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Abstract

Recent advances in diffusion models have enabled the gen-001
eration of synthetic images nearly indistinguishable from002
real ones, making them attractive for dataset construction.003
However, synthetic images often contain features that dif-004
fer from those of real images, which can hinder the training005
of Vision-Language Models (VLMs). In this paper, we pro-006
pose a method to construct synthetic image datasets that007
enable more effective VLMs training. The proposed method008
reduces the gap between real and synthetic images by opti-009
mizing the initial noise in diffusion models. Our approach010
enhances the alignment between text conditions and gener-011
ated images within the embedding spaces of multiple mod-012
els, in a plug-and-play manner. This approach also re-013
duces characteristic discrepancies from real images, lead-014
ing to higher-quality synthetic image data and ultimately015
improving VLM training. Using the CC3M dataset as a016
baseline, we generate synthetic datasets conditioned on the017
same captions. Experiments show that CLIP models trained018
on our datasets achieve 23.69% Ave. R@1 in zero-shot019
retrieval and 17.97% in zero-shot classification accuracy020
on ImageNet-1K, outperforming models trained on naı̈vely021
generated data. Furthermore, our method demonstrates022
strong scalability and sample efficiency—achieving even023
better performance with up to 40% fewer synthetic images.024

025

1. Introduction026

The growing reliance on large-scale image-text datasets has027
been a driving force in recent advances in VLMs. How-028
ever, constructing such datasets with real images is costly029
and often limited in coverage. Synthetic image offers030
an attractive alternative due to its scalability, controllabil-031
ity, and cost-effectiveness. In particular, diffusion models032
can produce high-quality images by inputing texts, making033
them a promising approach for augmenting and construct-034
ing datasets to learn image-text correspondences.035

However, synthetic images are less effective than real036
images for training VLMs. One reason is that not all syn-037

Figure 1. Synthetic image datasets created by our plug-and-play
method facilitate more effective training than those created by the
original model-based datasets.

thetic images exhibit features equivalent to those of real im- 038
ages. For example, Xu et al. demonstrated that variations in 039
initial noise can lead to images with characteristics that de- 040
viate from real ones [30]. These findings suggest that some 041
synthetic images may involve both visual and semantic dis- 042
crepancies compared to real images, potentially impeding 043
model training. 044

To address this issue, we propose a method to con- 045
struct synthetic image datasets that enable more effective 046
VLMs training. Our approach leverages multiple pre- 047
trained embedding models to find an optimal initial noise 048
that maximizes the text-image similarity without modify- 049
ing the weights of the diffusion model. This optimization 050
is plug-and-play and does not require additional training of 051
the generative or embedding models. The proposed method 052
not only enhances the consistency between the text and the 053
synthetic image, but also reduces the gap between the syn- 054
thetic and real images to a degree that is recognizable by the 055
embedding models. 056

We evaluated the effectiveness of our method by compar- 057
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ing CLIP models [23] trained on our synthetic datasets with058
those trained on baseline Latent Diffusion Model (LDM)059
[24]-based datasets. Our method achieved the highest zero-060
shot retrieval and classification performance, and showed061
strong scalability—as illustrated in Figure 1—achieving062
better results with up to 40% fewer synthetic images as il-063
lustrated in Figure1. Additionally, FID and cosine similarity064
evaluations indicate that our images are closer to real im-065
ages and more semantically aligned with text. These results066
confirm that our method narrows the gap between real and067
synthetic images, providing more effective training data.068

In summary, the main contributions of this study are as069
follows:070
Key findings. Optimizing the initial noise in diffusion mod-071
els significantly improves VLM training with synthetic im-072
ages, reducing dataset construction costs while enhancing073
alignment with real-world characteristics.074
Technical contributions. We introduce a plug-and-play075
method to optimize initial noise across various embedding076
models without tuning diffusion model, enabling flexible077
and broadly applicable synthetic image generation.078
Experimental contribution. Our method achieves the079
highest zero-shot performance across multiple benchmarks080
and improves scalability. It requires up to 40% fewer sam-081
ples than conventional approaches.082

