therefore, we fur-
ther enhance the visual encoder to mitigate the
vision encoder bottleneck under a contrastive
learning framework. Empirical results demon-
strate that our approach significantly mitigates
the perception bottleneck and improves the abil-
ity of LVLMs to comprehend charts.

1 Introduction

Charts are essential for representing and analyzing
data, commonly appearing in scientific papers, fi-
nancial reports, and news articles. Unlike natural
images, where semantic content is often apparent
through object recognition, charts encode dense
quantitative and relational information via visual
elements such as bars, lines, and points, along with
their spatial relationships. This information-dense
property creates higher perception challenges for
large vision-language models (LVLMs), which, de-
spite success in general visual understanding tasks

(Alayrac et al., 2022; Li et al., 2023; Liu et al.,
2024b), often struggle with chart understanding
(Masry et al., 2022; Xu et al., 2023; Xia et al.,
2024; Wang et al., 2024; Huang et al., 2024), as
demonstrated in Figure 1.

In this work, we systematically examine the
perception bottleneck of LVLMs by analyzing it
through two key components: the vision encoder
and the language model. Specifically, we define
perception as the model’s ability to accurately ex-
tract visual information from an image. For most
LVLMs equipped with a dedicated vision encoder,
the process of perceiving visual signals can be bro-
ken down into two stages: first, the vision encoder
encodes the image into compact vector represen-
tations; second, the language model extracts the
relevant information from these encoded vectors.
Accordingly, we decompose the perception bot-
tleneck into two categories: the vision encoder
bottleneck and the extraction bottleneck. Our
objective is to investigate how these two distinct
bottlenecks impact the overall perception capability
of LVLMs and how to mitigate them.

We begin our study of the vision encoder bottle-
neck by evaluating the chart understanding ability
of CLIP, a widely used vision encoder in many
LVLMs (Liu et al., 2024a,b; Laurencon et al.,
2024). Specifically, we construct an image-text re-
trieval test set using existing chart-specific datasets
and assess CLIP with the standard retrieval accu-
racy. We find the CLIP performs nearly random
retrieval accuracy on these chart datasets, which
suggests it may experience significant information
loss, as several prior studies use CLIP’s retrieval ac-
curacy as an indicator of the information contained
in its visual embeddings (Tong et al., 2024; Deng
et al., 2024). While some researchers attribute this
failure to CLIP’s inductive bias or intrinsic limita-
tions (Tong et al., 2024; Kamath et al., 2023), we
successfully develop enhanced CLIP models with
substantially improved retrieval accuracy. Specifi-
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Figure 1: An example of perception QA from the PlotQA dataset (Methani et al., 2020), along with the responses
from GPT4-0 (Achiam et al., 2023), MiniCPM (Yao et al., 2024), and Idefics2 (Laurencon et al., 2024) for this
example. (The chart has been redrawn for clarity in presentation.)

cally, we fine-tune CLIP on chart-specific datasets
within a contrastive learning framework and incor-
porate hard negative captions (Yuksekgonul et al.,
2022). The gains of over 20 absolute points in our
enhanced CLIP strongly suggest that CLIP can in-
deed learn subtle or non-semantic features through
further contrastive learning.

To investigate the extraction bottleneck in the
language model part, we shift our focus to LVLMs
built on top of these CLIP vision encoders. Specifi-
cally, we conduct LLaVA-style training (Liu et al.,
2024a) combined with chart-specific instruction
tuning. Our initial observations reveal that LVLMs
trained with the LLaVA data perform poorly on
chart understanding tasks, while achieving sub-
stantial improvement further fine-tuned on chart-
specific data, even with the vision encoder kept
frozen. This finding not only indicates that domain-
specific instruction tuning effectively addresses the
extraction bottleneck, but more interestingly, it sug-
gests that poor CLIP retrieval accuracy does not
necessarily indicate a lack of useful encoded infor-
mation.

In contrast, evaluating across seven chart-related
benchmarks, spanning both in-distribution and
out-of-distribution scenarios, our enhanced CLIPs-
based LVLMs further achieve larger gains due to
the mitigation of the vision encoder bottleneck.
Notably, compared to the original CLIP-based
LVLMs, the enhanced CLIP-based models using
the LLaVA-v1.5-13B architecture achieve an av-
erage improvement of nearly 3 points, while the
model employing the LLaVA-v1.5-Phi-3.8B archi-
tecture demonstrates an even more significant im-
provement of 5 points.

