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Abstract: Imitation learning from human demonstrations can teach robots com-1

plex manipulation skills, but is time-consuming and labor intensive. In contrast,2

Task and Motion Planning (TAMP) systems are automated and excel at solving3

long-horizon tasks, but they are difficult to apply to contact-rich tasks. In this pa-4

per, we present Human-in-the-Loop Task and Motion Planning (HITL-TAMP), a5

novel system that leverages the benefits of both approaches. The system employs6

a TAMP-gated control mechanism, which selectively gives and takes control to7

and from a human teleoperator. This enables the human teleoperator to man-8

age a fleet of robots, maximizing data collection efficiency. The collected human9

data is then combined with an imitation learning framework to train a TAMP-10

gated policy, leading to superior performance compared to training on full task11

demonstrations. We compared HITL-TAMP to conventional teleoperation sys-12

tem — users gathered more than 3x the number of demos given the same time13

budget. Furthermore, proficient agents (75%+ success) could be trained from14

just 10 minutes of non-expert teleoperation data. Finally, we collected 2.1K de-15

mos with HITL-TAMP across 12 contact-rich, long-horizon tasks and show that16

the system often produces near-perfect agents. Videos and additional results at17

https://sites.google.com/view/corl-2023-hitl-tamp.18

Keywords: Imitation Learning, Task and Motion Planning, Teleoperation19

1 Introduction20

Learning from human demonstrations has emerged as a promising way to teach robots complex ma-21

nipulation skills [1, 2]. However, scaling up this paradigm to real-world long-horizon tasks has been22

difficult — providing long manipulation demonstrations is time-consuming and labor intensive [3].23

At the same time, not all parts of a task are equally challenging. For example, significant portions24

of complex manipulation tasks such as part assembly or making a cup of coffee are free-space mo-25

tion and object transportation, which can be readily automated by non-learning approaches such26

as motion planning. However, planning methods generally require accurate dynamics models [4]27

and precise perception, which are often unavailable, limiting their effectiveness at contact-rich and28

low-tolerance manipulation. In this context, our work aims at solving real-world long-horizon ma-29

nipulation tasks by combining the benefits of learning and planning approaches.30

Our method focuses on augmenting Task and Motion Planning (TAMP) systems, which have been31

shown to be remarkable at solving long-horizon problems [5]. TAMP methods can plan behavior32

for a wide range of multi-step manipulation tasks by searching over valid combinations of a small33

number of primitive skills. Traditionally, each skill is hand-engineered; however, certain skills, such34

as closing a spring-loaded lid or inserting a rod into a hole, are prohibitively difficult to model in a35

productive manner. Instead, we use a combination of human teleoperation and closed-loop learning36

to implement just these select skills, keeping the rest automated. These skills use human teleopera-37

tion at data collection time and a policy trained from the data at deployment time. Integrating TAMP38
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systems and human teleoperation poses key technical challenges — special care must be taken to39

enable seamless handoff between them to ensure efficient use of human time.40
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Figure 1: Overview. HITL-TAMP decomposes a
task (making coffee) into planning-based (TAMP) and
learning-based (human imitation) segments.

To address these challenges, we introduce41

Human-in-the-Loop Task and Motion Plan-42

ning (HITL-TAMP), a system that symbioti-43

cally combines TAMP with teleoperation. The44

system collects demonstrations by employing45

a TAMP-gated control mechanism — it trades46

off control between a TAMP system and a hu-47

man teleoperator, who takes over to fill in gaps48

that TAMP delegates. Critically, human opera-49

tors only need to engage at selected steps of a50

task plan when prompted by the TAMP system,51

meaning that they can manage a fleet of robots52

by asynchronously engaging with one demon-53

stration session at a time while a TAMP system controls the rest of the fleet.54

By soliciting human demonstrations only when needed, and allowing for a human to participate55

in multiple parallel sessions, our system greatly increases the throughput of data collection while56

lowering the effort needed to collect large datasets on long-horizon, contact-rich tasks. We combine57

our data collection system with an imitation learning framework that trains a TAMP-gated policy (as58

illustrated in Fig. 1) on the collected human data. We show that this leads to superior performance59

compared to collecting human demonstrations on the entire task, in terms of the amount of data and60

time needed for a human to teach a task to the robot, and the success rate of learned policies.61

The main contributions of this paper are:62

• We develop HITL-TAMP, an efficient data collection system for long-horizon manipulation tasks63

that synergistically combines and trades off control between a TAMP system and a human operator.64

• HITL-TAMP contains novel components including (1) a mechanism that allows TAMP to learn65

planning conditions from a small number of demonstrations and (2) a queuing system that allows a66

demonstrator to manage a fleet of parallel data collection sessions.67

• We conduct a study (15 users) to compare HITL-TAMP with a conventional teleoperation system.68

Users collected over 3x more demos with our system given the same time budget. Proficient agents69

(over 75% success) could be trained from just 10 minutes of non-expert teleoperation data.70

• We collected 2.1K demos with HITL-TAMP across 12 contact-rich and long-horizon tasks, includ-71

ing real-world coffee preparation, and show that HITL-TAMP often produces near-perfect agents.72

2 Preliminaries73

Summary of Related Work. Several works have shown the value in learning robot manipulation74

with human demonstrations [6, 1, 2, 7, 8, 9, 10, 11, 8], in developing automatic control hand-offs75

between a human supervisor and an automated system for more effective data collection [12, 13, 14,76

15, 16], and in combining learned and predefined skills [17, 18, 19, 20, 21]. Prior TAMP [5, 22,77

4, 23] works have also integrated learning-based components [24, 25, 26, 27, 28, 29, 30, 31, 32] to78

make less assumptions on prior knowledge. See Appendix D for full related work.79

Problem Statement. We consider a robot acting in a discrete-time Markov Decision Process80

(MDP) ⟨X ,U , T (x′ | x, u),R(x),P0⟩ defined by state space X , action space U , transition dis-81

tribution T , reward function R, and initial state distribution P0. We assume we are given an offline82

dataset of N partial demonstration trajectories (collected via our HITL-TAMP system, see Sec. 3.3)83

D = {⟨xi
0, u

i
0⟩, ⟨xi

1, u
i
1⟩, ..., xi

T i}Ni=1. We train policies π with Behavioral Cloning [33] using the84

objective argminθ E(x,u)∈D||πθ(x)− u||2 (details in Appendix K).85

We consider a TAMP policy πt(u | x) for controlling the robot. It plans a sequence of actions that86

will be tracked using a feedback controller. We use the PDDLStream [23] planning framework, a87
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logic-based action language that supports planning with continuous values, to model our TAMP do-88

main. States and actions are described using predicates, Boolean functions, which can have discrete89

and continuous parameters. A predicate paired with values for its parameters is called a literal. Our90

TAMP domain uses the following parameters: o is an object, g ∈ SE(3) is a 6-DoF object grasp91

pose relative to the gripper, p ∈ SE(3) is an object placement pose, q ∈ Rd is a robot configuration92

with d DoFs, and τ is a robot trajectory comprised of a sequence of robot configurations.93

The planning state s is a set of true literals for fluent predicates, predicates who’s truth value can94

change over time. We define the following fluent predicates: AtPose(o, p) is true when object o is95

placed at placement p; AtGrasp(o, g) is true when object o is grasped using grasp g; AtConf(q)96

is true when the robot is at configuration q; Empty() is true when the robot’s end effector is empty;97

Attached(o, o′) is true when object o is attached to object o′;98

We use the Tool Hang task as a running example (see Fig. 5), where the robot must insert a99

frame into a stand and then hang a tool on the frame. The set of goal system states X∗ is ex-100

pressed as a logical formula over literals. Let s0 be the initial state s0 and G be the goal formula:101

s0 = {AtPose(frame,pf
0),AtPose(tool ,p

t
0),

AtPose(stand ,ps
0),AtConf(q0),Empty()}.

G = Attached(frame, stand) ∧
Attached(tool , frame) ∧ Empty().

