Boosting Synthetic Data for VLMs via Diffusion Noise Optimization
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Abstract

Recent advances in diffusion models have enabled the gen-
eration of synthetic images nearly indistinguishable from
real ones, making them attractive for dataset construction.
However, synthetic images often contain features that dif-
fer from those of real images, which can hinder the training
of Vision-Language Models (VLMs). In this paper, we pro-
pose a method to construct synthetic image datasets that
enable more effective VLMs training. The proposed method
reduces the gap between real and synthetic images by opti-
mizing the initial noise in diffusion models. Our approach
enhances the alignment between text conditions and gener-
ated images within the embedding spaces of multiple mod-
els, in a plug-and-play manner. This approach also re-
duces characteristic discrepancies from real images, lead-
ing to higher-quality synthetic image data and ultimately
improving VLM training. Using the CC3M dataset as a
baseline, we generate synthetic datasets conditioned on the
same captions. Experiments show that CLIP models trained
on our datasets achieve 23.69% Ave. R@] in zero-shot
retrieval and 17.97% in zero-shot classification accuracy
on ImageNet-1K, outperforming models trained on naively
generated data. Furthermore, our method demonstrates
strong scalability and sample efficiency—achieving even
better performance with up to 40% fewer synthetic images.

1. Introduction

The growing reliance on large-scale image-text datasets has
been a driving force in recent advances in VLMs. How-
ever, constructing such datasets with real images is costly
and often limited in coverage. Synthetic image offers
an attractive alternative due to its scalability, controllabil-
ity, and cost-effectiveness. In particular, diffusion models
can produce high-quality images by inputing texts, making
them a promising approach for augmenting and construct-
ing datasets to learn image-text correspondences.

However, synthetic images are less effective than real
images for training VLMs. One reason is that not all syn-
thetic images exhibit features equivalent to those of real im-
ages. For example, Xu et al. demonstrated that variations in
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Figure 1. Synthetic image datasets created by our plug-and-play
method facilitate more effective training than those created by the
original model-based datasets.

initial noise can lead to images with characteristics that de-
viate from real ones [30]. These findings suggest that some
synthetic images may involve both visual and semantic dis-
crepancies compared to real images, potentially impeding
model training.

To address this issue, we propose a method to con-
struct synthetic image datasets that enable more effective
VLMs training. Our approach leverages multiple pre-
trained embedding models to find an optimal initial noise
that maximizes the text-image similarity without modify-
ing the weights of the diffusion model. This optimization
is plug-and-play and does not require additional training of
the generative or embedding models. The proposed method
not only enhances the consistency between the text and the
synthetic image, but also reduces the gap between the syn-
thetic and real images to a degree that is recognizable by the
embedding models.

We evaluated the effectiveness of our method by compar-
ing CLIP models [23] trained on our synthetic datasets with
those trained on baseline Latent Diffusion Model (LDM)
[24]-based datasets. Our method achieved the highest zero-



shot retrieval and classification performance, and showed
strong scalability—as illustrated in Figure |—achieving
better results with up to 40% fewer synthetic images as il-
lustrated in Figurel. Additionally, FID and cosine similarity
evaluations indicate that our images are closer to real im-
ages and more semantically aligned with text. These results
confirm that our method narrows the gap between real and
synthetic images, providing more effective training data.

In summary, the main contributions of this study are as
follows:
Key findings. Optimizing the initial noise in diffusion mod-
els significantly improves VLM training with synthetic im-
ages, reducing dataset construction costs while enhancing
alignment with real-world characteristics.
Technical contributions. We introduce a plug-and-play
method to optimize initial noise across various embedding
models without tuning diffusion model, enabling flexible
and broadly applicable synthetic image generation.
Experimental contribution. Our method achieves the
highest zero-shot performance across multiple benchmarks
and improves scalability. It requires up to 40% fewer sam-
ples than conventional approaches.

2. Related Work

2.1. Synthetic Image for Model Training

Diffusion models, originally proposed by Ho et al. [13],
generate images by iteratively denoising Gaussian noise
in pixel space. Among them, LDM [24] is widely uti-
lized. LDM operates in the latent space of VQ-VAE [28],
where Gaussian noise is iteratively denoised before being
decoded into an image by the VQ-VAE decoder. Compared
to conventional generative models [8, 17], LDM enables
high-quality text-conditioned image generation, making it a
promising tool for applications, ranging from data augmen-
tation [16, 27, 32] to the generation of training images for
downstream tasks such as image classification [11, 12, 26].
Recently, increasing attention has been given to training
VLMs using synthetic images. For example, StableRep [26]
introduces a framework that extends the InfoNCE loss [21].
This method accommodates multiple positive pairs by treat-
ing images generated by Stable Diffusion [24] as pseudo-
positive pairs, thereby enhancing zero-shot performance of
the CLIP model. Similarly, SynthCLIP [10] employs large
language models (LLMs) to generate textual descriptions
from a predefined concept bank, then it is used as input for
Stable Diffusion. This approach enables the CLIP model
training without relying on real images and real text.
However, prior studies assume that synthetic images are
both text-aligned and realistic. In practice, naive diffusion
models frequently generate visually or semantically incon-
sistent images [1, 30], which limits their effectiveness for
training. In this work, we challenge the implicit assump-
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Figure 2. Overview of the proposed method. The initial noise is
optimized using multiple embedding models.

tion underlying the use of synthetic images for training,
and demonstrate that effective training of VLMs can be
achieved via "Diffusion Noise Optimization”.

