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Abstract001

Chart understanding requires models to effec-002
tively analyze and reason about numerical data,003
textual elements, and complex visual compo-004
nents. Our observations reveal that the per-005
ception capabilities of existing large vision-006
language models (LVLMs) constitute a criti-007
cal bottleneck in this process. In this study,008
we delve into this perception bottleneck by de-009
composing it into two components: the vision010
encoder bottleneck, where the visual represen-011
tation may fail to encapsulate the correct infor-012
mation, and the extraction bottleneck, where013
the language model struggles to extract the014
necessary information from the provided vi-015
sual representations. Through comprehensive016
experiments, we find that (1) the information017
embedded within visual representations is sub-018
stantially richer than what is typically captured019
by linear extractors, such as the widely used020
retrieval accuracy metric; (2) While instruc-021
tion tuning effectively enhances the extraction022
capability of LVLMs, the vision encoder re-023
mains a critical bottleneck, demanding focused024
attention and improvement. Therefore, we fur-025
ther enhance the visual encoder to mitigate the026
vision encoder bottleneck under a contrastive027
learning framework. Empirical results demon-028
strate that our approach significantly mitigates029
the perception bottleneck and improves the abil-030
ity of LVLMs to comprehend charts.031

1 Introduction032

Charts are essential for representing and analyzing033

data, commonly appearing in scientific papers, fi-034

nancial reports, and news articles. Unlike natural035

images, where semantic content is often apparent036

through object recognition, charts encode dense037

quantitative and relational information via visual038

elements such as bars, lines, and points, along with039

their spatial relationships. This information-dense040

property creates higher perception challenges for041

large vision-language models (LVLMs), which, de-042

spite success in general visual understanding tasks043

(Alayrac et al., 2022; Li et al., 2023; Liu et al., 044

2024b), often struggle with chart understanding 045

(Masry et al., 2022; Xu et al., 2023; Xia et al., 046

2024; Wang et al., 2024; Huang et al., 2024), as 047

demonstrated in Figure 1. 048

In this work, we systematically examine the 049

perception bottleneck of LVLMs by analyzing it 050

through two key components: the vision encoder 051

and the language model. Specifically, we define 052

perception as the model’s ability to accurately ex- 053

tract visual information from an image. For most 054

LVLMs equipped with a dedicated vision encoder, 055

the process of perceiving visual signals can be bro- 056

ken down into two stages: first, the vision encoder 057

encodes the image into compact vector represen- 058

tations; second, the language model extracts the 059

relevant information from these encoded vectors. 060

Accordingly, we decompose the perception bot- 061

tleneck into two categories: the vision encoder 062

bottleneck and the extraction bottleneck. Our 063

objective is to investigate how these two distinct 064

bottlenecks impact the overall perception capability 065

of LVLMs and how to mitigate them. 066

We begin our study of the vision encoder bottle- 067

neck by evaluating the chart understanding ability 068

of CLIP, a widely used vision encoder in many 069

LVLMs (Liu et al., 2024a,b; Laurençon et al., 070

2024). Specifically, we construct an image-text re- 071

trieval test set using existing chart-specific datasets 072

and assess CLIP with the standard retrieval accu- 073

racy. We find the CLIP performs nearly random 074

retrieval accuracy on these chart datasets, which 075

suggests it may experience significant information 076

loss, as several prior studies use CLIP’s retrieval ac- 077

curacy as an indicator of the information contained 078

in its visual embeddings (Tong et al., 2024; Deng 079

et al., 2024). While some researchers attribute this 080

failure to CLIP’s inductive bias or intrinsic limita- 081

tions (Tong et al., 2024; Kamath et al., 2023), we 082

successfully develop enhanced CLIP models with 083

substantially improved retrieval accuracy. Specifi- 084
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Question: What is the Revenue 

generated (in %) of Russian Federation 

in 2006 ?

Correct Answer: 24.4

GPT4-o: From the graph, the   

revenue generated by the Russian 

Federation in 2006 is approximately 

30%.

MiniCPM-Llama3-V-2_5: 27.81

Idefics2-8b: 33.2

Figure 1: An example of perception QA from the PlotQA dataset (Methani et al., 2020), along with the responses
from GPT4-o (Achiam et al., 2023), MiniCPM (Yao et al., 2024), and Idefics2 (Laurençon et al., 2024) for this
example. (The chart has been redrawn for clarity in presentation.)