102

Planning actions a are represented using action schemata. An action schema is defined by a 1) name,103

2) list of parameters, 3) list of static (non-fluent) literal constraints (con) that valid parameter values104

satisfy, 4) list of fluent literal preconditions (pre) that must hold to correctly execute the action, and105

4) list of fluent literal effects (eff) that specify changes to state. The move action advances the robot106

from configuration q1 to q2 via trajectory τ . The constraint Motion(q1, τ, q2) is satisfied if q1 and q2107

are the start and end of τ . In the pick action, the constraint Grasp(o, g) holds if g is a valid grasp108

for object o, and the constraint Pose(o, p) holds if p is a valid placement for object o. The explicit109

constraint f(q) ∗ g = p represents kinematics, namely that forward kinematics f : Rd → SE(3) for110

the robot’s gripper from configuration q multiplied with grasp g produces pose p.111

move(q1, τ, q2)
con: [Motion(q1, τ, q2)]
pre: [AtConf(q1), Safe(τ)]
eff: [AtConf(q2), ¬AtConf(q1)]

pick(o, g, p, q)
con: [Grasp(o, g), Pose(o, p), [f(q) ∗ g = p]]
pre: [AtPose(o, p), Empty(), AtConf(q)]
eff: [AtGrasp(o, g), ¬AtPose(o, p), ¬Empty()]

112

The limitations of the TAMP system are that, although it can readily observe the robot state, it does113

not have the ability to precisely estimate the environment and productively react to changes in it in114

real-time. Thus, it’s advantageous to teleoperate skills that require 1) contact-rich interaction that115

is difficult to accurately model and 2) precision greater than that which the perception system can116

deliver. An example of 1) is the insertion phase of Tool Hang, which typically requires contacting117

the walls of the hole to align the frame, and an example of 2) is the hanging phase of Tool Hang,118

which requires precisely aligning the hole of the tool with the resting frame.119

3 Integrating Human Teleoperation and TAMP120

To make TAMP and conventional human teleoperation systems compatible, we describe crucial121

components that allow for seamless handoff between TAMP and a human operator. These include122

1) a novel constraint learning mechanism that allows TAMP to plan to states that enable subsequent123

human teleoperation (Sec. 3.2) and 2) the core TAMP-gated teleoperation algorithm (Sec. 3.3).124

3.1 Teleoperation Action Modeling125

To account for human teleoperation during planning, we need an approximate model of the teleop-126

eration process. We build on the high-level modeling approach of Wang et al. [25] by specifying an127

action schema for each skill identifying which constraints can be modeled using classical techniques.128

Then, we extract the remaining constraints from a handful of teleoperation trajectories. Continuing129

our running example, we teleoperate the frame insertion and tool hang in the Tool Hang task.130
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The attach action models any skill that involves attaching one movable object to another object,131

for example, by placing, inserting, or hanging. Its parameters are a held object o, the current grasp132

g for o, the corresponding current pose p of o, the current robot configuration q, the subsequent133

pose p̂ of o, the subsequent robot configuration q̂, and the object to be attached to o′. This action is134

stochastic as the human teleoperator ”chooses” the resulting pose p̂ and configuration q̂ (indicated135

by □̂), which modeled by the constraint HumanAttach(o, p̂, q̂, o′). Rather than explicitly model136

this constraint, we take an optimistic determinization of the outcome by assuming that the human137

produces a satisficing p̂, q̂ pair, without committing to specific numeric values.138

attach(o, g, p, q, p̂, q̂, o′)139

con: [AttachGrasp(o, g), PreAttach(o, p, o′), [f(q) ∗ g = p],140

GoodAttach(o, p̂, o′), HumanAttach(o, p̂, q̂, o′)]141

pre: [AtGrasp(o, g), AtConf(q)]142

eff: [AtPose(o, p̂), Empty(), Attached(o, o′), AtConf(q̂), ¬AtGrasp(o, g), ¬AtConf(q)]143

The key constraint is GoodAttach(o, p̂, o′), which is true if object o at pose p satisfies the ground-144

truth goal attachment condition in G with object o′. The human teleoperator is tasked with reaching145

a pose p̂ that satisfies this constraint, which is a postcondition of the action. The goal of model146

learning is to represent the preconditions (Sec. 3.2) that facilitate this in a generative fashion.147

3.2 Constraint Learning148

PreAttach(frame, stand)≤ 5 Partial (Skill)
Human Demonstrations

PreAttach(tool, frame)
Learned Constraint Distributions

Figure 2: Constraint learning. Example of learned at-
tach conditions for the frame (left) and tool from a hand-
ful of demonstrations for the Tool Hang task.

To complete the action model, we learn the149

AttachGrasp and PreAttach constraints,150

which involve parameters in attach’s precon-151

ditions. We bootstrap these constraint models152

from a few (∼ 3 in our setting) human demon-153

strations. These demonstrations only need to154

showcase the involved action. Through com-155

positionality, these actions can be deployed in156

many new tasks without the need for retraining.157

In this work, because the set of objects is fixed, the constraints do not need to generalize across158

objects so we simply populate uniform distributions over poses conditioned on task and objects. In159

settings where there are novel objects at test time, we could instead estimate these affordances across160

objects directly from observations [25, 34, 35] using more complicated (deep) generative models.161

We define PreAttach(o, p, o′) to be true if p is a pose for object o immediately prior to the human162

achieving GoodAttach(o, p̂, o′). For each human demonstration, we start at the first state where163

GoodAttach is satisfied and then search backward in time for the first state where (1) the robot164

is holding object o and (2) objects o and o′ are at least δ centimeters apart. This minimum distance165

constraint ensures that o and o′ are not in contact in a manner that is spatially consistent and robust to166

perception and control error. We log the relative pose p between o and o′ as a data point and continue167

iterating over human demonstrations to populate a dataset P o
o′ = {p | PreAttach(o, p, o′)}.168

Similarly, we define AttachGrasp(o, g) to be true if g is a grasp for object o allows for the human169

achieving GoodAttach(o, p̂, o′). Not all object grasps enable the human to satisfy the target condi-170

tion, for example, a frame grasp on the tip that needs to be inserted. Similar to PreAttach, for each171

demonstration we log the relative pose between the robot end effector and object o at the first pre-172

contact state before satisfying GoodAttach, producing dataset Go = {g | AttachGrasp(o, g)}.173

3.3 TAMP-Gated Teleoperation174

We now describe TAMP-gated teleoperation, where a TAMP system decides when to execute por-175

tions of a task, and when a human operator should complete a portion (full details in Appendix J).176

Each teleoperation episode consists of one or more handoffs where the TAMP system prompts a177

human operator to control a portion of a task, or where the TAMP system takes control back after it178

determines that the human has completed their segment.179
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Figure 3: Queueing system. HITL-TAMP’s queueing system allows a human teleoperator (bottom left) to
manage a fleet of asynchronously-running data collection sessions (R1-R6).

Every task is defined by a goal formula G. On each TAMP iteration, it observes the current state s.180

If it satisfies G the episode terminates, otherwise, the TAMP system solves for a plan a⃗ from current181

state s to the goal G. TAMP subsequently issues joint position commands to carry out planned mo-182

tions until reaching an action a requiring the human. Next, control switches into teleoperation mode,183

where the human has full 6-DoF control of the end effector. We use a smartphone interface similar184

to prior teleoperation systems [36, 37, 10]. The robot end effector is controlled using an Operational185

Space Controller [38]. The TAMP system monitors whether the state satisfies the planned action186

postconditions a.effects . Once satisfied, control switches back to the TAMP system, which replans.187

4 Scaling Data Collection for Learning188

Increasing Data Throughput with a Queueing System. Since the TAMP system only requires189

human assistance in small parts of an episode, a human operator has the opportunity to manage190

multiple robots and data collection sessions simultaneously. To this end, we propose a novel queue-191

ing system (Fig. 3) allowing each operator to interact with a fleet of robots. We implement this192

by using several (Nrobot) robot processes, a single human process, and a queue (more analysis in193