Finally, we conduct an in-depth analysis to un-
derstand how the superior performance of CLIP

translates to its LVLM counterpart. By scaling
instruction tuning on larger chart datasets and ana-
lyzing CLIP-LLaVA correctness statistics, we ob-
serve that samples correctly classified by CLIP are
more easily learned by the LVLM, suggesting that
the more salient representations obtained from the
enhanced CLIP facilitate better LVLM learning.
These findings further raise rethinking about infor-
mation encoding in CLIP and its effect on LVLMs.

2 The Challenge of Chart Understanding

To better illustrate the perceptual challenges in
chart understanding, we examine one concrete per-
ception QA example from PlotQA (Methani et al.,
2020). As shown in Figure 1, to answer “What
is the Revenue generated (in %) of Russian Fed-
eration in 2006?”, models need to: (1) correctly
match the dotted green line with its legend label,
(2) locate the intersection point between this line
and the vertical line at 2006, and (3) accurately
map this point to the y-axis scale to obtain the
value (~ 24%). While humans can perform this vi-
sual reasoning process effortlessly, current models
like GPT4-0 (Achiam et al., 2023), MiniCPM (Yao
et al., 2024) and Idefics2 (Laurencon et al., 2024)
often struggle with such perception tasks as demon-
strated in Figure 1. Unlike natural images, chart un-
derstanding presents unique perception challenges
as it requires accurately encoding and processing
dense quantitative information encoded in visual
elements.

Recent studies have quantitatively revealed these
perceptual limitations through new chart-specific
benchmarks (Xu et al., 2023; Wang et al., 2024;
Xia et al., 2024). To better understand the sources
of these limitations, we decompose the perception
bottleneck into two key components. (1) The vi-
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Figure 2: Left: A CLIP-blind case where the original CLIP fails to discriminate the number of bars in the chart. By
leveraging contrastive learning with hard negatives, the enhanced CLIP model learns more discriminative visual
features successfully. Right: When adapted to LVLMs, after instruction tuning, the original CLIP-LVLMs are
possible to correctly interpret the chart information even when the original CLIP fails to discriminate it. However,
the enhanced CLIP-LVLMs enable faster learning and achieve higher overall performance.

sion encoder bottleneck: This occurs when the vi-
sion encoder fails to encode critical information
from the image into its embeddings, leading to in-
evitable failures in downstream LVLM tasks. (2)
The extraction bottleneck: Even when the image
embeddings contain the necessary information, the
LLM struggles to extract and interpret them cor-
rectly, resulting in erroneous outputs. In our study,
we investigate the impact of these two bottlenecks
and propose strategies to mitigate them on the chart
understanding task. Next, we start by analyzing the
vision encoder bottleneck.

3 The Vision Encoder Bottleneck:
Investigating and Improving CLIP

As CLIP (Radford et al., 2021) serves as the vi-
sion encoder in most LVLMSs (Liu et al., 2024a,b;
Laurencon et al., 2024; Zhu et al., 2024), we focus
on CLIP to investigate the vision encoder bottle-
neck. In this section, we construct a framework for
training and evaluating CLIP’s chart understanding
abilities.

3.1 Background of CLIP

The CLIP model consists of an image encoder and a
text encoder, which map paired image and text data
into corresponding vector representations. It em-
ploys contrastive learning to align these representa-
tions in a shared embedding space. The training ob-
jective maximizes the similarity between matched
image-text pairs while minimizing it for unmatched

pairs, effectively bridging visual and textual modal-
ities for robust cross-modal understanding.

3.2 CLIP Evaluation

For CLIP evaluation, we implement an Image-to-
Text Retrieval task. Specifically, given an input
image, the task is to retrieve the correct caption
along with several hard negative ones. The hard
negative captions are specifically crafted to resem-
ble the positive captions while being incorrect, as
described in the later §3.4. This retrieval evalua-
tion is performed using the test sets from five chart-
related datasets: FigureQA (Kahou et al., 2017),
DVQA (Kafle et al., 2018), PlotQA (Methani et al.,
2020), ChartQA (Masry et al., 2022), and Chart-
Bench (Xu et al., 2023).

We select the CLIP-ViT-L/14-336px (Radford
et al., 2021) model in our study, as its vision model
is widely used in LVLMs such as InstructBLIP,
LLaVA and LLaVA-Phi (Dai et al., 2023; Liu et al.,
2024b,a; Zhu et al., 2024). The retrieval evaluation
results are presented in Table 1.