2. Related Work083

2.1. Synthetic Image for Model Training084

Diffusion models, originally proposed by Ho et al. [13],085
generate images by iteratively denoising Gaussian noise086
in pixel space. Among them, LDM [24] is widely uti-087
lized. LDM operates in the latent space of VQ-VAE [28],088
where Gaussian noise is iteratively denoised before being089
decoded into an image by the VQ-VAE decoder. Compared090
to conventional generative models [8, 17], LDM enables091
high-quality text-conditioned image generation, making it a092
promising tool for applications, ranging from data augmen-093
tation [16, 27, 32] to the generation of training images for094
downstream tasks such as image classification [11, 12, 26].095

Recently, increasing attention has been given to training096
VLMs using synthetic images. For example, StableRep [26]097
introduces a framework that extends the InfoNCE loss [21].098
This method accommodates multiple positive pairs by treat-099
ing images generated by Stable Diffusion [24] as pseudo-100
positive pairs, thereby enhancing zero-shot performance of101
the CLIP model. Similarly, SynthCLIP [10] employs large102
language models (LLMs) to generate textual descriptions103
from a predefined concept bank, then it is used as input for104
Stable Diffusion. This approach enables the CLIP model105
training without relying on real images and real text.106

However, prior studies assume that synthetic images are107
both text-aligned and realistic. In practice, naı̈ve diffusion108

models frequently generate visually or semantically incon- 109
sistent images [1, 30], which limits their effectiveness for 110
training. In this work, we challenge the implicit assump- 111
tion underlying the use of synthetic images for training, 112
and demonstrate that effective training of VLMs can be 113
achieved via ”Diffusion Noise Optimization”. 114

2.2. Latent Optimization of Diffusion Model 115

Diffusion models sometimes produce misaligned images. 116
Recent studies have identified initial noise as a critical fac- 117
tor influencing the quality of synthetic images [22, 30], 118
leading to various approaches for optimizing initial noise. 119

Eyring et al. [4] proposed a method that leverages multi- 120
ple reward models reflecting human preferences to evaluate 121
and optimizes synthetic images. Guo et al. [9] introduced 122
an approach that assesses whether a given initial noise can 123
generate high-quality images via self-attention and cross- 124
attention maps extracted from the diffusion process. Qi 125
et al. [22] also proposed a diffusion model inversion-based 126
approach that maps an image back to its initial noise. They 127
found that a higher similarity between the initial noise and 128
the noise obtained after inversion leads to better results, 129
leading to an optimization strategy that maximizes this sim- 130
ilarity. However, prior work mainly focuses on human- 131
perceived quality rather than training effectiveness. In con- 132
trast, we optimize the initial noise to maximize text-image 133
similarity across multiple embeddings, reducing the gap to 134
real images and improving VLM training. This focus makes 135
our approach fundamentally different from prior methods. 136

Figure 2. Overview of the proposed method. The initial noise is
optimized using multiple embedding models.

3. Method 137

As shown in Figure 2, we propose a method to construct a 138
dataset using synthetic images aligned with the input text 139
while reducing the gap to real images. This is achieved by 140
optimizing the initial noise in a pre-trained LDM with fixed 141
weights. Specifically, the initial noise is treated as a learn- 142
able parameter and optimized through a denoising process 143
to maximize the cosine similarity between the input text and 144
the generated image. The proposed method not only adjusts 145
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Figure 3. The results of zero-shot retrieval, where we report the
average R@1 across several evaluation datasets. The x-axis in-
dicates the proportion of real (CC3M) to synthetic images in the
training data.

the alignment between text and images but also reduces the146
gap between real and generated images. This is because im-147
ages tuned through noise optimization acquire distinguish-148
able features that can be effectively evaluated by embedding149
models trained on real images.150

However, embedding models such as CLIP sometimes151
focus on specific words within the text while failing to cap-152
ture the overall semantic meaning [29]. To mitigate this153
issue, we perform optimization across multiple embedding154
models trained on different datasets. Our method oper-155
ates in a plug-and-play manner, requiring no retraining of156
the LDM or embedding models. Furthermore, since our157
method is based on optimization, it eliminates the need to158
predefine similarity thresholds, which was required in con-159
ventional dataset construction approaches [6].160