Appendix I). Each robot process runs asynchronously, and spends its time in 1 of 3 modes — (1)194

being controlled by the TAMP system, (2) waiting for human control, or (3) being controlled by the195

human. This allows the TAMP system to operate multiple robots in parallel. When the TAMP sys-196

tem wants to prompt the human for control, it enqueues the environment into the shared queue. The197

human process communicates with the human teleoperation device and sends control commands to198

one robot process at a time. When the human completes a segment, TAMP resumes control of the199

robot, and the human process dequeues the next session from the queue.200

TAMP-Gated Policy Deployment. HITL-TAMP results in demonstrations that consist of TAMP-201

controlled parts and human-controlled parts — we train a policy with Behavioral Cloning [33] on202

the human portions (details in Appendix K). To deploy the learned agent, we use a TAMP-gated203

control loop that is identical to the handoff logic in Sec. 3.3, using the policy instead of the human.204

5 Experiment Setup205

Tasks. We chose evaluation tasks that are contact-rich and long-horizon, to validate that HITL-206

TAMP indeed combines the benefits of the two paradigms (see Fig. 4 and Fig. 5). We further207

evaluated HITL-TAMP on variants of tasks where objects are initialized in broad regions of the208

workspace, a difficult setting for imitation learning systems in the past. Full details in Appendix E.209

Pilot User Study. We conducted a pilot user study with 15 participants to compare our system210

(HITL-TAMP) to a conventional teleoperation system [36], where task demonstrations were col-211

lected without TAMP involvement. Each participant performed task demonstrations on 3 tasks212

(Coffee, Square (Broad), and Three Piece Assembly (Broad)) for 10 minutes on each system,213
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(a) Square (b) Coffee (c) 3 Pc. Assembly (d) Tool Hang (e) Coffee Prep.

Figure 4: Tasks. We use HITL-TAMP to collect demonstrations for contact-rich, long-horizon tasks.

Task Demos (avg-user) Demos (avg-novice) Demos (all) SR (avg-user) SR (avg-novice) SR (all)

Coffee (C) 11.2 7.2 168.0 24.4 15.0 76.0
Coffee (HT) 28.7 25.2 431.0 90.7 90.0 100.0

Square Broad (C) 11.1 5.2 166.0 1.2 0.0 20.0
Square Broad (HT) 49.8 41.8 747.0 80.0 77.5 98.0

Three Piece Assembly Broad (C) 7.8 7.0 117.0 0.0 0.0 0.0
Three Piece Assembly Broad (HT) 15.1 8.0 227.0 27.7 17.5 66.0

Table 1: User Study Data Collection and Policy Learning Results. We report the number of demos collected
averaged across users (avg-user), averaged across novice users (avg-novice), and summed across all users (all).
We also report the success rate of policies trained on per-user data (avg-user: averaged across all users, and avg-
novice: averaged across novice users), and trained on all user data (all). Users collected more demonstrations
using HITL-TAMP (HT) than the conventional system (C), and policy performance was vastly greater as well.

totaling 60 minutes of data collection across the 3 tasks and 2 systems. Participants filled out a214

post-study survey to rank their experience with both systems. Each participant’s number of success-215

ful demonstrations was recorded to evaluate the data throughput of each system, and agents were216

trained on each participant’s demonstrations and across all participants’ demonstrations (Sec. 6.1).217

6 Experiment Results218

We (1) present user study results to highlight HITL-TAMP’s data collection efficiency (Sec. 6.1),219

(2) compare trained HITL-TAMP agents to policies trained from full task demonstrations (Sec. 6.2),220

and (3) deploy HITL-TAMP in the real world without precise perception (Sec. 6.3).221

6.1 System Evaluation: User Study222

We show that (1) HITL-TAMP allows participants to collect demonstrations much faster than223

conventional teleoperation, (2) we can train performant policies using data collected from users224

with varying system proficiency, (3) HITL-TAMP enables novice operators to collect high-quality225

demonstration data, and (4) HITL-TAMP requires less user effort than conventional teleoperation.226

HITL-TAMP enables users to collect task demonstrations at a much higher rate than a con-227

ventional teleoperation system. As Table 1 shows, collectively, our 15 users gathered 2.5x more228

demonstrations with HITL-TAMP when compared to the conventional system on the Coffee task229

(431 vs. 168), 4.5x more on Square Broad (747 vs. 166), and nearly 2x more on Three Piece As-230

sembly Broad (227 vs. 117). The high collection efficacy of HITL-TAMP was also reflected on a231

per-user basis — users averaged 28.7 demos on Coffee (vs. 11.2), 49.8 demos on Square Broad (vs.232

11.1), and 15.1 demos on Three Piece Assembly Broad (vs. 7.8), during their 10-minute sessions.233

HITL-TAMP enables performant policies to be trained from minutes of data. We used each per-234

son’s 10-minute demonstrations to train a policy for each (user-task) pair with behavioral cloning.235

Agents trained on HITL-TAMP data vastly outperformed those trained from the conventional tele-236

operation data (Table 1) — agents achieved an average success rate of 90.7% on Coffee (vs. 24.4%),237

80.0% on Square Broad (vs. 1.2%), and 27.7% on Three Piece Assembly Broad (vs. 0.0%).238

HITL-TAMP enables training proficient agents from multi-user data. Prior work [39, 1] noted239

that imitation learning from multi-user demonstrations can be difficult. However, we found agents240

trained on the full set of multi-user HITL-TAMP data achieve high success rates (100.0%, 98.0%,241

and 66.0% on Coffee, Square Broad, and Three Piece Assembly Broad, respectively) compared to242
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TAMP Human
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TAMP

TAMP

TAMP

Human

Human

Human

Human

Task Success Rate

Stack Three 62.0

Coffee 74.0
Coffee Broad 66.0

Tool Hang 64.0

Figure 5: (left) Real Tasks. Coffee (top), a version where the machine can be on either side (Coffee Broad,
not shown), Stack Three (middle), and Tool Hang (bottom). We show TAMP in orange and the human in blue.
(right) Real World Policy Performance. We collected 100 demonstrations on Stack Three, Coffee, and Coffee
Broad and 50 demonstrations on Tool Hang with HITL-TAMP and report the policy performance in this table.

Task Time (min) SR (low-dim) SR (image)

Square 13.5 100.0± 0.0 100.0± 0.0
Square Broad 14.0 100.0± 0.0 100.0± 0.0

Coffee 22.6 100.0± 0.0 100.0± 0.0
Coffee Broad 28.8 99.3± 0.9 96.7± 0.9

Tool Hang 48.0 80.7± 1.9 78.7± 0.9
Tool Hang Broad 51.5 49.3± 1.9 40.7± 0.9

Three Piece Assembly 30.0 100.0± 0.0 100.0± 0.0
Three Piece Assembly Broad 34.9 84.7± 4.1 82.0± 1.6

Coffee Preparation 78.4 96.0± 3.3 100.0± 0.0

Task Time (min) SR (im) TAMP-gated SR (im)

Square (C) [1] 25.0 82.0± 0.0 100.0± 0.0
Square (HT) 13.5 100.0± 0.0 100.0± 0.0

Square Broad (C) 48.0 15.3± 0.0 94.7± 0.9
Square Broad (HT) 14.0 100.0± 0.0 100.0± 0.0

Three Piece Assembly (C) 60.0 75.3± 0.0 77.3± 7.7
Three Piece Assembly (HT) 30.0 100.0± 0.0 100.0± 0.0

Tool Hang (C) [1] 80.0 67.3± 0.0 82.0± 2.8
Tool Hang (HT) 48.0 78.7± 0.9 78.7± 0.9

Figure 6: (left) Results on HITL-TAMP datasets. We collected 200 demonstrations on each task with HITL-
TAMP and trained low-dim and visuomotor agents TAMP-gated agents on each dataset. (right) Comparison
to conventional teleoperation datasets. We trained both normal and TAMP-gated policies using conventional
teleoperation (C) and compared them to HITL-TAMP (HT). Surprisingly, TAMP-gating makes policies trained
on the data comparable to HITL-TAMP data, but data collection still involves significantly higher operator time.
those trained on the full set of conventional teleoperation data (76.0%, 20.0%, 0.0%) (see Table 1).243

In fact, the worst per-user HITL-TAMP policy (10-minutes of data) outperformed the policy trained244

on the full set of conventional teleoperation data (150 minutes) on both Square Broad (56.0% vs.245

20.0%) and Three Piece Assembly Broad (14.0% vs. 0.0%).246

HITL-TAMP enables non-experts to demonstrate tasks efficiently. 4 of the 15 users in our247

study had no experience with teleoperation. Table 1 shows we found that they were able to collect248

far more data on average with HITL-TAMP (more than 3x on Coffee, more than 8x on Square249