Original CLIP Exhibits Poor Retrieval Perfor-
mance While prior research has demonstrated
that the original CLIP model achieves over 70%
accuracy on ImageNet classification, its retrieval
performance on chart-related datasets is notably
poor, with results approaching random guessing on
benchmarks such as FigureQA and DVQA. This
can be attributed to the fact that the original CLIP



Table 1: Image-to-Text retrieval evaluation accuracy on original CLIP-ViT-L/14-336px and fine-tuned CLIPs.
DVQA-E indicates DVQA Easy, and DVQA-H indicates DVQA Hard. Improvements in the “Avg.” column are

marked with 1 compared to the CLIP baseline.

Method Avg. ‘ FigureQA DVQA-E DVQA-H PlotQA ChartQA ChartBench
Random 21.3 50.0 25.8 25.6 8.9 12.8 4.8
CLIP 25.5 48.6 28.9 27.2 22.1 18.8 7.4
+ Fine-tuning 41.5 1160 64.4 54.9 53.9 424 23.7 9.5
+ Neg. Cap.  51.4 1250 82.0 65.2 61.0 54.1 29.7 16.2

model, pretrained on web-crawled image-caption
corpora, contains limited high-quality chart-related
data. The poor retrieval accuracy is often inter-
preted as a sign of information loss in the encoded
images (Kamath et al., 2023; Tong et al., 2024),
suggesting the vision encoder bottleneck. How-
ever, as we will discuss later in §4.2, we further
study it and find that low retrieval accuracy does
not necessarily imply information loss.

3.3 CLIP Improvement

Observing the poor performance of the original
CLIP, we explore methods to improve the chart
understanding capabilities of CLIP. The first ap-
proach we try is to continue training CLIP on chart
images with the original CLIP loss. Inspired by
NegCLIP (Yuksekgonul et al., 2022), which demon-
strated that CLIP’s failures may stem from learning
shortcuts during training, we further implement an-
other variant that incorporates hard negative sam-
ples into our training process. The hard negative
captions help push the model to learn more discrim-
inative features. Our strategies for constructing
these hard negatives will be detailed in the follow-
ing section §3.4.

For training data, we exclude reasoning-type
questions from the PlotQA dataset, as they are not
suitable for CLIP training and deviate from our
primary objective of analyzing CLIP’s impact on
LVLM’s perceptual capabilities. In addition to the
mentioned chart-related datasets, we incorporate
additional datasets such as CLEVR (Johnson et al.,
2017), MapQA (Chang et al.), and VQAv2 (Goyal
et al., 2017), resulting in a training set of approxi-
mately 8 million samples. Detailed statistics of the
training data are provided in Appendix A.l. Since
most of these datasets consist of question-answer
pairs, we utilize Llama3-8B-Instruct (Dubey et al.,
2024) to convert the question-answer pairs into as-

sertive sentences, which are used as training and
evaluation captions.

3.4 Constructing Hard Negative Captions

Yuksekgonul et al. (2022) introduced NegCLIP by
perturbing word order to construct hard negative
captions, forcing CLIP to enhance relational under-
standing. Similar approaches have been applied to
the fine-grained conceptual understanding of color,
object, location, and size (Rosch et al., 2024). In
this work, we adapt the NegCLIP methodology to
the domain of chart understanding. The process
begins by synthesizing incorrect answers, which
are then converted into assertive captions using
LLama3-8B-Instruct. These incorrect captions are
used as hard negatives to compel CLIP to better
understand and distinguish between relevant chart
information.

During the synthesis of incorrect answers, we
employ several strategies. For binary answers, we
systematically flip responses (e.g., changing “yes”
to “no”). For numerical answers in datasets like
PlotQA, we programmatically generate incorrect
values by introducing error ranges between 5%
and 80% of the ground truth, as Figure 3 shows.
For questions about chart titles, like in PlotQA,
LLama3-8B-Instruct generates plausible but incor-
rect responses. Further details of the hard neg-
ative captions for all datasets are shown in Ap-
pendix A.2.

3.5 Performance of Enhanced CLIP

As in previous experiments, we use the CLIP-ViT-
L/14-336px (Radford et al., 2021) model. The
model is trained with a batch size of 64, a learning
rate of 5 x 1079, for 3 epochs on our collected
training data, which consists of approximately 8
million samples. The retrieval evaluation results
are also presented in Table 1.
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Figure 3: An example of Caption and hard negative
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Figure 4: CLIP retrieval accuracy while scaling training
data size, on the average of five datasets: FigureQA,
DVQA-Easy&Hard, PlotQA, ChartQA, Chartbench.

