

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QUERY ROUTING OVER MULTIMODAL KNOWLEDGE BASES FOR RETRIEVAL-AUGMENTED REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Retrieval-Augmented Generation (MRAG) has shown promise in mitigating hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge during generation. Existing MRAG methods typically adopt a static retrieval pipeline that fetches relevant information from predefined Knowledge Bases (KBs), followed by a refinement step. However, these approaches overlook the reasoning and planning capabilities of MLLMs to dynamically determine how to interact with different KBs during the reasoning process. To address this limitation, we propose R1-Router, a novel MRAG framework that learns to decide *when* and *where* to retrieve knowledge based on the evolving reasoning state. Specifically, R1-Router can generate follow-up queries according to the current reasoning step, routing these intermediate queries to the most suitable KB, and integrating external knowledge into a coherent reasoning trajectory to answer the original query. Furthermore, we introduce Stepwise Group Relative Policy Optimization (Step-GRPO), a tailored reinforcement learning algorithm that assigns step-specific rewards to optimize the reasoning behavior of MLLMs. Experimental results on diverse open-domain QA benchmarks spanning multiple modalities demonstrate the strong effectiveness of R1-Router, achieving improvements of more than 7% over competitive baselines. Further analysis reveals that R1-Router adaptively and effectively routes queries to the appropriate modalities during inference, while leveraging knowledge from multimodal KBs to reduce redundant retrieval steps and enhance both efficiency and accuracy.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) methods (Asai et al., 2023; Lewis et al., 2020; Shi et al., 2023) empower Large Language Models (LLMs) to access external knowledge, which functions as a form of “memory” that the models can consult during inference (Bai et al., 2024; Chen et al., 2024c; Zhao et al., 2023), helping to mitigate hallucinations and improve the response accuracy (Chen et al., 2024b; Gao et al., 2023; Li et al., 2022). In real-world scenarios, such an external “memory” often derives from multimodal Knowledge Bases (KBs), such as image-caption pairs, textual documents, and tabular data. These KBs play distinct roles in supporting models in acquiring diverse knowledge for answering queries. Existing Multimodal RAG (MRAG) approaches (Abootorabi et al., 2025; Xia et al., 2024; Zhang et al., 2024) typically perform one-pass retrieval from predefined knowledge bases and aim to refine the retrieved knowledge for enhancing the generation process (Lin et al., 2023). This design limits the ability of Multimodal LLMs (MLLMs) to interact dynamically with different KBs and fails to fully meet the information needs of MLLMs during inference (Shao et al., 2023; Su et al., 2024; Yu et al., 2025; Jiang et al., 2023).

To address this limitation, existing research has explored iterative retrieval strategies to elicit more relevant information that satisfies the knowledge requirements of MLLMs for answering (Nan et al., 2024; Shao et al., 2023; Trivedi et al., 2022). These methods typically prompt MLLMs to decompose the input query, retrieve external knowledge for each sub-query, and incorporate the retrieved evidence into the input context for final answer generation. While effective, these approaches often rely on predefined retrieval pipelines prioritizing a single dominant modality, thus limiting their flexibility in acquiring information from diverse KBs (Li et al., 2024b). To mitigate this rigidity, recent work has proposed modular frameworks that introduce a planner to dynamically adjust retrieval actions based on the current sub-query and route queries to specific KBs (Yeo et al., 2025; Yu et al., 2025).

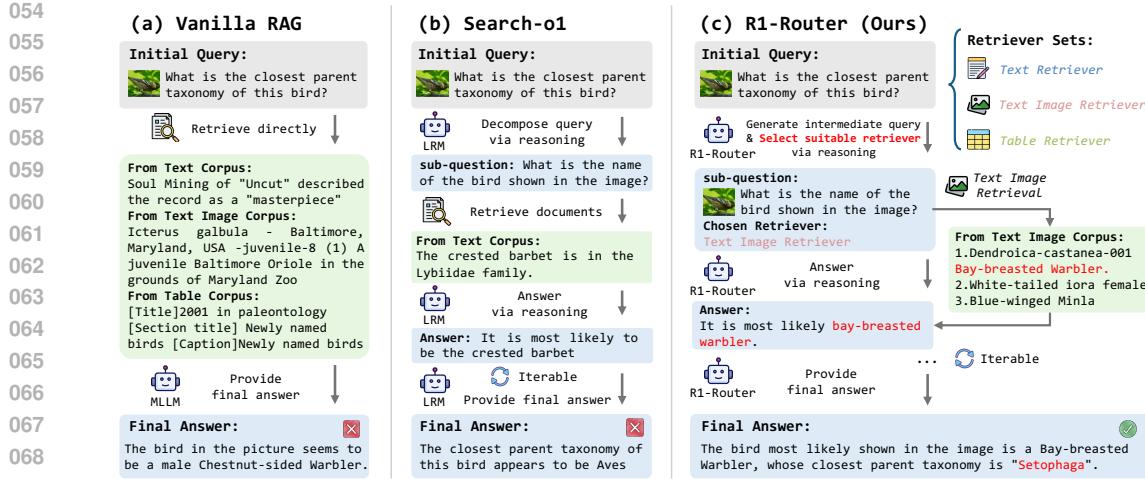


Figure 1: Comparison of Different RAG Architectures.

However, these frameworks primarily depend on the query routing capabilities of MLLMs, without fully exploiting their reasoning abilities (Wu et al., 2024). This reliance constrains the dynamic and adaptive potential of MLLMs in querying different KBs as information needs evolve during the solution of complex RAG tasks (Chen et al., 2023a; Guan et al., 2025).

Furthermore, recent studies have investigated employing Large Reasoning Models (LRMs) (Guo et al., 2025; Li et al., 2025b; Team, 2025; Xu et al., 2025) as backbone models to strengthen the planning and reasoning abilities of the RAG framework (Chen et al., 2025b; Li et al., 2025a). These methods enable LRM to interact with retrievers during inference, allowing dynamic access to external knowledge when facing uncertain or incomplete information (Li et al., 2025a). In parallel, Reinforcement Learning (RL) techniques have been introduced to train LLMs to decide when to invoke retrieval actions within the reasoning process (Chen et al., 2025a; Song et al., 2025; Zheng et al., 2025; Jin et al., 2025). Despite these advances, current LRM-based approaches remain largely limited to the textual modality and lack multimodal perception capabilities (Qu et al., 2025; Xu et al., 2025), which hinders their ability to handle multimodal queries and to dynamically identify the most suitable knowledge sources for retrieval.

In this paper, we introduce R1-Router, a novel framework that empowers MLLMs to dynamically decide *when* and *where* to acquire external knowledge, by adaptively selecting the next action–query decomposition, modality routing, or answering–based on the current reasoning state. As illustrated in Figure 1, R1-Router allows MLLMs to generate a query when additional knowledge is required, route it to the appropriate knowledge base, and continue reasoning based on previously reasoning results. This iterative process continues until the maximum number of reasoning steps is reached or when the model determines that sufficient information has been gathered. To effectively train R1-Router, we introduce Stepwise Group Relative Policy Optimization (Step-GRPO), which provides step-specific rewards to guide optimization throughout the reasoning trajectory. Experiments across diverse QA tasks validate the effectiveness of R1-Router, yielding substantial gains over existing RAG models. With Step-GRPO, R1-Router performs deeper step-by-step reasoning and generalizes well across various multimodal QA scenarios. Furthermore, R1-Router demonstrates strong flexibility in leveraging multimodal KBs, substantially reducing retrieval steps while maintaining high accuracy in both Visual QA and Table QA tasks.

2 RELATED WORK

Multimodal RAG (MRAG) methods (Mei et al., 2025; Sharifymoghaddam et al., 2024; Zhao et al., 2023) extend traditional RAG approaches (Lewis et al., 2020; Shi et al., 2023; Ram et al., 2023) by incorporating multiple Knowledge Bases (KBs) of different modalities, thereby enhancing their capacity to handle more complex and diverse real-world applications (Abootorabi et al., 2025; Caffagni et al., 2024; Yu et al., 2024; Lahiri & Hu, 2024). Typically, these methods route queries to a

108 predefined KB—such as structured tables or image captions—and perform a one-shot retrieval to
 109 provide supporting knowledge for MLLMs during response generation (Chen et al., 2022; Wu et al.,
 110 2025b). However, such fixed and rigid retrieval strategies limit MRAG systems in addressing queries
 111 that require evidence from multiple knowledge sources, which is critical for producing accurate and
 112 reliable answers (Yeo et al., 2025; Liu et al., 2025; Zhao et al., 2023).

113 To address this challenge, recent studies investigate training or prompting Multimodal LLMs
 114 (MLLMs) as agents that adaptively plan retrieval strategies, dynamically selecting the appropri-
 115 ate modality from KBs to support accurate response generation (Yu et al., 2025; Li et al., 2024b;
 116 Yeo et al., 2025). For instance, UniRAG (Yeo et al., 2025) introduces a unified retriever–controller
 117 architecture that routes queries to modality-specific retrievers based on query type and context.
 118 OmniSearch (Li et al., 2024b) employs a modular pipeline that decomposes complex queries into
 119 sub-queries and assigns them to modality-appropriate retrievers, thereby integrating heterogeneous
 120 knowledge sources. CogPlanner (Yu et al., 2025) leverages LLM-based agents for reasoning-driven
 121 query decomposition and retrieval planning, enabling iterative RAG workflows. Nevertheless, these
 122 approaches largely rely on prompting or supervised fine-tuning for query routing, instead of exploiting
 123 intrinsic reasoning capabilities of MLLMs, which constrains their generalization ability (Chu et al.,
 124 2025; Yang et al., 2025).

125 To further integrate retrieval with reasoning, recent work has applied Reinforcement Learning
 126 (RL) (Kaelbling et al., 1996) to optimize text-based RAG models, with methods such as DPO (Rafailov
 127 et al., 2023) and GRPO (Shao et al., 2024). DeepRAG (Guan et al., 2025) uses a binary decision tree
 128 combined with DPO to train models in deciding whether to respond directly or retrieve first, guided
 129 by user preference signals. ReSearch (Chen et al., 2025a) unifies retrieval and reasoning within the
 130 GRPO framework, employing final-answer accuracy as feedback to improve performance on complex
 131 queries. R1-Searcher (Song et al., 2025) adopts a two-stage, outcome-driven RL training strategy
 132 to enhance the search capabilities of LLMs. However, these outcome-based optimization methods
 133 depend on coarse-grained training signals and lack fine-grained supervision of intermediate reasoning
 134 steps. As a result, they may introduce unnecessary or suboptimal retrieval actions, reducing both the
 135 efficiency and stability of the training process.

3 METHODOLOGY

138 This section introduces our proposed method, R1-Router, which enables MLLMs to retrieve knowl-
 139 edge from multiple knowledge sources during reasoning autonomously. We first present an overview
 140 of how R1-Router adaptively decides when and where to retrieve relevant information in the reasoning
 141 process (Sec. 3.1). We then describe how R1-Router optimizes MLLMs for searching knowledge via
 142 the Stepwise Group Relative Policy Optimization (Step-GRPO) algorithm (Sec. 3.2).

3.1 THE OVERVIEW FRAMEWORK OF R1-ROUTER

144 Given an initial query q_0 and a set of multimodal knowledge bases (KBs) D , R1-Router performs a
 145 step-by-step reasoning \mathcal{R} to retrieve relevant information and generate the final answer a :

$$(q_0, D) \xrightarrow{\text{R1-Router}(\mathcal{R})} a, \quad (1)$$

146 where the input query q_0 requires knowledge from multiple modalities, such as text and images, to an-
 147 swer, the knowledge bases D provide heterogeneous sources, including collections of image–caption
 148 pairs, textual documents, and tabular data. This diversity enables MLLMs to integrate information
 149 from different KBs to support accurate query answering. The reasoning process \mathcal{R} executed by
 150 R1-Router is organized into $n + 1$ steps:

$$\mathcal{R} = \underbrace{\{t_1, (q_1, s_1), a_1\}}_{\mathcal{R}_1}, \dots, \underbrace{\{t_n, (q_n, s_n), a_n\}}_{\mathcal{R}_n}, \underbrace{\{t_{n+1}, q_0, a_{n+1}\}}_{\mathcal{R}_{n+1}}. \quad (2)$$

151 The first n steps, denoted as $\mathcal{R}_{1:n}$, are dedicated to retrieving relevant evidence from different knowl-
 152 edge bases. In the final step, \mathcal{R}_{n+1} , R1-Router integrates the accumulated knowledge a_1, \dots, a_n
 153 from previous reasoning steps with the initial query q_0 to generate the final answer a_{n+1} . Then we
 154 provide a detailed description of the knowledge accumulation process $\mathcal{R}_{1:n}$ and the final answer
 155 generation step \mathcal{R}_{n+1} of R1-Router.

162 **Stepwise Knowledge Gathering.** At each reasoning step \mathcal{R}_i ($1 \leq i \leq n$), R1-Router first generates
 163 an intermediate reasoning output t_i to evaluate whether the information accumulated thus far is
 164 sufficient to answer the initial query q_0 :

$$165 \quad t_i = \text{MLLM}(q_0, \mathcal{R}_{1:i-1}). \quad (3)$$

167 Based on the original query q_0 , the reasoning history $\mathcal{R}_{1:i-1}$, and the current reasoning output t_i ,
 168 R1-Router generates a follow-up query q_i and selects a retriever identifier s_i :

$$169 \quad (q_i, s_i) = \text{MLLM}(q_0, \mathcal{R}_{1:i-1}, t_i), \quad (4)$$

171 where s_i is the retriever identifier to determine which KB to search from. The retriever identifier s_i
 172 can be **Text Retriever**, **Text Image Retriever**, or **Table Retriever**, each corresponding to a specific
 173 retriever that queries a specific knowledge bases from D . Using the selected retriever s_i , R1-Router
 174 queries the corresponding sub-KB $D(s_i)$ with the intermediate query q_i to retrieve relevant evidence
 d_i :

$$175 \quad d_i = \text{Search}(q_i, D(s_i)). \quad (5)$$

176 Subsequently, the MLLM then produces a response a_i to answer the intermediate query q_i based on
 177 the current context tuple (t_i, q_i, d_i) :

$$178 \quad a_i = \text{MLLM}(t_i, q_i, d_i). \quad (6)$$

180 **Final Answer Generation.** Once the the first n step reasoning $\mathcal{R}_{1:n}$ is completed, R1-Router
 181 transitions to the final answer generation stage. At the $n + 1$ -th step, the MLLM determines that
 182 no additional evidence is required and sets the follow-up query to “None” or reaches the maximum
 183 reasoning depth. Thus, we replace the “None” with the initial query q_0 to get the final answer:

$$184 \quad \mathcal{R}_{n+1} = \{t_{n+1}, \text{None} \rightarrow q_0, a_{n+1}\}. \quad (7)$$

186 In this final step, the MLLM generates the answer a_{n+1} according to the integration of the initial
 187 query q_0 , the full reasoning trajectory $\mathcal{R}_{1:n}$, and the reasoning result t_{n+1} :

$$188 \quad a_{n+1} = \text{MLLM}(q_0, \mathcal{R}_{1:n}, t_{n+1}). \quad (8)$$

190 3.2 OPTIMIZING MLLMs FOR QUERY ROUTING THROUGH STEP-GRPO

192 R1-Router first collects a ground truth reasoning trajectory $\mathcal{R}^* = \mathcal{R}_1^*, \dots, \mathcal{R}_n^*, \mathcal{R}_{n+1}^*$ that can help
 193 to produce the correct answer for the initial query q_0 . It then introduces Step-GRPO, a method that
 194 extends Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to optimize MLLMs for
 195 retrieving information across different KBs D and performing stepwise reasoning. Specifically, at
 196 each reasoning step \mathcal{R}_i , the model is conditioned on the previous ground truth reasoning steps $\mathcal{R}_{1:i-1}^*$
 197 and trained to generate the next step reasoning result \mathcal{R}_i .