Broad) and policies trained on their HITL-TAMP data achieved significantly higher success over250

the conventional system — 90.0% (vs. 15.0%) on Coffee, 77.5% (vs. 0.0%) on Square Broad, and251

17.5% (vs. 0.0%) on Three Piece Assembly Broad.252

HITL-TAMP results in a lower perceived workload compared to the conventional teleopera-253

tion system. Each participant completed a NASA-TLX survey [40] to rank their perceived workload254

for each system across 6-categories (100-point scale, increments of 5). Users found HITL-TAMP to255

require less mental demand (36% vs. 74%), less physical demand (29.7% vs. 63.7%), and less tem-256

poral demand (28.3% vs. 53.7%), while enabling higher overall performance (83.7% vs. 59.7%),257

with lower effort (29.3% vs. 75.7%) and lower frustration (30.0% vs. 65.0%).258

6.2 Learning Results259

We collect datasets with HITL-TAMP across 9 tasks (see Sec. 5) and show that highly capable260

policies can be trained from this data. The results compare favorably to training on equal amounts261

of demonstrations from a conventional teleoperation system.262

HITL-TAMP is broadly applicable to a wide range of contact-rich and long-horizon tasks.263

Using HITL-TAMP, we had a single human operator collect 200 demonstrations on each of our264

tasks. We then trained agents from this data on two observation spaces — low-dim observations,265

where agents directly observe the poses of relevant objects, and image observations, where agents266

observe a front-view RGB image and wrist RGB image (as in [1]). Table 6 shows that across both267

observation spaces, HITL-TAMP trains near-perfect agents on several tasks (Square, Coffee, Three268

Piece Assembly), including broad tasks with a wide distribution of object initialization (Square269

Broad, Coffee Broad, Three Piece Assembly Broad). HITL-TAMP also achieves high performance270

on the Tool Hang task (80.7% low-dim, 78.7% image), which is the hardest task in the robomimic271
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benchmark [1]. It is also able to train performant agents (49.3% low-dim, 40.7% image) on a272

broad version of the task (Tool Hang Broad). Finally, HITL-TAMP trains near-perfect agents (96%)273

on the Coffee Preparation task, which consists of several stages (4 TAMP segments and 4 policy274

segments) involving low-tolerance mug placement, drawer grasping and opening, lid opening, and275

pod insertion and lid closing.276

HITL-TAMP compares favorably to conventional teleoperation systems in terms of operator277

time and policy learning. Even when an equal number of task demonstrations are used, learned278

policies from HITL-TAMP still outperform those from conventional teleoperation. We run our com-279

parison on 4 tasks — Square, Square Broad, Three Piece Assembly, and Tool Hang, where each280

task has 200 HITL-TAMP demos collected and 200 conventional system demos. As Table 6 shows,281

HITL-TAMP enabled collecting 200 demonstrations on each task in much shorter periods of time282

(additional analysis in Appendix F). Furthermore, agents trained on HITL-TAMP data outperform283

agents trained on conventional data (with the largest gap being 100.0% vs. 15.3% on Square Broad).284

TAMP-gated control is a crucial component to train proficient policies. We took the 200 demon-285

stration datasets collected via conventional teleoperation, trained the agents as normal, but deployed286

them with TAMP-gated control during policy evaluation. This dramatically increases their success287

rates and gives comparable results to HITL-TAMP data (see Table 6). This shows that datasets con-288

sisting of entire human demonstration trajectories are compatible with TAMP-gated control. How-289

ever, they remain time-consuming to collect, and HITL-TAMP greatly reduces the time needed.290

6.3 Real Robot Validation291

We apply HITL-TAMP to a physical robot setup with a robotic arm, a front-view camera, and a292

wrist-mounted camera. The only significant change from simulation is the need for perception to293

obtain pose estimates of the objects to populate the TAMP state. We do not assume any capability294

to track object poses in real-time. Instead, we allow the human to demonstrate (and the policy to295

imitate) behaviors from partial observations (RGB cameras). We collected 100 demonstrations for296

each of 3 tasks — Stack Three, Coffee, and Coffee Broad, and 50 demonstrations on Tool Hang,297

and report policy learning results across 50 evaluations for each task (25 for Tool Hang) (see Fig. 5).298

Our TAMP-gated agent achieves 62% on Stack Three, 74% on Coffee, 66% on Coffee Broad (72%299

with the machine on the right side of the table, and 60% with the machine on the left side), and 64%300

on Tool Hang (as opposed to the 3% from 200 human demonstrations in prior work [1]).301

7 Limitations302

See Appendix C for full limitations. We assume tasks can be described in PDDLStream and that303

human teleoperators can demonstrate them. The tasks in this work focus on tabletop domains with304

limited object variety — future work could scale HITL-TAMP to more diverse settings. Currently,305

HITL-TAMP requires prior information (at a high-level) on which task portions will be difficult306

for TAMP. We also assume access to coarse object models and approximate pose estimation to307

conduct TAMP segments in the real world. Future work could relax these assumptions by integrating308

perception uncertainty estimates, and extending TAMP to not require object models [35].309

8 Conclusion310

We presented a new approach to teach robots complex manipulation skills through a hybrid strategy311

of automated planning and human control. Our system, HITL-TAMP, collects human demonstra-312

tions using a TAMP-gated control mechanism and learns preimage models of human skills. This313

allows for a human to efficiently supervise a team of worker robots asynchronously. The combi-314

nation of TAMP and teleoperation in HITL-TAMP results in improved data collection and policy315

learning efficiency compared to collecting human demonstrations on the entire task.316

8



References317

[1] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,318

Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations319

for robot manipulation. In Conference on Robot Learning (CoRL), 2021.320

[2] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-321

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv322

preprint arXiv:2212.06817, 2022.323

[3] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances in robot324

learning from demonstration. Annual review of control, robotics, and autonomous systems, 3:325

297–330, 2020.326

[4] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and327

stable modes for tool-use and manipulation planning. 2018.328

[5] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.329
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B Frequently Asked Questions (FAQ)518

1. How did you select those specific baselines and ablations in Sec. 6?519

Our experiments showcase the capabilities of HITL-TAMP as (1) a scalable demonstration520

collection system and (2) an efficient learning and control framework. To show its value in521

collecting human demonstrations over an alternative, we compared it extensively against a522

widely-adopted conventional teleoperation paradigm used in prior works that collect and523

learn from human demonstrations [1, 6, 2, 7, 41, 20, 9, 36, 37, 42, 10, 15, 16, 11] (see524

Table 1 and Fig. 6).525

To show its value in learning policies for manipulation tasks, we investigated the value of526

the core component - the TAMP-gated control mechanism (described in Appendix J). We527

showed that even policies trained on conventional teleoperation data benefit substantially528

from incorporating the TAMP-gated control mechanism (Fig. 6). Our TAMP-gated control529

is a novel control algorithm made possible by key technical components of HITL-TAMP530

(as described in Sec. 3).531

There are other systems that are designed for specific contact-rich manipulation (such as532

peg insertion [43, 44]), but HITL-TAMP was not designed to be specialized for any specific533

task. Rather, it was meant to be a general-purpose system that can be applied to any contact-534

rich, long-horizon manipulation task, as long as the task can be demonstrated by a human535

operator, and described in PDDLStream.536

2. How does this work compare with other works that combine imitation learning and537

TAMP?538

Prior works, such as [45], trained agents in simulation to imitate demonstration data pro-539

vided by a TAMP supervisor in simulation. In this way, during deployment, an agent can540

operate without privileged information (such as object poses) required by TAMP. How-541

ever, this setting makes a strong assumption that the TAMP system can already solve the542

target tasks. By contrast, our work extends a TAMP system’s capabilities using an agent543

trained on human demonstration segments collected by HITL-TAMP (training details in544

