Executable Counterfactuals: Improving LLMs' Causal Reasoning Through Code

Aniket Vashishtha 1* Qirun Dai 2* Hongyuan Mei 3 Chenhao Tan 2† Amit Sharma 4† Hao Peng 1† 1 University of Illinois Urbana-Champaign 2 The University of Chicago 3 TTIC 4 Microsoft Research India

Abstract

Counterfactual reasoning, a hallmark of intelligence, consists of three steps: inferring latent variables from observations (abduction), constructing alternative situations (intervention), and predicting the outcomes of the alternatives (prediction). This skill is essential for advancing LLMs' causal understanding and expanding their applications in high-stakes domains such as scientific research and healthcare. However, existing efforts in assessing LLM's counterfactual reasoning capabilities tend to skip the abduction step, effectively reducing to interventional reasoning and leading to over-estimated LLM performance. To address this, we introduce executable counterfactuals, a novel framework that operationalizes causal reasoning through code and math problems. Our framework explicitly requires all three steps of counterfactual reasoning and enables scalable synthetic data creation with varying difficulty, creating a new frontier for evaluating and improving LLM's reasoning. Our results reveal substantial drop in accuracy (25-40%) from interventional to counterfactual reasoning for state-of-the-art models such as o4-mini and Claude-4-Sonnet. To address this gap, we construct a training set comprising counterfactual code problems having if-else condition and test on out-of-distribution code structures (e.g., having while-loop); we also test whether a model trained on code can generalize to counterfactual math word problems. While supervised finetuning (SFT) on stronger models' reasoning traces improves in-distribution performance of Qwen models, it leads to a decrease in accuracy on out-of-distribution tasks. In contrast, reinforcement learning (RL) induces the core cognitive behaviors and generalizes to new distributions, yielding substantial accuracy gains over the base model on both code ($\uparrow \sim 1.5-2X$) and counterfactual math problems. Analysis of the reasoning traces further reinforces these findings and highlights the promise of RL with scalable data generation for improving LLMs' counterfactual reasoning. Our code and data are available at https: //github.com/AniketVashishtha/Executable_Counterfactuals.

1 Introduction

Counterfactual reasoning is the cognitive process of answering *what-if* questions that underpin critical domains such as scientific discovery (Schölkopf et al., 2021), healthcare (Richens et al., 2020), economics (Athey & Imbens, 2017), and public policy (Poulos & Zeng, 2021). Given an action and an observed outcome, it involves inferring the latent state of a system when the action was performed

Correspondence to: aniketv2@illinois.edu, qirundai@uchicago.edu

^{*}Equal contribution.

[†]Equal advising.

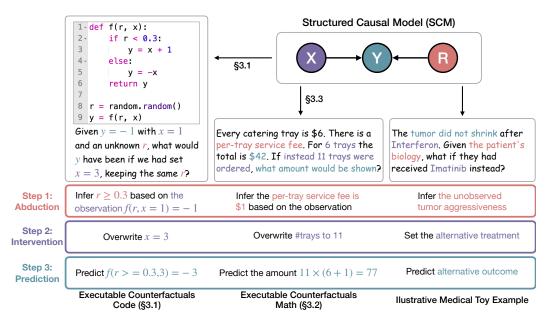


Figure 1: Executable counterfactuals across code, math, and a medical toy example to illustrate abduction–intervention–prediction. Code offers a controlled, executable setting that maps naturally to causal/computational graphs and transfers to natural-language tasks.

(abduction), constructing alternative scenarios through interventions, and predicting the outcomes under those counterfactual scenarios (Pearl, 2002a; Epstude & Roese, 2008). Despite the importance of counterfactual reasoning, it remains a widely documented weakness of current large language models (LLMs; Jin et al., 2024; Yamin et al., 2025; Yu et al., 2023).

Evaluating and improving counterfactual reasoning is challenging because counterfactuals are inherently unobservable and rely on hypothetical alternatives to reality. As a result, prior work considers either synthetic graph-based settings that are hard to map to real-world problem solving (Jin et al., 2024) or simplistic tasks that are *expressed* in counterfactual language but can be solved without invoking all aspects of counterfactual reasoning. Examples include binary classification tasks given full information about the causal graph (*Would Y still occur if X didn't happen?*; Chen et al., 2025) or benchmarks based on perturbations of existing reasoning problems (thus creating new "counterfactual" problems; Wu et al., 2024). With full information (i.e., there are no latent confounders or noise), these problems can be solved by simple forward reasoning (Gerstenberg, 2022): change the input variables' values as instructed and solve it as a new problem, *without* any counterfactual reasoning.

These simplified interpretations of counterfactuals risk conflating them with simpler forms of causal reasoning (more on this in §2) and thus misrepresent LLMs' counterfactual abilities. To address these limitations, we identify the three core cognitive skills from Pearl's definition of counterfactual reasoning (Pearl, 2002a)—Abduction, Intervention and Prediction—and construct tasks that requires all three skills to obtain a correct solution. In line with prior work (Gandhi et al., 2025) that evaluates cognitive behaviors in LLMs for self-improvement, we assess the behaviors required for counterfactual reasoning. Key benefits of this perspective include explicit separation of counterfactual reasoning from simpler forms of causal reasoning, fine-grained attribution of models' strengths and weaknesses, and an actionable framework for improvement (§3). Moreover, beyond counterfactuals, improvements to these cognitive skills can independently serve as building blocks for stronger LLM reasoning in general.

Our key idea is to use code understanding as a problem setting for studying counterfactual reasoning (executable counterfactuals). We show how real-world partial information settings can be abstracted in code through latent variables while still allowing for objective evaluation. Specifically, we introduce random variables in the code understanding task such that their values are not revealed to the language model. In the formal structural causal model framework, these random variables can be considered as noise variables that need to be inferred before making any counterfactual prediction. As shown in the illustrative example in Figure 1, the causal structure $X \to Y \leftarrow R$ where X and R independently

cause Y, converts to a program where X computes Y while R determines conditional branching. A counterfactual question is constructed as: Given observation y = f(r, x = 1) = -1 with unknown r, what would y have been if we had set x = 3, keeping the same r? Solving this problem requries the agent to invoke all three cognitive skills, (1) infer r based on the observation y = -1 (abduction), (2) mentally set x = 3 (intervention), and (3) compute the resulting y (prediction).

Beyond the aforementioned benefits, our code-based framework avoids the potential ambiguity of natural language, and allows rich and controllable complexity for constructing evaluation problems and generating synthetic training data (§3). It evaluates models' ability to use counterfactual reasoning for problem solving rather than reducing the task to answer binary classification questions (Jin et al., 2024; Chen et al., 2025). In addition, it facilitates evaluating and improving out-of-distribution generalization by varying the program structures and translating coding tasks into counterfactual math problems §3. We address the following important research questions with executable counterfactuals:

- 1. *How do current LLMs perform on counterfactual reasoning?* Our experiments with open models of sizes ranging from 1.5B to 72B parameter and commercial reasoning models show strong performance on straightforward code-execution tasks, but poor performance on counterfactual reasoning over the same code. Qualitative analysis indicates consistent failure at the abduction step, leading to incorrect conditioning on the original observation to infer latent features.
- 2. Can SFT distillation from stronger models instill these skills and do they generalize? We finetune Qwen 1.5B/3B/7B-Instruct on reasoning trajectories from DeepSeek-Distilled-Qwen-32B, and observe ~40% performance improvements on in-domain evaluation. However, these improvements do not generalize to unseen code structures or counterfactual math problems, highlighting the limited generalization of SFT.
- 3. How does RL fare? Training the same models with RL from verifiable rewards (RLVR) using GRPO (Shao et al., 2024) leads the models to acquire the necessary cognitive skills, showing strong transfer across diverse code structures and counterfactual math problems in natural language, with concrete evidence of improved generalization.