cally, we fine-tune CLIP on chart-specific datasets085

within a contrastive learning framework and incor-086

porate hard negative captions (Yuksekgonul et al.,087

2022). The gains of over 20 absolute points in our088

enhanced CLIP strongly suggest that CLIP can in-089

deed learn subtle or non-semantic features through090

further contrastive learning.091

To investigate the extraction bottleneck in the092

language model part, we shift our focus to LVLMs093

built on top of these CLIP vision encoders. Specifi-094

cally, we conduct LLaVA-style training (Liu et al.,095

2024a) combined with chart-specific instruction096

tuning. Our initial observations reveal that LVLMs097

trained with the LLaVA data perform poorly on098

chart understanding tasks, while achieving sub-099

stantial improvement further fine-tuned on chart-100

specific data, even with the vision encoder kept101

frozen. This finding not only indicates that domain-102

specific instruction tuning effectively addresses the103

extraction bottleneck, but more interestingly, it sug-104

gests that poor CLIP retrieval accuracy does not105

necessarily indicate a lack of useful encoded infor-106

mation.107

In contrast, evaluating across seven chart-related108

benchmarks, spanning both in-distribution and109

out-of-distribution scenarios, our enhanced CLIPs-110

based LVLMs further achieve larger gains due to111

the mitigation of the vision encoder bottleneck.112

Notably, compared to the original CLIP-based113

LVLMs, the enhanced CLIP-based models using114

the LLaVA-v1.5-13B architecture achieve an av-115

erage improvement of nearly 3 points, while the116

model employing the LLaVA-v1.5-Phi-3.8B archi-117

tecture demonstrates an even more significant im-118

provement of 5 points.119

Finally, we conduct an in-depth analysis to un-120

derstand how the superior performance of CLIP121

translates to its LVLM counterpart. By scaling 122

instruction tuning on larger chart datasets and ana- 123

lyzing CLIP-LLaVA correctness statistics, we ob- 124

serve that samples correctly classified by CLIP are 125

more easily learned by the LVLM, suggesting that 126

the more salient representations obtained from the 127

enhanced CLIP facilitate better LVLM learning. 128

These findings further raise rethinking about infor- 129

mation encoding in CLIP and its effect on LVLMs. 130

2 The Challenge of Chart Understanding 131

To better illustrate the perceptual challenges in 132

chart understanding, we examine one concrete per- 133

ception QA example from PlotQA (Methani et al., 134

2020). As shown in Figure 1, to answer “What 135

is the Revenue generated (in %) of Russian Fed- 136

eration in 2006?”, models need to: (1) correctly 137

match the dotted green line with its legend label, 138

(2) locate the intersection point between this line 139

and the vertical line at 2006, and (3) accurately 140

map this point to the y-axis scale to obtain the 141

value (∼ 24%). While humans can perform this vi- 142

sual reasoning process effortlessly, current models 143

like GPT4-o (Achiam et al., 2023), MiniCPM (Yao 144

et al., 2024) and Idefics2 (Laurençon et al., 2024) 145

often struggle with such perception tasks as demon- 146

strated in Figure 1. Unlike natural images, chart un- 147

derstanding presents unique perception challenges 148

as it requires accurately encoding and processing 149

dense quantitative information encoded in visual 150

elements. 151

Recent studies have quantitatively revealed these 152

perceptual limitations through new chart-specific 153

benchmarks (Xu et al., 2023; Wang et al., 2024; 154

Xia et al., 2024). To better understand the sources 155

of these limitations, we decompose the perception 156

bottleneck into two key components. (1) The vi- 157

2



CLIP
3 Bars

CLIP
4 Bars

LLM 4 Bars

There 
are 
3 

Bars

There 
are 
4 

Bars

CLIP Contrastive Learning Adapt CLIP to LVLM

LLM 4 Bars

LLM 3 Bars

Figure 2: Left: A CLIP-blind case where the original CLIP fails to discriminate the number of bars in the chart. By
leveraging contrastive learning with hard negatives, the enhanced CLIP model learns more discriminative visual
features successfully. Right: When adapted to LVLMs, after instruction tuning, the original CLIP-LVLMs are
possible to correctly interpret the chart information even when the original CLIP fails to discriminate it. However,
the enhanced CLIP-LVLMs enable faster learning and achieve higher overall performance.