Appendix K) in order to solve complex contact-rich tasks in the real world. Training an545

agent on the TAMP segments collected by HITL-TAMP in order to enable TAMP-free pol-546

icy deployments is an exciting application for future work. However, it is orthogonal to the547

main contributions in this paper.548

3. What are the trade-offs between the effort to provide demos and the effort to design549

models and controllers used in TAMP?550

Collecting a large number of human demos can be labor and time intensive [11, 7, 37],551

but extensive modeling of a task for TAMP can similarly be time-consuming. Our system552

achieves a good tradeoff, by lessening the modeling burden for TAMP by deferring difficult553

task segments to the human, and lessening the human operator burden by only asking them554

to operate small segments of a task. When deploying HITL-TAMP (especially in real-555

world settings), there is significant flexibility in deciding what information is available to556

the TAMP system in order to automate portions of a task, and which portions of a task557

should instead be deferred to a human operator (or trained agent).558

4. How does the TAMP system determine which parts of a task plan require a human559

operator?560

We formalize human-teleoperated TAMP skills in Sec. 3.1. While their discrete structure561

is provided by a human (e.g. which objects are involved), our novel action constraint learn-562

ing technique (Sec. 3.2) characterizes their continuous action parameters. Human model-563

ers have flexibility in deciding which skills should be teleoperated based on the contact-564

richness and required precision of the interaction. In our experiments, we used a prior565

understanding of the TAMP system and the limits of planners and perception to determine566

which parts would require human teleoperation. Other practical alternatives include using567

uncertainty estimates from perception, or directly applying TAMP to tasks of interest, and568
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observing sections of failure. Fig. E.1 (in Appendix E) showcases the parts of each task that569

are handled by the TAMP system and the parts that are handled by the human (or trained570

agent).571

5. What assumptions are needed to apply HITL-TAMP to real-world settings, as op-572

posed to simulation?573

Typically, TAMP systems place a high burden on real-world perception, as accurate percep-574

tion and dynamics models are often needed by TAMP for planning. Part of the motivation575

of our work was to reduce this requirement. While we do assume knowledge of crude object576

models and the ability to associate objects (see Sec. 6.3), we use a very simple perception577

pipeline in this work. We show that this simple pipeline suffices, even for the challenging578

Tool Hang task in the real-world since a human or an end-to-end trained policy handles579

the most challenging, contact-rich interactions. See Appendix G for additional validation580

that HITL-TAMP can tolerate noisy perception.581

6. Why are some of the settings for the real-world Tool Hang task different from the582

other real-world tasks?583

The data collection and policy learning methodology are identical to the other tasks, but584

there are a few minor differences. We used an increased resolution of 240x240 for the585

RGB images (instead of 120x120) due to the need for high-precision manipulation. We also586

excluded the wrist-view in observations provided to the trained agent, since we found that it587

was completely occluded during the human portions of the task. Finally, we evaluated our588

agent over 25 episodes (instead of 50 evaluation episodes used for the other tasks), because589

policy evaluation for this task is significantly more time-consuming) and obtained a task590

success rate of 64%, along with a frame insertion rate of 88%.591

7. Why are TAMP plans carried out with a joint position controller, while human tele-592

operation and learned policies use an OSC controller?593

Our TAMP system creates plans directly in joint space, so we are able to carry out and track594

motion plans with higher fidelity by using a joint position controller. On the other hand,595

human teleoperation requires an end effector controller (we use OSC [38]) to provide an596

intuitive mapping between the user device and robot control. Consequently, we switch597

between these two controllers depending on whether the TAMP system or the human is598

operating the robot. See Appendix J for more information.599
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C Limitations600

In this section, we discuss some limitations of HITL-TAMP, which future work can address.601

1. Applicable tasks. Our general-purpose system can be deployed on any tasks that (1) can be602

described in PDDLStream and (2) human operators can demonstrate. We did not engineer603

the system for any specific task — our system greatly extends the set of tasks that can be604

solved when compared to TAMP alone.605

2. Task variety. The tasks in this work are focused on tabletop domains, and there is limited606

object variety in each task. Scaling HITL-TAMP to work for more scenes and objects607

requires a richer set of assets and scenes (in simulation) and a more robust perception608

pipeline in the real world.609

3. Prior information on what is difficult for TAMP. HITL-TAMP requires prior infor-610

mation (at a high-level) on which task portions will be difficult for TAMP. Being able to611

automatically identify when human demonstrations are needed (e.g. based on uncertainty612

estimates from perception) is left for future work.613

4. Perception for TAMP. We assume access to coarse object models and approximate pose614

estimation in order to conduct the TAMP segments. Future work could relax this assump-615

tion by integrating TAMP methods that do not require object models [35].616
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D Related Work617

D.1 Demonstration Collection Systems for Robot Manipulation618

Recent studies have shown the effectiveness of teaching robots manipulation skills through human619

demonstration [6, 1, 2, 7, 8, 9]. High-quality, large-scale demonstrations are crucial to this suc-620

cess [2]. Although recent advancements have made demonstration collection systems more scalable621

and user-friendly [6, 36], collecting a substantial amount of high-quality, long-horizon demonstra-622

tions remains time-consuming and labor-intensive [2]. On the other hand, intervention-based sys-623

tems [46, 42, 47, 48] allow the demonstrator to proactively correct for near-failure cases. How-624

ever, such systems require users to constantly monitor robot task executions, which is equally625

time-consuming and sometimes more cognitively-demanding than demonstrating a task [49]. Our626

system uses a TAMP-gated mechanism that automatically switches control between the robot and627

the demonstrator. The mechanism also enables a user to demonstrate for multiple sessions asyn-628

chronously, dramatically increasing the throughput of task demonstration.629

A number of recent works have also investigated automatic control hand-offs in the context of online630

imitation learning [12, 13, 14, 15, 16, 50, 51, 52]. These works have largely focused on iteratively631

improving a single learned policy, and the gating mechanisms rely on predicting task performances632

and action uncertainties, which are often policy and data-specific. Our work instead proposes to633

augment a TAMP system with imitation-learned policies. The symbolic abstractions of the TAMP634

system readily delineate TAMP’s capabilities and can be used to determine the conditions for control635

hand-offs.636

Our HITL-TAMP also acts as a TAMP-assisted teleoperation system. However, unlike most prior637

works in assisted robot teleoperation, for which the aims are for humans to provide high-level guid-638

ance for low-level autonomous control [53, 54, 55], HITL-TAMP focuses on allowing human teleop-639

erators to ”fill the gap” for a TAMP system to complete goal-directed tasks and enabling the system640

to become more autonomous by learning skills from the human demonstrations.641

D.2 Learning for Task and Motion Planning642

Task and Motion Planning (TAMP) is a powerful approach for solving challenging manipu-643

lation tasks by breaking them into smaller, easier to solve symbolic-continuous search prob-644

lems [5, 22, 4, 23]. However, TAMP requires prior knowledge of skills and environment models,645

making it unsuitable for contact-rich tasks where hand-defining models is difficult. Recent works646

have proposed to learn environment dynamic models [24, 25, 26], skill operator models [27, 28], and647

skill samplers [29, 30]. However, these methods still require a complete set of hand-crafted skills.648

Closest to our work are LEAGUE [31] and Silver et al. [32] that learn TAMP-compatible skills.649

However, both works are limited in their real-world applicability. LEAGUE relies on hand-defined650

TAMP plan sampler and expensive RL procedures to learn skills in simulation, while Silver et al.651

requires hard-coded demonstration policies that can already solve the target tasks. Our work instead652

leverage human demonstrations to both train visuomotor skills and informing TAMP plan sampling.653

We empirically show that HITL-TAMP can efficiently solve challenging tasks such as making coffee654

in the real world.655

D.3 Imitation Learning from Human Demonstrations656

Imitation learning techniques based on deep neural networks have shown remarkable performances657

in solving real-world manipulation tasks [6, 1, 10, 2, 7, 11]. We take a data-centric view [8, 2, 11] to658

scaling up imitation learning — HITL-TAMP speeds up demonstration collection for a wide range of659

contact-rich manipulation tasks. A trained HITL-TAMP also acts as a hierarchical policy [56]. The660

key difference to pure data-driven approaches [10, 56, 39, 8, 57] is that in HITL-TAMP, the TAMP661

framework directly drives the hierarchy to ensure that the learned skills are modular and compatible.662

Similarly, our work builds on research in combining learned and predefined skills [17, 18, 19, 20, 21]663

and formalizes human demonstrations and learned skills within a TAMP framework.664
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E Tasks665

TAMP Human TAMP Human

TAMP

HumanHuman TAMP

TAMP

TAMP TAMPHuman Human

Human

TAMP TAMPHuman Human

TAMP Human

TAMP Human

TAMP

TAMP

TAMP

TAMP

Human

Human

Human

Human

Square (sim)

Three Piece Assembly (sim)

Toog Hang (sim)

Coffee (sim)

Coffee Full Preparation (sim)

Coffee (reall)

Stack Three (reall)

Tool Hang (reall)

Figure E.1: Task Segments. We show the human and TAMP segments for each task.