Our findings have two key implications. First, they reinforce recent evidence that current LLMs remain weak at counterfactual and causal reasoning (Jin et al., 2024, 2023; Willig et al., 2023). Second, our experiments call into question the effectiveness of SFT, a widely adopted approach by recent works to improve counterfactual reasoning (Guo et al., 2025; Li et al., 2025), especially regarding its ability to generalize to complex and high-impact real-world domains. In contrast, our results show that RL elicits stronger generalization for counterfactual reasoning; despite training only on code, the model internalizes the core skills and applies them directly to counterfactual math problems, providing early evidence that RL is a promising pathway for eliciting such reasoning in LLMs. Crucially, as shown in the experiments, our code-based framework has the potential to offer a scalable way for learning counterfactual reasoning that transfers to new domains where training data can be scarce. All code and data will be publicly released upon publication.

2 Background and Related Work

In this section, we will first outline the cognitive skills required for counterfactual reasoning and then show how it is often conflated with interventional reasoning in prior work.

From abduction to prediction. We use Figure 1 as a running example to expand the cognitive skills required for counterfactual reasoning. Three steps are needed to answer the counterfactual question Given observation y = f(r, x = 1), what would y have been had x = 3 instead in the original run?

- **Step 1: Hindsight reasoning for abduction:** Rewind back to the point where the original action was taken, to infer latent features and noise present in the system at that time. The above counterfactual question, cannot be answered by simply re-running the program with x = 3. One must first *abduce* the hidden latent variable $\hat{r} \ge 0.3$ from the observed run $f(\hat{r}, x = 1) = 1$.
- **Step 2: Taking a different action (intervention)**: Conditioned on the inferred latent features from abduction stage, perform the counterfactual change by intervening the input to its counterfactual value while keeping everything else the same as in the earlier observation. For the code example, this means holding \hat{r} fixed while intervening by overwriting x=3.
- **Step 3: Prediction**: Based on the new action taken, compute its consequences in the counterfactual scenario. In the example, computing $y_{cf} = f(\hat{r} \ge 0.3, x = 3)$ is final prediction step.

Without latent states and the abduction step, counterfactual reasoning reduces to interventional reasoning, corresponding to Level 2 in Pearl's causal ladder (Pearl, 2009), which breaks down causal reasoning to three progressively more advanced levels: Associational (Level 1), Interventional (Level 2), and Counterfactual (Level 3); see Appendix 6 for a detailed overview.

Past studies often overlook abduction. Prior evaluations of LLM counterfactual reasoning often use fully observed settings with no latent noise. This effectively makes the abduction step unnecessary since there is *no* unobserved variable or noise to abduce. In such regimes, a *counterfactual* query collapses to an *interventional* one: the answer follows directly from taking a different action not requiring the step of inferring hidden state. Take Figure 1 (left) as an example and consider the following question q: What would y have been be if we had set r = 0.4, x = 3? Although q may appear similar to the counterfactual question in Figure 1, it is fundamentally different. Crucially, answering q does not require abducting the values of r, since it is explicitly specified. Therefore, solving q relies solely on interventional reasoning (Level 2) rather than counterfactual reasoning (Level 3); in this sense, q effectively collapses to an interventional question despite its seemingly "counterfactual" framing.

The above example question q, though synthetic, conceptually illustrates the key reason for the mischaracterization of counterfactuals in many recent works (Wu et al., 2024; Li et al., 2024; Chen et al., 2025; Nguyen et al., 2024; Paranjape et al., 2022; Wu et al., 2021; Madaan et al., 2021; Ye et al., 2021; Joshi & He, 2022; Vashishtha et al., 2023). See Appendix D for detailed discussion.

Clearly distinguishing counterfactual from interventional reasoning is important for accurately understanding the capabilities and limitations of current LLM paradigms, and for designing algorithms that advance their causal reasoning. It requires an explicit characterization of the three-step process of abduction, intervention, and prediction, which motivates our executable counterfactual framework.

Other related work. Jin et al. (2024) provides formal benchmarks across the causal ladder, including counterfactuals. While well grounded in causal theory, some tasks are less aligned with realistic applications and often presuppose familiarity with advanced tools (do-calculus, d-separation, mediation/IV) which can make it harder to pinpoint whether errors stem from graph inference, identifiability, effect decomposition, or numerical estimation. Similar trade-offs are observed in recent causal benchmarks for LLMs as well (Yang et al., 2025; Zhou et al., 2024).

3 Operationalizing Counterfactual Reasoning via Code & Math

We move beyond graphical approaches (Yang et al., 2025) and purely formal tests (Jin et al., 2023, 2024) by using executable code as an actionable environment for counterfactual reasoning. Because programs are computational graphs, they map naturally onto mathematical and graph formalisms and enable fine-grained control of task difficulty and latent-variable structures. This allows for designing out-of-distribution (OOD) evaluation by encoding causal graphs with novel features and logic unseen during training. Our framework produces executable counterfactuals with verifiable ground-truth outcomes for both evaluation and training.

3.1 Executable Counterfactuals: Code

Overview. We generate distinct and executable Python functions from a small set of templates (8 for training, and 3-4 for each evaluation setup) by abstracting out the overall program structure and isolating it from specific variables and operators. Unlike prior work that typically uses a checklist approach which merely swaps numbers or operators while keeping the same control flow (Ribeiro et al., 2020), we use function templates where complete code blocks with different functional purposes are replaced by empty placeholders (Figure 2a). Specifically, we apply *Claude-4-Sonnet* to draft these templates and potential code block candidates for each placeholder, and perform manual verification to ensure quality and diversity. For each type of dataset split (training or evaluation) and control logic (if-else, while loop, etc.), we fix a small set of templates along with a list of code block candidates. For training datasets, we supply 15 combinations of function templates and code block candidates.

³It should be acknowledged that many of these works focus on robustness, generalization, and debiasing, and never intend to study counterfactuals as in the causal sense. Nonetheless, the loose use of the counterfactual framing can lead to misinterpretations by the readers Zhao et al. (2018); Kaushik et al. (2020); Vashishtha et al. (2023), which highlights the importance of a precise characterization of counterfactuals.

Moreover, to promote finer-grained variations in intermediate computations, we also make operators and variables in the functions changeable. Finally, we deduplicate the generated functions using techniques in Appendix G, which eventually results in a large and diverse set of executable functions using an efficient and controllable recipe.

Template-based generation. We consider the following four function logic:

- 1. **If_else:** These simple functions have at most one level of nesting structure, thus keeping the intermediate computational steps at a low level (Figure 2a).
- 2. **If_else-long**: To test if the models can generalize to longer code structures with more statements, we construct this evaluation dataset with higher levels of nested if-else structures (Table 9).
- 3. **While**: To test how models generalize counterfactual reasoning to control logic that it has never seen during training, we construct this dataset with *while loops* (Table 7).
- 4. **Multi_r**: To test how models generalize to a different causal structure where multiple hidden variables are present, we construct this dataset where each function has three unknown input arguments. Moreover, we level up the complexity by introducing simple *for loops* (Table 8) apart from *if-else* statements.

If_else is used for both training and in-distribution (ID) evaluation, while **If_else-long**, **While**, and **Multi_r** are used for out-of-distribution (OOD) evaluation and never used in the training data.

One important feature of our template approach is that there are three different levels of placeholders whose combinations can greatly advance the diversity of our final datasets.