Fine-tuned CLIP Significantly Improves Re-
trieval Accuracy Compared to the original CLIP,
both fine-tuned models (with and without hard
negatives) show significant improvements in re-
trieval performance. Furthermore, NegCLIP (CLIP
fine-tuned with neg. cap.) achieves the largest
improvement, surpassing 26 points across these
datasets. Training data scaling experiments, shown
in Figure 4, illustrate that the performance of fine-
tuned CLIP improves steadily with larger training
datasets, while NegCLIP consistently outperforms
the other models. We conclude that incorporat-
ing hard negative captions effectively forces CLIP
to learn more accurate and relevant chart informa-
tion, similar to the success of NegCLIP in previ-
ous works (Yuksekgonul et al., 2022; Rosch et al.,
2024).

While prior research has identified limitations of
CLIP in handling subtle visual patterns (Tong et al.,
2024) and spatial reasoning (Kamath et al., 2023),
often attributing these issues to its inductive biases,
our improvements in classifying subtle chart type
features demonstrate that such limitations can be
mitigated through data-centric contrastive learning.

4 The Extraction Bottleneck: Connecting
CLIP to LVLM

Upon finishing our study of CLIP for the vision
encoder bottleneck, we shift our focus to the ex-
traction bottleneck to understand how these CLIP
models impact LLaVAs. Having observed the poor
performance of the original CLIP and the improved
performance of fine-tuned CLIPs, we aim to answer
two questions:

* Does the failure of CLIP retrieval cause the fail-
ure of LLaVAs that are based on it?

* What is the impact of enhanced CLIPs on the
performance of LLaVAs?

4.1 Experimental Setup

Training  Setup Following LLaVA-v1.5-
13b (Liu et al., 2024a) and LLaVA-Phi (Rasheed
et al., 2024), we use Vicuna-13b (Chiang et al.,
2023) or the Phi-3-mini (Abdin et al., 2024) of
3.8B parameters as the base LLM and employ a
two-layer MLP connector to map CLIP’s image
embeddings into the LLM’s input space. Our
training process consists of three stages. First, we
pretrain the connector on 558K image-caption
pairs from the LLaVA training dataset, keeping
both the CLIP vision encoder and the LLM fixed.
In the second stage, we conduct visual instruction
tuning on 665K instruction samples, also derived
from the LLaVA dataset. Finally, in the third stage,
we perform chart-specific tuning on a dataset of
250K chart samples, including FigureQA, DVQA,
PlotQA, ChartQA, and Chart2Text (Kantharaj
et al., 2022), resulting in the LLaVA-Chart-13B
and LLaVA-Chart-Phi models. In both the second
and third stages, we explore two strategies:
freezing or unfreezing the CLIP vision encoder.

Evaluation Setup We sample 25K examples sep-
arately from the test sets of FigureQA, DVQA, and
PlotQA for evaluation. For FigureQA and DVQA,
we use exact match accuracy as the evaluation met-
ric. For numerical answers in PlotQA, we adopt
a relaxed correctness criterion, considering a pre-
diction correct if it falls within 5% of the ground
truth, following prior works (Methani et al., 2020).
For ChartQA, we use its 2.5K test set and apply the
same relaxed correctness criterion for numerical
answers. Similarly, for ChartBench, we focus on
QA tasks and split the dataset into two subtasks: bi-
nary QA (Yes/No answers) and 2.1K numerical QA



Table 2: Evaluation accuracy of LLaVA-v1.5-13B, LLaVA-Chart-13B and LLaVA-Chart-Phi based on different
CLIPs. The first result row, labeled "LLaVA," corresponds to LLaVA-v1.5-13B without chart-specific tuning.
“Binary” indicates tasks with Yes/No answers. “Frozen” and "Unfrozen" refer to whether the CLIP model is frozen
during LLaVA training. “FT.CLIP” represents the fine-tuned CLIP without hard negative captions, while “NegCLIP”
refers to the CLIP trained with hard negative captions. The A rows report per-benchmark performance gains of

Unfrozen-NegCLIP compared to Unfrozen-CLIP.