198 **Stepwise Reward Modeling in R1-Router.** To optimize each reasoning step \mathcal{R}_i , R1-Router defines
 199 two types of rewards, $r^{(1)}$ and $r^{(2)}$, to guide the model in (1) acquiring appropriate information d_i
 200 and (2) producing a more accurate answer a_i within the exploration trajectory.

201 First, $r^{(1)}$ encourages the model to ask more targeted queries and correctly route them to relevant KBs
 202 during the reasoning step \mathcal{R}_i ($1 \leq i \leq n$). This involves two components: (i) a query reward $r_{\text{ask}}(q_i)$,
 203 which measures the semantic similarity between the generated query q_i and the corresponding golden
 204 query in \mathcal{R}_i^* using the BGE-M3 embedding model (Chen et al., 2024a); and (ii) a routing reward
 205 $r_{\text{route}}(s_i)$, which evaluates whether the model correctly selects an appropriate retrieval to search from
 206 a relevant subset of the KB. The overall reward $r^{(1)}$ is defined as:

$$207 \quad r^{(1)} = r_{\text{format}}(q_i, s_i) \times (\alpha r_{\text{ask}}(q_i) + \beta r_{\text{route}}(s_i)), \quad (9)$$

209 where α and β are hyperparameters balancing the importance of query relevance and correct routing.
 210 The formatting reward $r_{\text{format}}(q_i, s_i)$ ensures that both the query and the retriever identifier are
 211 enclosed in special tokens, respectively.

212 Second, to optimize the answer a_i at each step \mathcal{R}_i , we define the following reward:

$$213 \quad r^{(2)} = r_{\text{format}}(a_i) \times r_{\text{answer}}(a_i), \quad (10)$$

215 where $r_{\text{answer}}(a_i)$ evaluates whether the generated answer a_i is correct. We assess the answer quality
 216 by using accuracy and F1-Recall (Li et al., 2024b). The F1-Recall is applied to intermediate answers

a_i ($1 \leq i \leq n$), which often correspond to long and complex LLM-generated references. And, for the final answer a_{n+1} , we use the accuracy for evaluation, due to the short golden reference. The formatting reward $r_{\text{format}}(a_i)$ enforces that the answer is enclosed in the special tokens. More details on the fine-grained reward design are provided in Appendix A.4.

Step-GRPO Objective. To optimize the policy model for multi-step reasoning tasks effectively, R1-Router adopts a Step-GRPO objective that explicitly computes the policy advantage at each intermediate reasoning step. Given a query q_0 that requires n reasoning steps \mathcal{R} , Step-GRPO samples a set of outputs at each intermediate step i and minimizes the following objective:

$$\mathcal{L} = \sum_{i=1}^n [\mathcal{L}_{\text{GRPO}}((q_0, \mathcal{R}_{1:i-1}^*), r^{(1)}) + \mathcal{L}_{\text{GRPO}}((q_i^*, d_i^*), r^{(2)})] + \mathcal{L}_{\text{GRPO}}((q_0, \mathcal{R}_{1:n}^*), r^{(2)}), \quad (11)$$

where q_i^* and d_i^* denote the golden query and retrieved documents from the i -th golden reasoning step \mathcal{R}_i^* . The final term, $\mathcal{L}_{\text{GRPO}}((q_0, \mathcal{R}_{1:n}^*), r^{(2)})$ corresponds to the $(n+1)$ -th step that focuses solely on generating the final answer a based on the initial query q_0 and the full reasoning trajectory $\mathcal{R}_{1:n}$. Each GRPO loss term $\mathcal{L}_{\text{GRPO}}(x, r)$ is computed over a batch of sampled trajectories from the old policy model $\pi_{\theta_{\text{old}}}$, given an input x and reward r :

$$\begin{aligned} \mathcal{L}_{\text{GRPO}}(x, r) = & -\frac{1}{G} \sum_{k=1}^G \frac{1}{|\mathcal{O}_k|} \sum_{t=1}^{|\mathcal{O}_k|} \left[\min \left(\frac{\pi_{\theta}(o_{k,t} | x, o_{k,<t})}{\pi_{\theta_{\text{old}}}(o_{k,t} | x, o_{k,<t})} \hat{A}_{k,t}(r), \right. \right. \\ & \left. \left. \text{clip} \left(\frac{\pi_{\theta}(o_{k,t} | x, o_{k,<t})}{\pi_{\theta_{\text{old}}}(o_{k,t} | x, o_{k,<t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{k,t}(r) \right) \right], \end{aligned} \quad (12)$$

where ϵ is a clipping hyperparameter and π_{θ} is the current policy model. Each \mathcal{O}_k denotes a sampled token sequence from $\pi_{\theta_{\text{old}}}$, and $o_{k,t}$ represents the t -th token in the k -th sampled trajectory \mathcal{O}_k . For the input x , we sample a group of responses $\{\mathcal{O}_1, \mathcal{O}_2, \dots, \mathcal{O}_G\}$ for a given input x , and their rewards $\{r_1, r_2, \dots, r_G\}$ are obtained via the reward functions $r^{(1)}$ or $r^{(2)}$. The normalized advantage estimated score $\hat{A}_{k,t}(r)$ for each token is calculated as:

$$\hat{A}_{k,t}(r) = \frac{r_k - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}. \quad (13)$$

4 EXPERIMENTAL METHODOLOGY

This section describes the datasets, evaluation metrics, baselines, and implementation details.

Datasets. We first introduce the datasets used in our experiments, followed by the data statistics for golden reasoning trajectory construction.

Our experiments incorporate three QA scenarios: Text QA (2WikiMultihopQA (Ho et al., 2020)), Visual QA (InfoSeek (Chen et al., 2023b), Dyn-VQA (Li et al., 2024b), and WebQA (Chang et al., 2022)), and Table QA (Open-WikiTable (Kweon et al., 2023) and TabFact (Chen et al., 2019)). Specifically, we use 2WikiMultihopQA, InfoSeek, and Open-WikiTable for training and evaluation, while Dyn-VQA, TabFact, and WebQA are used for evaluation to assess the generalization capability of R1-Router. We adopt specialized retrievers tailored to each modality to support different QA tasks. For textual retrieval, we utilize BGE-M3 (Chen et al., 2024a) to retrieve relevant passages from the Wikipedia dump¹. For multimodal scenarios, we employ UniIR (Wei et al., 2024) as a unified text-image retriever, retrieve related images from the M-BEIR corpus (Wei et al., 2024) and use corresponding image descriptions for augmentation. For table retrieval, we follow the setup of Open-WikiTable (Kweon et al., 2023), using the same dense retriever and table corpus in experiments. More details are shown in Appendix A.2.

To construct golden reasoning trajectories for training R1-Router, we employ R1-Distill-Qwen-32B (Guo et al., 2025) and Qwen2.5-VL-7B (Bai et al., 2025) to generate candidate reasoning paths. We then filter these reasoning trajectories by verifying whether they lead to correct answers. Further details on the data construction process are provided in Appendix A.3.

¹<https://dumps.wikimedia.org>

270 Table 1: Overall Performance of R1-Router and Baselines (**best** and the second are highlighted).
271

272 Method	273 KBs	274 In Distribution			275 Out of Distribution			276 Avg.
		277 Open-WikiTable	278 2WikiQA	279 InfoSeek	280 Dyn-VQA	281 TabFact	282 WebQA	
Vanilla Models								
Qwen2.5-VL-7B	-	21.28	48.35	<u>43.06</u>	36.31	18.10	76.07	40.53
R1-Distill-Qwen-32B	-	22.75	51.78	37.20	39.98	19.10	79.41	41.70
RAG Methods w/o KB Routing								
Vanilla RAG	Text	15.38	48.20	31.88	13.26	29.20	79.04	36.16
Vanilla RAG	Image	13.77	43.95	43.03	14.03	27.50	79.76	37.01
Vanilla RAG	Table	53.35	41.89	33.37	12.29	27.90	75.73	40.76
Vanilla RAG	All	49.99	48.31	39.06	14.12	34.90	76.63	43.84
IRCoT	Text	<u>5.78</u>	24.70	16.80	<u>16.61</u>	<u>5.20</u>	46.16	19.21
IRCoT	Image	5.32	18.94	27.47	18.04	2.10	47.06	19.82
IRCoT	Table	35.52	11.13	17.22	14.95	8.30	44.46	21.93
IRCoT	All	39.44	25.77	23.41	22.23	9.60	49.48	28.32
IterRetGen	Text	14.59	50.07	39.59	36.18	30.60	83.88	42.49
IterRetGen	Image	12.38	43.93	41.35	32.66	30.80	84.50	40.94
IterRetGen	Table	36.74	42.91	40.53	32.44	36.90	83.58	45.52
IterRetGen	All	38.95	50.99	40.94	36.08	38.60	84.19	48.29
Search-OT	Text	<u>9.72</u>	28.12	18.52	<u>16.40</u>	<u>29.60</u>	16.78	19.86
RAG Methods w/ KB Routing								
CogPlanner	All	16.50	49.28	42.23	36.60	33.10	84.82	43.76
UniversalRAG	All	31.12	47.30	37.25	11.91	26.00	79.48	38.84
OmniSearch	All	7.72	31.02	24.45	18.94	2.30	58.02	23.24
MMSearch-R1 ¹	All	6.50	26.21	13.25	6.86	7.90	2.67	10.57
MMSearch-R1 ²	All	7.43	19.41	29.09	21.78	39.20	40.75	26.28
R1-Router-3B	All	<u>53.85</u>	<u>55.18</u>	37.45	37.58	52.60	<u>89.54</u>	<u>54.37</u>
R1-Router-7B	All	53.95	55.47	43.60	<u>39.24</u>	<u>52.40</u>	90.92	55.93

294 **Evaluation Metrics.** We utilize F1-Recall as our evaluation metric for all the tasks, which
295 calculates the ratio of standard tokens between model responses and ground truth, following prior
296 work (Li et al., 2024b).

298 **Baselines.** We compare R1-Router with several baseline methods, including vanilla (M)LLMs,
299 vanilla RAG models, iterative RAG models, and RAG models with Knowledge Base (KB) rout-
300 ing. MMSearch-R1¹ uses the prompt provided in the paper, whereas MMSearch-R1² adopts our
301 redesigned prompt. More implementation details are provided in Appendix A.8.

302 **Implementation Details.** We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the backbone model for
303 building our R1-Router model. To prevent infinite retrieval loops, we limit the number of retrieval
304 iterations to at most 3 ($n \leq 3$). After knowledge accumulation, the initial query q_0 is re-fed into the
305 model to produce the final answer through the $n + 1$ -th reasoning step \mathcal{R}_{n+1} . More experimental
306 details are shown in Appendix A.1

308 5 EVALUATION RESULTS

310 In this section, we first present the performance of R1-Router across various QA tasks, including
311 Text QA, Visual QA, and Table QA. We then conduct ablation studies to examine the effectiveness of
312 different training strategies. Next, we analyze how R1-Router performs adaptive retrieval during the
313 reasoning process. Finally, we provide case studies to analyze the behavior of R1-Router.

315 5.1 OVERALL PERFORMANCE

317 The overall performance of R1-Router and baseline methods is shown in Table 1. For both vanilla and
318 iterative RAG models, we evaluate two retrieval settings for evaluation: (1) retrieving 5 documents
319 individually from each modality-specific KB (text, image, or table), and (2) aggregating all 15
320 documents retrieved from these KBs.

321 Overall, R1-Router consistently outperforms all baseline models, achieving an average performance
322 gain of approximately 7%. Notably, R1-Router shows consistent improvements by adaptively
323 routing queries to different KBs to collect information, highlighting its strong generalization ability
and potential to serve as a universal solution for dealing with different QA tasks. Compared to

324
325
326 Table 2: Ablation Study.
327
328

Method	In Distribution			Out of Distribution			Avg.
	Open-WikiTable	2WikiMQA	InfoSeek	Dyn-VQA	TabFact	WebQA	
R1-Router (Random Routing)							
Prompt	18.88	41.44	25.70	25.16	25.90	77.79	35.81
SFT	24.60	41.91	27.35	27.09	43.10	79.81	40.64
Step-GRPO	44.03	51.08	40.56	38.18	50.50	90.66	52.50
R1-Router							
Prompt	23.97	41.56	24.43	26.19	25.20	77.94	36.55
SFT	28.12	42.65	31.35	29.62	47.71	76.75	42.70
GRPO	10.41	28.56	24.18	17.23	54.10	11.94	24.40
Step-GRPO	53.95	55.47	43.60	39.24	52.40	90.92	55.93

330 RAG models without KB routing, R1-Router exhibits clear advantages by dynamically routing
 331 queries to different KBs for information retrieval. Within the group of RAG baselines lacking KB
 332 routing, incorporating evidence retrieved from multiple KBs leads to noticeable improvements in
 333 QA performance, indicating that different KBs contribute complementary information that supports
 334 MLLMs in answering queries. In addition, IterRetGen achieves substantially better performance
 335 than the vanilla RAG model, illustrating that iterative retrieval can help accumulate more related
 336 and sufficient information to answer these complex queries. While Search-O1 encourages Large
 337 Reasoning Models (LRMs) to perform adaptive retrieval during reasoning, it performs worse than
 338 other models. This may be attributed to the limitations of prompting-based methods in effectively
 339 guiding LRMs to utilize retrieval tools, a capability that may not have been sufficiently learned
 340 during pretraining (Jin et al., 2025). Furthermore, R1-Router outperforms RAG approaches equipped
 341 with KB-based routing, highlighting its effectiveness in extending the deep reasoning capabilities of
 342 MLLMs for QA tasks. Thrived on our Step-GRPO strategy, R1-Router jointly improves both routing
 343 and reasoning capabilities of MLLMs, leading to a more effective and adaptable RAG framework.
 344

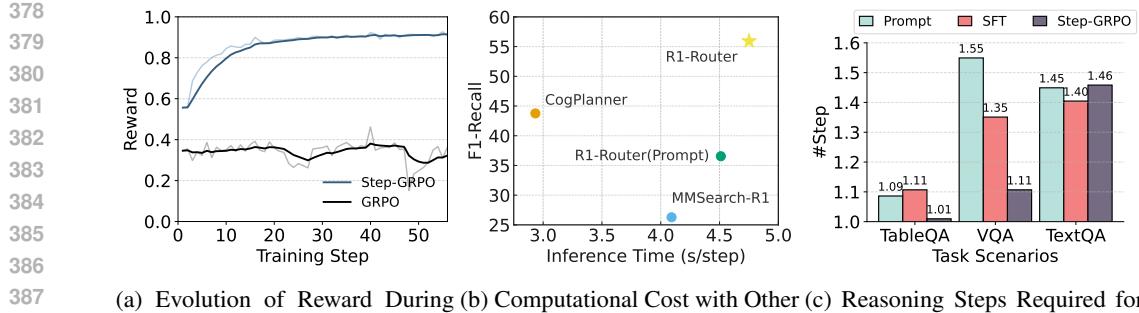
352 5.2 ABLATION STUDIES

353 This section conducts ablation studies to evaluate the effectiveness of different training strategies,
 354 including Prompt, SFT, GRPO, and Step-GRPO. To assess the contribution of KB routing, we further
 355 compare two evaluation settings: (1) random routing, where a KB is selected at random for each
 356 intermediate query, and (2) self-routing, where the MLLM itself determines the most relevant KB.
 357

358 As shown in Table 2, R1-Router (Step-GRPO) consistently outperforms all baselines, yielding over
 359 10% improvements across all tasks. This result highlights the effectiveness of Step-GRPO in guiding
 360 the MLLM through multi-step reasoning and structured knowledge acquisition. R1-Router (SFT)
 361 outperforms prompt-based methods overall, but exhibits limited effectiveness on the Open-2WikiTable
 362 and WebQA datasets. This suggests that relying solely on SFT for model optimization hinders the
 363 ability of MLLMs to generalize across diverse QA scenarios. However, for R1-Router (GRPO),
 364 reward sparsity and the lack of action continuity prevent the model from learning effective reasoning,
 365 thereby degrading performance. In contrast, R1-Router (Step-GRPO) yields more consistent and
 366 significant improvements across all tasks, demonstrating its superior ability to accumulate knowledge
 367 through RL optimization. Notably, even when combined with random routing, R1-Router (Step-
 368 GRPO) maintains robust performance gains over Prompt and SFT methods, suggesting that its benefits
 369 stem not only from routing precision but also from more effective reasoning and intermediate query
 370 generation. By further incorporating self-routing, R1-Router (Step-GRPO) achieves an additional 3%
 371 improvement. This confirms the effectiveness of R1-Router in dynamically selecting relevant KBs,
 372 producing more accurate answers.