- **Fixed placeholders:** boilerplate such as the function name, a reproducible draw of a latent variable r, by setting the random seed, and the final return statement. To design functions with more than one latent variables, we explicitly define placeholders for each extra latent variable.
- Structural placeholders: Slots for complete code blocks that define the program's logic, including the optional pre-processing steps, the main if-condition (simple or compound), possible elif clauses, code pieces inside each branch, and the form of the return statement.
- Value placeholders: Specific operators and numbers (e.g., +, *, thresholds) that determine the function's detailed behavior once the structure is chosen.

To better mirror real-world ambiguity, where multiple latent configurations can explain the same observation, we insert a modulo at the return statement in training functions (i.e., return $g(\cdot) \mod m$). The modulo's periodicity induces a many-to-one mapping from latent r to the observed output, so several r values are consistent with the factual run, yielding multiple valid counterfactual outcomes. At evaluation, we score the model against the full set of valid answers: we report exact match (set equality) and an aggregated FI that rewards partial coverage of the ground-truth set.

To create the interventional version of the same programming problem, we keep the code unchanged and disclose the realized value(s) of r. Revealing r removes the abduction step, so the task reduces to re-evaluating the program under a new input x. Please refer to Table 10 for interventional prompt examples.

```
1-def {function_name}(x, seed_value):
       random.seed(seed_value)
3
       r = random.randint({min_r}, {max_r})
4
5
       {preprocessing_block}
6
7 -
       if {condition_type}:
8 -
           if r {comparison_op} {threshold}:
9
               result = x {arithmetic_op_1} r
10 -
           else:
11
               result = r {arithmetic_op_2} x
       {elif block}
13 -
       else:
14
           {else_branch_content}
       return {return_expression}
```

(a) Template instance for generating if-else functions in the training set

```
1-def generated_func_1234(x, seed value):
2
       random.seed(seed_value)
3
       r = random.randint(2, 8)
4
5 -
       if x > 15:
6 -
           if r < 5:
7
               result = x + r
8 -
           else:
9
               result = r * x
       else:
10 -
11
           result = r - x
       return result
```

(b) Code function generated from template in 2a

```
1- def generated_func_5007(x, r):
       if x < 3 or x >= 9:
3 -
           if r >= 4:
4
               result = x + r
5 -
           else:
6
               result = r + x
7 -
       elif x >= 9:
8
           result = r
       elif r >= 4:
10
           result = x * 8 * r
11.
           result = r + x
12
       return (result * 7 - r) % 18
```

(c) Another structurally different code function generated from the same template in 2a

Figure 2: Structural and Semantic diversity emerges from our nested template-based approach, where a single template in 2a can generate structurally and semantically different functions as shown in 2b and 2c

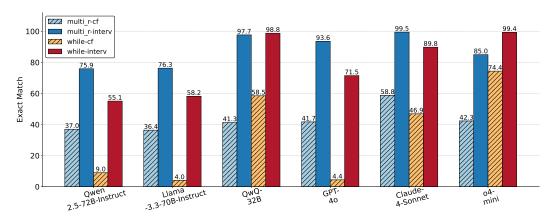


Figure 3: Even for LLMs with strong general capabilities or thinking features, the performance gap between counterfactual and interventional questions originated from the same code function can still be huge, showing the importance of targeted improvements in counterfactual reasoning.

3.2 GSM Math Problem Construction for Counterfactual Reasoning

To test whether models can generalize beyond code, we construct a new dataset of counterfactual variants of GSM-8K-style problems. See Figure 1 (middle) for an illustrative example. The key idea is to introduce a hidden factor in each problem. Taking inspiration from Ye et al. (2024), each problem starts in an everyday setting (office party, school fundraiser, etc.) and is specified by a computational graph that tracks the key quantities (such as counts, unit prices, or fees) and how they combine (sums, percentages, etc.). Inside this graph, we introduce one hidden factor that also contributes to the total; their value is known in the computational graph but not revealed in the narrative. The hidden factors are simple but varied. Examples include: flat add-on (e.g., an unseen service fee), per-item add-on (e.g., an extra fee per tray), and an unknown amount of additional items at a known unit price (e.g., some dessert boxes per tray at \$3 each). We verbalize the graph into GSM-style word problems. To increase variety, we use a small set of phrasing templates for different settings (such as office party, fundraiser, etc) and vary both the scenarios and the point where the hidden factor is introduced into the graph. Ground truth answers are produced by executing the computational graphs, therefore resulting in verifiable answers. For creating an interventional version of the problem, we keep everything exactly the same and reveal the value of the latent variable in the problem statement (Table 5). To ensure that the latent variable is used in final answer computation, for each problem constructed, we vary the value of the latent variable and see if it leads to change in final answer. If there is no change we regenerate the problem.

4 Experiments

With our executable counterfactuals framework we answer the three research questions in §1.

4.1 LLMs Show Weaknesses in Counterfactual Reasoning

Motivation and Setting. As discussed in §2, the lack of abduction in prior works reduces counterfactual reasoning to interventional reasoning, thus failing to distinguish the true counterfactual from interventional capabilities. In light of this, we pair each of the counterfactual evaluation dataset of our framework with an interventional counterpart, which is built upon the same code function or mathematical conditions except that the originally hidden variable is now revealed and fixed (Table 4 and 10). We evaluate a wide range of models with strong reasoning capabilities and present the comparison results in Figure 3 and Table 5. Please refer to Appendix K.3 for the evaluation hyperparameters adopted throughout this work.

Findings. For six strong LLMs spanning four model families in both coding and math domains, there consistently exists a significant performance gap between the counterfactual datasets of our framework and their interventional counterparts, regardless of model providers, sizes, and test-time

	Model	ID OOD							
Model Class		if_else		if_else-long		multi_r		while	
		F1	EM	F1	EM	F1	EM	F1	EM
	Qwen2.5-1.5B-Instruct	19.3	5.3	26.5	12.8	9.5	7.4	1.9	0.8
	Qwen2.5-1.5B-Instruct-SFT	62.7	44.4	51.3	32.0	21.4	20.7	2.8	2.4
	Qwen2.5-1.5B-Instruct-RL	34.7	20.2	50.3	39.6	25.5	25.2	5.0	4.2
	Qwen2.5-3B-Instruct	32.1	11.8	38.7	16.7	14.0	11.1	5.4	2.7
	Qwen2.5-3B-Instruct-SFT	70.8	53.2	55.4	34.7	22.8	21.6	2.6	2.2
Controllably Trained Models	Qwen2.5-3B-Instruct-RL	74.8	55.2	55.9	39.3	36.9	35.9	12.9	10.5
	Qwen2.5-7B-Instruct	38.8	13.9	54.9	28.2	21.6	17.9	7.3	3.3
	Qwen2.5-7B-Instruct-SFT	75.8	59.0	61.4	41.7	24.9	23.3	2.5	2.1
	Qwen2.5-7B-Instruct-RL	81.7	67.8	75.0	58.3	40.3	36.3	11.2	8.1
	Qwen2.5-32B-Instruct	42.9	17.2	63.3	29.9	40.1	34.8	11.2	6.2
	Qwen2.5-72B-Instruct	47.0	20.3	65.0	32.8	42.3	37.0	13.6	9.0
General LLMs	Llama-3.3-70B-Instruct	50.0	22.0	62.8	28.7	41.8	36.4	12.0	4.0
	GPT-4o	50.6	25.6	62.6	32.9	44.8	41.7	10.5	4.4
	Claude-4-Sonnet	79.1	60.6	81.3	59.0	63.5	58.8	53.0	46.9
	R1-Distill-Qwen-32B	86.0	69.1	89.7	77.9	57.1	47.9	69.7	63.1
Reasoning LLMs	QwQ-32B	73.5	54.9	85.1	73.0	44.7	41.3	63.2	58.5
	o4-mini	91.1	76.2	95.9	90.2	51.9	42.3	84.6	74.4

Table 1: Evaluation results on in-distribution (ID) and out-of-distribution (OOD) counterfactual coding tasks using our executable counterfactuals framework. Since each question may contain multiple answers, we report both F1 and exact match scores in percentage units.

scaling features. Notably, reasoning models (e.g., QwQ-32B (Team, 2025) and o4-mini) show nearly perfect interventional reasoning performance in coding, yet achieve less than half on counterfactual reasoning. Non-reasoning models mostly score below 10% in counterfactual datasets with while loops, but can achieve over 70% in their interventional counterparts. Therefore, our framework reveals the weakness of current strong LLMs in true counterfactual reasoning, suggesting the necessity of targeted post-training improvements apart from traditional focus on general capabilities only.