sion encoder bottleneck: This occurs when the vi-158

sion encoder fails to encode critical information159

from the image into its embeddings, leading to in-160

evitable failures in downstream LVLM tasks. (2)161

The extraction bottleneck: Even when the image162

embeddings contain the necessary information, the163

LLM struggles to extract and interpret them cor-164

rectly, resulting in erroneous outputs. In our study,165

we investigate the impact of these two bottlenecks166

and propose strategies to mitigate them on the chart167

understanding task. Next, we start by analyzing the168

vision encoder bottleneck.169

3 The Vision Encoder Bottleneck:170

Investigating and Improving CLIP171

As CLIP (Radford et al., 2021) serves as the vi-172

sion encoder in most LVLMs (Liu et al., 2024a,b;173

Laurençon et al., 2024; Zhu et al., 2024), we focus174

on CLIP to investigate the vision encoder bottle-175

neck. In this section, we construct a framework for176

training and evaluating CLIP’s chart understanding177

abilities.178

3.1 Background of CLIP179

The CLIP model consists of an image encoder and a180

text encoder, which map paired image and text data181

into corresponding vector representations. It em-182

ploys contrastive learning to align these representa-183

tions in a shared embedding space. The training ob-184

jective maximizes the similarity between matched185

image-text pairs while minimizing it for unmatched186

pairs, effectively bridging visual and textual modal- 187

ities for robust cross-modal understanding. 188

3.2 CLIP Evaluation 189

For CLIP evaluation, we implement an Image-to- 190

Text Retrieval task. Specifically, given an input 191

image, the task is to retrieve the correct caption 192

along with several hard negative ones. The hard 193

negative captions are specifically crafted to resem- 194

ble the positive captions while being incorrect, as 195

described in the later §3.4. This retrieval evalua- 196

tion is performed using the test sets from five chart- 197

related datasets: FigureQA (Kahou et al., 2017), 198

DVQA (Kafle et al., 2018), PlotQA (Methani et al., 199

2020), ChartQA (Masry et al., 2022), and Chart- 200

Bench (Xu et al., 2023). 201

We select the CLIP-ViT-L/14-336px (Radford 202

et al., 2021) model in our study, as its vision model 203

is widely used in LVLMs such as InstructBLIP, 204

LLaVA and LLaVA-Phi (Dai et al., 2023; Liu et al., 205

2024b,a; Zhu et al., 2024). The retrieval evaluation 206

results are presented in Table 1. 207

Original CLIP Exhibits Poor Retrieval Perfor- 208

mance While prior research has demonstrated 209

that the original CLIP model achieves over 70% 210

accuracy on ImageNet classification, its retrieval 211

performance on chart-related datasets is notably 212

poor, with results approaching random guessing on 213

benchmarks such as FigureQA and DVQA. This 214

can be attributed to the fact that the original CLIP 215
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Table 1: Image-to-Text retrieval evaluation accuracy on original CLIP-ViT-L/14-336px and fine-tuned CLIPs.
DVQA-E indicates DVQA Easy, and DVQA-H indicates DVQA Hard. Improvements in the “Avg.” column are
marked with ↑ compared to the CLIP baseline.

Method Avg. FigureQA DVQA-E DVQA-H PlotQA ChartQA ChartBench

Random 21.3 50.0 25.8 25.6 8.9 12.8 4.8
CLIP 25.5 48.6 28.9 27.2 22.1 18.8 7.4
+ Fine-tuning 41.5 ↑ 16.0 64.4 54.9 53.9 42.4 23.7 9.5
+ Neg. Cap. 51.4 ↑ 25.9 82.0 65.2 61.0 54.1 29.7 16.2

model, pretrained on web-crawled image-caption216

corpora, contains limited high-quality chart-related217

data. The poor retrieval accuracy is often inter-218

preted as a sign of information loss in the encoded219

images (Kamath et al., 2023; Tong et al., 2024),220

suggesting the vision encoder bottleneck. How-221

ever, as we will discuss later in §4.2, we further222

study it and find that low retrieval accuracy does223

not necessarily imply information loss.224

3.3 CLIP Improvement225

Observing the poor performance of the original226

CLIP, we explore methods to improve the chart227

understanding capabilities of CLIP. The first ap-228

proach we try is to continue training CLIP on chart229

images with the original CLIP loss. Inspired by230

NegCLIP (Yuksekgonul et al., 2022), which demon-231

strated that CLIP’s failures may stem from learning232

shortcuts during training, we further implement an-233

other variant that incorporates hard negative sam-234

ples into our training process. The hard negative235

captions help push the model to learn more discrim-236

inative features. Our strategies for constructing237

these hard negatives will be detailed in the follow-238

ing section §3.4.239

For training data, we exclude reasoning-type240

questions from the PlotQA dataset, as they are not241

suitable for CLIP training and deviate from our242

primary objective of analyzing CLIP’s impact on243

LVLM’s perceptual capabilities. In addition to the244

mentioned chart-related datasets, we incorporate245

additional datasets such as CLEVR (Johnson et al.,246

2017), MapQA (Chang et al.), and VQAv2 (Goyal247

et al., 2017), resulting in a training set of approxi-248

mately 8 million samples. Detailed statistics of the249

training data are provided in Appendix A.1. Since250

most of these datasets consist of question-answer251

pairs, we utilize Llama3-8B-Instruct (Dubey et al.,252

2024) to convert the question-answer pairs into as-253

sertive sentences, which are used as training and 254

evaluation captions. 255

3.4 Constructing Hard Negative Captions 256

Yuksekgonul et al. (2022) introduced NegCLIP by 257

perturbing word order to construct hard negative 258

captions, forcing CLIP to enhance relational under- 259

standing. Similar approaches have been applied to 260

the fine-grained conceptual understanding of color, 261

object, location, and size (Rösch et al., 2024). In 262

this work, we adapt the NegCLIP methodology to 263

the domain of chart understanding. The process 264

begins by synthesizing incorrect answers, which 265

are then converted into assertive captions using 266

LLama3-8B-Instruct. These incorrect captions are 267

used as hard negatives to compel CLIP to better 268

understand and distinguish between relevant chart 269

information. 270

During the synthesis of incorrect answers, we 271

employ several strategies. For binary answers, we 272

systematically flip responses (e.g., changing “yes” 273

to “no”). For numerical answers in datasets like 274

PlotQA, we programmatically generate incorrect 275

values by introducing error ranges between 5% 276

and 80% of the ground truth, as Figure 3 shows. 277

For questions about chart titles, like in PlotQA, 278

LLama3-8B-Instruct generates plausible but incor- 279

rect responses. Further details of the hard neg- 280

ative captions for all datasets are shown in Ap- 281

pendix A.2. 282

3.5 Performance of Enhanced CLIP 283

As in previous experiments, we use the CLIP-ViT- 284

L/14-336px (Radford et al., 2021) model. The 285

model is trained with a batch size of 64, a learning 286

rate of 5 × 10−6, for 3 epochs on our collected 287

training data, which consists of approximately 8 288

million samples. The retrieval evaluation results 289

are also presented in Table 1. 290
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Example: Caption and Hard Negative
Caption.