373 5.3 ANALYZING THE BEHAVIOR OF R1-ROUTER IN ADAPTIVE RETRIEVAL AND REASONING

374 In this section, we first examine the effectiveness of Step-GRPO in enabling MLLMs to perform
 375 adaptive reasoning and retrieval. We then analyze the KB routing behaviors across different models
 376 to understand their knowledge-seeking strategies better.



(a) Evolution of Reward During GRPO and Step-GRPO Training. (b) Computational Cost with Other KB Routing Baselines. (c) Reasoning Steps Required for Correct Question Answering.

Figure 2: Performance of Step-GRPO.

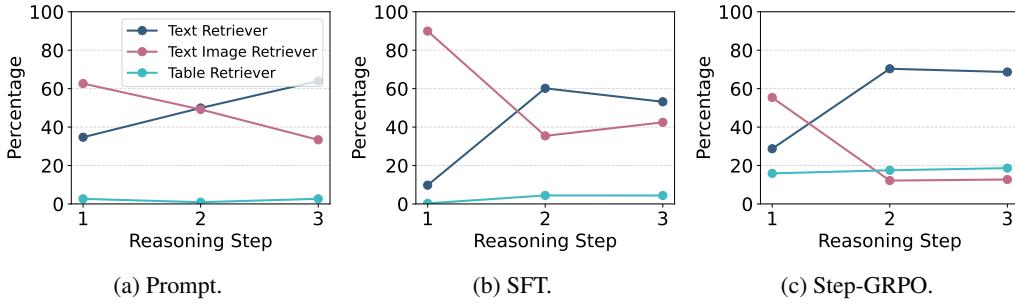


Figure 3: Query Routing Performance on VQA During the Reasoning Process of R1-Router. Three training strategies are compared, including Prompt, SFT, and Step-GRPO.

Effectiveness of Step-GRPO. As illustrated in Figure 2, we evaluate the impact of our Step-GRPO training method on improving MLLMs’ reasoning capabilities. In Figure 2a, we show the progression of reward scores during training. Training with GRPO remains unstable under discontinuous data and sparse rewards. Step-GRPO remedies this via unified optimization of contiguous actions and fine-grained rewards, leading to stable growth. As shown in Figure 2b, across KB-routing baselines, the R1-Router delivers more than a 12% gain in F1-Recall with under 2s additional per-step latency, aligning well with the performance-computational-cost trade-off. More computational cost details can be seen in Appendix A.7. Figure 2c presents the average number of reasoning steps required to answer queries correctly. We categorize all test data into three types—Table QA, Visual QA (VQA), and Text QA—based on the kind of knowledge needed. In the TextQA scenario, Step-GRPO performs comparably to other training strategies in terms of average reasoning steps, indicating that deeper reasoning alone may not reduce retrieval complexity for purely textual queries. In contrast, in both VQA and Table QA scenarios, R1-Router significantly reduces the number of reasoning steps, demonstrating its effectiveness in guiding MLLMs to route queries more efficiently across different KBs for conducting more effective knowledge usage.

Routing Preferences of R1-Router During Reasoning. We further investigate how Step-GRPO reduces reasoning steps by analyzing the evolution of routing preferences throughout the reasoning process of R1-Router. As shown in Figure 3, we compute the proportion of selected KBs at each reasoning step on the VQA task. Compared with R1-Router (Prompt), the R1-Router (SFT) model demonstrates a rigid retrieval pattern, inherited mainly from dataset-specific biases. It tends first to use the **Text-Image Retriever** to obtain relevant visual descriptions from the predefined task-specific KB. Then, it alternates between the **Text-Image Retriever** and the **Text Retriever** to search for multiple KBs. In contrast, Step-GRPO encourages more adaptive and flexible routing behavior. Specifically, R1-Router (Step-GRPO) increasingly shifts its retrieval preference from the **Text-Image Retriever** to the **Text Retriever**, indicating that textual knowledge (e.g., from Wikipedia) often plays a more crucial role in answering visual queries. Moreover, it selectively employs the **Table Retriever** when appropriate, demonstrating its ability to leverage multimodal KBs based on the information need adaptively. This adaptive knowledge-seeking behavior highlights the potential of Step-GRPO in enabling more generalizable and flexible RAG systems for multimodal QA tasks.

432
 433 **Question:** What is the closest parent taxonomy of this bird?
 433 **Ground Truth:** *Setophaga*

434 **Exploration Trajectory of R1-Router**
 435 <think> To determine the closest parent taxonomy of a bird, we need to identify the species of the bird shown in the image. This requires a visual analysis of the bird, which can be achieved using a Text Image Retriever. </think>
 436 <sub-question> What is the name of the bird shown in the image? </sub-question>
 436 <ret> Text Image Retriever </ret>

437 **Retrieved Documents:**
 438 ter-1: *Dendroica castanea*-001 **Bay-breasted Warbler**. Canada Rondeau Provincial Park, Ontario, Canada. ter-2: *Icterus galbula*-Baltimore, Maryland, USA -juvenile-8 (1) A juvenile Baltimore Oriole in the grounds of Maryland Zoo, Baltimore, Maryland, USA.
 439 ter-3: *Poospiza lateralis* -Extrema, Minas Gerais, Brazil-8 A Buff-throated Warbling Finch in Extrema, Minas Gerais, Brazil.
 440 <answer> The name of the bird shown in the image is most likely bay-breasted warbler (*Dendroica castanea*). This conclusion is based on the description of the bay-breasted warbler in the text retriever information (ter-1), which mentions a **bird with a distinctive chest pattern, which could be characteristic of the bird shown in the image**. The image appears to be of a bird with a similar pattern on its chest, which is consistent with the description of the bay-breasted warbler. </answer>

442 <think> The next step is to determine the closest parent taxonomy of the Bay-breasted Warbler. This requires identifying the appropriate taxonomic classification for the bird. </think>
 443 <sub-question> What is the closest parent taxonomy of the Bay-breasted Warbler? </sub-question>
 444 <ret> Text Retriever </ret>

445 **Retrieved Documents:**
 446 ter-1: Bay-breasted Warbler The Bay-breasted Warbler (*Setophaga castanea*) is a small species of songbird in the New World warbler family, *Parulidae*. It is one of thirty-four species in the diverse genus **Setophaga**. ter-2: Bay-breasted warbler Warblers may look very similar to the blackpoll warbler (*Setophaga striata*). The genus name **Setophaga** is from Ancient Greek ses, moth, and, eating, and ...
 448 <answer> ... is one of thirty-four species in the diverse genus **Setophaga**. This classification places the Bay-breasted Warbler in the order Passeriformes ... </answer>
 449 ...
 450 <think> The provided answers all suggest that the closest parent taxonomy of the Bay-breasted Warbler, which the image appears to be of, is within the order Passeriformes... </think>
 451 <answer> ... and is one of thirty-four species in the diverse genus **Setophaga**. </answer>

452
 453 Figure 4: An Example from the Visual QA Task Demonstrating the Performance of R1-Router.
 454
 455

456 5.4 CASE STUDY

457 To further demonstrate the effectiveness of R1-Router, we present a case study from the InfoSeek
 458 dataset on a VQA task. As illustrated in Figure 4, we show the step-by-step reasoning process of
 459 R1-Router for a query that asks for the closest parent taxonomy of the bird depicted in the image.

460
 461 In the first reasoning step, R1-Router initiates a deliberation process and decomposes the task into
 462 a subgoal: conducting a visual analysis. It formulates an intermediate query—“What is the name
 463 of the bird shown in the image?”—and selects the **Text-Image Retriever** to obtain relevant visual
 464 information. By leveraging this retriever, R1-Router retrieves image descriptions of semantically
 465 similar images from the knowledge base, which include key entities such as “Bay-breasted Warbler”,
 466 that describe the bird in the given image. Notably, R1-Router performs a reflection step to verify that
 467 the bird is indeed a Bay-breasted Warbler, based on distinctive visual features (e.g., chest patterns)
 468 mentioned in the retrieved evidence. This demonstrates the effectiveness of R1-style deep reasoning
 469 in RAG-based modeling. In the second step, R1-Router formulates a follow-up query—“What is the
 470 closest parent taxonomy of the bay-breasted warbler?”—and selects the **Text Retriever** to collect factual
 471 knowledge. Using the retrieved content, R1-Router identifies the genus of the Bay-breasted Warbler as
 472 “**Setophaga**” and ultimately outputs the correct final answer. This case study demonstrates the ability
 473 of R1-Router to dynamically decide when and from which knowledge source to retrieve information
 474 during problem-solving, showcasing its strong reasoning and retrieval planning capabilities.

475 6 CONCLUSION

476
 477 This paper proposes R1-Router, a method designed to dynamically determine when and where to
 478 retrieve relevant knowledge during reasoning. Specifically, R1-Router introduces Stepwise Group
 479 Relative Policy Optimization (Step-GRPO). This optimization algorithm computes step-specific
 480 rewards at intermediate reasoning steps to guide MLLMs to learn how to retrieve information
 481 from different knowledge bases during reasoning. Experimental results show that R1-Router can
 482 conduct practical retrieval actions across multiple knowledge bases and perform iterative reasoning
 483 conditioned on the current problem-solving context. This enables it to effectively tackle complex
 484 queries requiring multi-step reasoning and heterogeneous information sources. Moreover, R1-Router
 485 provides a promising step toward building generalizable RAG systems by enabling MLLMs to
 486 effectively manage multimodal knowledge bases and handle a broad range of query types.

486 REFERENCES
487

488 Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mohammad-
489 khani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah, and Ehsaneddin
490 Asgari. Ask in any modality: A comprehensive survey on multimodal retrieval-augmented genera-
491 tion. *arXiv preprint arXiv:2502.08826*, 2025.

492 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
493 retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on*
494 *Learning Representations*, 2023.

495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
496 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
497 2025.

498 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
499 Hallucination of multimodal large language models: A survey. *arXiv preprint arXiv:2404.18930*,
500 2024.

501 Davide Caffagni, Federico Cocchi, Nicholas Moratelli, Sara Sarto, Marcella Cornia, Lorenzo Baraldi,
502 and Rita Cucchiara. Wiki-llava: Hierarchical retrieval-augmented generation for multimodal llms.
503 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
504 1818–1826, 2024.

505 Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
506 Webqa: Multihop and multimodal qa. In *Proceedings of the IEEE/CVF conference on computer*
507 *vision and pattern recognition*, pp. 16495–16504, 2022.

508 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
509 domain questions. *arXiv preprint arXiv:1704.00051*, 2017.

510 Hung-Ting Chen, Fangyuan Xu, Shane Arora, and Eunsol Choi. Understanding retrieval augmentation
511 for long-form question answering. In *First Conference on Language Modeling*, 2023a.

512 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
513 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
514 distillation. *arXiv preprint arXiv:2402.03216*, 2024a.

515 Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in
516 retrieval-augmented generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
517 volume 38, pp. 17754–17762, 2024b.

518 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Fan Yang, Zenan Zhou,
519 Weipeng Chen, Haofen Wang, Jeff Z Pan, et al. Learning to reason with search for llms via
520 reinforcement learning. *arXiv preprint arXiv:2503.19470*, 2025a.

521 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
522 Yuhang Zhou, Te Gao, and Wangxiang Che. Towards reasoning era: A survey of long chain-of-
523 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025b.

524 Wenhui Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
525 and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. *arXiv*
526 *preprint arXiv:1909.02164*, 2019.

527 Wenhui Chen, Hexiang Hu, Xi Chen, Pat Verga, and William W Cohen. Murag: Multimodal
528 retrieval-augmented generator for open question answering over images and text. *arXiv preprint*
529 *arXiv:2210.02928*, 2022.

530 Xiang Chen, Chenxi Wang, Yida Xue, Ningyu Zhang, Xiaoyan Yang, Qiang Li, Yue Shen, Lei Liang,
531 Jinjie Gu, and Huajun Chen. Unified hallucination detection for multimodal large language models.
532 *arXiv preprint arXiv:2402.03190*, 2024c.

533 Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
534 Chang. Can pre-trained vision and language models answer visual information-seeking questions?
535 *arXiv preprint arXiv:2302.11713*, 2023b.

540 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 541 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 542 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

543

544 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen
 545 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
 546 *arXiv preprint arXiv:2312.10997*, 2, 2023.

547

548 Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun,
 549 and Jie Zhou. Deeprag: Thinking to retrieval step by step for large language models. *arXiv preprint*
 550 *arXiv:2502.01142*, 2025.

551

552 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 553 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 554 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

555

556 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 557 qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*,
 558 2020.

559

560 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 561 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In *Proceedings of the*
 562 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, 2023.

563

564 Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
 565 Training llms to reason and leverage search engines with reinforcement learning. *arXiv preprint*
 566 *arXiv:2503.09516*, 2025.

567

568 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
 569 *Journal of artificial intelligence research*, 4:237–285, 1996.

570

571 Sunjun Kweon, Yeonsu Kwon, Seonhee Cho, Yohan Jo, and Edward Choi. Open-wikititable:
 572 Dataset for open domain question answering with complex reasoning over table. *arXiv preprint*
 573 *arXiv:2305.07288*, 2023.

574

575 Aritra Kumar Lahiri and Qinmin Vivian Hu. Alzheimerrag: Multimodal retrieval augmented genera-
 576 tion for pubmed articles. *arXiv preprint arXiv:2412.16701*, 2024.

577

578 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 579 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 580 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 581 9459–9474, 2020.

582

583 Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented text
 584 generation. *arXiv preprint arXiv:2202.01110*, 2022.

585

586 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 587 Zicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 588 *arXiv:2501.05366*, 2025a.

589

590 Xinze Li, Sen Mei, Zhenghao Liu, Yukun Yan, Shuo Wang, Shi Yu, Zheni Zeng, Hao Chen, Ge Yu,
 591 Zhiyuan Liu, et al. Rag-ddr: Optimizing retrieval-augmented generation using differentiable data
 592 rewards. *arXiv preprint arXiv:2410.13509*, 2024a.

593

594 Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinran Zheng, Hui Wang, Hai-Tao
 595 Zheng, Fei Huang, Jingren Zhou, et al. Benchmarking multimodal retrieval augmented generation
 596 with dynamic vqa dataset and self-adaptive planning agent. *arXiv preprint arXiv:2411.02937*,
 597 2024b.

598

599 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
 600 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
 601 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025b.

594 Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained late-
 595 interaction multi-modal retrieval for retrieval augmented visual question answering. *Advances in*
 596 *Neural Information Processing Systems*, 36:22820–22840, 2023.

597

598 Zhenghao Liu, Xingsheng Zhu, Tianshuo Zhou, Xinyi Zhang, Xiaoyuan Yi, Yukun Yan, Yu Gu,
 599 Ge Yu, and Maosong Sun. Benchmarking retrieval-augmented generation in multi-modal contexts.
 600 *arXiv preprint arXiv:2502.17297*, 2025.

601 Lang Mei, Siyu Mo, Zhihan Yang, and Chong Chen. A survey of multimodal retrieval-augmented
 602 generation. *arXiv preprint arXiv:2504.08748*, 2025.

603

604 Linyong Nan, Weining Fang, Aylin Rasteh, Pouya Lahabi, Weijin Zou, Yilun Zhao, and Arman
 605 Cohan. Omg-qa: Building open-domain multi-modal generative question answering systems.
 606 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 1001–1015, 2024.