3.1. Initial Noise Optimization161

Given a pair of initial noise drawn from N (0, I) and a cor-162
responding text (zT

i , si), the image generation process us-163
ing an LDM with an arbitrary method R during the denois-164
ing process can be expressed as follows:165

z0
i = R(zT

i , si)166

= (R1(·, si) ◦R2(·, si) ◦ · · · ◦RT (·, si))(zT
i )167

xi = D(z0
i ) (1)168

where Rt denotes the denoising step at time t under the169
sampling method R, D denotes the VQ-VAE decoder, and170
xi is the synthetic image. Consequently, treating zT

i as171
a learnable parameter, the optimal initial noise can be ob-172
tained by solving the following optimization problem:173

z∗
i = argmin

zT
i

{1− 1

N

N∑
j=1

simj(D(R(zT
i , si)), si)} (2)174

Figure 4. The results of zero-shot classification in ImageNet-1K.
The x-axis indicates the proportion of real (CC3M) to synthetic
images in the training data.

where sim(·) denotes the cosine similarity. By re-inputting 175
the optimized z∗

i and the corresponding text si into the 176
LDM, we obtain the optimized image x∗

i . 177

4. Experiments 178

4.1. Dataset Setup 179

To evaluate the effectiveness of our method, we use 180
CC3M[25]1 as the baseline real-image dataset. Fol- 181
lowing [5], which suggests mixing real and synthetic 182
images is effective, we construct datasets with varying 183
real/synthetic ratios using our method and LDM as the base- 184
line synthetic-image dataset. We evaluate models trained 185
on these datasets through zero-shot retrieval (Flickr8K[14], 186
Flickr30K[31], MSCOCO[2]) and zero-shot classification 187
(ImageNet-1K[3]). 188

4.2. Image Generation and Pre-Training Details 189

We use a fine-tuned Stable Diffusion-v1.4 trained on 190
LAION-Aesthetics [19] to generate 256×256 images with 191
10-step DPM++ sampling [20] and a guidance scale of 7.5. 192
Our method further optimizes the initial noise for 50 steps 193
using Adam (lr=0.01). For similarity computation, we use 194
two high-performing CLIP models trained on DFN2B [6] 195
and Datacomp1B [7]. We then pre-train a CLIP model 196
with a ViT-B/16 backbone on the generated datasets for 40 197
epochs. Full training details are provided in Appendix A. 198

4.3. Results of Zero-Shot Tasks 199

We evaluate the effectiveness of our method on zero- 200
shot retrieval and classification tasks using CLIP models 201
trained on datasets containing varying proportions of real 202

1As of December 2024, only 2.2M out of the original 3M samples were
available.
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Figure 5. FID of LDM and Our method. Lower is better.

and synthetic images. For the retrieval evaluation, we203
use the average of Image Recall@1 (IR@1) and Text Re-204
call@1 (TR@1), further averaged across multiple bench-205
mark datasets. Detailed results for each dataset can be206
found in Appendix B. As shown in Figures 3 and 4, with-207
out dataset scaling, our method consistently outperforms the208
LDM-based approach in both retrieval and classification.209
For both methods, the highest performance was achieved210
when the CC3M/synthetic image ratio was 80%/20%, sur-211
passing the performance obtained using only real images.212
Specifically, our method achieved an average R@1 of213
23.69% and a Top-1 accuracy of 17.97%, while the LDM-214
based method reached 22.36% and 17.65%, respectively.215
These results indicate that our method generates synthetic216
images that are more effective for VLM training. The ab-217
lation study on multiple embedding models is provided in218
Appendix C.219

Additionally, to evaluate the scalability of our method,220
we conducted experiments in which synthetic images were221
incrementally added to the CC3M dataset. As shown in222
Figures 3 and 4, our method achieves the same or higher223
peak performance as the LDM-based approach with fewer224
synthetic samples. For example, in zero-shot retrieval, our225
method achieves 27.75% R@1 at a 100%/60% ratio, sur-226
passing the LDM’s peak of 27.58% with 40% fewer syn-227
thetic samples. In zero-shot classification, our method228
achieves 20.74% accuracy at 100%/60%, exceeding LDM’s229
best result of 20.64% with 20% fewer synthetic samples.230
These findings suggest that our method remains effective231
even when used to scale existing datasets, providing syn-232
thetic images that contribute meaningfully to VLM training.233