VLM Vision Ave. |FigureQA'° DVQA  PlotQA ChartQA ChartBench MathVista ChartX
Encoder | Binary Easy Hard QA QA  Binary QA FQA ALL QA
N CLIP - 486 289 272 2211 18.8 74 - -
= FT.CLIP ; 644 549 539 424 237 X . -
O NegCLIP ; 820 652 61.0 54.1 29.7 - 162 - - -
LLaVA Frozen-CLIP 259| 512 258 253 126 183 530 97 231 270 127
T Frozen-CLIP = 5327 ~ 784 T 7199 754 T 41777 T 530 734 264 494 340 201
2 Unfrozen-CLIP 536| 789 797 749 417 531 732 278 509 361 19.6
<« Frozen-FT.CLIP" ~ = ~548| 838 ~ 843 787 ~ 438 ~ 543 ~ 731 263 480 344 212
Z & UnfrozenFT.CLIP 552 834 844 789 441 546 732 269 494 357 208
=&  Frozen-NegCLIP 560| 862 861 809 448 549 721 271 520 346 215
Unfrozen-NegCLIP  56.2| 860 863 80.7 45.1 550 728 269 524 354 214
A over Unfrozen-CLIP +2.6 +7.1 +6.6 +5.8 +34 +1.9 -04 -09 +15 -0.7 +1.8
Frozen-CLIP 494 721 761 706 389 480 709 233 435 334 175
= Unfrozen-CLIP 493 713 767 705 385 481 717 238 405 337 18.1
< % “Frozen-FT.CLIP" ~ =~ ~ 520 ~ 793 ~ 81.8 752 ~ 417 ~ 497  ~ 71.8 233 454 342 178 ~
2 £ UnfrozenFT.CLIP  51.7| 786 817 748 415 494 711 235 461 331 175
=&  Frozen-NegCLIP s41| 850 850 783 425 513 712 242 494 349 190
Unfrozen-NegCLIP  54.3| 851 849 77.6 42.6 51.0 709 248 50.6 356 19.5
A over Unfrozen-CLIP +5.0| +13.8  +82 +7.1 +4.1 +29 08 +1.0 +10.1 +1.9 +1.4

samples, applying relaxed correctness for the lat-
ter. Additionally, to evaluate generalization perfor-
mance, we include the MathVista benchmark (Lu
et al., 2024) and ChartX (Xia et al., 2024).

4.2 Poor Retrieval Performance Does Not
Imply Limited Information Encoding

Our experimental results (Table 2) show that
LLaVA, without the third-stage chart-specific tun-
ing, performs poorly on chart benchmarks, achiev-
ing lower accuracy than the original CLIP retrieval
performance. After chart-specific tuning, LLaVA
based on the original CLIP can learn these chart
tasks successfully, even when the CLIP is frozen,
indicating the improved extraction ability. For
instance, LLaVA-Chart-13B achieves 78% accu-
racy on FigureQA, despite its CLIP nearly ran-
dom retrieval accuracy on the same dataset in Ta-
ble 1. Moreover, we observe that unfreezing the
vision encoder provides only a minor improve-
ment. Importantly, the success of the original CLIP-
LLaVA training suggests that the original CLIP
is not “blind”; poor retrieval performance does
not necessarily indicate a lack of encoded infor-
mation within CLIP’s image embeddings. Prior
works (Tong et al., 2024; Kamath et al., 2023)
have likely overemphasized the concept of CLIP’s

blindness. We hypothesize that retrieval accuracy
primarily reflects the linear properties of CLIP’s
image and text embeddings, as similarity computa-
tion in retrieval tasks relies on cosine similarity or
dot product, which are inherently linear operations.
However, when integrated into an LVLM, the LLM
component—acting as a more powerful informa-
tion processor—can extract and utilize non-linear
features from CLIP’s image embeddings. Similar
observations have been reported in recent work (Li
et al., 2024), indicating that retrieval accuracy may
be an inadequate proxy for assessing the vision
encoder bottleneck.

To further validate this conclusion, we conducted
an ablation study by training LLaVA with randomly
initialized CLIP weights. Notably, the model failed
to converge during the final chart-specific fine-
tuning stage (details in the Appendix B.1). This
confirms that the original CLIP, despite their as
poor as random retrieval performance, provides
crucial visual information for successful LVLM
training.