In this section, we present extended task descriptions for each task, including a breakdown of which666

segments the human controls and which TAMP handles (see Fig. E.1).667

Stack Three (real). The robot must stack 3 randomly placed cubes. The task consists of 4 total668

segments — TAMP handles grasping each cube and approaching the stack, and the human handles669

the placement of the 2 cubes on top of the stack.670

Square [58, 1] (sim). The robot must pick a nut and place it onto a peg. The nut is initialized in a671

small region and the peg never moves. This task consists of two segments — TAMP grasps the nut672

and approaches the peg, and the human inserts the nut onto the peg.673

Square Broad (sim).: The nut and peg are initialized anywhere on the table.674

Coffee [42] (sim + real). The robot must pick a coffee pod, insert it into a coffee machine, and close675

the lid. The pod starts at a random location in a small, box-shaped region, and the machine is fixed.676

The task has two segments — TAMP grasps the pod and approaches the machine, and the human677

inserts the pod and closes the lid.678
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Coffee Broad (sim + real). The pod and the coffee machine have significantly larger initialization679

regions. With 50% probability, the pod is placed on the left of the table, and the machine on the680

right side, or vice-versa. Once a side is chosen for each, the machine location and pod location are681

further randomized in a significant region.682

Three Piece Assembly (sim). The robot must assemble a structure by inserting one piece into a683

base and then placing a second piece on top of the first. The two pieces are placed around the base,684

but the base never moves. The tasks consists of four segments — TAMP grasps each piece and685

approaches the insertion point while the human handles each insertion.686

Three Piece Assembly Broad (sim). The pieces are placed anywhere in the workspace.687

Tool Hang [1] (sim + real). The robot must insert an L-shaped hook into a base piece to assemble688

a frame, and then hang a wrench off of the frame. The L-shaped hook and wrench vary slightly689

in pose, and the base piece never moves. The task has four segments — TAMP handles grasping690

the L-shaped hook and the wrench, and approaching the insertion / hang points, while the human691

handles the insertions.692

Tool Hang Broad (sim). All three pieces move in larger regions of the workspace.693

Coffee Full Preparation (sim). The robot must place a mug onto a coffee machine, retrieve a coffee694

pod from a drawer, insert the pod into the machine, and close the lid. The task has 8 segments —695

first TAMP grasps the mug and approaches the placement location, then the human places the mug696

on the coffee machine (the placement requires precision due to the arm size and space constraints).697

Next, TAMP approaches the machine lid, and the human opens the lid (requires extended contact698

with an articulated mechanism). Then, TAMP approaches the drawer handle, and the human opens699

the drawer. Finally, TAMP grasps the pod from inside the drawer and approaches the machine, and700

the human inserts the pod and closes the machine lid.701
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F Additional Data Throughput Comparisons702

Task HITL-TAMP Time (min) Conventional Time (min)

Square 13.5 35.0
Square Broad 14.0 48.0

Coffee 22.6 46.4
Coffee Broad 28.8 57.8

Tool Hang 48.0 97.1
Tool Hang Broad 51.5 109.8

Three Piece Assembly 30.0 60.0
Three Piece Assembly Broad 34.9 68.3

Coffee Preparation 78.4 132.7

Total 321.7 655.1

Table F.1: Collection time comparison to conventional teleoperation datasets. An extended comparison of
data collection time for 200 demos across several tasks for both HITL-TAMP and the conventional teleoperation
system. Some items were estimated using the time spent collecting 10 human demonstrations.

In this section, we compare how long it would have taken to collect our 2.1K+ HITL-TAMP demon-703

strations with a conventional teleoperation system. The results are shown in Table F.1. Several of704

the numbers were estimated by collecting 10 human demonstrations and multiplying by 20 (due to705

the time burden of collecting 200 human demonstrations across all tasks with a conventional teleop-706

eration system). In most cases, HITL-TAMP takes more than 2x fewer minutes to collect 200 demos707

than the conventional system.708
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G Robustness to Pose Error709

Dataset L0 L1 L2

Square (L1) 100.0± 0.0 100.0± 0.0 99.3± 0.9
Square (L2) 100.0± 0.0 100.0± 0.0 100.0± 0.0
Coffee (L1) 100.0± 0.0 100.0± 0.0 91.3± 2.5
Coffee (L2) 100.0± 0.0 99.3± 0.9 98.0± 1.6

Table G.1: HITL-TAMP Robustness to Pose Noise. We added uniform pose noise to all object poses per-
ceived by our TAMP system. We use two levels of uniformly sampled noise - L1 is 5 mm of position noise
and 5 degrees of rotation noise, and L2 is 10 mm of position noise and 10 degrees of rotation noise. For each
level of noise, we collected 200 demonstrations with our HITL-TAMP system, trained image-based agents on
these datasets, and evaluated the agents on the L0 (no noise), L1 noise, and L2 noise setting. The agents only
perceive camera images and robot proprioception (i.e. not object poses), and the TAMP system receives noisy
object poses. The results show that HITL-TAMP agents retain strong performance.

Since TAMP plans to pre-contact poses (constraints learned from human demos), errors in the hand-710

off location to the human operator are completely tolerable, as the human can account for any dif-711

ferences during their demonstration. Our real-world experiments in Fig. 5 best demonstrate the712

robustness of our system to pose error. For Coffee, we used an extremely crude box model of the713

coffee machine without any fine-grained pose registration. For ToolHang, the stand is not accurately714

captured in the observed point cloud due to the thinness of the stand base and column. Consequently,715

pose registration is naturally noisy. Despite these problems with perception, we were able to achieve716

high success rates in both tasks with few demonstrations.717

In this section, we conduct an additional experiment in simulation to obtain quantitative evidence718

of HITL-TAMP’s robustness to object pose estimation. We first describe our noise model. We719

added uniform pose noise to all object poses perceived by our TAMP system. We use two levels720

of uniformly sampled noise - L1 is 5 mm of position noise and 5 degrees of rotation noise and721

L2 is 10 mm of position noise and 10 degrees of rotation noise [59]. For each level of noise, we722

collected 200 demonstrations with our HITL-TAMP system (to be consistent with Fig. 6) on the723

Square and Coffee tasks, resulting in 4 new datasets in total. We then trained image-based agents724

on these datasets, and evaluated the agents on the L0 (no noise), L1 noise, and L2 noise setting. We725

emphasize that the agents only perceive camera images and robot proprioception, not object poses,726

and the TAMP system receives noisy object poses.727

The results are presented in Table G.1. Each row corresponds to agents trained on one of our new728

datasets and each column corresponds to different levels of noise applied to the TAMP system during729

policy evaluation. Recall that we report the success rates across 50 evaluations, where there are no730

TAMP failures, and 3 seeds (discussed further in Appendix K and Appendix M).731

When evaluating the agents trained on the L1 and L2 datasets on the same levels, the results are732

near-perfect (100% success rate for all except Coffee L2, which gets 98% success), which aligns733

with the 100% success achieved by our agents on our noise-free datasets (see Fig. 6, left). We also734

found that training on higher amounts of noise gives our trained agents some level of robustness to735

lower amounts of noise (e.g. evaluating the L2 models on L0 and L2).736

We also analyze the execution failure rate of the TAMP system itself (which corresponds to how737

often we terminate an episode due to a failed grasp of the nut / coffee pod, or dropping the object in738

hand). We found that the TAMP system failure rate increases by level: from 0% on L0 to 6% on L1739

and 23% on L2 for Square, and from 0% on L0 to 6% on L1 and 24% on L2 for Coffee. This is to740

be expected, as erroneous poses can lead to a bad grasp. In such settings where perception errors to741

cause grasp failures, we could easily have the human teleoperate the grasping part of each trajectory742

as well during data collection and then have the trained agent learn that task segment as well.743
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H Demonstration Statistics744