4.2 Distillation-based SFT Generalizes Poorly

Motivation and Setting. We then explore SFT, a widely adopted approach that has been traditionally shown effective for targeted improvements in counterfactual reasoning (Huyuk et al., 2025; Huang et al., 2024). Specifically, we opt for the popular long-Chain-of-Thought (long-CoT) SFT paradigm, where the CoT annotations are distilled by a reasoning model with thinking features, due to its proved benefits of better transfer in reasoning tasks (Guo et al., 2025; Li et al., 2025). We choose <code>DeepSeek-R1-Distill-Qwen-32B</code> (Guo et al., 2025) as the teacher model, and <code>Qwen2.5-1.5B/3B/7B-Instruct</code> series as the base models for all post-training attempts throughout this work. Please refer to Appendix K.1 for more data annotation and training details.

Findings. As shown in Table 1 and Figure 4, compared with their base, SFT models achieve strong in-distribution (ID) counterfactual reasoning performance, as well as decent performance when certain surface task features (e.g., length of code functions in *if_else-long*) are out-of-distribution (OOD). However, when the fundamental reasoning structures of these tasks become OOD, including the **causal structure** (e.g., more hidden variables in *multi_r*), **control logic** (e.g., while loops as the control structure in *while*), and **question domain** (e.g., from code-based to natural language-based math reasoning in *gsm*), the gains of SFT diminishes and it even hurts the performance in most cases. Thus, our framework demonstrates that long-CoT SFT paradigm has only limited generalization of counterfactual reasoning, despite the powerful external supervision signals. These findings call for investigations into other post-training approaches that are not only more supervision-efficient, but can also generalize to complex and previously unseen task structures.

4.3 RLVR Elicits Generalizable Counterfactual Reasoning Skills Across Causal Structures and Question Domains

Motivation and Setting. In search of a supervision-efficient approach to generalize counterfactual reasoning capabilities, we eventually resort to reinforcement learning. We use reinforcement learning from verifiable reward (RLVR) with GRPO (Shao et al., 2024), a popular combination that requires only outcome-based supervision. Following prior work (Sun et al., 2025), we use exact match scores as the outcome-based reward, and set the prompt batch size and rollout size as 16 and 24 respectively. Please refer to Appendix K.2 for more details about RLVR training.

Findings. As shown in Table 1 and Figure 4, RLVR achieves consistent and significant gains for all scales of models, and on all ID and OOD evaluation datasets. The improvements are especially strong on *multi_r*, *while*, and *gsm*, where involve fundamentally OOD causal structures and reasoning contexts, and make our previous SFT attempt uniformly fail. Notably, a *Qwen2.5-7B-Instruct*

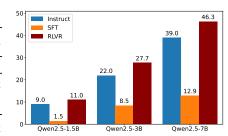


Figure 4: Accuracies on the GSM-counterfactual dataset under domain-transfer. RLVR consistently shows effective generalization from code-based to natural language-based counterfactual reasoning, while SFT consistently fails. Moreover, the improvements of RLVR also robustly scale with the model size.

model trained with RLVR achieves comparable performance with *Qwen2.5-72B-Instruct*, and consistently better performance than its 32B variant across the whole coding domain. Therefore, RLVR successfully achieves our goal of generalizing fundamental counterfactual reasoning skills to complex structures and previously unseen domains with minimal supervision.

5 Behavioral Analysis of Reasoning Traces

We next analyze the models' reasoning behaviors using executable counterfactuals. Table 2 illustrates the three types of prototypical failure that we observe in the reasoning traces:

- 1. Brute-force enumeration of all possible hidden-variable values.
- 2. Assuming an arbitrary value for the hidden variable once the problem is considered too complex.
- 3. Complicating the problem through unnecessary case splitting and circular analyses.

Inspired by these observations, we evaluate each reasoning trace along two dimensions: *planning* and *execution*. The planning score evaluates whether the three core cognitive skills of counterfactual reasoning—abduction, intervention, and prediction—are sequentially applied. The execution score evaluates the correctness of mathematical computation and code simulation, a general skill that is not specific to counterfactual reasoning. Following prior work (Sun et al., 2025), we use o4-mini as the LLM judge to rate each dimension on a scale of 1 to 5, and defer other technical details, including the grading rubric in prompts, to Table 11 in Appendix. Figure 5 presents the results.

Scaling model size improves computational accuracy, but not abduction skills. As shown in Figure 5, across all four coding tasks, scaling up the size of Qwen2.5-Instruct models leads to consistent improvements in execution ratings, but *not* in planning. Instead, the 7B model consistently receives higher ratings for its abduction skills than 32B on 3/4 tasks, and scores even higher than the 72B variant on both *if_else-long* and *while*. This suggests that scaling up the size of LLMs that are post-trained on general domains improves the final accuracy in a way that does not comply with the standard "abduction-intervention-prediction" strategy, thus resulting in poor counterfactual reasoning performance even with a large model size.

SFT memorizes shallow abduction patterns that fail to generalize to complex problems. In Figure 5, the planning scores of SFT models substantially drop in OOD tasks. Our inspection of reasoning traces shows that when faced with OOD questions with increased complexity in completing the abduction step, SFT models tend to override the standard reasoning strategy, and instead revert to the prototypical failure modes discussed in Table 2 in order to evade true counterfactual reasoning.

Brute-Force Enumeration

Arbitrary Assumption

```
Since r is not given, list r and unroll loops: r=0 \to \mathtt{local\_sum} = 1 \to \lfloor 1/3 \rfloor = 0; r=1 \to \mathtt{local\_sum} = 3 \to \lfloor 3/3 \rfloor = 1; r=2 \to \mathtt{local\_sum} = 5 \to \lfloor 5/3 \rfloor = 1; \ldots scan until y=120 fits at x=15.
```

```
Assume r=3, otherwise would be too complex to solve. One outer iter: local_sum = 3+(3+1)=7 \rightarrow \lfloor 7/3 \rfloor = 2. For x=12: y=12\cdot 2+12=36.
```

Unnecessary Case-Splitting

Recover r from x=15, y=120 via inner-loop stops. Case 1: $r\leq 0 \to \text{inner never runs} \to y=x=15$. Case 2: $r>0 \to \text{local_sum}$ after step1 is r. Split 2A: stop after step1 if $r\geq 5r$. Split 2B: take step2 if $r<5r\to \text{local_sum}=2r+1$. Also split by 2r+1 vs. 5r<(<,=,>) and by $(2r+1) \mod 3 \in \{0,1,2\}$; then branch on $q=\lfloor (2r+1)/3 \rfloor \in \{6,7,8\} \dots$

Table 2: Examples of three prototypical failure modes in model-generated reasoning traces.

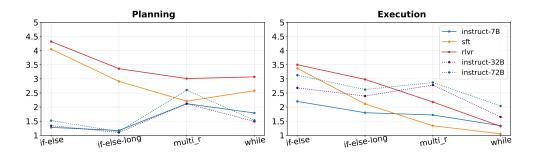


Figure 5: Evaluation results of the LLM-as-a-judge pipeline. For the responses generated by each model on each dataset, the evaluation objective is decoupled into "planning" (left; i.e., whether the "abduction-intervention-prediction" strategy is faithfully followed) and "execution" (right; i.e., whether the intermediate computations are correctly performed).