4.3 Enhanced CLIPs Elevate LVLMs
Performance

The success of the original CLIP-LLaVA makes
the relationship between CLIP and LLaVA per-
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Figure 5: LLaVA training data scaling results, averaged
over five datasets: FigureQA, DVQA-E&H, PlotQA,
ChartQA, and ChartBench, for LLaVAs based on differ-
ent CLIP vision encoders (the original CLIP, FT.CLIP,
and NegCLIP).

formance less intuitive. To explore the impact
of enhanced CLIPs on LVLMs, we conducted
the same training experiments using these en-
hanced CLIPs as vision encoders. Our findings
reveal that LLaVAs based on enhanced CLIPs
consistently achieve significantly better perfor-
mance. Consistent with the results from the CLIP
evaluation (§3.2), NegCLIP-LLaVAs demonstrate
the best performance across most benchmarks.
Specifically, for in-distribution datasets, NegCLIP-
LLaVAs achieve improvements exceeding 5 ab-
solute points on FigureQA, DVQA, and PlotQA.
Additionally, the improvements observed on Math-
Vista and ChartX highlight the generalization ca-
pability of LLaVAs built upon our enhanced CLIP
models. On average, compared to the Unfrozen-
CLIP baseline, models based on NegCLIP exhibit
notable gains: LLaVA-Chart-13B improves by 2.6
absolute points, while LLaVA-Chart-Phi achieves
an even larger improvement of 5.0 absolute points.
Additionally, data scaling experiments during the
third-stage chart-specific tuning, illustrated in Fig-
ure 5, demonstrate consistent performance improve-
ments with increased training data. Across the
scaling process, NegCLIP-LLaVAs consistently
achieve the highest performance.

These results confirm that while chart-specific
tuning helps mitigate the extraction bottleneck, ad-
dressing the vision encoder bottleneck remains
critical for achieving greater performance gains.
We hypothesize that enhanced CLIP encodes more
salient information in its image representations,
thereby making LVLM training easier. Further in-
sights are discussed in §5.3.

Table 3: Performance results on DVQA-Easy, DVQA-
Hard, and PlotQA for different CLIP vision encoder-
based LLaVA-Specific models trained on large-scale
chart-specific datasets (800K samples from either
DVQA or PlotQA). Improvements (1) are shown rela-
tive to the LLaVA-Specific baseline.

Model ‘DVQA-E DVQA-H PlotQA
LLaVA-Specific 95.1 74.4 58.9
FT.CLIP-LLaVA-Specific [95.3 76.6 59.5
NegCLIP-LLaVA-Specific|96.0 t09 78.2 1358 60.0 1 1.1

S Scaling Chart Understanding Tuning

In this section, we scale up task-specific training
data to 800K samples per dataset to fully mitigate
the extraction bottleneck, enabling the performance
of LVLMs to directly reflect the extent of informa-
tion encoded by CLIP.

Specifically, we conduct training for both CLIP
and LLaVA using the DVQA and PlotQA datasets
separately, leading to the two specialized mod-
els: LLaVA-PlotQA and LLaVA-DVQA. For CLIP
training, we utilize a total of 2 million samples
from DVQA and 3 million samples from PlotQA.
We still incorporate both standard training data and
hard negative variants, following the hard negative
generation strategy and hyperparameter configura-
tion detailed in Section 3.4. For LLaVA training,
we adhere to the three-stage training process using
the LLaVA-v1.5-13B model, as outlined in Sec-
tion 4.1. In the third and final chart-specific tuning
stage, we train LLaVA models using 800K sam-
ples from each dataset separately, allowing us to
systematically investigate the performance ceiling
under this setting.

5.1 Experimental Results

As shown in Table 3, scaling the training data to
800K samples per dataset significantly improves
performance on specific tasks by further mitigating
the extraction bottleneck. Despite being trained on
much larger task-specific datasets, our enhanced
CLIPs still achieve a higher LVLM performance
ceiling. Notably, NegCLIP-LLaVA surpasses its
original CLIP-based counterparts by an additional
1 absolute point on PlotQA and DVQA-Easy, and
4 absolute points on DVQA-Hard. Detailed per-
formance scores throughout the training process
are provided in Appendix B.2. The superior perfor-
mance observed after large-scale instruction tuning
suggests that enhanced CLIPs encode more use-
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Figure 6: Analysis of large-scale LLaVA SFT data scaling on PlotQA and DVQA-Easy&Hard, evaluating two
metrics: Correct-Retrieval LLaVA Accuracy (CRLA) and Incorrect-Retrieval LLaVA Accuracy (IRLA) for both the

original CLIP-LLaVA and NegCLIP-LLaVA.

ful information, thereby contributing to a higher
LVLM performance ceiling.