234

4.4. Quantitative Evaluation of Synthetic Images235

To assess how effectively our method reduces the gap be-236
tween real and synthetic images, we computed the Fréchet237
Inception Distance (FID) between CC3M real images and238

Figure 6. Histgram of cosine similarity between synthetic images
and input text.

images generated by our method and LDM, using 100K 239
randomly sampled text prompts. As shown in Figure 5, 240
our method achieved a lower FID (15.64) compared to 241
LDM (15.87), suggesting that the images generated by the 242
proposed method are closer in distribution to real images, 243
thereby narrowing the gap between synthetic and real im- 244
ages to a degree that is recognizable by the embedding mod- 245
els. We also evaluated image-text alignment by computing 246
CLIP-based cosine similarity scores across four CLIP mod- 247
els (OpenAI CLIP, LAION2B, DFN2B, DataComp1B). The 248
averaged similarity scores were visualized in Figure 6. Our 249
method consistently yielded higher frequencies of strong 250
text-image similarity compared to both real and LDM- 251
generated images, demonstrating improved semantic align- 252
ment and suggesting better suitability for VLM training. 253
Qualitative evaluation and representative examples of the 254
generated images can be found in Appendix D. 255

5. Conclusion 256

We proposed a method for constructing synthetic datasets 257
by optimizing the initial noise of a pre-trained diffusion 258
model. Leveraging multiple embedding models in a plug- 259
and-play manner, our approach improves both semantic 260
alignment and realism without additional model training. 261
Experiments show that our method enhances the effective- 262
ness of synthetic data for VLM training. A dataset with 20% 263
optimized synthetic images outperforms training on CC3M 264
and LDM-based datasets, achieving 23.69% retrieval and 265
17.97% classification accuracy. Moreover, better perfor- 266
mance is achieved with up to 40% fewer synthetic images, 267
demonstrating strong scalability. Although our method re- 268
lies on embedding models, aggregating multiple embed- 269
dings improves robustness. These results underscore the 270
potential of optimized synthetic data as a scalable and ef- 271
fective resource for VLM training. 272
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Boosting Synthetic Data for VLMs via Diffusion Noise Optimization

Supplementary Material

A. CLIP training details403

In the experiments described in Section 4.3, we trained the404
models according to Table 1. All CLIP models used in this405
study are based on the OpenCLIP implementation [15], and406
all evaluations are conducted using CLIP Benchmark [18].407

Table 1. CLIP pre-training settings.

config CLIP
epochs 40

batch size 512
optimizer AdamW

learning rate 5× 10−4

weight decay 0.5
optimizer momentum β1, β2 = 0.9, 0.98
learning rate schedule cosine decay

warmup epochs 1

B. Zero-shot Retrieval408

The detailed results of the experiments in Section 4.3 are409
shown in Table 4 and Table 5. In the case without scaling,410
both the LDM-based method and our proposed method ex-411
hibit a decline in IR@1 and TR@1 scores across all bench-412
mark datasets as the proportion of generated images in-413
creases. However, our method is more robust to perfor-414
mance degradation compared to the LDM-based approach.415
For instance, the LDM-based method shows a decrease416
of approximately 42.48%(≈ (22.36 − 12.86)/22.36) in417
Ave. R@1 from its peak performance, whereas our method418
shows a smaller drop of approximately 38.75(≈ (23.69 −419
14.51)/23.69)%.420

As shown in Table 5, when scaling up the CC3M dataset,421
the proposed method—using only 60% of the CC3M 100%422
generated images—achieves higher performance on all423
evaluation metrics except for TR@1 on Flickr30K, com-424
pared to using 100% of the CC3M and 100% of images425
generated by LDM.426

Table 2. Zero-shot retrieval results of the ablation study on the
effect of using multiple embedding models.

DataComp1B DFN2B Ave.R@1

Ours ✓ ✓ 23.69
✗ ✓ 22.33

LDM ✗ ✗ 22.36

Table 3. Zero-shot classification results of the ablation study on
the effect of using multiple embedding models.