RLVR generalizes counterfactual reasoning strategies, but is still bottlenecked by computational accuracy. As Figure 5 also reveals, RLVR models achieve the highest planning scores across all evaluation datasets, demonstrating the generalizable counterfactual reasoning strategy that they learn to apply even in fundamentally OOD tasks. On the other hand, the sharp decrease in execution scores on both *multi_r* and *while* also suggests that a major error type for RLVR is computational errors under the correct reasoning strategy. Therefore, our framework identifies the asynchronism in learning counterfactual reasoning skills and general computational skills, and calls for future efforts into improving both skills simultaneously to build a strong counterfactual reasoning agent.

6 Conclusion

We address gaps in evaluating counterfactual reasoning in LLMs by decomposing the skill into core components by introducing an executable, code-based framework. Our setup builds dynamic testbeds that require the full abduction, action, prediction rollout and allows for precise control over logic and latent features. Using a template-based approach, we generate many structurally diverse functions to form counterfactual queries and to train smaller models that currently struggle on these tasks. We find that LLMs typically struggle at the abduction step, and this limitation is not resolved by increasing model's size as large scale models (up to 72B) also struggle with this. Our findings show that models trained with SFT transfer these skills in-domain code evaluations but significantly falter on OOD settings, whereas RL consistently induces them from code-only training and generalizes to novel control flows and natural-language counterfactual math. We corroborate this with qualitative case studies and *LLM-as-a-Judge* evaluations. Beyond counterfactuals, the same framework enables flexible evaluation of other causal skills and can help pinpoint where current systems fall short.

Acknowledgements

We are grateful to Abhinav Kumar, Andrew Lampinen, Daman Arora, Deema Alnuhait, Divyat Mahajan, Dylan Zhang, Emre Kiciman, Junlin Yang, Kabir Ahuja, Lifan Yuan, Melanie Sclar, Nick Haber, Shivam Agarwal, Tobias Gerstenberg, Yanai Elazar, Yonatan Belinkov and members of Chicago Human+AI Lab for their valuable support and insightful discussions. This project is partly supported by NSF under award No. 2019897, No. 2126602, an award from the Sloan foundation, and an award from the Open Philanthropy foundation.

References

- Kabir Ahuja, Melanie Sclar, and Yulia Tsvetkov. Finding flawed fictions: Evaluating complex reasoning in language models via plot hole detection, 2025. URL https://arxiv.org/abs/2504.11900.
- Susan Athey and Guido W. Imbens. The state of applied econometrics: Causality and policy evaluation. *Journal of Economic Perspectives*, 31(2):3–32, 2017. doi: 10.1257/jep.31.2.3. URL https://www.aeaweb.org/articles?id=10.1257/jep.31.2.3.
- Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal architects: Harnessing large language models for advanced causal discovery from data. *arXiv* preprint arXiv:2306.16902, 2023.
- Yuefei Chen, Vivek K. Singh, Jing Ma, and Ruxiang Tang. Counterbench: A benchmark for counterfactuals reasoning in large language models, 2025. URL https://arxiv.org/abs/2502.11008.
- Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation model post-training, 2025. URL https://arxiv.org/abs/2501.17161.
- Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.
- Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. *Advances in neural information processing systems*, 35: 16344–16359, 2022.
- Kai Epstude and Neal J. Roese. The functional theory of counterfactual thinking. *Personality and Social Psychology Review*, 12(2):168–192, 2008. doi: 10.1177/1088868308316091.
- C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax – a differentiable physics engine for large scale rigid body simulation, 2021. URL https://arxiv.org/abs/2106.13281.
- Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL https://arxiv.org/abs/2503.01307.
- Tobias Gerstenberg. What would have happened? counterfactuals, hypotheticals and causal judgements. *Philosophical Transactions of the Royal Society B*, 377(1866):20210339, 2022.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam Sahni, Haowen Ning, Yanning Chen, and Zhipeng Wang. Liger-kernel: Efficient triton kernels for LLM training. In *Championing Open-source DEvelopment in ML Workshop @ ICML25*, 2025. URL https://openreview.net/forum?id=36SjAIT42G.

- Yinya Huang, Ruixin Hong, Hongming Zhang, Wei Shao, Zhicheng Yang, Dong Yu, Changshui Zhang, Xiaodan Liang, and Linqi Song. Clomo: Counterfactual logical modification with large language models, 2024. URL https://arxiv.org/abs/2311.17438.
- Alihan Huyuk, Xinnuo Xu, Jacqueline Maasch, Aditya V. Nori, and Javier GonzÃalez. Reasoning elicitation in language models via counterfactual feedback, 2025. URL https://arxiv.org/abs/2410.03767.
- Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab, and Bernhard Schölkopf. Can large language models infer causation from correlation? *arXiv* preprint arXiv:2306.05836, 2023.
- Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard SchÄűlkopf. Cladder: Assessing causal reasoning in language models, 2024. URL https://arxiv.org/abs/2312.04350.
- Nitish Joshi and He He. An investigation of the (in)effectiveness of counterfactually augmented data, 2022. URL https://arxiv.org/abs/2107.00753.
- Divyansh Kaushik, Eduard Hovy, and Zachary C. Lipton. Learning the difference that makes a difference with counterfactually-augmented data, 2020. URL https://arxiv.org/abs/1909.12434.
- Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language models: Opening a new frontier for causality. *arXiv preprint arXiv:2305.00050*, 2023.
- Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and diversity, 2024. URL https://arxiv.org/abs/2310.06452.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*, pp. 611–626, 2023.
- Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015. doi: 10.1126/science.aab3050. URL https://doi.org/10.1126/science.aab3050.
- Yang Li, Youssef Emad, Karthik Padthe, Jack Lanchantin, Weizhe Yuan, Thao Nguyen, Jason Weston, Shang-Wen Li, Dong Wang, Ilia Kulikov, et al. Naturalthoughts: Selecting and distilling reasoning traces for general reasoning tasks. *arXiv preprint arXiv:2507.01921*, 2025.
- Yongqi Li, Mayi Xu, Xin Miao, Shen Zhou, and Tieyun Qian. Prompting large language models for counterfactual generation: An empirical study, 2024. URL https://arxiv.org/abs/2305.14791.
- Stephanie Long, Alexandre Piché, Valentina Zantedeschi, Tibor Schuster, and Alexandre Drouin. Causal discovery with language models as imperfect experts. In *ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling*, 2023.
- Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retrosearch: Exploring untaken paths for deeper and efficient reasoning, 2025. URL https://arxiv.org/abs/2504.04383.
- Renjie Luo, Jiaxi Li, Chen Huang, and Wei Lu. Through the valley: Path to effective long cot training for small language models. *arXiv preprint arXiv:2506.07712*, 2025.
- Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. Generate your counterfactuals: Towards controlled counterfactual generation for text, 2021. URL https://arxiv.org/abs/2012.04698.