Caption: “The number of anaemic children
in Malawi in 1991 was 76.3%.”
Hard Negative Caption: “The number of
anaemic children in Malawi in 1991 was
40.6%.”

Figure 3: An example of Caption and hard negative
caption.
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Figure 4: CLIP retrieval accuracy while scaling training
data size, on the average of five datasets: FigureQA,
DVQA-Easy&Hard, PlotQA, ChartQA, Chartbench.

Fine-tuned CLIP Significantly Improves Re-291

trieval Accuracy Compared to the original CLIP,292

both fine-tuned models (with and without hard293

negatives) show significant improvements in re-294

trieval performance. Furthermore, NegCLIP (CLIP295

fine-tuned with neg. cap.) achieves the largest296

improvement, surpassing 26 points across these297

datasets. Training data scaling experiments, shown298

in Figure 4, illustrate that the performance of fine-299

tuned CLIP improves steadily with larger training300

datasets, while NegCLIP consistently outperforms301

the other models. We conclude that incorporat-302

ing hard negative captions effectively forces CLIP303

to learn more accurate and relevant chart informa-304

tion, similar to the success of NegCLIP in previ-305

ous works (Yuksekgonul et al., 2022; Rösch et al.,306

2024).307

While prior research has identified limitations of308

CLIP in handling subtle visual patterns (Tong et al.,309

2024) and spatial reasoning (Kamath et al., 2023),310

often attributing these issues to its inductive biases,311

our improvements in classifying subtle chart type312

features demonstrate that such limitations can be313

mitigated through data-centric contrastive learning.314

4 The Extraction Bottleneck: Connecting 315

CLIP to LVLM 316

Upon finishing our study of CLIP for the vision 317

encoder bottleneck, we shift our focus to the ex- 318

traction bottleneck to understand how these CLIP 319

models impact LLaVAs. Having observed the poor 320

performance of the original CLIP and the improved 321

performance of fine-tuned CLIPs, we aim to answer 322

two questions: 323

• Does the failure of CLIP retrieval cause the fail- 324

ure of LLaVAs that are based on it? 325

• What is the impact of enhanced CLIPs on the 326

performance of LLaVAs? 327

4.1 Experimental Setup 328

Training Setup Following LLaVA-v1.5- 329

13b (Liu et al., 2024a) and LLaVA-Phi (Rasheed 330

et al., 2024), we use Vicuna-13b (Chiang et al., 331

2023) or the Phi-3-mini (Abdin et al., 2024) of 332

3.8B parameters as the base LLM and employ a 333

two-layer MLP connector to map CLIP’s image 334

embeddings into the LLM’s input space. Our 335

training process consists of three stages. First, we 336

pretrain the connector on 558K image-caption 337

pairs from the LLaVA training dataset, keeping 338

both the CLIP vision encoder and the LLM fixed. 339

In the second stage, we conduct visual instruction 340

tuning on 665K instruction samples, also derived 341

from the LLaVA dataset. Finally, in the third stage, 342

we perform chart-specific tuning on a dataset of 343

250K chart samples, including FigureQA, DVQA, 344

PlotQA, ChartQA, and Chart2Text (Kantharaj 345

et al., 2022), resulting in the LLaVA-Chart-13B 346

and LLaVA-Chart-Phi models. In both the second 347

and third stages, we explore two strategies: 348

freezing or unfreezing the CLIP vision encoder. 349

Evaluation Setup We sample 25K examples sep- 350

arately from the test sets of FigureQA, DVQA, and 351

PlotQA for evaluation. For FigureQA and DVQA, 352

we use exact match accuracy as the evaluation met- 353

ric. For numerical answers in PlotQA, we adopt 354

a relaxed correctness criterion, considering a pre- 355

diction correct if it falls within 5% of the ground 356

truth, following prior works (Methani et al., 2020). 357

For ChartQA, we use its 2.5K test set and apply the 358

same relaxed correctness criterion for numerical 359

answers. Similarly, for ChartBench, we focus on 360

QA tasks and split the dataset into two subtasks: bi- 361

nary QA (Yes/No answers) and 2.1K numerical QA 362
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Table 2: Evaluation accuracy of LLaVA-v1.5-13B, LLaVA-Chart-13B and LLaVA-Chart-Phi based on different
CLIPs. The first result row, labeled "LLaVA," corresponds to LLaVA-v1.5-13B without chart-specific tuning.
“Binary” indicates tasks with Yes/No answers. “Frozen” and "Unfrozen" refer to whether the CLIP model is frozen
during LLaVA training. “FT.CLIP” represents the fine-tuned CLIP without hard negative captions, while “NegCLIP”
refers to the CLIP trained with hard negative captions. The ∆ rows report per-benchmark performance gains of
Unfrozen-NegCLIP compared to Unfrozen-CLIP.