607

608 Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
 609 Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning models:
 610 Language, multimodality, and beyond. *arXiv preprint arXiv:2503.21614*, 2025.

611

612 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 613 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.

614

615 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
 616 Yoav Shoham. In-context retrieval-augmented language models. *Transactions of the Association
 617 for Computational Linguistics*, pp. 1316–1331, 2023.

618

619 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 620 retrieval-augmented large language models with iterative retrieval-generation synergy. *arXiv
 621 preprint arXiv:2305.15294*, 2023.

622

623 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 624 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

625

626 Sahel Sharifmoghaddam, Shivani Upadhyay, Wenhui Chen, and Jimmy Lin. Unirag: Universal
 627 retrieval augmentation for multi-modal large language models. *arXiv preprint arXiv:2405.10311*,
 628 2024.

629

630 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer,
 631 and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. *arXiv preprint
 632 arXiv:2301.12652*, 2023.

633

634 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
 635 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
 636 *arXiv preprint arXiv:2503.05592*, 2025.

637

638 Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dynamic retrieval
 639 augmented generation based on the real-time information needs of large language models. In
 640 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 641 1: Long Papers)*, pp. 12991–13013, 2024.

642

643 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 644 <https://qwenlm.github.io/blog/qwq-32b/>.

645

646 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 647 with chain-of-thought reasoning for knowledge-intensive multi-step questions. *arXiv preprint
 648 arXiv:2212.10509*, 2022.

649

650 Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. Multi-passage
 651 bert: A globally normalized bert model for open-domain question answering. *arXiv preprint
 652 arXiv:1908.08167*, 2019.

648 Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhui Chen.
 649 Uniir: Training and benchmarking universal multimodal information retrievers. In *European*
 650 *Conference on Computer Vision*, pp. 387–404. Springer, 2024.

651

652 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 653 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 654 *neural information processing systems*, 35:24824–24837, 2022.

655 Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You, Bo Li, Zejun Ma, and Ziwei Liu. Mmsearch-r1:
 656 Incentivizing Imms to search. *arXiv preprint arXiv:2506.20670*, 2025a.

657

658 Yin Wu, Quanyu Long, Jing Li, Jianfei Yu, and Wenya Wang. Visual-rag: Benchmarking text-to-
 659 image retrieval augmented generation for visual knowledge intensive queries. *arXiv preprint*
 660 *arXiv:2502.16636*, 2025b.

661

662 Zhuofeng Wu, Richard Bai, Aonan Zhang, Jiatao Gu, VG Vinod Vydiswaran, Navdeep Jaitly, and
 663 Yizhe Zhang. Divide-or-conquer? which part should you distill your llm? In *Findings of the*
 664 *Association for Computational Linguistics: EMNLP 2024*, pp. 2572–2585, 2024.

665

666 Peng Xia, Kangyu Zhu, Haoran Li, Hongtu Zhu, Yun Li, Gang Li, Linjun Zhang, and Huaxiu Yao.
 667 Rule: Reliable multimodal rag for factuality in medical vision language models. In *Proceedings*
 668 *of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 1081–1093,
 2024.

669

670 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
 671 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
 672 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

673

674 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 675 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning
 676 through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

677

678 Woongyeong Yeo, Kangsan Kim, Soyeong Jeong, Jinheon Baek, and Sung Ju Hwang. Universalrag:
 679 Retrieval-augmented generation over multiple corpora with diverse modalities and granularities.
 680 *arXiv preprint arXiv:2504.20734*, 2025.

681

682 Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
 683 Xu Han, Zhiyuan Liu, et al. Visrag: Vision-based retrieval-augmented generation on multi-modality
 684 documents. *arXiv preprint arXiv:2410.10594*, 2024.

685

686 Xiaohan Yu, Zhihan Yang, and Chong Chen. Unveiling the potential of multimodal retrieval
 687 augmented generation with planning. *arXiv preprint arXiv:2501.15470*, 2025.

688

689 Tao Zhang, Ziqi Zhang, Zongyang Ma, Yuxin Chen, Zhongang Qi, Chunfeng Yuan, Bing Li, Junfu
 690 Pu, Yuxuan Zhao, Zehua Xie, et al. m2rag: Multimodal retrieval-reflection-augmented generation
 691 for knowledge-based vqa. *arXiv preprint arXiv:2411.15041*, 2024.

692

693 Ruochen Zhao, Hailin Chen, Weishi Wang, Fangkai Jiao, Xuan Long Do, Chengwei Qin, Bosheng
 694 Ding, Xiaobao Guo, Minzhi Li, Xinxuan Li, et al. Retrieving multimodal information for
 695 augmented generation: A survey. *arXiv preprint arXiv:2303.10868*, 2023.

696

697 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 698 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 699 *arXiv preprint arXiv:2504.03160*, 2025.

700

698 A APPENDIX

700 A.1 IMPLEMENTATION DETAILS

701 More training hyperparameters are listed in Table 3.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
Table 3: Training Details.
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Parameter	Value
Rollout Batch Size	200
Max Grad Norm	1.0
Learning Rate	1.0×10^{-6}
Weight Decay	1.0×10^{-2}
Temperature	1.0
Tensor Parallel Size	2
Rollout Group	8
Seed	42
ϵ	0.2
α, β	0.5

A.2 MORE EXPERIMENTAL DETAILS OF KNOWLEDGE BASES USING IN R1-ROUTER

Retrievers. We employ BGE-M3 (Chen et al., 2024a) as our text retriever when R1-Router routing queries to the textual knowledge base. It utilizes textual queries to retrieve factual knowledge from the textual knowledge base, aiding MLLMs in generating more accurate answers. UniIR (Wei et al., 2024) is used as our text-image retriever to obtain visual descriptions based on the query text and the image. Specifically, UniIR independently encodes the query text and image, fuses their features into a unified multimodal representation, and retrieves the most relevant text-image pairs from the corpus. The textual components of these pairs are then used as our retrieved evidence. For the table knowledge base, we follow the Open-WikiTable (Kweon et al., 2023) and use the same table retriever to search for relevant tables based on queries. Retrieval cases from different retrievers are shown in Figure 5.

Retrieval Corpus. For the text corpus, we use the English Wikipedia dump 20241020 as the source. Following prior work (Chen et al., 2017; Wang et al., 2019), we extract the textual content from the dump and segment each article into multiple disjoint text blocks of 100 words each, which serve as the basic retrieval units. To ensure the quality of the text KB, we discard any text blocks containing fewer than 7 words, yielding a final collection of 52,493,415 passages. Each passage is further prepended with the title of the Wikipedia article from which it originates. For the text-image corpus, we follow the setting of UniIR (Wei et al., 2024) and adopt M-BEIR as our image description corpus, which contains over 5.6 million candidates. For the table corpus, we follow Open-WikiTable (Kweon et al., 2023) and utilize their corpus as our table corpus, which includes 24,680 tables.

A.3 DATA CONSTRUCTION OF GOLDEN REASONING TRAJECTORIES

To efficiently train and develop R1-Router, we construct a QA dataset with golden reasoning trajectories across different task scenarios. This subsection details the construction process.

Data Sources. We constructed the query-answer pairs by collecting samples from existing QA datasets spanning diverse task scenarios. Specifically, we used 2WikiMultihopQA (Ho et al., 2020) for Text QA, InfoSeek (Chen et al., 2023b) for Visual QA (VQA), and Open-WikiTable (Kweon et al., 2023) for Table QA. These datasets contain complex queries that often require multiple steps to be answered accurately.

Data Synthesis. We built an automated data pipeline to synthesize golden reasoning trajectories \mathcal{R}^* for training R1-Router. Specifically, we prompt LRM or MLLMs to generate step-by-step reasoning trajectories iteratively, applying rejection sampling to filter and retain high-quality examples. The process of intermediate query generation and retriever identifier selection can be expressed as:

$$(q_i, s_i) = \mathcal{M}(q_0, \mathcal{R}_{1:i-1}), \quad (14)$$

where q_0 represents the initial query, $\mathcal{R}_{1:i-1}$ represents previous reasoning trajectories, q_i and s_i denote the intermediate query and the selected retriever identifier in the reasoning step i . \mathcal{M} denotes the LRM or MLLM used in our pipeline. For VQA tasks, we adopt Qwen2.5-VL-7B (Bai et al., 2025) as the foundation model, while for Table QA and Text QA tasks, we employ R1-Distill-Qwen-32B (Guo et al., 2025). Then the intermediate answer generation steps can be expressed

756 as:
 757

$$a_i = \mathcal{M}(q_i, d_i), \quad (15)$$

759 where d_i represents the retrieved content, and a_i denotes the corresponding intermediate answer. The
 760 final answer generation step is formatted as:

$$a_{n+1} = \mathcal{M}(q_0, \mathcal{R}_{1:n}), \quad (16)$$

763 where a_{n+1} is the final answer generated. To ensure the quality of training data, we applied rejection
 764 sampling to filter the data, retaining only those reasoning paths whose answers achieve an accuracy of
 765 1 respect to the ground-truth answer a_{n+1}^* as the ground-truth reasoning steps \mathcal{R}^* , which is formatted
 766 as:

$$\mathcal{R}^* = \underbrace{\{(q_1, s_1), a_1\}}_{\mathcal{R}_1^*}, \dots, \underbrace{\{(q_n, s_n), a_n\}}_{\mathcal{R}_n^*}, \underbrace{\{q_0, a_{n+1}^*\}}_{\mathcal{R}_{n+1}^*} \mid \text{Acc}(a_{n+1}, a_{n+1}^*) = 1, \quad (17)$$

769 thus providing a high-quality step-by-step training dataset for R1-Router.
 770

771 A.4 MORE DETAILS ON THE FINE-GRAINED REWARD

773 **Format Reward.** We set the format reward to ensure the generated content is enclosed in spe-
 774 cial tokens. Specifically, the reasoning process of R1-Router, intermediate queries and invoked
 775 retrievers should be enclosed within the `<think>...</think>`, `<sub-question>...</sub-question>` and
 776 `<ret>...</ret>` tags, respectively. Based on the above format requirements, the format reward in this
 777 step can be defined as:

$$r_{\text{format}}(q_i, s_i) = \begin{cases} 1, & \text{if the format of } q_i \text{ and } s_i \text{ are correct} \\ 0, & \text{otherwise} \end{cases} \quad (18)$$

781 where q_i and s_i are the intermediate query and the identifier of the selected retriever at the i -th
 782 reasoning step. When generating the intermediate and final answer, we define the correct format
 783 of the reasoning process and answer should be enclosed within the `<think>...</think>` and `<an-`
 784 `swer>...</answer>` tags, respectively. Based on the above format requirements, the format reward in
 785 this step can be defined as:

$$r_{\text{format}}(a_i) = \begin{cases} 1, & \text{if the format of } a_i \text{ is correct} \\ 0, & \text{otherwise} \end{cases} \quad (19)$$

789 where a_i is the generated answer at the i -th reasoning step.
 790

791 **Query Reward.** We define the query reward as the textual similarity between the generated in-
 792 termediate query and the ground-truth intermediate query. Specifically, we employ the BGE-M3-
 793 embedding (Chen et al., 2024a) model as the encoder $E(\cdot)$ to project them into a high-dimensional
 794 embedding space and compute their similarity, which can be expressed as:

$$r_{\text{ask}}(q_i) = \text{sim}(E(q_i), E(q_i^*)), \quad (20)$$

795 where q_i is the generated query at the i -th reasoning step and q_i^* is the ground truth query. The sim
 796 denotes the similarity function, where we use the dot product to calculate the similarity between q_i
 797 and q_i^* .
 798

800 **Routing Reward.** We utilize the accuracy of knowledge bases routing as our routing reward, which
 801 is calculated as follows:

$$r_{\text{route}}(s_i) = \begin{cases} 1, & \text{if } s_i = s_i^* \\ 0, & \text{otherwise} \end{cases} \quad (21)$$

804 where s_i is the selected retriever identifier at the i -th reasoning step and s_i^* is the ground truth retriever
 805 identifier.
 806

807 **Answer Reward.** We adopt F1-Recall (Li et al., 2024b) to compute the answer reward for intermediate
 808 answers a_i ($1 \leq i \leq n$) at the i -th reasoning step, and accuracy to evaluate the final answer a_{n+1} .
 809 Specifically, the answer reward for intermediate answers a_i ($1 \leq i \leq n$) can be expressed as:

$$r_{\text{answer}}(a_i) = \text{F1-Recall}(a_i, a_i^*), \quad (22)$$

810
811
812
Table 4: Overall Performance of R1-Router and Baselines based on 3B Parameter (**best** are high-
lighted).

813 814 Method	815 816 817 818 819 KBs	815 816 817 818 819 In Distribution			815 816 817 818 819 Out of Distribution			820 821 822 Avg.
		815 816 817 818 819 Open-WikiTable	815 816 817 818 819 2WikiMQA	815 816 817 818 819 InfoSeek	815 816 817 818 819 Dyn-VQA	815 816 817 818 819 TabFact	815 816 817 818 819 WebQA	
Qwen2.5-VL-3B	-	18.62	39.66	33.92	30.10	21.80	61.70	34.30
Vanilla RAG	All	44.57	47.58	25.95	12.22	41.20	82.08	42.27
IterRetGen	All	33.37	46.63	35.83	33.02	45.90	82.30	46.18
IRCoT	All	35.15	34.68	24.36	23.83	35.20	71.67	37.48
CogPlanner	All	14.18	45.29	36.78	31.48	41.60	83.13	42.08
UniversalRAG	All	17.85	46.08	34.61	10.86	33.80	81.81	37.50
R1-Router-3B	All	53.85	55.18	37.45	37.58	52.60	89.54	54.37

823
824
Table 5: Computational cost details of KB routing baselines, where “FR” means *F1-Recall*.

825 826 827 Method	825 826 827 Open-WikiTable		825 826 827 2WikiMQA		825 826 827 InfoSeek		825 826 827 Dyn-VQA		825 826 827 TabFact		825 826 827 WebQA		828 829 Avg.	
	825 FR	825 Time	825 FR	825 Time	825 FR	825 Time	825 FR	825 Time	825 FR	825 Time	825 FR	825 Time		
CogPlanner	16.50	2.962	49.28	1.796	42.23	4.747	36.60	2.518	33.10	1.209	84.82	3.533	43.76	2.934
MMSearch-R1 ²	7.43	4.419	19.41	3.652	29.09	3.639	21.78	3.690	39.20	4.047	40.75	3.941	26.28	4.092
R1-Router(Prompt)	23.97	3.801	41.56	2.312	24.43	5.239	26.19	4.101	25.20	3.653	77.94	6.674	36.55	4.511
R1-Router(SFT)	28.12	12.161	42.65	7.537	31.25	19.614	29.62	10.916	47.71	11.235	76.75	13.921	42.70	13.191
R1-Router	53.95	5.569	55.47	3.049	43.60	5.895	39.24	3.284	52.40	4.338	90.92	5.012	55.93	4.751

830
831
where a_i^* represents the ground-truth intermediate answer at the i -th reasoning step. The F1-Recall
can be calculated as:

$$832 \quad \text{F1-Recall}(a_i, a_i^*) = \frac{|a_i \cap a_i^*|}{|a_i^*|}, \quad (23)$$

833
834
835
836
where $|a_i \cap a_i^*|$ indicates the number of words in the intersection between the predicted answer a_i and
the ground-truth answer a_i^* . For the predicted final answer a_{n+1} , the answer reward can be calculated
using the Accuracy score:

$$837 \quad r_{\text{answer}}(a_{n+1}) = \text{Acc}(a_{n+1}, a_{n+1}^*), \quad (24)$$

838
839
840
where a_{n+1}^* indicates the ground truth of the final answer. The Accuracy score is usually used to
evaluate the performance of QA systems in existing works (Asai et al., 2023; Li et al., 2024a).