5.2 Statistics on CLIP and LLaVA Behavior

To discover deeper insights into how CLIP retrieval
capabilities translate into LLaVA task-specific per-
formance, we analyze the statistics between CLIP
retrieval correctness and LLaVA task correctness
across these scaling experiments. Specifically,
we use NegCLIP and examine two metrics: (1)
Correct-Retrieval LLaVA Accuracy (CRLA):
LLaVA accuracy when NegCLIP retrieves samples
correctly. (2) Incorrect-Retrieval LLaVA Accu-
racy (IRLA): LLaVA accuracy when NegCLIP
retrieves samples incorrectly. We analyze these
two metrics using the original CLIP-LLaVA and
the NegCLIP-LLaVA which are fine-tuned on the
large-scale PlotQA or DVQA dataset. The results
are illustrated in Figure 6.

Results The analysis reveals that CRLA is sig-
nificantly higher than IRLA, indicating that sam-
ples correctly retrieved by NegCLIP are easier for
LLaVA to learn. Moreover, during the early stages
of instruction training, NegCLIP-LLaVA exhibits
a markedly higher CRLA than the original CLIP-
LLaVA, which is the primary source of the perfor-
mance gap. This intuitive “CLIP Can, LLaVA Can”
observation suggests that NegCLIP encodes more
salient features, enabling LLaVA to learn faster and
more effectively.

As training data scales, the difference in CRLA
between NegCLIP-LLaVA and original CLIP-
LLaVA decreases, reflecting a narrowing perfor-
mance gap. Meanwhile, for both the original CLIP-
LLaVA and NegCLIP-LLaVA, IRLA steadily im-
proves, suggesting that LLaVA can progressively
leverage additional non-linear information beyond
what is explicitly indicated by retrieval accuracy.

5.3 Rethinking Information Encoding in
CLIP

Finally, we reconsider how CLIP encodes informa-
tion in relation to its retrieval accuracy. Retrieval
accuracy primarily reflects the linear properties of
the image embeddings due to the similarity in re-
trieval task operates within a linear space. How-
ever, when the CLIP vision encoder is integrated
into LLaVAs, the LLM component, being a more
powerful and flexible information extractor, can
extract and utilize non-linear features embedded
in CLIP’s image representations. This means that
certain aspects of the encoded information, which
might not directly contribute to retrieval accuracy,
can still be used for downstream tasks.

Therefore, poor retrieval accuracy does not nec-
essarily imply a loss of crucial encoded informa-
tion. Instead, through mitigating the vision encoder
bottleneck, the enhanced CLIP makes its encoded
information more salient, i.e. linear, as evidenced
by the improved retrieval accuracy. At the same
time, the more salient image embeddings make it
easier for LLaVA to learn, thereby enabling the
LLaVA to converge faster and achieve higher per-
formance in downstream tasks.

6 Conclusion

This study explores the perception bottlenecks of
LVLMs for chart understanding through the vi-
sion encoder bottleneck and the extraction bottle-
neck. We address the vision encoder bottleneck
through chart-tailored contrastive learning. Further-
more, LVLMs built on these improved CLIP mod-
els demonstrate substantial performance gains. Our
findings emphasize how the capabilities of CLIP
influence LLaVA’s downstream task performance,
offering valuable insights into understanding CLIP
information encoding.



Limitations

Our work aims to deepen the understanding of the
vision encoder effect on LVLMs for chart under-
standing. However, there are some limitations.

First, our goal is not to develop a state-of-the-art
LVLM for chart understanding, as many advanced
models are either closed-source or prohibitively ex-
pensive to reproduce. Instead, our work aims to
provide a deeper understanding of LVLMs by ana-
lyzing the vision encoder bottleneck and the extrac-
tion bottleneck of the language model. Second, due
to computational constraints, our experiments are
limited to a single vision encoder: CLIP-ViT-L/14-
336px. Investigating other vision encoder variants,
such as SigLIP (Zhai et al., 2023), remains for fu-
ture research.

While our study primarily focuses on chart un-
derstanding, the success of NegCLIP training and
NegCLIP-LLaVA suggests broader applicability
beyond this domain, which we leave for future ex-
ploration.
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A Details of CLIP Training Data

A.1 Statistics of Training Data

In Table 4, we present the statistics of the datasets
included in the CLIP training. Here, we upsam-
pling ChartQA and ChartBench to maintain data
balance. To ensure balanced data distribution, we
upsampled the ChartQA and ChartBench datasets.