VLM Vision
Encoder Avg. FigureQA DVQA PlotQA ChartQA ChartBench MathVista ChartX

Binary Easy Hard QA QA Binary QA FQA ALL QA

C
L

IP

CLIP - 48.6 28.9 27.2 22.1 18.8 - 7.4 - - -
FT.CLIP - 64.4 54.9 53.9 42.4 23.7 - 9.5 - - -
NegCLIP - 82.0 65.2 61.0 54.1 29.7 - 16.2 - - -

LLaVA Frozen-CLIP 25.9 51.2 25.8 25.3 12.6 18.3 53.0 9.7 23.1 27.0 12.7

L
L

aV
A

-
C

ha
rt

-1
3B

Frozen-CLIP 53.2 78.4 79.9 75.4 41.7 53.0 73.4 26.4 49.4 34.0 20.1
Unfrozen-CLIP 53.6 78.9 79.7 74.9 41.7 53.1 73.2 27.8 50.9 36.1 19.6
Frozen-FT.CLIP 54.8 83.8 84.3 78.7 43.8 54.3 73.1 26.3 48.0 34.4 21.2
Unfrozen-FT.CLIP 55.2 83.4 84.4 78.9 44.1 54.6 73.2 26.9 49.4 35.7 20.8
Frozen-NegCLIP 56.0 86.2 86.1 80.9 44.8 54.9 72.1 27.1 52.0 34.6 21.5
Unfrozen-NegCLIP 56.2 86.0 86.3 80.7 45.1 55.0 72.8 26.9 52.4 35.4 21.4
∆ over Unfrozen-CLIP +2.6 +7.1 +6.6 +5.8 +3.4 +1.9 -0.4 -0.9 +1.5 -0.7 +1.8

L
L

aV
A

-
C

ha
rt

-P
hi

Frozen-CLIP 49.4 72.1 76.1 70.6 38.9 48.0 70.9 23.3 43.5 33.4 17.5
Unfrozen-CLIP 49.3 71.3 76.7 70.5 38.5 48.1 71.7 23.8 40.5 33.7 18.1
Frozen-FT.CLIP 52.0 79.3 81.8 75.2 41.7 49.7 71.8 23.3 45.4 34.2 17.8
Unfrozen-FT.CLIP 51.7 78.6 81.7 74.8 41.5 49.4 71.1 23.5 46.1 33.1 17.5
Frozen-NegCLIP 54.1 85.0 85.0 78.3 42.5 51.3 71.2 24.2 49.4 34.9 19.0
Unfrozen-NegCLIP 54.3 85.1 84.9 77.6 42.6 51.0 70.9 24.8 50.6 35.6 19.5
∆ over Unfrozen-CLIP +5.0 +13.8 +8.2 +7.1 +4.1 +2.9 -0.8 +1.0 +10.1 +1.9 +1.4