Task Human Trajectory (HT) Trajectory (C)

Square 19.8 582.2 150.8
Square Broad 24.2 647.8 167.9

Coffee 71.6 472.0 199.3
Coffee Broad 90.6 663.7 273.8

Tool Hang 70.4 1297.9 479.8
Tool Hang Broad 71.3 1485.8 522.6

Three Piece Assembly 35.3 897.9 260.1
Three Piece Assembly Broad 39.6 1174.1 342.0

Coffee Preparation 43.8 1328.6 593.2

Stack Three (real) 60.9 499.2 -
Coffee (real) 295.3 494.9 -
Coffee Broad (real) 326.5 548.3 -
Tool Hang (real) 124.3 1144.5 -

Table H.1: Demonstration Lengths. For each task, we report the average length (time steps) of the human
segment, the average trajectory length of our HITL-TAMP datasets (HT), and as a point of comparison, the
average trajectory length of the conventional system data (C). Note that if a trajectory contains multiple human
segments, we average them.

In Table H.1, we present the average length (time steps) of the human-provided segment, the average745

trajectory length of our HITL-TAMP datasets (HT), and as a point of comparison, the average tra-746

jectory length of the conventional system data (C). Note that if a trajectory contains multiple human747

segments, we average across them, and that some of the conventional system lengths are estimates748

based on collecting 10 trajectories (the same ones used for the analysis in Appendix F). We see that749

the average human segment is small compared to the entire trajectory length — this might help ex-750

plain the efficacy of our TAMP-gated policy, since the policy is only responsible for short-horizon,751

contact-rich behaviors.752
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I Queueing System Analysis753

In Sec. 4 and Fig. 3, we discussed our queueing system, which enables scalable data collection754

with HITL-TAMP by allowing a single human operator to manage a fleet of Nrobot robot arms and755

ensuring that the human operator is always kept busy. In this section, we provide some additional756

derivations and analysis on how the choice of the number of robot arms influences data throughput.757

Assuming that the human has an average queue consumption rate (number of task demonstrations
completed per unit time) of RH and the TAMP system has an average queue production rate (number
of task segments executed successfully per unit time) of RT , we would like the effective rate of
production to match or exceed the rate of consumption,

RT (Nrobot − 1) ≥ RH .

Here, the minus 1 is because 1 robot is controlled by the human. Rearranging, we obtain Nrobot ≥758

1+ RH

RT
. Thus, the size of the fleet should be at least one more than the ratio between the human rate759

of producing demonstration segments and the TAMP rate of solving and executing segments.760

This number is often limited by either the amount of system resources (in simulation) or the avail-
ability of hardware (in real world). In practice, human operators also need to take breaks and have
an effective ”duty cycle” where they are kept busy X% of the time. HITL-TAMP can support this
extension as well. Assume that the human is operating the system for Ton and resting for Toff. The
human consumes items in the queue during Ton at an effective rate of

RH −RT (Nrobot − 1),

and has the queue filled up during Toff at a rate of RT (Nrobot − 1). Ensuring that the human con-
sumption rate is less than or equal to the production rate, we have

Ton(RH −RT (Nrobot − 1)) ≤ ToffRT (Nrobot − 1).

After rearranging we arrive at

Nrobot ≥ 1 +
RH

RT

X

100
,

where
X

100
=

Ton

(Ton + Toff)

is the human duty cycle ratio.761
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J Additional Details on TAMP-Gated Teleoperation762

We provide additional details on how TAMP-gated teleoperation works. The TAMP system de-763

cides when to execute portions of a task, and when a human operator should complete a portion.764

Each teleoperation episode consists of one or more handoffs where the TAMP system prompts a765

human operator to control a portion of a task, or where the TAMP system takes control back after it766

determines that the human has completed their segment.767

Algorithm 1 displays the pseudocode of the HITL-TAMP system: TAMP-GATED-CONTROL. It768

takes as input goal formula G. On each TAMP iteration, it observes the current state s. If it769

satisfies the goal, the episode terminates successfully. Otherwise, the TAMP system solves for770

a plan a⃗ using PLAN-TAMP from current state s to the goal G. We implement PLAN-TAMP us-771

ing the adaptive PDDLStream algorithm [23]. The TAMP system then deploys its controller772

EXECUTE-JOINT-COMMANDS and issues joint position commands to the robot to carry out planned773

motions until reaching an action a that requires the human. At this time, control switches into tele-774

operation mode, where the human has full 6-DoF control of the end effector. We use a smartphone775

interface and map phone pose displacements to end effector displacements, similar to prior tele-776

operation systems [36, 37, 10]. The robot end effector is controlled using an Operational Space777

Controller [38]. As in [42], we apply phone pose differences as relative pose commands to the cur-778

rent end effector pose. This allows control to be decoupled from the current configuration of the779

robot arm, which is important as the TAMP system can prompt the human to takeover in diverse780

configurations. While the human is controlling the robot, the TAMP system monitors whether the781

state satisfies the planned action postconditions a.effects . Once satisfied, control switches back to782

the TAMP system, which replans.783

Algorithm 1 TAMP-Gated Teleoperation
1: procedure TAMP-GATED-CONTROL(G)
2: while True do
3: s← OBSERVE() ▷ Estimate or observe state
4: if s ∈ G then ▷ State satisfies goal
5: return True ▷ Success!
6: a⃗← PLAN-TAMP(s,G) ▷ Solve for a plan a⃗
7: for a ∈ a⃗ do ▷ Iterate over actions
8: if not IS-HUMAN-ACTION(a) then
9: EXECUTE-JOINT-COMMANDS(a)

10: else
11: while OBSERVE() /∈ a.eff do
12: EXECUTE-TELEOP() ▷ Teleoperation
13: break ▷ Re-observe and re-plan

J.1 Example Plan784

Consider a plan found by the TAMP system for the Tool Hang task on the first planning invocation:785

a⃗1 = [move(q0, τ1, q1),pick(frame, gf ,pf
0, q1),move(q1, τ2, q2),attach(frame, gf , p2, q2, p̂

f
2 , q̂2, stand),

move(q̂2, τ̂3, q3),pick(tool , g
t,pt

0, q3),move(q3, τ4, q4),attach(tool , g
t, p4, q4, p̂

t
4, q̂4, frame)].

The values in bold represent constants present in the initial state; the non-bold values are parameter786

values selected by the planner. The learned preimages enable the TAMP system to plan not only787

a trajectory τ1 to the first manipulation but also to the second manipulation τ2. However, because788

the third trajectory τ̂3 depends on the resultant configuration q̂2, planning for it is deferred. Upon789

successfully achieving Attached(frame, stand), replanning produces a new plan.790
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K Policy Training Details791

In this section, we detail how we train policies via imitation learning from the human segments of792

HITL-TAMP datasets. Many choices are mirrored from Mandlekar et al. [1].793

Figure K.1: Training and Testing Policies. The top row shows the HITL-TAMP policy at training time, where
a human teleoperate certain segments, such as opening the coffee machine lid. The bottom row shows the
HITL-TAMP policy at testing time, where the human segments are replaced with a learned policy trained with
behavior cloning using the collected training data.