- Van Bach Nguyen, Paul Youssef, Christin Seifert, and JÃűrg SchlÃűtterer. Llms for generating and evaluating counterfactuals: A comprehensive study, 2024. URL https://arxiv.org/abs/2405.00722.
- Bhargavi Paranjape, Matthew Lamm, and Ian Tenney. Retrieval-guided counterfactual generation for QA. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1670–1686, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.117. URL https://aclanthology.org/2022.acl-long.117/.
- Judea Pearl. Reasoning with cause and effect. AI Magazine, 23(1):95, Mar. 2002a. doi: 10.1609/aimag.v23i1.1612. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1612.
- Judea Pearl. Reasoning with cause and effect. *AI Magazine*, 23(1):95–111, 2002b. doi: 10.1609/aimag.v23i1.1612. URL https://doi.org/10.1609/aimag.v23i1.1612.
- Judea Pearl. Causality. Cambridge university press, 2009.
- Jason Poulos and Shuxi Zeng. RNN-based counterfactual prediction, with an application to homestead policy and public schooling. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 70(4):1124–1139, August 2021. doi: 10.1111/rssc.12511. URL https://doi.org/10.1111/rssc.12511.
- Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin Choi. Counterfactual story reasoning and generation. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 5043–5053, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1509. URL https://aclanthology.org/D19-1509/.
- Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '20, pp. 3505âĂŞ3506, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https://doi.org/10.1145/3394486.3406703.
- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Behavioral testing of nlp models with checklist, 2020. URL https://arxiv.org/abs/2005.04118.
- Jonathan G. Richens, Ciarán M. Lee, and Saurabh Johri. Improving the accuracy of medical diagnosis with causal machine learning. *Nature Communications*, 11:3923, 2020. doi: 10.1038/s41467-020-17419-7. URL https://www.nature.com/articles/s41467-020-17419-7.
- Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the IEEE*, 109(5):612–634, 2021. doi: 10.1109/JPROC.2021.3058954.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.
- Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv* preprint *arXiv*: 2409.19256, 2024.
- Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional, and transformative generalization. *arXiv preprint arXiv:2506.18880*, 2025.
- Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https://qwenlm.github.io/blog/qwq-32b/.

- Aniket Vashishtha, Kabir Ahuja, and Sunayana Sitaram. On evaluating and mitigating gender biases in multilingual settings, 2023. URL https://arxiv.org/abs/2307.01503.
- Aniket Vashishtha, Abhinav Kumar, Atharva Pandey, Abbavaram Gowtham Reddy, Kabir Ahuja, Vineeth N Balasubramanian, and Amit Sharma. Teaching transformers causal reasoning through axiomatic training, 2025a. URL https://arxiv.org/abs/2407.07612.
- Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N Balasubramanian, and Amit Sharma. Causal order: The key to leveraging imperfect experts in causal inference, 2025b. URL https://arxiv.org/abs/2310.15117.
- Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, and Yue Zhang. Abduct, act, predict: Scaffolding causal inference for automated failure attribution in multi-agent systems, 2025. URL https://arxiv.org/abs/2509.10401.
- Moritz Willig, Matej Zečević, Devendra Singh Dhami, and Kristian Kersting. Probing for correlations of causal facts: Large language models and causality, 2023. URL https://openreview.net/forum?id=UPwzqPOs4-.
- Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. Polyjuice: Generating counterfactuals for explaining, evaluating, and improving models. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 6707–6723, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.523. URL https://aclanthology.org/2021.acl-long.523/.
- Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu, Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning perspective with reward rectification, 2025. URL https://arxiv.org/abs/2508.05629.
- Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim, Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of language models through counterfactual tasks. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 1819–1862, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10. 18653/v1/2024.naacl-long.102. URL https://aclanthology.org/2024.naacl-long.102/.
- Khurram Yamin, Gaurav Ghosal, and Bryan Wilder. Llms struggle to perform counterfactual reasoning with parametric knowledge, 2025. URL https://arxiv.org/abs/2506.15732.
- Shuai Yang, Qi Yang, Luoxi Tang, Jeremy Blackburn, and Zhaohan Xi. On the eligibility of llms for counterfactual reasoning: A decompositional study, 2025. URL https://arxiv.org/abs/2505.11839.
- Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1, grade-school math and the hidden reasoning process, 2024. URL https://arxiv.org/abs/2407.20311.
- Xi Ye, Rohan Nair, and Greg Durrett. Connecting attributions and QA model behavior on realistic counterfactuals. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 5496–5512, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.447. URL https://aclanthology.org/2021.emnlp-main.447/.
- Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: Less is more for reasoning. In *Second Conference on Language Modeling*, 2025. URL https://openreview.net/forum?id=T2TZ0RY4Zk.
- Wenhao Yu, Meng Jiang, Peter Clark, and Ashish Sabharwal. Ifqa: A dataset for open-domain question answering under counterfactual presuppositions, 2023. URL https://arxiv.org/abs/2305.14010.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in coreference resolution: Evaluation and debiasing methods. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 15–20, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2003. URL https://aclanthology.org/N18-2003/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Unified efficient fine-tuning of 100+ language models. In Yixin Cao, Yang Feng, and Deyi Xiong (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pp. 400–410, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-demos.38. URL https://aclanthology.org/2024.acl-demos.38/.

Yu Zhou, Xingyu Wu, Beicheng Huang, Jibin Wu, Liang Feng, and Kay Chen Tan. Causalbench: A comprehensive benchmark for causal learning capability of llms, 2024. URL https://arxiv.org/abs/2404.06349.

A Causal Ladder: Levels of Causal Reasoning

The seminal work of Pearl (2009) breaks down causal reasoning in three progressively more advanced levels: *Associational* (level 1), *Interventional* (level 2), and *Counterfactual* (level 3):

- Associational level concerns observational learning and forms causal hypothesis solely through observations, often interpreted as pattern matching. This mirrors how most machine learning models learn from input features and corresponding labels. This form of learning suffers from potential confounding and selection bias as one cannot perform interventions to identify the underlying causal structure.
- Interventional learning (level 2) requires learning through interventions, mirroring how humans typically learn by taking actions and observing the outcomes. While this type of learning might appear to be causal, due to the overall noise in the system which might be changing, identifying whether the observed outcome was solely due to the action performed becomes challenging.
- Counterfactual reasoning (level 3) is the highest form of causal reasoning on the causal ladder. It helps in disentangling the effect of other factors in the system, to identify the outcome had the original action been different. However this requires stronger, unit-level structural assumptions, many counterfactuals are not identifiable from data without modeling and this form of reasoning is typically sensitive to model misspecification and "cross-world" assumptions.

Level	Concept	Expression	Activity	Question	Example
I	Association / Correlation	$P(y \mid x)$	Seeing / Observing	How does seeing x change my belief in y?	Would the grass be dry if we found the sprinkler off?
II	Intervention / Hypotheticals	$P(y \mid do(x))$	Doing	Would y happen if I did x?	Would the grass be dry if we made sure that the sprinkler was off?
III	Counterfactuals	$P(y_x \mid x', y')$	Imagining	Would y have happened instead of y' , if I had done x instead of x' ? / What would have happened if I had done x , given that doing x' led to y' ?	Would the grass have been dry if the sprinkler had been off, given that the grass is wet and the sprinkler on?

Table 3: Definition of the causal ladder proposed by Pearl (Pearl, 2009), where $\{x, x'\}$ denote candidate causes, $\{y, y'\}$ denote candidate effects, and P denotes the probability of an event. Notably, Interventions and Hypotheticals are different names of the same reasoning paradigm, which only thinks about changes that lie in the **future** (Gerstenberg, 2022). Counterfactuals differs from them by thinking about changes that lie in the observed outcome or **past**.

B Counterfactual VS Interventional: Examples of GSM-based Tasks

Setting	GSM Problem	Answer		
Counterfactual	Ravi is organizing an office lunch. Every catering tray is priced at \$68. There is also a per-catering tray service fee. A discount of 14% is applied to the items subtotal (before any fees). For 6 catering trays, the total shown is \$353.88. If instead 11 catering trays were ordered, with all else unchanged, what amount would be shown?			
Interventional	Ravi is organizing an office lunch. Every catering tray is priced at \$68. There is also a per-catering tray service fee of \$0.50. A discount of 14% is applied to the items subtotal (before any fees). For 6 catering trays, the total shown is \$353.88. If instead 11 catering trays were ordered, with all else unchanged, what amount would be shown?	\$648.78		

Table 4: Two GSM-style instances derived via the dependency-graph approach inspired by Ye et al. (2024). The first row is a *counterfactual* with a hidden latent variable (highlighted) that must be inferred; the second row is the corresponding *interventional* instance with the fee (hidden latent variable) revealed.