samples, applying relaxed correctness for the lat-363

ter. Additionally, to evaluate generalization perfor-364

mance, we include the MathVista benchmark (Lu365

et al., 2024) and ChartX (Xia et al., 2024).366

4.2 Poor Retrieval Performance Does Not367

Imply Limited Information Encoding368

Our experimental results (Table 2) show that369

LLaVA, without the third-stage chart-specific tun-370

ing, performs poorly on chart benchmarks, achiev-371

ing lower accuracy than the original CLIP retrieval372

performance. After chart-specific tuning, LLaVA373

based on the original CLIP can learn these chart374

tasks successfully, even when the CLIP is frozen,375

indicating the improved extraction ability. For376

instance, LLaVA-Chart-13B achieves 78% accu-377

racy on FigureQA, despite its CLIP nearly ran-378

dom retrieval accuracy on the same dataset in Ta-379

ble 1. Moreover, we observe that unfreezing the380

vision encoder provides only a minor improve-381

ment. Importantly, the success of the original CLIP-382

LLaVA training suggests that the original CLIP383

is not “blind”; poor retrieval performance does384

not necessarily indicate a lack of encoded infor-385

mation within CLIP’s image embeddings. Prior386

works (Tong et al., 2024; Kamath et al., 2023)387

have likely overemphasized the concept of CLIP’s388

blindness. We hypothesize that retrieval accuracy 389

primarily reflects the linear properties of CLIP’s 390

image and text embeddings, as similarity computa- 391

tion in retrieval tasks relies on cosine similarity or 392

dot product, which are inherently linear operations. 393

However, when integrated into an LVLM, the LLM 394

component—acting as a more powerful informa- 395

tion processor—can extract and utilize non-linear 396

features from CLIP’s image embeddings. Similar 397

observations have been reported in recent work (Li 398

et al., 2024), indicating that retrieval accuracy may 399

be an inadequate proxy for assessing the vision 400

encoder bottleneck. 401

To further validate this conclusion, we conducted 402

an ablation study by training LLaVA with randomly 403

initialized CLIP weights. Notably, the model failed 404

to converge during the final chart-specific fine- 405

tuning stage (details in the Appendix B.1). This 406

confirms that the original CLIP, despite their as 407

poor as random retrieval performance, provides 408

crucial visual information for successful LVLM 409

training. 410

4.3 Enhanced CLIPs Elevate LVLMs 411

Performance 412

The success of the original CLIP-LLaVA makes 413

the relationship between CLIP and LLaVA per- 414
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Figure 5: LLaVA training data scaling results, averaged
over five datasets: FigureQA, DVQA-E&H, PlotQA,
ChartQA, and ChartBench, for LLaVAs based on differ-
ent CLIP vision encoders (the original CLIP, FT.CLIP,
and NegCLIP).

formance less intuitive. To explore the impact415

of enhanced CLIPs on LVLMs, we conducted416

the same training experiments using these en-417

hanced CLIPs as vision encoders. Our findings418

reveal that LLaVAs based on enhanced CLIPs419

consistently achieve significantly better perfor-420

mance. Consistent with the results from the CLIP421

evaluation (§3.2), NegCLIP-LLaVAs demonstrate422

the best performance across most benchmarks.423

Specifically, for in-distribution datasets, NegCLIP-424

LLaVAs achieve improvements exceeding 5 ab-425

solute points on FigureQA, DVQA, and PlotQA.426

Additionally, the improvements observed on Math-427

Vista and ChartX highlight the generalization ca-428

pability of LLaVAs built upon our enhanced CLIP429

models. On average, compared to the Unfrozen-430

CLIP baseline, models based on NegCLIP exhibit431

notable gains: LLaVA-Chart-13B improves by 2.6432

absolute points, while LLaVA-Chart-Phi achieves433

an even larger improvement of 5.0 absolute points.434

Additionally, data scaling experiments during the435

third-stage chart-specific tuning, illustrated in Fig-436

ure 5, demonstrate consistent performance improve-437

ments with increased training data. Across the438

scaling process, NegCLIP-LLaVAs consistently439

achieve the highest performance.440

These results confirm that while chart-specific441

tuning helps mitigate the extraction bottleneck, ad-442

dressing the vision encoder bottleneck remains443

critical for achieving greater performance gains.444

We hypothesize that enhanced CLIP encodes more445

salient information in its image representations,446

thereby making LVLM training easier. Further in-447

sights are discussed in §5.3.448

Table 3: Performance results on DVQA-Easy, DVQA-
Hard, and PlotQA for different CLIP vision encoder-
based LLaVA-Specific models trained on large-scale
chart-specific datasets (800K samples from either
DVQA or PlotQA). Improvements (↑) are shown rela-
tive to the LLaVA-Specific baseline.

Model DVQA-E DVQA-H PlotQA

LLaVA-Specific 95.1 74.4 58.9
FT.CLIP-LLaVA-Specific 95.3 76.6 59.5
NegCLIP-LLaVA-Specific 96.0 ↑ 0.9 78.2 ↑ 3.8 60.0 ↑ 1.1

5 Scaling Chart Understanding Tuning 449

In this section, we scale up task-specific training 450

data to 800K samples per dataset to fully mitigate 451

the extraction bottleneck, enabling the performance 452

of LVLMs to directly reflect the extent of informa- 453

tion encoded by CLIP. 454

Specifically, we conduct training for both CLIP 455

and LLaVA using the DVQA and PlotQA datasets 456

separately, leading to the two specialized mod- 457

els: LLaVA-PlotQA and LLaVA-DVQA. For CLIP 458

training, we utilize a total of 2 million samples 459

from DVQA and 3 million samples from PlotQA. 460

We still incorporate both standard training data and 461

hard negative variants, following the hard negative 462

generation strategy and hyperparameter configura- 463

tion detailed in Section 3.4. For LLaVA training, 464

we adhere to the three-stage training process using 465

the LLaVA-v1.5-13B model, as outlined in Sec- 466

tion 4.1. In the third and final chart-specific tuning 467

stage, we train LLaVA models using 800K sam- 468

ples from each dataset separately, allowing us to 469

systematically investigate the performance ceiling 470

under this setting. 471

5.1 Experimental Results 472

As shown in Table 3, scaling the training data to 473

800K samples per dataset significantly improves 474

performance on specific tasks by further mitigating 475

the extraction bottleneck. Despite being trained on 476

much larger task-specific datasets, our enhanced 477

CLIPs still achieve a higher LVLM performance 478

ceiling. Notably, NegCLIP-LLaVA surpasses its 479

original CLIP-based counterparts by an additional 480

1 absolute point on PlotQA and DVQA-Easy, and 481

4 absolute points on DVQA-Hard. Detailed per- 482

formance scores throughout the training process 483

are provided in Appendix B.2. The superior perfor- 484

mance observed after large-scale instruction tuning 485

suggests that enhanced CLIPs encode more use- 486
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Figure 6: Analysis of large-scale LLaVA SFT data scaling on PlotQA and DVQA-Easy&Hard, evaluating two
metrics: Correct-Retrieval LLaVA Accuracy (CRLA) and Incorrect-Retrieval LLaVA Accuracy (IRLA) for both the
original CLIP-LLaVA and NegCLIP-LLaVA.