841 842 A.5 PROMPT TEMPLATES USED IN R1-ROUTER

843
844 The 8-shot prompt templates used by the R1-Router (Prompt) and R1-Router (SFT) methods for
845 intermediate query generation and retriever selection across three task scenarios are shown in Figure 6,
846 Figure 7, and Figure 8. The same prompt templates are applied during data construction, with samples
847 containing incorrect final answers subsequently filtered out. We show the prompt templates of R1-
848 Router (Step-GRPO) for query generation and routing in Figure 9. The prompt templates used by all
849 R1-Router models for intermediate and final answer generation are shown in Figure 10 and Figure 11,
850 respectively.

851 A.6 MORE EXPERIMENTS BASED ON 3B PARAMETER

852
853 Table 4 shows the overall performance of R1-Router and Baselines based on Qwen2.5-VL-3B. The
854 training strategy of R1-Router delivers substantial gains even at this small scale.

855 A.7 MORE COMPUTATIONAL COST DETAILS OF THE KB ROUTING BASELINES

856
857 Table 5 lists the computational-cost details for the KB-routing baselines, showing that R1-Router
858 achieves a favorable performance-cost trade-off.

861 A.8 MORE IMPLEMENTATION DETAILS OF THE BASELINE METHODS

862
863 In this section, we introduce the implementation details of the baseline methods used in our experi-
ments.

864 **Vanilla Models.** For vanilla (M)LLM modeling, the model directly receives the query along with the
 865 image and generates answers without any retrieval process. In contrast, for LLMs without multimodal
 866 capabilities, the input image is first converted into a detailed textual description via image captioning
 867 provided by MLLMs. We prompt Qwen2.5-VL-7B and R1-Distill-Qwen-32B to directly answer
 868 the initial query. For R1-Distill-Qwen-32B, we utilize Qwen2.5-VL-7B to produce detailed textual
 869 descriptions of the image and incorporate them into the input context to facilitate answer generation.
 870 The prompt templates used are shown in Figure 12.

871 **Vanilla RAG.** The vanilla RAG model incorporates retrieved evidence as additional context to
 872 assist MLLMs in answering queries (Sharifymoghaddam et al., 2024; Ram et al., 2023). We use
 873 Qwen2.5-VL-7B as the foundation model to implement the Vanilla RAG methods and retrieve relevant
 874 knowledge from specific knowledge bases, incorporating the top-5 retrieved evidence pieces into the
 875 input context. We further concatenate these evidence pieces retrieved from multiple knowledge bases
 876 to expand the input context and evaluate the model’s ability to leverage information from diverse
 877 knowledge bases. The prompt template used for Vanilla RAG is illustrated in Figure 12.

878 **IRCoT.** IRCoT generates a chain-of-thought (CoT) (Wei et al., 2022) as the follow-up queries. We
 879 follow the paper (Trivedi et al., 2022) to implement IRCoT as our baseline method. IRCoT iteratively
 880 guides the model to generate a Chain-of-Thought (CoT) (Wei et al., 2022) after each retrieval step,
 881 using the final sentence of the CoT as the query for the next-turn retrieval until the CoT includes
 882 “The answer is” or reaches the maximum number of retrieval iterations. Then the final sentence of
 883 the CoT is considered the final answer. The 8-shot prompt modeling method we used to implement
 884 IRCoT is shown in Figure 13. The maximum number of iterations is set to 3.

885 **CogPlanner.** CogPlanner (Yu et al., 2025) prompts Qwen2.5-VL-7B to iteratively generate inter-
 886 mediate queries, decide whether retrieval is necessary, and select the appropriate knowledge base
 887 for retrieval. The iteration process terminates when the model determines that the accumulated
 888 information is sufficiently comprehensive and the current query is adequately clear. Subsequently,
 889 the model integrates all retrieved evidence to produce the final answer. The prompt templates used by
 890 CogPlanner are illustrated in Figure 14 and Figure 15.

891 **IterRetGen.** We adopt the Iterative Retrieve-and-Generate (IterRetGen) (Shao et al., 2023) framework
 892 as our baseline. IterRetGen alternates between iterative retrieval and generation and uses the retrieved
 893 evidence and the current query to generate the new intermediate query for the next iteration. This
 894 iterative process continues until the model outputs “None” as the intermediate query or the maximum
 895 number of iterations is reached. The prompt template used for intermediate query generation is shown
 896 in Figure 15. We use Qwen2.5-VL-7B as the foundation model. The prompt templates used for
 897 intermediate answer generation and final answer generation are shown in Figure 16 and Figure 17.
 898 The maximum number of iterations is set to 3.

899 **Search-O1.** We implement Search-O1(Li et al., 2025a) based on their official codebase² and
 900 adopt R1-Distill-Qwen-7B (Guo et al., 2025) as the backbone reasoning model. When the model
 901 generates the special tokens <|begin_search_query|> and <|end_search_query|>,
 902 Search-O1 performs retrieval from a textual knowledge base using the generated query. The top-5
 903 retrieved evidence pieces are then refined and incorporated into the reasoning chain using the tokens
 904 <|begin_search_result|> and <|end_search_result|>. This iterative retrieval and
 905 reasoning process continues until the model produces a final answer or the maximum number of
 906 reasoning steps is reached, which is set to 3.

907 **UniversalRAG.** We use the 8-shot prompt from their paper to implement UniversalRAG (Yeo
 908 et al., 2025), guiding Qwen2.5-VL-7B to either directly answer the query or route to an appropriate
 909 knowledge base for retrieval. Once a knowledge base is selected, it formulates a search query to
 910 retrieve the top 5 relevant documents and uses them to generate the final answer. The retrieval setting
 911 is consistent with that of the R1-Router and the prompt template of UniversalRAG is shown in
 912 Figure 18.

913 **OmniSearch.** We implement OmniSearch (Li et al., 2024b) using their official checkpoints³ and
 914 the prompt templates provided in their paper. The model is trained based on Qwen-VL-Chat via
 915 Supervised Fine-Tuning (SFT) on GPT-4V-generated synthetic data to enable MLLMs to iteratively

²<https://github.com/sunnynexus/Search-o1>

³<https://huggingface.co/Alibaba-NLP/OmniSearch-Qwen-VL-Chat-en>

918 generate intermediate queries and select appropriate knowledge bases to retrieve. The iterative process
 919 continues until the model outputs a “Final Answer” or reaches the maximum number of iterations.
 920 The prompts used for OmniSearch are shown in Figure 19.

921 **MMSearch-R1.** We implement MMSearch-R1 (Wu et al., 2025a) using their official checkpoint⁴,
 922 the prompt templates of MMSearch-R1¹ provided in their paper, as shown in the Figure 20, Figure 21
 923 and Figure 22, which force the model to use image retriever first, neglecting the diversity needs
 924 of different queries, and the prompt templates of MMSearch-R1² are redesigned as shown in the
 925 Figure 22, Figure 23, and Figure 24. The model is trained based on Qwen2.5-VL-7B via GRPO
 926 to enable MLLMs to determine whether to retrieve and to choose appropriate knowledge bases to
 927 retrieve.

928 A.9 ADDITIONAL CASE STUDIES OF R1-ROUTER

931 In this subsection, we present additional case studies to further demonstrate the effectiveness of
 932 R1-Router. Specifically, we showcase examples from various task scenarios to illustrate how R1-
 933 Router adaptively plans intermediate queries, selects appropriate knowledge bases for retrieval, and
 934 integrates retrieved information to construct coherent reasoning trajectories.

935 We begin with the case shown in Figure 25, which is drawn from the Open-WikiTable QA dataset
 936 under the Table QA task. The example queries the length of Dell Curry’s tenure on the Toronto
 937 Raptors all-time C roster. R1-Router determines that no intermediate queries are necessary and
 938 directly employs the Table Retriever to obtain the relevant information. This highlights R1-Router’s
 939 capability to dynamically decide when to stop intermediate query generation and generate the final
 940 answer. Furthermore, in the second step, R1-Router accurately performs the reflection mechanism
 941 by verifying that Dell Curry’s tenure lasted four years (1999–2002), ensuring consistency across
 942 sub-questions and corresponding answers.

943 We next analyze the case illustrated in Figure 26, which comes from the Dyn-VQA dataset and
 944 belongs to the VQA task. The initial query for this case is: “What city was she born in?”, accompanied
 945 by the corresponding image. R1-Router uses the Text Image Retriever to obtain the image description
 946 to identify that the person in the image is “Emily Dickinson”. Then, it formulates a follow-up query
 947 “Where was Emily Dickinson born?”, and uses the textual knowledge base to supplement factual
 948 knowledge for problem-solving. Based on retrieved content, R1-Router identifies that the birth
 949 city of Emily Dickinson is Amherst, Massachusetts. Notably, R1-Router ceases generating further
 950 intermediate queries once the original question can be answered with the accumulated knowledge,
 951 demonstrating its ability to adaptively determine when sufficient information has been gathered for
 952 effective reasoning.

953 The final case, illustrated in Figure 27, is drawn from the 2WikiMultihopQA dataset, which belongs
 954 to the Text QA task. The question asks about the place of death of Anastasia of Serbia’s husband.
 955 R1-Router initially decides to clarify “Who was Anastasia of Serbia’s husband?” and selects the Text
 956 Retriever to obtain relevant information. Upon confirming that Anastasia of Serbia’s husband was
 957 Stefan Nemanja, R1-Router proceeds with the follow-up query, “Where did Stefan Nemanja die?”,
 958 and again utilizes the text retriever to gather the necessary knowledge. Then the R1-Router got the
 959 final answer “Hilandar Monastery” with the accumulated information. This case demonstrates that
 960 R1-Router is capable of generating high-quality subquestions that effectively decompose the original
 961 query and guide the reasoning process.

962
 963
 964
 965
 966
 967
 968
 969
 970
 971
⁴<https://huggingface.co/1mms-lab/MMSearch-R1-7B>

972
973
974
975
976
977
978
979
980
981
982

A Retrieval Case from Text Retriever

983 Question: Where was the place of death of Tamatoa VI's father?
984 Ground Truth: Huahine

Top-3 Retrieved Documents From Text Retriever(ter)

985 ter-1: Tamatoa VI Ra'iatea and Taha'a in 1884, but was deposed in 1888. Biography. Tamatoa VI was born as Ioata Ariimate Teururai a Teururai and died as Teururai Teuhe a Teururai. He was the last King of Ra'iatea and Taha'a. He was the second son of King Teururai, Ariimate of Huahine. His mother, Princess Tehaapapa Maerehia of Ralatea, was the only living child of King Tamatoa IV of Ralatea. She became Queen regnant of Huahine under the regnal name of Tehaapapa II in July 8th 1868 after her husband was deposed by the chiefs in the night of July 7th 1868.
986 ter-2: Tamatoa VI the two islands of Ra'iatea and Taha'a on March 16, 1888. After his abdication, he returned to his natal island where he was later proclaimed chief of the district of Teifarerei in the name of Ioata, the same year that his niece Queen Tehaapapa III abdicated. Marriage and children. He married Tetuanimarama a Atitioroi (daughter of Atitioroi a Ori, of the Tati family of Papara) and had three sons and three daughters: Their children remain the pretenders to the royal family of Ralatea and Taha'a since the end of the monarchy on this island. He died at Huahine in 1905.
987 ter-3: Tamatoa VI Tamatoa VI Prince Ariamate Teururai, later known as King Tamatoa VI (7 June 1853 – 15 September 1905), was a member of a Tahitian royal family, the "House of Teururai," which reigned on the Tahitian island of Huahine and Maia'o during the 19th century. He was installed as king of Ra'iatea and Taha'a in 1884, but was deposed in 1888. Biography. Tamatoa VI was born as Ioata Ariamate Teururai a Teururai and died as Teururai Teuhe a Teururai. He was the last King of Ra'iatea and Taha'a. He was the second son of King Teururai, Ariimate of Huahine.

A Retrieval Case from Text Image Retriever

988 Question: Which body of water is this building located in or next to?
989 Ground Truth: Lake Superior

Top-3 Retrieved Documents From Text Image Retriever(tir)

990 tir-1: Split Rock Lighthouse on Lake Superior's North Shore. The lighthouse and grounds are a Minnesota state park 9 miles Southeast of Silver Bay.
991 tir-2: Split Rock Lighthouse - Two Harbors, Minnesota.
992 tir-3: Day Hiking Trails: Explore Split Rock Lighthouse via day hike.

A Retrieval Case from Table Retriever

993 Question: From the list of the main characters of CSI: NY, which actors appeared first in episode "Blink" 1, 2, 3?
994 Ground Truth: Gary Sinise

Top-3 Retrieved Documents From Table Retriever(tar)

995 tar-1: [Title]List of CSI: NY characters[Section title]Main characters[Caption]Main characters[Table name] table_1 [Header]Character_[sep]Portrayed_by[sep]First_appearance[sep]Last_appearance[sep]Duration[sep]Episodes[Rows][Row]Dr. Sheldon Hawkes[CS]Hill Harper[sep]Blink 1[sep]Today is Life[sep]1.01-9.17[sep]197[Row]Don Flack Homicide Detective[sep]Eddie Cahill[sep]Blink[sep]Today is Life[sep]1.01-9.17[sep]197[Row]Aiden Burn CSI Detective[sep]Vanessa Ferlito[sep]Blink 1[sep]Heroes[sep]1.01-2.02, 2.23[sep]26
996 tar-2: [Title]List of CSI: NY characters[Section title]Notable villains[Caption]Notable villains[Table name]table_2 [Header]Character_[sep]Portrayed_by[sep]Crime[sep]First_appearance[sep]Last_appearance[Rows][Row]Sonny Sassone[sep] Michael DeLuise [sep]Murder (2 counts)[sep]Tanglewood[sep]Rut Silent, Rue Deep[Row]Frankie Mai[sep]Ed Quinn[sep]Attempted murder (Attacked Stella)[sep]Grand Murder at Central Station[sep]All Access[Row]Henry Darius[sep]James Badge Dale[sep]Murder (15 counts)[sep] Felony Flight (CSI: Miami crossover)[sep]Manhattan Manhunt[Row]D. J. Pratt[sep]Chad Williams[sep]Murder / rape (1 / 2 counts) (Killed Aiden)[sep]Summer In The City[sep]Heroes[Row]Shane Casey[sep]Edward Furlong[sep]Murder (8 counts)[sep]Hung Out to Dry[sep]The 34th Floor[Row]Clay Dobson[sep]Joey Lawrence[sep]Murder (3 counts)[sep]Past Imperfect[sep]Comes Around
997 tar-3: [Title]List of CSI: NY characters[Section title]Main characters[Caption]Main characters[Table name]table_1_11240028_1[Header]Character_[sep]Portrayed_by[sep]First_appearance[sep]Last_appearance[sep]Duration[sep]Episodes[Rows][Row]Mac Taylor CSI Detective[sep]Gary Sinise[sep]Blink 1, 2, 3[sep]Today is Life[sep]1.01-9.17[sep]197[Row]Jo Danville CSI Detective[sep]Selina Ward[sep]The 34th Floor[sep]Today is Life[sep]1.01-9.17[sep]197[Row]Danny Messer CSI Detective[sep]Carmine Giovinazzo[sep]Blink 1[sep]Today is Life[sep]1.01-9.17[sep]197[Row]Lindsay Monroe CSI Detective[sep]Anna Belknap[sep]Zoo York[sep]Today is Life[sep]2.03-9.17[sep]172 4[Row]Dr. Sid Hammerback Chief Medical Examiner[sep]Robert Joy[sep]Dancing with the Fishes[sep]Today is Life[sep]2.05-9.17[sep]168 4[Row]Adam Ross Lab Technician[sep]A. J. Buckley[sep]Bad Beat[sep]Today is Life[sep]2.08-9.17[sep]141 4

Figure 5: Case Studies of Different Retrievers.