A.2 Details of Hard Negative Captions
Construction

To generate hard negative captions, we first ap-
ply specific strategies to produce incorrect answers
and then use Llama3-8B-instruct to convert the
question-answer pairs into assertive sentences as
hard negative samples.

FigureQA: Since FigureQA answers are binary
(“’Yes” or “No”), we construct hard negatives by
flipping the correct answers.

DVQA: For DVQA, we flip the binary answers
(e.g., “Yes” to “No” and vice versa). For categori-
cal answers (e.g., labels), we either randomly select
another label from the chart or utilize Llama3-8B-
instruct to generate a similar but incorrect label.
For numerical and other types of answers, we con-
sistently leverage Llama3-8B-instruct to produce
plausible but incorrect alternatives.

PlotQA: For numerical answers, we systemat-
ically generate incorrect values by introducing
errors ranging from 5% to 80% of the ground
truth. For non-numerical answers, we again rely
on Llama3-8B-instruct to produce reasonable yet
incorrect alternatives.
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ChartBench: The same strategies as used for
PlotQA are applied to generate hard negative an-
Swers.

Chart2text: We split the text descriptions into
individual captions corresponding to the image.
Then, we use Llama3-8B-instruct to modify the
meaning of these captions, such as altering numeri-
cal values, to create hard negatives.

ChartQA: The approach for ChartQA mirrors
that of PlotQA, using similar strategies to generate
hard negative answers.

Others: For other datasets, we exclusively use
Llama3-8B-instruct to generate incorrect answers.

B Details Experimental Results

B.1 Investigation into LLaVA-Random-CLIP

In §4.2, we observed that LLaVA based on the orig-
inal CLIP successfully learned chart-related tasks,
even though the original CLIP exhibited poor, al-
most random retrieval accuracy. This raises an
important question: is the visual information en-
coded by CLIP truly random? To address this, we
conducted an ablation experiment by randomly ini-
tializing the CLIP weights and training a random-
CLIP-based LLaVA to determine whether LLaVA
can still successfully learn chart tasks in this sce-
nario.

Experimental Setup: In this experiment, we
used a randomly initialized CLIP while retaining
the same three-stage training procedure for LLaVA
as described in the paper. Specifically, we em-
ployed 800K FigureQA samples as the training
data for the third stage.

Experimental Results: The results reveal that
the training loss failed to converge during the fi-
nal stage, as shown in the detailed loss plot (Fig-
ure 7). These ablation results demonstrate that
purely random information leads to the failure of
LVLM learning. Moreover, the poor performance
of the original CLIP does not imply that its encoded
information is entirely random. In fact, the origi-
nal CLIP still captures critical visual information,
which is essential for the successful learning of
LVLMs.

B.2 Results of 800K Scaling Experiments

In § 5, we perform large-scale instruction tuning
on 800K samples from the DVQA and PlotQA



Table 4: The statistics of datasets used for CLIP training. # Images is the total number of images for each dataset. #
Captions is the total number of captions for each dataset in the final mixture.

Dataset # Images # Captions
FigureQA (Kahou et al., 2017) 99,992 1,000,000
DVQA (Kafle et al., 2018) 200,000 2,000,000
PlotQA (Methani et al., 2020) 157,044 2,000,000
ChartBench (Xu et al., 2023) 133,248 568,475
Chart2text (Kantharaj et al., 2022) 26,961 87,946
ChartQA (Masry et al., 2022) 18,317 169,030
WikiSQL (Zhong et al., 2017) 74,989 288,893
CLEVR (Johnson et al., 2017) 70,000 699,989
DocVQA (Mathew et al., 2021) 10,189 39,463
OCR-VQA (Mishra et al., 2019) 165,746 801,579
MapQA (Chang et al.) 12,470 151,536
TextVQA (Singh et al., 2019) 21,953 34,601
A-OKVQA (Marino et al., 2019) 16,539 17,056
VQAV2 (Goyal et al., 2017) 82,772 443,756

datasets separately. The evaluation performance
throughout the training process is shown in Fig-
ure 8. We observe that scaling up the training
data results in steady improvements. Addition-
ally, our enhanced CLIP-based LLaVA consistently
achieves higher performance, indicating that the
enhanced CLIP encodes more useful and salient
information.
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Figure 7: FigureQA instruction tuning loss of LLaVA-v1.5-13b based on different vision encoders.
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Figure 8: The large LLaVA SFT data scaling results on PlotQA and DVQA-Easy&Hard, for LLaVAs based on
different CLIP vision encoders (the original CLIP, FT.CLIP, and NegCLIP).
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