DataComp1B DFN2B ImageNet1k

Ours ✓ ✓ 17.97
✗ ✓ 17.76

LDM ✗ ✗ 17.65

C. Effect of Using Multiple Embedding Models 427

We examine the effect of using multiple embedding mod- 428
els. For zero-shot retrieval and classification, we used the 429
same evaluation datasets and trained models using a dataset 430
composed of 80% CC3M and 20% synthetic images, which 431
yielded the best performance without dataset scaling. Re- 432
sults are shown in Tables 2 and 3. 433

As Table 2 shows, optimizing only with the DFN2B 434
CLIP model resulted in an average R@1 of 22.43%, 435
a 1.36% drop compared to using multiple models, and 436
slightly below LDM. For classification, Table 3 shows a 437
Top-1 accuracy of 17.76%, 0.2% lower than with multiple 438
models, but still outperforming LDM. 439

These results suggest that a single embedding model 440
can still yield strong performance, particularly in classifi- 441
cation. However, using multiple models consistently im- 442
proves zero-shot performance across tasks. 443

D. Qualitative evaluation of synthetic images 444

Upon a detailed examination of the synthetic images, we 445
observed several notable improvements. For instance, in 446
Figure 7(a)-(c), we found instances in which images that 447
initially failed to align with the input text were effectively 448
realigned through our optimization process. Additionally, 449
Figure 7(d) illustrates cases where, even though the original 450
image exhibited good text-image alignment, the proposed 451
method produced an image with improved visual quality. 452
However, we also encountered failure cases, such as those 453
shown in Figure 7(e)-(f), where crucial semantic informa- 454
tion from the initial noise was lost. Addressing this issue 455
could further enhance training performance. 456
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Table 4. Results of Zero-Shot Retrieval

Method Ratio of dataset construction Flickr8K Flickr30K MSCOCO Ave.
CC3M Synthetic Image IR@1 TR@1 IR@1 TR@1 IR@1 TR@1 R@1
100% ✗ 22.95 29.10 21.55 28.60 11.96 15.63 21.63

L
D

M

80% 20% 23.03 29.39 23.34 29.89 12.12 16.41 22.36
60% 40% 23.01 30.50 21.34 28.60 12.18 15.53 21.86
40% 60% 21.08 27.70 20.62 27.30 10.69 13.74 20.19
20% 80% 17.08 24.09 16.45 21.99 8.11 10.44 16.38

✗ 100% 15.37 18.50 14.33 15.19 6.74 7.00 12.86

O
ur

s

80% 20% 24.14 33.39 22.80 32.19 12.51 17.12 23.69
60% 40% 23.45 30.89 23.47 31.40 11.53 16.04 22.80
40% 60% 23.36 30.39 21.11 26.49 11.41 14.82 21.26
20% 80% 19.56 28.09 20.44 24.79 10.91 14.15 19.66

✗ 100% 17.52 19.59 16.74 17.20 7.68 8.35 14.51

Table 5. Scaling Results of Zero-Shot Retrieval

Method Ratio of dataset construction Flickr8K Flickr30K MSCOCO Ave.
CC3M Synthetic Image IR@1 TR@1 IR@1 TR@1 IR@1 TR@1 R@1
100% ✗ 22.95 29.10 21.55 28.60 11.96 15.63 21.63

L
D

M

100% 20% 24.86 33.39 24.71 31.29 13.54 17.57 24.23
100% 40% 26.60 33.79 26.53 35.40 14.35 19.38 26.01
100% 60% 27.14 35.10 26.69 36.50 14.61 19.40 26.57
100% 80% 27.91 36.30 28.72 36.70 14.89 20.26 27.46
100% 100% 27.82 36.30 27.86 37.70 15.14 20.65 27.58

O
ur

s

100% 20% 23.05 30.50 21.53 28.40 11.23 14.69 21.57
100% 40% 27.34 35.69 27.50 36.59 14.79 19.74 26.94
100% 60% 28.13 38.60 28.06 36.00 15.17 20.52 27.75
100% 80% 28.94 35.60 29.84 38.60 16.08 22.40 28.58
100% 100% 28.47 36.50 29.30 39.59 15.93 21.76 28.59
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(a) people sitting on a bench in street (b) beautiful blush pink and gray living room -
christmas decorating ideas for the home

(c) car driving on snow and ice near the arctic circle (d) a dog in the snow

(e) a compass lying on a topographic map (f) national flag above the building

Figure 7. Images generated by the proposed method. The text below each image represents the input text used to generate the image. Left:
Image generated from the initial noise. Right: Image generated from the optimized noise.
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