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
 1027
 1028
 1029 You are a professional question decomposition expert for multi-hop QA systems. Your task is to decompose complex questions into
 1030 strictly single-hop sub-questions and select appropriate retrievers.
 1031 **Strict Output Format:**
 1032 <think>[Analyze the original question and determine the next required sub-question. Do NOT reveal answers or perform multi-hop
 reasoning.]</think><sub-question>[Exactly ONE single-hop question one time. If no further information is needed to answer the
 origin question, write 'None'.]</sub-question><ret> [Choose 1 retriever from: Text Retriever, Text Image Retriever, Table
 Retriever. Write 'None' if <sub-question> is 'None'.]</ret>
 1033
 1034 **Critical Rules:**
 1035 1. **Atomic Sub-question Definition:**
 1036 - A sub-question is "atomic" only if:
 1037 a) It cannot be further decomposed into simpler questions
 1038 b) It requires exactly **one** retrieval action to answer
 1039 c) Does NOT depend on answers to previous sub-questions
 1040 d) It can be helpful to answer the origin question
 1041 - Example: ~~Find the capital and population of France~~ → Split into two sub-questions
 1042
 1043 2. **Retriever Selection Guidelines:**
 1044 - 'Text Retriever':
 1045 - For non-visual commonsense knowledge (e.g., "Define photosynthesis")
 1046 - 'Text Image Retriever':
 1047 - When sub-question explicitly references visual elements (e.g., "Describe the painting style of...")
 1048 - 'Table Retriever':
 1049 - For numerical/statistical queries (e.g., "GDP of Japan in 2020")
 1050
 1051 3. **Strict Prohibitions:**
 1052 - Never combine multiple questions in <sub-question>
 1053 - Never mention retrieved content in <think>
 1054 - Never select retrievers for non-atomic questions
 1055
 1056 **Examples:**
 1057 **Example 1:** Origin question: Which magazine was started first Arthur's Magazine or First for Women?
 Assistant: <think>The user wants to compare the starting date of "Arthur's Magazine" and "First for Women" to see which one was established first. We'll begin by finding out when "Arthur's Magazine" started. This information might appear in textual descriptions.</think><sub-question>When did the magazine 'Arthur's Magazine' start?</sub-question><ret>Text Retriever</ret>
 1058
 1059 **Example 2:** Which magazine was started first Arthur's Magazine or First for Women?<sub-question1> When did the magazine 'Arthur's Magazine' start?</sub-question1><answer1> 'Arthur's Magazine' was started in 2002</answer1>
 Assistant: <think>We already found that "Arthur's Magazine" was started in 2002. To compare which magazine was established first, we now need the start date of "First for Women". This information might appear in textual descriptions</think><sub-question>When did the magazine 'First for Women' start?</sub-question><ret>Text Retriever</ret>
 1060
 1061 **Example 3:** Origin question: Which magazine was started first Arthur's Magazine or First for Women?<sub-question1> When did the magazine 'Arthur's Magazine' start?</sub-question1><answer1> 'Arthur's Magazine' was started in 2002</answer1><sub-question2> When did the magazine 'First for Women' start?</sub-question2><answer2> 'First for Women' was started in 1880</answer2>
 Assistant: Sub-question: <think>Now we have both start dates: "Arthur's Magazine" (2002) and "First for Women" (1880). Clearly, "First for Women" was started earlier, so we have enough information to answer the origin question. </think><sub-question>None</sub-question><ret>None</ret>
 1062
 1063 **Example 4:** What is the population of the city that Manchester is in the southeast corner of?
 Assistant: <think>The question asks for the population of the city where Manchester is in its southeast corner. To identify that city, we need to check which city is to the northwest of Manchester. Names and location details are often found in textual descriptions, so let's first try the Text Retriever.</think><sub-question>which city is in the northwest of Manchester?</sub-question><ret>Text Retriever</ret>
 1064
 1065 **Example 5:** Origin question: What is the population of the city that Manchester is in the southeast corner of?<sub-question1> which city is in the northwest of Manchester?</sub-question1><answer1>It's Bolton</answer1>
 Assistant: <think>We found out that the city in question is Bolton. To answer the origin question about population, we now need the population of Bolton. Population data might be available in textual descriptions.</think><sub-question>What is the population of Bolton?</sub-question><ret>Text Retriever</ret>
 1066
 1067 **Example 6:** Origin question: What is the population of the city that Manchester is in the southeast corner of?<sub-question1> which city is in the northwest of Manchester?</sub-question1><answer1>It's Bolton</answer1><sub-question2> What is the population of Bolton?</sub-question2><answer2> It's about 2960K</answer2>
 Assistant: <think>We have identified the city (Bolton) and found its population is about 2960K. That fully answers the origin question about the population of the city in the southeast corner of Manchester. No further retrieval is needed.</think><sub-question>None</sub-question><ret>None</ret>
 1068
 1069 **Example 7:** Origin question: Who directed the film where Joe Pesci voiced the character of Harry Lime?
 Assistant: <think>The user wants to know who directed the film in which Joe Pesci voiced Harry Lime. First, we need to identify the film itself. Information about Joe Pesci's roles should be in textual references.</think><sub-question>What is the name of the film where Joe Pesci voiced the character of Harry Lime?</sub-question><ret>Text Retriever</ret>
 1070
 1071 **Example 8:** Origin question: When was the saxophonist who recorded A Love Supreme born?
 Assistant: <think>We want the birthdate of the saxophonist who recorded "A Love Supreme." First, we need to identify the saxophonist. Because this is general knowledge about music history, a text-based reference should suffice.</think><sub-question>Who is the saxophonist who recorded A Love Supreme?</sub-question><ret>Text Retriever</ret>
 1072
 1073 **Origin Question:** {question}
Reasoning Trajectories : {current_reasoning_trajectories}

Figure 6: The Prompt Template of R1-Router (SFT) and R1-Router (Prompt) for Query Generation and Retriever Selection in TextQA tasks. We also use these prompt templates for data construction.

1080
 1081
 1082 You are a professional question decomposition expert for multi-hop QA systems. Your task is to decompose complex questions into
 1083 strictly single-hop sub-questions and select appropriate retrievers.
 1084
Strict Output Format:
 1084 <think>[Analyze the original question and determine the next required sub-question. Do NOT reveal answers or perform multi-hop
 1085 reasoning.]</think><sub-question>[Exactly ONE single-hop question one time. If no further information is needed to answer the
 1086 origin question, write 'None'.]</sub-question><ret> [Choose 1 retriever from: Text Retriever, Text Image Retriever, Table
 1087 Retriever. Write 'None' if <sub-question> is 'None'.]</ret>
 1088
Critical Rules:
 1088 1. **Atomic Sub-question Definition:**
 1089 - A sub-question is "atomic" only if:
 1090 a) It cannot be further decomposed into simpler questions
 1091 b) It requires exactly **one retrieval action** to answer
 1092 c) Does NOT depend on answers to previous sub-questions
 1093 d) It can be helpful to answer the origin question
 1094 - Example: ~~X~~ "Find the capital and population of France" → Split into two sub-questions
 1095
 1096 2. **Retriever Selection Guidelines:**
 1096 - `Text Retriever`:
 1097 - For non-visual commonsense knowledge (e.g., "Define photosynthesis")
 1098 - `Text Image Retriever`:
 1098 - When sub-question explicitly references visual elements (e.g., "Describe the painting style of...")
 1099 - `Table Retriever`:
 1099 - For numerical/statistical queries (e.g., "GDP of Japan in 2020")
 1100
 1101 3. **Strict Prohibitions:**
 1101 - Never combine multiple questions in <sub-question>
 1102 - Never mention retrieved content in <think>
 1102 - Never select retrievers for non-atomic questions
 1103
Examples:
 1103 Example 1: Origin question: which year did he win the world cup champion?
 1104 Assistant: <think>We are asked about the year someone won the World Cup. The image might provide a clue, but first we need to
 1105 identify who this person is. Let's begin by determining the identity of the person in the image.</think></think>\n<sub-
 1106 question>Who is this person in the image?</sub-question>\n<ret>Text Image Retriever</ret>
 1107
 1108 Example 2: Origin question: which year did he win the world cup champion?<sub-question>1: Who is this person in the
 1109 image?</sub-question>1: He is Leo Messi.
 1110 Assistant: <think>We have identified the person in the image as Lionel Messi. Since the original question asks about the year
 1111 he won the World Cup, this information may be available both in textual descriptions. We will use the Text Retriever to gather
 1112 this information.</think>\n<sub-question>2: Which year did Lionel Messi win the World Cup champion?</sub-question>\n<ret>Text
 1113 Retriever</ret>
 1114
 1115 Example 3: Origin question: which year did he win the world cup champion?<sub-question>1: Who is this person in the
 1116 image?<sub-question>1: He is Leo Messi.<sub-question>2: Which year did Lionel Messi win the World Cup champion?<sub-question>2: He won the
 1117 world cup champion in 2022.
 1118 Assistant: <think>We have already identified that Lionel Messi won the World Cup in 2022, which answers the original question.
 1119 Therefore, no further retrieval or sub-questions are needed.</think>\n<sub-question>None</sub-question>\n<ret>None</ret>
 1120
 1121 Example 4: Origin question: Who is the father of the actor who played the male protagonist in this movie?
 1122 Assistant: <think>We are asked about the father of the actor who played the male protagonist in this movie.
 1123 However, before we can determine the actor's father, we first need to identify which movie this is.
 1124 The image is likely to provide clues, so we will use the Text Image Retriever to gather both image and
 1125 text data to identify the movie. This approach allows us to handle both visual and
 1126 textual information effectively.</think>\n<sub-question>What movie is this poster from?</sub-question>
 1127 \n<ret>Text Image Retriever</ret>
 1128
 1129 Example 5: Origin question: Who is the father of the actor who played the male protagonist in this movie?<sub-question>1: What
 1130 movie is this poster from?<sub-question>1: The movie's name is Titanic.
 1131 Assistant: <think>Now that we know the movie is Titanic, we can focus on finding out who played the male protagonist. This is a
 1132 straightforward textual query, and we will use the Text Retriever to retrieve this information from relevant
 1133 sources.</think>\n<sub-question>2: Who played the male protagonist in Titanic?</sub-question>\n<ret>Text Retriever</ret>
 1134
 1135 Example 6: Origin question: Who is the father of the actor who played the male protagonist in this movie?<sub-question>1: What
 1136 movie is this poster from?<sub-question>1: The movie's name is Titanic.<sub-question>2: Who played the male protagonist in
 1137 Titanic?<sub-question>2: He is Leonardo DiCaprio.
 1138 Assistant: <think>We have already identified the movie as Titanic and the actor who played the male protagonist as Leonardo
 1139 DiCaprio. The next step is to find out who his father is. Since this is factual information, we will now use the Text Retriever
 1140 to gather information about Leonardo DiCaprio's father.</think>\n<sub-question>3: Who is the father of Leonardo DiCaprio?</sub-
 1141 question>\n<ret>Text Retriever</ret>
 1142
 1143 Example 7: Origin question: Who is the father of the actor who played the male protagonist in this movie?<sub-question>1: What
 1144 movie is this poster from?<sub-question>1: The movie's name is Titanic.<sub-question>2: Who played the male protagonist in
 1145 Titanic?<sub-question>2: He is Leonardo DiCaprio.<sub-question>3: Who is the father of Leonardo DiCaprio?<sub-question>3: He is George.
 1146 Assistant: <think>We have already identified the movie as Titanic, the actor as Leonardo DiCaprio, and his father as George.
 1147 Therefore, the original question about who is the father of the actor has already been answered. No further retrieval or sub-
 1148 questions are needed.</think>\n<sub-question>None</sub-question>\n<ret>None</ret>
 1149
 1150 Example 8: Origin question: where is this man's mentor work in?
 1151 Assistant: <think>The user is asking about the mentor of the man in the image and where his mentor works. The
 1152 first step is to identify the man in the image. Once we know who he is, we can proceed to gather information
 1153 about his mentor. Let's begin by identifying who this man is.</think>\n<sub-question>Who is the person in
 1154 this image?</sub-question>\n<ret>Text Image Retriever</ret>
 1155
 1156 Origin Question: {question}
 1157 Reasoning Trajectories : {current_reasoning_trajectories}

Figure 7: The Prompt Template of R1-Router (SFT) and R1-Router (Prompt) for Query Generation and Retriever Selection in VQA tasks. We also use this prompt template for data construction.

1134
 1135
 1136 You are a professional question decomposition expert for multi-hop QA systems. Your task is to decompose complex questions into
 1137 strictly single-hop sub-questions and select appropriate retrievers.
 1138 **Strict Output Format:**
 1139 <think>[Analyze the original question and determine the next required sub-question. Do NOT reveal answers or perform multi-hop
 1140 reasoning.]</think><sub-question>[Exactly ONE single-hop question one time. If no further information is needed to answer the
 1141 origin question, write 'None'.]</sub-question><ret> [Choose 1 retriever from: Text Retriever, Text Image Retriever, Table
 1142 Retriever. Write 'None' if <sub-question> is 'None'.]</ret>
 1143 **Critical Rules:**
 1144 1. **Atomic Sub-question Definition:**
 1145 - A sub-question is "atomic" only if:
 1146 a) It cannot be further decomposed into simpler questions
 1147 b) It requires exactly **one** retrieval action* to answer
 1148 c) Does NOT depend on answers to previous sub-questions
 1149 d) It can be helpful to answer the origin question
 1150 - Example: ~~X~~ "Find the capital and population of France" → Split into two sub-questions
 1151 2. **Retriever Selection Guidelines:**
 1152 - 'Text Retriever':
 1153 - For non-visual commonsense knowledge (e.g., "Define photosynthesis")
 1154 - 'Text Image Retriever':
 1155 - When sub-question explicitly references visual elements (e.g., "Describe the painting style of...")
 1156 - 'Table Retriever':
 1157 - For numerical/statistical queries (e.g., "GDP of Japan in 2020")
 1158 3. **Strict Prohibitions:**
 1159 - Never combine multiple questions in <sub-question>
 1160 - Never mention retrieved content in <think>
 1161 - Never select retrievers for non-atomic questions
 1162 **Examples:**
 1163 **Example 1:** Origin question: What is the CFL team that has held a position as ol since the 2004 CFL Draft Round 5?
 1164 Assistant: <think>The question asks about the CFL team and a position held by an OL since the 2004 CFL Draft. This is very
 1165 likely to be in a table format, such as a record of team drafts and player positions. We will use the Table Retriever to
 1166 retrieve relevant structured data from sources like the CFL draft tables.</think>\n<sub-question>What CFL team has held a
 1167 position as OL since the 2004 CFL Draft Round 5?</sub-question>\n<ret>Table Retriever</ret>
 1168 **Example 2:** Origin question: What is the party with a 51.0% Brooklyn vote in the 1932 New York City mayoral election?
 1169 Assistant: <think>This question is asking for a specific political party with a 51% vote share in Brooklyn during the 1932 New
 1170 York City mayoral election. This type of data is likely available in historical election result tables. We will use Table
 1171 Retriever to retrieve relevant election data from a structured source.</think>\n<sub-question>Which party received 51.0% of the
 1172 Brooklyn vote in the 1932 New York City mayoral election?</sub-question>\n<ret>Table Retriever</ret>
 1173 **Example 3:** Origin question: How many seasons have the Canterbury Bulldogs (8) won in Australian rugby league premieres since
 1174 1998 - National Rugby League?
 1175 Assistant: <think>The question asks about the number of seasons the Canterbury Bulldogs won in the Australian rugby league
 1176 since 1998. This data is most likely available in a table, such as National Rugby League championship results. We will use
 1177 Table Retriever to retrieve the relevant data from structured sources like NRL tables.</think>\n<sub-question>How many seasons
 1178 have the Canterbury Bulldogs won the Australian rugby league premieres since 1998?</sub-question>\n<ret>Table Retriever</ret>
 1179 **Example 4:** Origin question: Among all the races of the Grands Prix of the 1992 Formula 1 season, what are all the places where
 1180 the date is April 5th?
 1181 Assistant: <think>The question asks about specific dates during the 1992 Formula 1 season. The details about each race's
 1182 location and date are typically stored in a table. We will use Table Retriever to look up the relevant data for the 1992
 1183 Formula 1 season and find all the races that took place on April 5th.</think>\n<sub-question>What are all the places where the
 1184 races of the 1992 Formula 1 season took place on April 5th?</sub-question>\n<ret>Table Retriever</ret>
 1185 **Example 5:** Origin question: When was Erskine College founded for the current members of the Conference Carolinas?
 1186 Assistant: <think>This question asks about the founding year of Erskine College in relation to its membership in the Conference
 1187 Carolinas. This is historical data that can be found in structured records (e.g., college data tables). We will use both Table
 1188 Retriever to retrieve this information from appropriate sources.</think>\n<sub-question>When was Erskine College founded for
 1189 the current members of the Conference Carolinas?</sub-question>\n<ret>Table Retriever</ret>
 1190 **Example 6:** Origin question: What are all the service dates recorded on 21 November 1945 for the Stena Line Holland BV vessels
 1191 operated by the Zeeland Steamship Company (SMZ)?
 1192 Assistant: <think>This question is asking for service dates for specific vessels on a historical date. These kinds of records
 1193 are typically available in structured historical tables or logs. We will use Table Retriever to get structured
 1194 data.</think>\n<sub-question>What are all the service dates recorded on 21 November 1945 for the Stena Line Holland BV vessels
 1195 operated by the Zeeland Steamship Company?</sub-question>\n<ret>Table Retriever</ret>
 1196 **Example 7:** Origin question: What is the total number of players for the Houston Rockets All-Time W Roster, where the years for
 1197 Rockets are 2004-06?
 1198 Assistant: <think>This question involves the Houston Rockets All-Time W Roster from 2004-06, which is most likely recorded in
 1199 structured sports data tables, such as player rosters. We will use the Table Retriever to retrieve this information from sports
 1200 databases.</think>\n<sub-question>What is the total number of players for the Houston Rockets All-Time W Roster, where the
 1201 years for Rockets are 2004-06?</sub-question>\n<ret>Table Retriever</ret>
 1202 **Example 8:** Origin question: What is the district for 1952 United States House of Representatives elections, 1988, Massachusetts?
 1203 Assistant: <think>This question is asking about a specific district for the 1952 United States House of Representatives
 1204 elections in Massachusetts in 1988. Election data is often found in both structured tables (election results) and textual
 1205 descriptions. We will use both Table Retriever to retrieve the election results from structured data.</think>\n<sub-question>
 1206 What is the district for the 1952 United States House of Representatives elections, 1988, Massachusetts?</sub-question>\n<ret>
 1207 Table Retriever</ret>
 1208 **Origin Question:** {question}
 1209 **Reasoning Trajectories:** {current_reasoning_trajectories}