C Counterfactual VS Interventional: Performance on GSM-based Tasks

Model	GSM-Interventional	GSM-Counterfactual
Qwen2.5-1.5B-Instruct	18.4	9.0
Qwen2.5-3B-Instruct	40.3	22.0
Qwen2.5-7B-Instruct	60.4	39.0
Qwen2.5-32B-Instruct	88.5	73.1
Qwen2.5-72B-Instruct	79.7	73.1
Llama-3.3-70B-Instruct	95.1	82.2
GPT-4o	93.1	68.6
DeepSeek-R1-Distill-Qwen-32B	75.3	60.7

Table 5: Performance comparison on GSM-based counterfactual and interventional tasks for various models, where the latter is still consistently and significantly higher than the former, echoing prior observation in Figure 3 for code-based tasks.

D When Counterfactuals and Interventionals Conflate

Wu et al. (2024) analyze GPT-4 under altered premises; since their tasks contain no latent variables, intervention and counterfactual queries coincide, so the reported failures does not probe abductive backtracking effectively. For example one of their evaluated tasks in arithmetic, switching the base from 10 to 9 is simply do(base = 9): $27_{10} + 62_{10} = 89_{10}$ but $27_9 + 62_9 = (100)_9$; no latent state needs to be inferred. Consequently, these setups don't diagnose whether a model can perform abduction. Using Fig. 1 as an comparison, the base is x and there is no r in this example. Similar approaches are also adopted in previous works (Li et al., 2024; Nguyen et al., 2024; Paranjape et al., 2022; Wu et al., 2021; Madaan et al., 2021; Ye et al., 2021; Joshi & He, 2022; Vashishtha et al., 2023). Most of these works use counterfactuals for robustness, debiasing and other purposes. They operate in fully observed settings without latent variability, where the query effectively reduces to an intervention. In contrast, our evaluation targets cases that require abduction, testing whether LLMs can execute the full Abduction-Action-Prediction rollout.

E Additional Related Work

Causality and LLMs. Recently a lot of work has focused on how effectively LLMs can be used as domain priors for discovering causal relationship between different real world entities (Kıcıman et al.,

2023; Ban et al., 2023; Long et al., 2023; Willig et al., 2023; Vashishtha et al., 2025b). Furthermore, some efforts have also focused on improving LLM's causal reasoning via training on synthetic data (Vashishtha et al., 2025a), or by testing different Chain-of-Thought (CoT) based methods (Jin et al., 2024). Works like Jin et al. (2023, 2024) underline the current limitations of language models' causal reasoning in synthetic and formal settings across different types of reasoning including counterfactual reasoning.

Using Counterfactuals for NLP tasks: Past work has also been focusing on improving robustness in NLP tasks such as debiasing for gender based associations (Wu et al., 2024; Paranjape et al., 2022; Wu et al., 2021; Madaan et al., 2021; Ye et al., 2021; Joshi & He, 2022; Vashishtha et al., 2023), story generation (Qin et al., 2019), fictional complex reasoning (Ahuja et al., 2025), and improving efficiency of reasoning trace (Lu et al., 2025). Recent work uses *abduction-action-prediction* based promnpting strategy for accurate failure attribution in multi-agent systems for tasks like debugging, showing promising improvement (West et al., 2025). These works have used counterfactuals as a way to improve robustness in language models, and test reasoning abilities, while following a simplified interpretation of counterfactual reasoning (Pearl, 2002b).

RL vs SFT: Past studies have explored how the training paradigms of SFT and RL based training differ, which guide our training design setup. Kirk et al. (2024) shows how Reinforcement Learning from Human Feedback (RLHF), generalizes better then SFT under distribution shift from train set, however results in lack of diversity. Chu et al. (2025) showed how RL trained on outcome based reward generalizes better across both text and visual tasks, while SFT memorizes the task leading to lack of generalization. However the work emphasises the importance of SFT before RL for effective training. Wu et al. (2025) shows how standard SFT's lack of generalization is due to gradients encoding problematic reward leading to lack of generalization.

We take inspiration from cognitive science literature (Gerstenberg, 2022) to design our program-based analysis in order to evaluate the core cognitive skills required for counterfactual inference. To build math-based generalization tests we build upon the framework of Ye et al. (2024) to generate counterfactual variant of grade school level math problems following a dependency graph based approach. Past work uses programs as world models and simulations, including concept learning from programs (Lake et al., 2015) and code driven or physics based simulators (Cobbe et al., 2020; Freeman et al., 2021) showing the potential of graph for this, which we leverage for our work.

F Meta Templates: Structural Placeholder Description

Placeholder	What it controls	Code/line type inserted
{function_name}	Name of the generated function.	Identifier used in def header (snake_case).
{min_r}, {max_r}	Bounds for the random draw r .	Integer literals or simple expressions inside random.randint(a,b).
{preprocessing_block}	Optional setup before branching.	One or more Python statements (e.g., assignments, helper calls).
{condition_type}	The top-level if condition.	Boolean expression (comparisons, logical ops).
{if_branch_content}	Body when if is true.	Indented suite: one or more Python statements.
{elif_block}	Optional middle branch.	Either empty, or elif <boolean expr="">: + indented suite.</boolean>
{else_branch_content}	Body when previous conditions are false.	Indented suite: one or more Python statements.
{return_expression}	Value the function returns.	Expression used in return (identifier, arithmetic expr, tuple, etc.).

Table 6: Placeholders, roles, and expected code/line types for the if—else meta-template.

G Deduplication and Verification of Code Functions

We validate each function by executing it on a small, randomly generated verification set to ensure it runs without errors. We also parse the code into Python's Abstract Syntax Tree (AST) to confirm that it compiles without syntax errors. For computing the similarity we convert each generated function into a *structural fingerprint* by counting key elements (if-statements, assignments, operators) and analyzing the overall code pattern. To analyze patterns, it walks through the code structure and identifies sequences like "preprocessing \rightarrow condition check \rightarrow branch calculations \rightarrow return result". It then compares these fingerprints numerically: if two functions have similar counts of each element type and follow the same logical flow pattern, they get a high similarity score $s \in [0,1]$. Functions with identical structure and execution sequence get a score of s=1.0, while completely different functions score near s=0. Based on manual analysis, we set the threshold at 0.8. This helps identify when the generation process is creating duplicate or overly similar functions that should be filtered out to maintain training data diversity.

H Counterfactual Reasoning Prompts for Code Functions

H.1 While

You are a language model that reasons about code without using any external execution environment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide step-by-step reasoning, and answer the counterfactual question.

Python function:

```
def generated_func_997660_100(x, r):
    primary_sum = 0
    secondary_sum = 0
    counter = 0

while counter < x:
    primary_sum += r + counter
    secondary_sum += counter * 2

if primary_sum > secondary_sum:
    primary_sum -= 5

    counter += 1

return (primary_sum + secondary_sum) // 5
```

Observed call:

When this function was called with input x = 10, it produced the output y = 36.

Counterfactual query:

If instead of x = 10, we had called this function with a different input value of x = 8 while keeping everything else unchanged, what could the output y have been? Let's think step by step to get the answer.

Required answer format:

\boxed{ans1, ans2, ans3}

Table 7: Counterfactual prompt example for While dataset.

H.2 Multi_r

You are a language model that reasons about code without using any external execution environment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide step-by-step reasoning, and answer the counterfactual question.