ful information, thereby contributing to a higher487

LVLM performance ceiling.488

5.2 Statistics on CLIP and LLaVA Behavior489

To discover deeper insights into how CLIP retrieval490

capabilities translate into LLaVA task-specific per-491

formance, we analyze the statistics between CLIP492

retrieval correctness and LLaVA task correctness493

across these scaling experiments. Specifically,494

we use NegCLIP and examine two metrics: (1)495

Correct-Retrieval LLaVA Accuracy (CRLA):496

LLaVA accuracy when NegCLIP retrieves samples497

correctly. (2) Incorrect-Retrieval LLaVA Accu-498

racy (IRLA): LLaVA accuracy when NegCLIP499

retrieves samples incorrectly. We analyze these500

two metrics using the original CLIP-LLaVA and501

the NegCLIP-LLaVA which are fine-tuned on the502

large-scale PlotQA or DVQA dataset. The results503

are illustrated in Figure 6.504

Results The analysis reveals that CRLA is sig-505

nificantly higher than IRLA, indicating that sam-506

ples correctly retrieved by NegCLIP are easier for507

LLaVA to learn. Moreover, during the early stages508

of instruction training, NegCLIP-LLaVA exhibits509

a markedly higher CRLA than the original CLIP-510

LLaVA, which is the primary source of the perfor-511

mance gap. This intuitive “CLIP Can, LLaVA Can”512

observation suggests that NegCLIP encodes more513

salient features, enabling LLaVA to learn faster and514

more effectively.515

As training data scales, the difference in CRLA516

between NegCLIP-LLaVA and original CLIP-517

LLaVA decreases, reflecting a narrowing perfor-518

mance gap. Meanwhile, for both the original CLIP-519

LLaVA and NegCLIP-LLaVA, IRLA steadily im-520

proves, suggesting that LLaVA can progressively521

leverage additional non-linear information beyond522

what is explicitly indicated by retrieval accuracy.523

5.3 Rethinking Information Encoding in 524

CLIP 525

Finally, we reconsider how CLIP encodes informa- 526

tion in relation to its retrieval accuracy. Retrieval 527

accuracy primarily reflects the linear properties of 528

the image embeddings due to the similarity in re- 529

trieval task operates within a linear space. How- 530

ever, when the CLIP vision encoder is integrated 531

into LLaVAs, the LLM component, being a more 532

powerful and flexible information extractor, can 533

extract and utilize non-linear features embedded 534

in CLIP’s image representations. This means that 535

certain aspects of the encoded information, which 536

might not directly contribute to retrieval accuracy, 537

can still be used for downstream tasks. 538

Therefore, poor retrieval accuracy does not nec- 539

essarily imply a loss of crucial encoded informa- 540

tion. Instead, through mitigating the vision encoder 541

bottleneck, the enhanced CLIP makes its encoded 542

information more salient, i.e. linear, as evidenced 543

by the improved retrieval accuracy. At the same 544

time, the more salient image embeddings make it 545

easier for LLaVA to learn, thereby enabling the 546

LLaVA to converge faster and achieve higher per- 547

formance in downstream tasks. 548

6 Conclusion 549

This study explores the perception bottlenecks of 550

LVLMs for chart understanding through the vi- 551

sion encoder bottleneck and the extraction bottle- 552

neck. We address the vision encoder bottleneck 553

through chart-tailored contrastive learning. Further- 554

more, LVLMs built on these improved CLIP mod- 555

els demonstrate substantial performance gains. Our 556

findings emphasize how the capabilities of CLIP 557

influence LLaVA’s downstream task performance, 558

offering valuable insights into understanding CLIP 559

information encoding. 560
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Limitations561

Our work aims to deepen the understanding of the562

vision encoder effect on LVLMs for chart under-563

standing. However, there are some limitations.564

First, our goal is not to develop a state-of-the-art565

LVLM for chart understanding, as many advanced566

models are either closed-source or prohibitively ex-567

pensive to reproduce. Instead, our work aims to568

provide a deeper understanding of LVLMs by ana-569

lyzing the vision encoder bottleneck and the extrac-570

tion bottleneck of the language model. Second, due571

to computational constraints, our experiments are572

limited to a single vision encoder: CLIP-ViT-L/14-573

336px. Investigating other vision encoder variants,574

such as SigLIP (Zhai et al., 2023), remains for fu-575

ture research.576

While our study primarily focuses on chart un-577

derstanding, the success of NegCLIP training and578

NegCLIP-LLaVA suggests broader applicability579

beyond this domain, which we leave for future ex-580

ploration.581
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A Details of CLIP Training Data795