1185 Figure 8: The Prompt Template of R1-Router (SFT) and R1-Router (Prompt) for Query Generation
 1186 and Retriever Selection in TableQA task. We also use this prompt template for data construction.
 1187

1188

1189

1190

You are a professional question decomposition expert for multi-hop QA systems. Your task is to decompose complex questions into strictly single-hop sub-questions and select appropriate retrievers.

1191

Strict Output Format:

1192

<think>[Analyze the original question and determine the next required sub-question. Do NOT reveal answers or perform multi-hop reasoning.]</think><sub-question>[Exactly ONE single-hop question one time. If no further information is needed to answer the origin question, write 'None'.]</sub-question><ret> [Choose 1 retriever from: Text Retriever, Text Image Retriever, Table Retriever. Write 'None' if <sub-question> is 'None'.]</ret>

1193

Critical Rules:

1194

1. **Atomic Sub-question Definition:**

1195

- A sub-question is "atomic" only if:
 - a) It cannot be further decomposed into simpler questions
 - b) It requires exactly **one retrieval action** to answer
 - c) Does NOT depend on answers to previous sub-questions
 - d) It can be helpful to answer the origin question
- Example: ~~X~~ "find the capital and population of France" → Split into two sub-questions

1196

2. **Retriever Selection Guidelines:**

1197

- 'Text Retriever':
 - For non-visual commonsense knowledge (e.g., "Define photosynthesis")
- 'Text Image Retriever':
 - When sub-question explicitly references visual elements (e.g., "Describe the painting style of...")
- 'Table Retriever':
 - For numerical/statistical queries (e.g., "GDP of Japan in 2020")

1198

3. **Strict Prohibitions:**

1199

- Never combine multiple questions in <sub-question>
- Never mention retrieved content in <think>
- Never select retrievers for non-atomic questions

1200

Origin Question: {question}

1201

Reasoning Trajectories : {current_reasoning_trajectories}

1202

1203

1204

1205

1206

1207

1208

1209

Figure 9: The Prompt Template of R1-Router (Step-GRPO) for Query Generation and Retriever Selection.

1210

1211

1212

1213

1214

You are a professional question answering model. Your task is to carefully think through the question based on the information retrieved and then provide the final answer.

1215

Strict Output Format:

1216

<think>
[Analyze the original question and the retrieved information. Break down the reasoning process step by step. Do NOT provide the final answer yet.]</think>
<answer>
[Provide the final answer based solely on the retrieved information.]</answer>

1217

According to the related information searched, 'ter' means this info is from text retriever, 'tir' means this info is from text image retriever, 'tar' means this info is from table retriever:{document}\n\n Give me the answer(with the format <answer></answer>) to the Question: {question}

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

You are a professional question answering model. Your task is to carefully think through the question based on the sub-questions and its answers and then provide the final answer.

1231

Strict Output Format:

1232

<think>
[Analyze the original question and sub-questions with its answers. Break down the reasoning process step by step. Do NOT provide the final answer yet.]</think>

1233

<answer>

1234

[Provide the final answer based solely on the information before.]</answer>

1235

Reasoning Trajectories: {current_reasoning_trajectories}

1236

1237

1238

1239

1240

1241

Figure 11: The Prompt Template of R1-Router for Final Answer Generation. We use this prompt template for all R1-Router models, including R1-Router (SFT), R1-Router (Prompt) and R1-Router (Step-GRPO).

1242

1243

1244

1245

Vanilla Models

1246

Q:{question}

1247

Q:{question} Image Caption:{caption}

1248

1249

1250

Vanilla RAG Models

1251

Below are related information searched, which may be helpful for answering the question later on:{document}

1252

1253

1254

Figure 12: Prompt Templates of Vanilla Models and Vanilla RAG Models.

1255

1256

1257

1258

1259

1260

1261

Examples:

1262

User: Retrieved Passages:\n Hypocrite (Spanish: Hipócrita..!) is a 1949 Mexican thriller film directed by Miguel Morayta\n Q: When did the director of film Hypocrite (Film) die?\n A:

Assistant: The film Hypocrite was directed by Miguel Morayta.

1264

User: Retrieved Passages:\n Miguel Morayta (15 August 1907 - 19 June 2013) was a Spanish film director and screenwriter.\n\n Q:When did the director of film Hypocrite (Film) die?\n A:The film Hypocrite was directed by Miguel Morayta.

Assistant: Miguel Morayta died on 19 June 2013.

1267

User: Retrieved Passages:\n Hypocrite (Spanish: Hipócrita..!) is a 1949 Mexican thriller film directed by Miguel Morayta\n Retrieved Passages:\n Miguel Morayta (15 August 1907 - 19 June 2013) was a Spanish film director and screenwriter.\n\n Q: When did the director of film Hypocrite (Film) die?\n A: The film Hypocrite was directed by Miguel Morayta. Miguel Morayta died on 19 June 2013.

Assistant: So the answer is: 19 June 2013.

1270

User: Retrieved Passages:\n Coolie No. 1 is a 1995 Indian Hindi- language comedy film directed by David Dhawan\n Q: Do director of film Coolie No. 1 (1995 Film) and director of film The Sensational Trial have the same nationality?\n A:

Assistant: Coolie No. 1 (1995 film) was directed by David Dhawan.

1273

User: Retrieved Passages:\n Coolie No. 1 is a 1995 Indian Hindi- language comedy film directed by David Dhawan\n Retrieved Passages:\n The Sensational Trial is a 1923 German silent film directed by Karl Freund\n Q: Do director of film Coolie No. 1 (1995 Film) and director of film The Sensational Trial have the same nationality?\n A: Coolie No. 1 (1995 film) was directed by David Dhawan.

Assistant: The Sensational Trial was directed by Karl Freund.

1276

User: Retrieved Passages:\n Coolie No. 1 is a 1995 Indian Hindi- language comedy film directed by David Dhawan\n Retrieved Passages:\n The Sensational Trial is a 1923 German silent film directed by Karl Freund\n Retrieved Passages:\n Karl W. Freund, A.S.C. (January 16, 1890 – May 3, 1969) was a German cinematographer and film director\n Q: Do director of film Coolie No. 1 (1995 Film) and director of film The Sensational Trial have the same nationality?\n A: Coolie No. 1 (1995 film) was directed by David Dhawan. The Sensational Trial was directed by Karl Freund.

Assistant: Karl Freund's nationality is Germany.

1280

User: Retrieved Passages:\n Coolie No. 1 is a 1995 Indian Hindi- language comedy film directed by David Dhawan\n Retrieved Passages:\n The Sensational Trial is a 1923 German silent film directed by Karl Freund\n Retrieved Passages:\n Karl W. Freund, A.S.C. (January 16, 1890 – May 3, 1969) was a German cinematographer and film director\n Q: Do director of film Coolie No. 1 (1995 Film) and director of film The Sensational Trial have the same nationality?\n A: Coolie No. 1 (1995 film) was directed by David Dhawan. The Sensational Trial was directed by Karl Freund. Karl Freund's nationality is Germany.

Assistant: Thus, they do not have the same nationality.

1285

User: Retrieved Passages:\n Coolie No. 1 is a 1995 Indian Hindi- language comedy film directed by David Dhawan\n Retrieved Passages:\n The Sensational Trial is a 1923 German silent film directed by Karl Freund\n Retrieved Passages:\n Karl W. Freund, A.S.C. (January 16, 1890 – May 3, 1969) was a German cinematographer and film director\n Q: Do director of film Coolie No. 1 (1995 Film) and director of film The Sensational Trial have the same nationality?\n A: Coolie No. 1 (1995 film) was directed by David Dhawan. The Sensational Trial was directed by Karl Freund. Karl Freund's nationality is Germany. Thus, they do not have the same nationality.

Assistant: So the answer is: no.

1290

Retrieved Passages:{document}

1291

Q: {question}

1292

A: {CoT}

1293

1294

1295

Figure 13: The Prompt Template of IRCoT Method.

1296
 1297 You are an intelligent assistant designed to select correct retriever for question.
 1298
Instructions:
 1299 ****Retriever Selection Guidelines**:**
 1300 - `Text Retriever`:
 1301 - For non-visual commonsense knowledge (e.g., "Define photosynthesis")
 1301 - `Text Image Retriever`:
 1301 - When sub-question explicitly references visual elements (e.g., "Describe the painting style of...")
 1302 - `Table Retriever`:
 1302 - For numerical/statistical queries (e.g., "GDP of Japan in 2020")
 1303 You can only choose 1 retriever from Text Retriever, Text Image Retriever, Table Retriever, or choose none for answering
 1303 directly
 1304
 1305 Current Question: {question}, information before:{document}

Figure 14: The Prompt Template of CogPlanner for Retriever Selection.

1306
 1307
 1308
 1309 You are an intelligent assistant designed to generate precise sub-questions for a QA system.
 1310
Instructions:
 1311 1. **Context Understanding:**
 1312 • **Question:** Analyze the main question provided.
 1312 • **Image Content**(if available): Consider all main entities, objects, and relevant details present in the accompanying image.
 1313
 1314 2. **Sub-question Generation:**
 1314 • **Specificity:** Generate one simple and specific sub-question that directly references the relevant entities or objects from
 1314 the image.
 1315 • **Clarity:** Avoid using pronouns or vague terms. Replace all references to entities or objects with their explicit names as
 1315 depicted in the image.
 1316 • **Relevance:** Ensure the sub-question is directly related to retrieving information that will help in answering the main
 1316 question.
 1317
 1318 3. **Output Requirements:**
 1318 • If a sub-question is necessary for retrieval, output it in the following format:
 1319 ```\n Sub-question: [Your generated sub-question here]\n ````\n 1320
 1321 • If no further retrieval is needed to answer the main question, simply output:
 1321 ```\n Sub-question: None\n ````\n 1322
 1323
Examples:
 1324 **Example 1:** Origin question: Which magazine was started first Arthur's Magazine or First for Women?
 1324 Assistant: Sub-question: When did the magazine 'Arthur's Magazine' start?
 1325
 1325 **Example 2:** Which magazine was started first Arthur's Magazine or First for Women?\nSub-question1: When did the magazine
 1326 'Arthur's Magazine' start?\nAnswer1: 'Arthur's Magazine' was started in 2002
 1326 Assistant: Sub-question: When did the magazine 'First for Women' start?
 1327
 1328 **Example 3:** Origin question: Which magazine was started first Arthur's Magazine or First for Women?\nSub-question1: When did the
 1328 magazine 'Arthur's Magazine' start?\nAnswer1:'Arthur's Magazine' was started in 2002\nSub-question2: When did the magazine
 1329 'First for Women' start?\nAnswer2: 'First for Women' was started in 1880
 1329 Assistant: Sub-question: None
 1330
 1331 **Example 4:** What is the population of the city that Manchester is in the southeast corner of?
 1331 Assistant: Sub-question: which city is in the northwest of Manchester
 1332
 1332 **Example 5:** Origin question: What is the population of the city that Manchester is in the southeast corner of?\nSub-question1:
 1333 which city is in the northwest of Manchester?\nAnswer1:It's Bolton
 1333 Assistant: Sub-question: What is the population of Bolton?
 1334
 1334 **Example 6:** Origin question: What is the population of the city that Manchester is in the southeast corner of?\nSub-question1:
 1335 which city is in the northwest of Manchester?\nAnswer1:It's Bolton\nSub-question2: What is the population of Bolton?\nAnswer2:
 1336 It's about 2960K
 1336 Assistant: Sub-question: None
 1337
 1337 **Example 7:** Origin question: Who directed the film where Joe Pesci voiced the character of Harry Lime?
 1337 Assistant: Sub-question: What is the name of the film where Joe Pesci voiced the character of Harry Lime?
 1338
 1339 **Example 8:** Origin question: When was the saxophonist who recorded A Love Supreme born?
 1339 Assistant: Sub-question: Who is the saxophonist who recorded A Love Supreme?
 1340
 1340 Origin Question: {question}
 1341 Sub-question, Answer: {question 1, answer 1, question 2, answer 2, ..., question n, answer n}
 1342

Figure 15: The Prompt Template of IterRetGen for Query Decomposition.

1343
 1344
 1345
 1346 Below are related information searched, which may be helpful for answering the question later on:{document}\n\n Give me
 1347 the direct answer to the Question: {question}

Figure 16: The Prompt Template of IterRetGen for Intermediate Answer Generation.

1350

1351

1352

1353

```
Origin question: {question}
Sub-question, Answer: {question 1, answer 1, question 2, answer 2,.....question n, answer n}
```

1355

```
Now, give me the final answer to the origin question: {question}
```

1356

1357

Figure 17: The Prompt Template of IterRetGen for Final Answer Generation.

1358

1359

1360

1361

1362

1363

1364 Classify the following query into one of four categories: [No, Text, Image, Table], based on whether it requires
retrieval-augmented generation (RAG) and the most appropriate modality. Consider:

- 1365 • No: The query can be answered directly with common knowledge, reasoning, or computation without external data.
- 1366 • Text: The query requires retrieving text information, straightforward explanations, or concise summaries from a
single source.
- 1367 • Image: The query focuses on visual aspects like appearances, structures, or spatial relationships.
- 1368 • Table: The query requires retrieving table information, which contains the structured information.