Python function:

```
import random
def generated_func_1136(x, r1, r2, r3):
    prep = x * (r2 + r3)
    if x == r1:
        result = x * r3
        for i in range(2):
            pass
        result = result = x + r2
    else:
        result = x - r2
        for j in range(6):
            pass
        result = result = x + r1

result = result * (r1 + r2 * r3)
    return result
```

Observed call:

When this function was called with input x = 16, it produced the output y = 3640.

Counterfactual query:

If instead of x = 16, we had called this function with a different input value of x = 18 while keeping everything else unchanged, what could the output y have been? Let's think step by step to get the answer.

Required answer format:

\boxed{ans1, ans2, ans3}

Table 8: Counterfactual prompt example for *Multi_r* dataset

H.3 If_else-long

You are a language model that reasons about code without using any external execution environment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide step-by-step reasoning, and answer the counterfactual question.

Python function:

```
def generated_func_1194(x, r):
   alt4 = 10
   final2 = 1
   final3 = 0
   final4 = 4
    temp1 = 3
   temp2 = 3
   temp3 = 2
   r = abs(r)
    if r > 9:
        temp1 = (x \%
        if (r %
            if temp1 < 5:
                if (temp3 * x) < r:
                    final4 = (temp3 * x) + 2
                    result = final4 + x
                else:
                    alt4 = x - temp3
                    result = alt4 + r
            else:
                final3 = temp2 + r
                result = final3 - x
        else:
            final2 = (temp1 ** 5) * r
            result = final2 * r
    else:
        else_val = (r ** 4) * x
        result = else_val + r
    return result %
```

Observed call:

When this function was called with input x = 18, it produced the output y = 4.

Counterfactual query:

If instead of x=18, we had called this function with a different input value of x=20 while keeping everything else unchanged, what could the output y have been? Let's think step by step to get the answer.

Required answer format:

\boxed{ans1, ans2, ans3}

Table 9: Counterfactual prompt example for If_else-long dataset.

I Interventional Reasoning Prompts for Code Functions

You are a language model that reasons about code without using any external execution environment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide step-by-step reasoning, and answer the **interventional** question.

Python function:

```
def generated_func_1273(x, r1, r2, r3):
    prep = x + (r2 - r3)

if x != r1:
        result = x + r2
        for i in range(6):
            pass
        result = result = x * r1

else:
        result = x + r3
        for j in range(2):
            pass
        result = result = x + r3

result = result = x + r3

result = result + (r1 - r2 - r3)
return result
```

Observed call:

When this function was called with inputs x = 18, $r_1 = 20$, $r_2 = 5$, and $r_3 = 17$, it produced the output y = 358.

Interventional query:

If instead of x=18, we had called this function with x=20 while keeping $r_1=20$, $r_2=5$, and $r_3=17$ unchanged, what could the output y have been? Let's think step by step to get the answer.

Required answer format: \boxed{ans1, ans2, ans3}

Table 10: Interventional prompt example for *Multi_r* dataset. We omit the interventional examples of the remaining three code-based datasets, as their prompt templates are mostly similar to this one, and the examples of python functions are already displayed in Appendix H

Prompt Template for LLM-as-a-judge Analysis

You are presented with a counterfactual reasoning question about a code function, along with a sample solution. Your task is to carefully analyze this solution and rate how it performs in terms of planning and execution, on a scale from 1 to 5.

Criteria for rating planning:

- 5 The solution adopts a perfect plan for all such counterfactual questions with two stages: (1) Backward Reasoning with Original Data: determine the value(s) of the unknown variable r by setting up a mathematical equation based on the arithmetic operations performed on r and the original input x within the code path that produced the original output y. (2) Forward Reasoning with Counterfactual Data: use the value(s) of r found in the previous step to determine the new output(s) based on the counterfactual input.
- 3 The solution shows awareness of first finding values of r from the original x and y, and then computing the new outputs using the same r, but it does not follow this Backward-then-Forward plan faithfully or decisively. For instance, it hesitates about solvability without an explicit r, or resorts to brute-force enumeration without persisting in the desired plan.
- 1 The solution does not align with the Backward-then-Forward plan at all (e.g., starts with brute-force enumeration of r without using the given x, y to determine r smartly).

Criteria for rating execution:

Score execution based on whether the solution follows the code-simulation paths and performs step-by-step numerical computations faithfully and correctly. More simulation/computation $mistakes \rightarrow lower\ execution\ score.$

Ouestion:

{prompt}

Ground Truth Answers:

{ground_truth}

Solution:

{response}

Required response format (JSON):

```
1
       "planning": [1|2|3|4|5],
2
       "planning_explanation": "first briefly describe the planning or
3
       strategy this solution adopts, and then explain why you gave this
      planning score",
      "execution": [1|2|3|4|5],
4
      "execution_explanation": "brief explanation of why you gave this
5
       execution score"
```

Table 11: The prompt template for LLM-as-a-judge analyses in §5, with detailed evaluation rubrics for both planning and execution scores.

Training and Evaluation Details

K.1 SFT Training Setups

Reasoning Trace Generation. Our training dataset is built upon 5500 code-based counterfactual reasoning prompts that only involve if else logic. We leverage DeepSeek-Distilled-Owen-32B-Instruct Guo et al. (2025) to annotate the reasoning traces for these prompts through rejection sampling Li et al. (2025). Specifically, for each prompt, we sample multiple responses until the model reaches the correct final answer or a budget of N=8 is reached. The resulting training set achieves a final F1 score of 95.9 and exact match score of 88.9, ensuring the correctness of SFT training signals. **Training Configurations.** Throughout this work, we follow prior practice (Ye et al., 2025) by performing full-parameter SFT training using the LlamaFactory framework (Zheng et al., 2024). All the SFT experiments are carried out using four NVIDIA H100 GPUs, with DeepSpeed Zero-3 (Rasley et al., 2020), FlashAttention-V2 (Dao et al., 2022), and Liger Kernel (Hsu et al., 2025) enabled to improve time and memory efficiency. The key training hyperparameters are shown below:

```
--cutoff_len 16384
--num_train_epochs 2
--bf16 True
--optim adamw_torch
--lr_scheduler_type cosine
--learning_rate 5e-05
--warmup_ratio 0.05
--weight_decay 0.0
--per_device_train_batch_size 1
--gradient_accumulation_steps 4
--seed 42
```

K.2 RL Training Setups

Throughout this work, we follow prior practice (Luo et al., 2025; Sun et al., 2025) by performing full-parameter RLVR training with the verl (Sheng et al., 2024) framework. We use four NVIDIA H100 GPUs for training 1.5B and 3B models, and eight H100 GPUs for 7B models. We adopt an effective prompt batch size of 16, a rollout batch size of 24, a prompt length limit of 512, a response length limit of 2000, a sampling temperature of 1.0, a coefficient of 10^{-3} for low-variance KL auxiliary loss, and a total of 1500 training steps. The reward is the simple exact match score.

K.3 Evaluation Setups

Dataset Statistics. The in-distribution (ID) *If_else* evaluation dataset contains 500 examples, while the three out-of-distribution (OOD) evaluation datasets, *If_else-long*, *Multi_r* and *While*, contain 480, 575 and 480 examples respectively.

Evaluation Protocol. Throughout this work, we use the vLLM framework (Kwon et al., 2023) for efficient evaluation. Specifically, we follow prior practice (Luo et al., 2025; Guo et al., 2025) by using sampling with a temperature of 0.6, a top-p of 0.95, and a maximum of 16000 generated tokens to generate k=3 responses per question. For each evaluation dataset, we report the average accuracy over k responses (i.e., avg@k) to reduce the variance in performance statistics.