A.1 Statistics of Training Data796

In Table 4, we present the statistics of the datasets797

included in the CLIP training. Here, we upsam-798

pling ChartQA and ChartBench to maintain data799

balance. To ensure balanced data distribution, we800

upsampled the ChartQA and ChartBench datasets.801

A.2 Details of Hard Negative Captions802

Construction803

To generate hard negative captions, we first ap-804

ply specific strategies to produce incorrect answers805

and then use Llama3-8B-instruct to convert the806

question-answer pairs into assertive sentences as807

hard negative samples.808

FigureQA: Since FigureQA answers are binary809

(“Yes” or “No”), we construct hard negatives by810

flipping the correct answers.811

DVQA: For DVQA, we flip the binary answers812

(e.g., “Yes” to “No” and vice versa). For categori-813

cal answers (e.g., labels), we either randomly select814

another label from the chart or utilize Llama3-8B-815

instruct to generate a similar but incorrect label.816

For numerical and other types of answers, we con-817

sistently leverage Llama3-8B-instruct to produce818

plausible but incorrect alternatives.819

PlotQA: For numerical answers, we systemat-820

ically generate incorrect values by introducing821

errors ranging from 5% to 80% of the ground822

truth. For non-numerical answers, we again rely823

on Llama3-8B-instruct to produce reasonable yet824

incorrect alternatives.825

ChartBench: The same strategies as used for 826

PlotQA are applied to generate hard negative an- 827

swers. 828

Chart2text: We split the text descriptions into 829

individual captions corresponding to the image. 830

Then, we use Llama3-8B-instruct to modify the 831

meaning of these captions, such as altering numeri- 832

cal values, to create hard negatives. 833

ChartQA: The approach for ChartQA mirrors 834

that of PlotQA, using similar strategies to generate 835

hard negative answers. 836

Others: For other datasets, we exclusively use 837

Llama3-8B-instruct to generate incorrect answers. 838

B Details Experimental Results 839

B.1 Investigation into LLaVA-Random-CLIP 840

In §4.2, we observed that LLaVA based on the orig- 841

inal CLIP successfully learned chart-related tasks, 842

even though the original CLIP exhibited poor, al- 843

most random retrieval accuracy. This raises an 844

important question: is the visual information en- 845

coded by CLIP truly random? To address this, we 846

conducted an ablation experiment by randomly ini- 847

tializing the CLIP weights and training a random- 848

CLIP-based LLaVA to determine whether LLaVA 849

can still successfully learn chart tasks in this sce- 850

nario. 851

Experimental Setup: In this experiment, we 852

used a randomly initialized CLIP while retaining 853

the same three-stage training procedure for LLaVA 854

as described in the paper. Specifically, we em- 855

ployed 800K FigureQA samples as the training 856

data for the third stage. 857

Experimental Results: The results reveal that 858

the training loss failed to converge during the fi- 859

nal stage, as shown in the detailed loss plot (Fig- 860

ure 7). These ablation results demonstrate that 861

purely random information leads to the failure of 862

LVLM learning. Moreover, the poor performance 863

of the original CLIP does not imply that its encoded 864

information is entirely random. In fact, the origi- 865

nal CLIP still captures critical visual information, 866

which is essential for the successful learning of 867

LVLMs. 868

B.2 Results of 800K Scaling Experiments 869

In § 5, we perform large-scale instruction tuning 870

on 800K samples from the DVQA and PlotQA 871
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Table 4: The statistics of datasets used for CLIP training. # Images is the total number of images for each dataset. #
Captions is the total number of captions for each dataset in the final mixture.

Dataset # Images # Captions

FigureQA (Kahou et al., 2017) 99,992 1,000,000
DVQA (Kafle et al., 2018) 200,000 2,000,000
PlotQA (Methani et al., 2020) 157,044 2,000,000
ChartBench (Xu et al., 2023) 133,248 568,475
Chart2text (Kantharaj et al., 2022) 26,961 87,946
ChartQA (Masry et al., 2022) 18,317 169,030
WikiSQL (Zhong et al., 2017) 74,989 288,893
CLEVR (Johnson et al., 2017) 70,000 699,989
DocVQA (Mathew et al., 2021) 10,189 39,463
OCR-VQA (Mishra et al., 2019) 165,746 801,579
MapQA (Chang et al.) 12,470 151,536
TextVQA (Singh et al., 2019) 21,953 34,601
A-OKVQA (Marino et al., 2019) 16,539 17,056
VQAv2 (Goyal et al., 2017) 82,772 443,756

datasets separately. The evaluation performance872

throughout the training process is shown in Fig-873

ure 8. We observe that scaling up the training874

data results in steady improvements. Addition-875

ally, our enhanced CLIP-based LLaVA consistently876

achieves higher performance, indicating that the877

enhanced CLIP encodes more useful and salient878

information.879
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Figure 7: FigureQA instruction tuning loss of LLaVA-v1.5-13b based on different vision encoders.
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(a) PlotQA
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(b) DVQA-Easy
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Figure 8: The large LLaVA SFT data scaling results on PlotQA and DVQA-Easy&Hard, for LLaVAs based on
different CLIP vision encoders (the original CLIP, FT.CLIP, and NegCLIP).
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