1369 Examples:

- 1370 • "What is the capital of France?" → No
- 1371 • "What is the birth date of Alan Turing?" → Text
- 1372 • "Which academic discipline do computer scientist Alan Turing and mathematician John von Neumann have in common?" →
Text

1373 • "Describe the appearance of a blue whale." → Image

1374 • "Solve 12×8 ." → No

1375 • "Who played a key role in the development of the iPhone?" → Text

1376 • "Which Harvard University graduate played a key role in the development of the iPhone?" → Text

1377 • "Describe the structure of the Eiffel Tower." → Image

1378 • "When did Leo Messi born?" → Table

1379 • "How much is the Iphone16" → Table

1380 Classify the following query: {question}

1381 Provide only the category.

1382

1383

1384

1385 You are a helpful multimodal question answering assistant. Decompose the original question into sub-questions and solve
1386 them step by step. You can use "Final Answer" to output a sentence in the answer, use "Search" to state what additional
1387 context or information is needed to provide a precise answer to the "Sub-Question". In the "Search" step, You can use
1388 "Image Retrieval" to fetch images related to the entered keywords, "Text Retrieval" with a specific query to fetch
1389 pertinent documents and summarize their content, "Table Retrieval" to fetch tables related to the entered keywords.
1390 Use the following format strictly:

1391 <Thought>

1392 Analyze questions and answer of the sub-questions, then think about what is next sub-question.

1393 <Sub-Question>

1394 Sub-Question needs to be solved in one step, without references.

1395 <Search>

1396 One of four retrieval methods: Image Retrieval: xxx. Text Retrieval: xxx. Table Retrieval: xxx. No Retrieval: xxx.

1397 ... (this Thought/Sub-Question/Search can be repeated zero or more times)

1398 <Thought>

1399 Integrate retrieved information and reason to a final answer

1400 <End>

1401 Final Answer: the final answer to the original input question

1402 Extra notes:

- 1403 1. Do not use your own knowledge to analyze input image or answer questions
2. After you give each <Search> action, please wait for me to provide you with the answer to the sub-question, and then
think about the next thought carefully.
3. The answers to the questions can be found on the internet and are not private

1404 Input Question:{question}

1405

1406

1407

1408

1409

1410

1411

1412

1413

Figure 19: The Prompt Template of OmniSearch.

1404
 1405 Answer the user's question based on the provided image. Examine the image carefully and identify any
 1406 recognizable entities, such as faces, objects, locations, events, logos, or text. Determine whether
 1407 you have sufficient knowledge to confidently recognize the main visual element and answer the user's
 1408 question. If so, first explain your reasoning, then provide a clear and direct answer. If you are
 1409 unable to confidently identify the visual element, stop and invoke the image search tool by
 1410 appending the string `<search>your query about image here</search>` at the end of your response. This
 1411 will trigger a Retriever search using the original image and query to retrieve relevant information
 1412 that can help you confirm the visual content. Once you have sufficient visual understanding, combine
 1413 it with the user's question and assess whether you can confidently answer. If so, answer the
 1414 question directly using your own knowledge. If not, invoke the text search tool by generating a
 1415 concise and specific query, and output it in the format `<text_search>your query here</text_search>`
 1416 at the end of your response. Carefully craft your query to accurately retrieve the information
 1417 needed to help answer the question. The text search tool will then use Text Retriever Search to
 1418 return relevant information based on your query. Otherwise if you have insufficient table content,
 1419 combine it with the user's question and assess whether you can confidently answer, invoke the table
 1420 search tool by generating a concise and specific query, and output it in the format
 1421 `<table_search>your table query here</table_search>` at the end of your response. Carefully craft your
 1422 query to accurately retrieve the information needed to help answer the question. The table search
 1423 tool will then use Table Retriever Search to return relevant information based on your query. You
 1424 must include your reasoning inside `<reason>...</reason>` before taking any action, whether it is
 1425 calling the image search tool, generating a text search query, or providing a final answer. The
 1426 reasoning may involve analysis of the original image and question, interpretation of search results,
 1427 or logical steps leading to the final answer. All search results will be placed inside `<information>`
 1428 and `</information>` and returned to you. When you are ready to answer the question, wrap your final
 1429 answer between `<answer>` and `</answer>`, without detailed illustrations.
 1430
 1431 For example: `<answer>Titanic</answer>`. Here is the question:{question}

Figure 20: The Original First Round Prompt Template of MMSearch-R1.

1425
 1426
 1427
 1428 Original question: {question}
 1429
 1430 Please analyze the search results and the user's question and continue reasoning inside
 1431 `<reason>` and `</reason>`.
 1432 If you are unable to confidently identify the answer, try to use text image search, text search or
 1433 table search
 1434 If a text search is needed, output the string `<text_search>your query here</text_search>`
 1435 at the end of your response. Please generate a well-crafted query that will help retrieve the most
 1436 relevant information.
 1437 If a text image search is needed, output the string `<image_search>your query here</image_search>`
 1438 at the end of your response. Please generate a well-crafted query that will help retrieve the most
 1439 relevant information.
 1440 If a table search is needed, output the string `<table_search>your query here</table_search>`
 1441 at the end of your response. Please generate a well-crafted query that will help retrieve the most
 1442 relevant information.
 1443 Carefully craft your query to accurately retrieve the information needed to help answer the question.
 1444 You must include your reasoning inside `<reason>...</reason>` before taking any action,
 1445 whether it is calling the image search tool, generating a text search query, or providing
 1446 a final answer. The reasoning may involve analysis of the original image and question,
 1447 interpretation of search results, or logical steps leading to the final answer.
 1448 All search results will be placed inside `<information>` and `</information>` and returned to you. When
 1449 you are ready to answer the question, wrap your final answer
 1450 between `<answer>` and `</answer>`, without detailed illustrations.
 1451
 1452 For example: `<answer>Titanic</answer>`.

Figure 21: The Original Intermediate Round Prompt Template of MMSearch-R1.

1447
 1448
 1449 Original question: {question}
 1450 Please analyze the search results and the user's question and continue reasoning inside
 1451 `<reason>` and `</reason>`.
 1452 If you determine that additional knowledge is still required to answer the user's question,
 1453 stop responding to the question and instead report a warning by outputting the string
 1454 "Unable to answer due to lack of relevant information" at the end of your response.
 1455 If no further external information is needed, you should provide the final answer by
 1456 placing it within `<answer>` and `</answer>`. The answer must be concise, clear, and to
 1457 the point, without any additional explanation or elaboration.

Figure 22: The Final Round Prompt Template of MMSearch-R1.

1458
 1459
 1460 Answer the user's question.
 1461 You must always begin with exactly one `<reason>...</reason>` block BEFORE taking any action.
 1462
 1463 Requirements for `<reason>`:
 - Only include your reasoning, no actions.
 - Briefly justify whether retrieval is needed.
 - If retrieval is needed, do ALL of the following INSIDE `<reason>`:
 - Choose EXACTLY ONE retriever from (TEXT, IMAGE, TABLE) and justify it, e.g.: Retriever: TEXT, because ...
 * TEXT → narrative facts, definitions, web/news/PDF/prose
 * IMAGE → visual identification (photos, scenes, logos, charts as images)
 * TABLE → structured numeric info (stats, prices, schedules, specs)
 - Do NOT include any `<text_search>`/`<image_search>`/`<table_search>`, `<information>`, or `<answer>` inside `<reason>`.
 1467
 1468
 1469
 1470
 1471 Decision rule AFTER `</reason>`:
 1) If you can confidently answer from current knowledge:
 - Output only `<answer>...</answer>`. Do NOT output any search tag.
 1472
 1473
 1474 2) If you cannot confidently answer:
 - Output EXACTLY ONE search tag at the VERY END of your response (last line only), using a precise, complete query:
 * TEXT → `<text_search>`your query here`</text_search>`
 * IMAGE → `<image_search>`your query here`</image_search>`
 * TABLE → `<table_search>`your query here`</table_search>`
 - Write ONE best sub-question in the search tag
 - Do NOT output `<answer>` in the same turn as any search tag.
 1475
 1476
 1477
 1478
 1479
 1480 When search results are later provided inside `<information>...</information>`:
 1481 - Start a NEW `<reason>...</reason>` that explains which snippets resolved the sub-question and how.
 1482 - Then output the final answer ONLY inside `<answer>...</answer>` (no extra commentary).
 1483
 1484 Here is the question: {question}

Figure 23: The Redesigned First Round Prompt Template of MMSearch-R1.

1485
 1486
 1487
 1488
 1489
 1490 Original question: {question}
 1491 You have received search results inside `<information>...</information>`.
 1492 Use ONLY that evidence unless you explicitly state why it is insufficient.
 1493 Begin with exactly one `<reason>...</reason>` block (reasoning only; no actions and NO sub-question text).
 1494 Inside `<reason>`:
 - Summarize what the evidence in `<information>` implies.
 - Resolve conflicts (prefer newer/primary sources) and do any needed calculations/checks.
 - Decide "Sufficient to answer" or "Insufficient; need more retrieval".
 - If insufficient, CHOOSE EXACTLY ONE retriever TEXT | IMAGE | TABLE and justify the choice.
 (Do NOT write the sub-question here. Do NOT output any tags inside `<reason>`.)
 1495
 1496 AFTER `</reason>`:
 - If sufficient: output ONLY `<answer>...</answer>`.
 - If insufficient: on the VERY LAST LINE output EXACTLY ONE search tag matching your chosen retriever, and include the ONE sub-question INSIDE that tag together with the final query, using this exact inline format (single line, no extra text):
 * TEXT → `<text_search>`your sub-question: ...`</text_search>`
 * IMAGE → `<image_search>`your sub-question: ...`</image_search>`
 * TABLE → `<table_search>`your sub-question`</table_search>`
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511 Guidelines for the tag content:
 - The "Sub-question" is the minimal, most answer-unlocking reformulation.
 - Do not output `<answer>` in the same turn as any search tag.
 - Output no other text outside the allowed tags.

Figure 24: The Redesigned Intermediate Round Prompt Template of MMSearch-R1.

1512

1513

1514

1515

1516

1517 **Question:** How long did Dell Curry play for the Toronto Raptors all-time C roster?
Ground Truth: 1999 to 2002

1518 **Exploration Trajectory of R1-Router**

1519 <think> To answer the origin question, we need to determine the duration of Dell Curry's time on the Toronto Raptors all-time C
 roster. </think>
 1520 <sub-question> How long did Dell Curry play for the Toronto Raptors all-time C roster? </sub-question>
 1521 <ret> Table Retriever </ret>

1522 **Retrieved Documents:**

1523 tar-1: [Title] Toronto Raptors all-time roster [Section title] C [Caption] C [Table name] ... [Header] Player [sep]... [sep]
 Years in Toronto [sep]... [Rows]Row)... [Row] Dell Curry [sep]... [sep] 1999-2002 [sep]...
 1524 tar-2:[Title]Toronto Raptors all-time roster[Section title] A [Caption] A [Table name]... [Header]... [Rows]...
 tar-3:[Title]Toronto Raptors all-time roster[Section title] S [Caption] S [Table name]... [Header]... [Rows]...
 <answer> Dell Curry played for the Toronto Raptors all-time C roster for a total of 4 years, from 1999 to 2002. This
 1525 information is based on the data provided by the table retriever (tar-1), which lists his position as guard and his years in
 Toronto as 1999-2002, with his school and club team listed as Virginia tech. </answer>
 1526 ...
 1527 <think> The original question sub-questions for the duration of Dell Curry's play for the Toronto raptors all-time c roster.
 The data provided specifies a total of 4 years, from 1999 to 2002, which is consistent among the sub-questions and answers
 provided. </think>
 1528 <answer> Dell Curry played for the Toronto Raptors all-time C roster for a total of 4 years, from 1999 to 2002.</answer>

1529

1530

1531

Figure 25: A Case Study from R1-Router on Open-WikiTable QA.

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542 **Question:** What city was she born in?
Ground Truth: Amherst, Massachusetts

1543 **Exploration Trajectory of R1-Router**

1544 <think> To answer the origin question, we need to identify the person in the image. This requires a visual analysis, which can
 be achieved using a text image retriever. </think>
 1545 <sub-question> Who is the person in the image? </sub-question>
 1546 <ret> Text Image Retriever </ret>

1547 **Retrieved Documents:**

1548 tar-1: **Emily Dickinson**. Mabel Loomis Todd's daughter, Millicent Todd Bingham, published collections based on the manuscripts
 held by her mother. tar-2: **Emily Dickinson**. Daguerreotype taken at Mount Holyoke, December 1846 or early 1847.
 <answer> The person in the image is likely **Emily Dickinson**, a renowned American poet. </answer>

1549 <think> The next step is to determine the birth city of Emily Dickinson. this requires finding the birthplace of Emily
 Dickinson. </think>
 1550 <sub-question> Where was Emily Dickinson born? </sub-question>
 1551 <ret> Text Retriever </ret>

1552 **Retrieved Documents:**

1553 tar-1: Emily Elizabeth Dickinson was born at the family's homestead in **Amherst, Massachusetts**, on December 10, 1830. tar-2:
 Dickinson was born in **Amherst, Massachusetts**, into a prominent family with strong ties to its community.
 <answer> Emily Dickinson was born at the family's homestead in **Amherst, Massachusetts**, on December 10, 1830. </answer>

1554 <think> The original question has been answered by the sub-question and answer pairs provided. no further information is needed
 to answer the origin question. </think>
 1555 <sub-question> None </sub-question>
 1556 <ret> None </ret>

1557 <think> Given the historical context, it is possible to infer that she might be a figure of historical significance, such as
 1558 Emily Dickinson, who is known for her poetry and lived in Amherst, Massachusetts, during the 19th century. </think>
 1559 <answer> The city where she was born is **Amherst, Massachusetts**. </answer>

1560

1561

1562

1563

1564

1565

Figure 26: A Case Study from R1-Router on Dyn-VQA.

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582

1583 **Question** Where was the place of death of Anastasia Of Serbia's husband?
Ground Truth: Hilandar

1584 **Exploration Trajectory of R1-Router**
 <think> To answer the origin question, we need to identify the name of Anastasia of Serbia's husband. This requires finding the name of the person she was married to. </think>
 <sub-question> What is the name of Anastasia of Serbia's husband? </sub-question>
 <ret> Text Retriever </ret>

1585 **Retrieved Documents:**
 ter-1: Anastasia of Serbia Anastasia of Serbia Ana (); 1196-d. June 22, 1200) was the princess consort of the Serbian Principality as the wife of **Stefan Nemanja** (r. 1166-1196). ... ter-2: Anastasia of Serbia was of noble descent. Ana took monastic vows in 1196 and was baptized "Anastasia", after Anastasia of Sirmium. Through the marriage with **Stefan Nemanja**, they had three sons and three daughters.
 <answer> The name of Anastasia of Serbia's husband is **Stefan Nemanja**. He was the Serbian prince(principality) from 1166 to 1196 and was married to Anastasia of Serbia ... </answer>

1586 <think> The next step is to determine the place of death of Stefan Nemanja, who was the husband of Anastasia of Serbia.
 </think>
 <sub-question> Where did Stefan Nemanja die? </sub-question>
 <ret> Text Retriever </ret>

1587 **Retrieved Documents:**
 ter-1: Stefan Nemanja monk for some time. They received permission from the new Byzantine emperor to rebuild the abandoned monastery of **Hilandar**. Death and legacy. Knowing his death was near in his 86th year ... ter-2: Stefan Nemanja stone for his pillow. He died in front of his son Sava and other monks, on 20 February 1199. He was buried in the grounds of **Hilandar** monastery. His last words requested that Sava take his remains to Serbia ...
 <answer> Stefan Nemanja died in front of his son Sava and other monks on 20 February 1199, in the grounds of **Hilandar** monastery. he was buried in the grounds of Hilandar monastery, which is located in the region of Montenegro ... </answer>
 ...
 <think> The previous answers have all provided substantial information related to Anastasia of Serbia's husband, Stefan Nemanja, including his lifespan, roles, and the place where he passed away. the final answer should be a concise statement reflecting this information. </think>
 <answer> The place of death of Anastasia of Serbia's husband, Stefan Nemanja, was in the grounds of **Hilandar** monastery, located in the region of Montenegro, specifically in the area of Hilandar monastery. </answer>

1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

Figure 27: A Case Study from R1-Router on 2WikiMultihop QA.