K.1 Observation Spaces794

In our experiments, policies are either trained on low-dim state observations or image observations795

— this kind of flexibility is advantageous as it eases the burden of perception for deploying TAMP796

systems in the real world. Low-dim observations include ground-truth object poses, while image797

observations consist of RGB images from a front-view camera and a wrist-mounted camera. Both798

observations include proprioception (end-effector pose and gripper finger width). In simulation, the799

image resolution is 84x84, while in real world tasks, we use a resolution of 120x160 for Stack Three,800

Coffee, and Coffee Broad, and a resolution of 240x240 for Tool Hang. Our real-world agents are all801

image-based, since we do not assume that objects can be tracked. The real-world Tool Hang agent802

did not use the wrist-view in observations, since we found that it was completely occluded during803

the human portions of the task. The TAMP system only estimates poses at the start of each episode.804

We use a simple perception pipeline consisting of RANSAC plane estimation to segment the table805

from the point cloud, DBSCAN [60] to cluster objects, color-based statistics to associate objects,806

and Iterative Closest Point (ICP) to estimate object poses. For image-based agents, we apply pixel807

shift randomization (up to 10% of each image dimension) as a data augmentation technique (as in808

Mandlekar et al. [1]).809

K.2 Action Space810

As described in Sec. 3.3, we collect training data using teleoperation through 6-DoF end-effector811

control, where an Operational Space Controller [38] interprets delta end-effector actions and con-812

verts them to joint commands. Thus, the action space for all policy learning is also 6-DoF end-813

effector poses.814

K.3 Training and Evaluation815

We use BC-RNN with default hyperparameters from Mandlekar et al. [1] with the exception of an816

increased learning rate of 10−3 for policies trained on low-dim observations, to train policies from817
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the human segments in each dataset. We follow the policy evaluation convention from Mandlekar818

et al. [1], and report the maximum Success Rate (SR) across all checkpoint evaluations over 3819

seeds, which is evaluated over 50 rollouts. However, the TAMP system can fail during a rollout.820

To decouple TAMP failures from policy failures, we keep conducting rollouts for each checkpoint821

until 50 rollouts with no TAMP failures have been collected, and compute policy success rate over822

those rollouts (discussion in Appendix M). In the real world, we take the final policy checkpoint from823

training, and use it for evaluation. Fig. K.1 visualizes the difference between the HITL-TAMP policy824

at training time, where teleoperation is used, and at testing time, where teleoperation is substituted825

with a learned policy for fully autonomous control.826
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L Low-Dim Policy Training Results827

Task Time (min) SR (im) TAMP-gated SR (im)

Square (C) 25.0 84.0± 0.0 91.3± 5.2
Square (HT) 13.5 100.0± 0.0 100.0± 0.0

Square Broad (C) 48.0 29.3± 0.0 88.0± 1.6
Square Broad (HT) 14.0 100.0± 0.0 100.0± 0.0

Three Piece Assembly (C) 60.0 55.3± 0.0 96.0± 2.8
Three Piece Assembly (HT) 30.0 100.0± 0.0 100.0± 0.0

Tool Hang (C) 80.0 29.3± 0.0 60.0± 19.6
Tool Hang (HT) 48.0 80.7± 1.9 80.7± 1.9

Table L.1: Comparison to conventional teleoperation datasets (low-dim). We trained normal and TAMP-
gated policies using conventional teleoperation (C) and compared them to HITL-TAMP (HT). TAMP-gating
makes policies trained on the data comparable to HITL-TAMP data, but data collection still involves signifi-
cantly higher operator time.

In Table 6 and Sec. 6.2, we only presented results with image policies. In this section, we show that828

HITL-TAMP still compares favorably to conventional teleoperation data when trained on low-dim829

observations. The results are presented in Table L.1.830
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M TAMP Success Analysis831

Task Time (min) SR (low-dim) SR (image) TAMP SR (low-dim) Raw SR (low-dim) TAMP SR (image) Raw SR (image)

Square 13.5 100.0± 0.0 100.0± 0.0 77.7± 1.5 77.7± 1.5 82.0± 1.9 82.0± 1.9
Square Broad 14.0 100.0± 0.0 100.0± 0.0 81.2± 2.7 81.2± 2.7 76.1± 5.1 76.1± 5.1

Coffee 22.6 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Coffee Broad 28.8 99.3± 0.9 96.7± 0.9 98.1± 1.6 97.4± 0.9 97.4± 0.9 94.2± 0.1

Tool Hang 48.0 80.7± 1.9 78.7± 0.9 97.4± 1.8 78.6± 2.9 97.4± 1.8 76.6± 1.2
Tool Hang Broad 51.5 49.3± 1.9 40.7± 0.9 88.8± 1.9 43.8± 0.8 93.8± 0.8 38.1± 1.1

Three Piece Assembly 30.0 100.0± 0.0 100.0± 0.0 96.2± 1.5 96.2± 1.5 95.0± 2.3 95.0± 2.3
Three Piece Assembly Broad 34.9 84.7± 4.1 82.0± 1.6 71.4± 0.0 60.5± 2.9 76.0± 4.0 62.3± 4.3

Coffee Preparation 78.4 96.0± 3.3 100.0± 0.0 80.9± 4.8 77.6± 4.4 83.8± 1.8 83.8± 1.8

Table M.1: Analyzing TAMP Success Rates during Policy Evaluations. A more complete set of results from
Table 6 on HITL-TAMP datasets to demonstrate that policy evaluations do not have significant bias by only
evaluating in regions where TAMP is successful. All TAMP success rates are high (above 70%) and most are
above 88%.

Recall that when evaluating a trained policy, to decouple TAMP failures from policy failures, we832

keep conducting rollouts for each checkpoint until 50 rollouts with no TAMP failures have been833

collected, and compute policy success rate over those rollouts. In certain cases, this procedure could834

lead to biased evaluations — for example, if TAMP is only successful for an object in a limited835

region of the robot workspace. In this section, we present the TAMP success rates and raw success836

rates (including TAMP failures) for the policies in Table 6 (left), and demonstrate that it is unlikely837

that such bias exists in our evaluations. We present the results in Table M.1 — note that the Time838

and SR columns are reproduced from Table 6 (right) for ease of comparison. We see that all TAMP839

success rates are high (above 70%) and most are above 88%.840
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N Additional Details on Conventional Teleoperation System841

In this section, we provide additional details on the conventional teleoperation system that we com-842

pared against in this work (e.g. in Table 1 and Fig. 6) as well as explain why it is a representative843

baseline to compare against. Prior works in imitation learning leveraged robot teleoperation systems844

to allow for full 6-DoF control of a robot manipulator. These systems typically map the state of a845

teleoperation device, such as a Virtual Reality controller [6], a 3D mouse [61], a smartphone [36, 37],846

or a point-and-click web interface [9], to a desired robot end effector pose. They also use an end-847

effector controller to try and achieve the desired pose specified by the teleoperation device. The848

operator controls the robot arm in real-time by using the teleoperation device.849

This teleoperation paradigm has been used extensively in prior work that collects and learns from850

human demonstrations [1, 6, 2, 7, 41, 20, 9, 36, 37, 42, 10, 15, 16, 11]. In this work, we compared851

against the RoboTurk [36, 37] system and smartphone interface, which has been used in several prior852

imitation learning works [10, 39, 1, 62, 63, 64]. It was also used to collect datasets for the robomimic853

benchmark [1], whose results we also compare against (see Sec. 6.2). This makes it an appropriate854

baseline. However, it is important to note that our HITL-TAMP system is not specific to a particular855

teleoperation interface – in fact, our system is also compatible with a 3D mouse interface [61].856
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O Additional User Study Details857

In this section, we provide additional details on how the user study was conducted. We recruited858

15 participants that had varying levels of experience with robot teleoperation: 4 participants were859

unfamiliar, 6 were somewhat familiar, and 5 were very familiar with it. The purpose of the study860

was to compare our system (HITL-TAMP) to a conventional teleoperation system [36], where task861

demonstrations were collected without TAMP involvement. Participants underwent a brief tutorial862

(5-10 minutes) to familiarize themselves with the smartphone teleoperation interface and to practice863

collecting task demonstrations using both systems.864

Each participant performed task demonstrations on 3 tasks (Coffee, Square (Broad), and Three865

Piece Assembly (Broad)) for 10 minutes on each system, totaling 60 minutes of data collection866

across the 3 tasks and 2 systems. To reduce bias, the order of systems was randomized for each867

task and user (while maintaining the task order). Participants filled out a post-study survey to rank868

their experience with both systems. Each participant’s number of successful demonstrations was869

recorded to evaluate the data throughput of each system, and agents were trained on each partici-870

pant’s demonstrations and across all participants’ demonstrations (Sec. 6.1). See Appendix K for871

full details on policy training.872

All demonstrations were collected on a single workstation with an NVIDIA GeForce RTX3090873

GPU. We used 6 robot processes (Nrobot = 6) to ensure that human operators were always kept busy874

(see Sec. 4).875
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