2.2. Latent Optimization of Diffusion Model

Diffusion models sometimes produce misaligned images.
Recent studies have identified initial noise as a critical fac-
tor influencing the quality of synthetic images [22, 30],
leading to various approaches for optimizing initial noise.
Eyring et al. [4] proposed a method that leverages multi-
ple reward models reflecting human preferences to evaluate
and optimizes synthetic images. Guo et al. [9] introduced
an approach that assesses whether a given initial noise can
generate high-quality images via self-attention and cross-
attention maps extracted from the diffusion process. Qi
et al. [22] also proposed a diffusion model inversion-based
approach that maps an image back to its initial noise. They
found that a higher similarity between the initial noise and
the noise obtained after inversion leads to better results,
leading to an optimization strategy that maximizes this sim-
ilarity. However, prior work mainly focuses on human-
perceived quality rather than training effectiveness. In con-
trast, we optimize the initial noise to maximize text-image
similarity across multiple embeddings, reducing the gap to
real images and improving VLM training. This focus makes
our approach fundamentally different from prior methods.

3. Method
3.1. Overview of the Proposed Method

As shown in Figure 2, we propose a method to construct a
dataset using synthetic images aligned with the input text
while reducing the gap to real images. This is achieved by
optimizing the initial noise in a pre-trained LDM with fixed
weights. Specifically, the initial noise is treated as a learn-
able parameter and optimized through a denoising process
to maximize the cosine similarity between the input text and
the generated image. The proposed method not only adjusts
the alignment between text and images but also reduces the
gap between real and generated images. This is because im-
ages tuned through noise optimization acquire distinguish-
able features that can be effectively evaluated by embedding
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Figure 3. The results of zero-shot retrieval, where we report the
average R@1 across several evaluation datasets. The x-axis in-
dicates the proportion of real (CC3M) to synthetic images in the
training data.

models trained on real images.

However, embedding models such as CLIP sometimes
focus on specific words within the text while failing to cap-
ture the overall semantic meaning [29]. To mitigate this
issue, we perform optimization across multiple embedding
models trained on different datasets. Our method oper-
ates in a plug-and-play manner, requiring no retraining of
the LDM or embedding models. Furthermore, since our
method is based on optimization, it eliminates the need to
predefine similarity thresholds, which was required in con-
ventional dataset construction approaches [6].

3.2. Formulation as Noise Optimization

Given a pair consisting of an initial noise 27 ~ N(0,I)
and a corresponding text prompt s;, the denoising process
using an LDM with any sampling method R can be ex-
pressed as follows:

R(z;'rvs’i)
=R (R2("'RT(Z;'T,31')"'

)
Z;

,85),85) (D)

where R; denotes the denoising step at time ¢ under the
sampling method R. Then, the synthetic image x; can be
generated as x; = D(z), where D denotes the VQ-VAE
decoder. Consequently, treating z;f as a learnable parame-
ter, the optimal initial noise can be obtained by solving the
following optimization problem:

N
1 ,
* i R im’ T . )
z; = argz?m 1 N ;mm (D(R(z; ,84)), 8i)

, 2
where sim’ (-, -) represents the cosine similarity measured
by the j-th embedding model out of the total N embedding
models. By re-inputting the optimized 2z} and the corre-
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Figure 4. The results of zero-shot classification in ImageNet-1K.
The x-axis indicates the proportion of real (CC3M) to synthetic
images in the training data.

sponding text s; into the LDM, we obtain the optimized
image ;.

4. Experiments
4.1. Dataset Setup

To evaluate the effectiveness of our method, we use
CC3M[25]" as the baseline real-image dataset.  Fol-
lowing [5], which suggests mixing real and synthetic
images is effective, we construct datasets with varying
real/synthetic ratios using our method and LDM as the base-
line synthetic-image dataset. We evaluate models trained
on these datasets through zero-shot retrieval (Flickr8K[14],
Flickr30K[31], MSCOCOI[2]) and zero-shot classification
(ImageNet-1K[3]).

4.2. Image Generation and Pre-Training Details

We use a fine-tuned Stable Diffusion-v1.4 trained on
LAION-Aesthetics [19] to generate 256 x256 images with
10-step DPM++ sampling [20] and a guidance scale of 7.5.
Our method further optimizes the initial noise for 50 steps
using Adam (Ir=0.01). For similarity computation, we use
two high-performing CLIP models trained on DFN2B [6]
and DatacomplB [7]. We then pre-train a CLIP model
with a ViT-B/16 backbone on the generated datasets for 40
epochs. Full training details are provided in Appendix A.

4.3. Results of Zero-Shot Tasks

We evaluate the effectiveness of our method on zero-
shot retrieval and classification tasks using CLIP models
trained on datasets containing varying proportions of real
and synthetic images. For the retrieval evaluation, we
use the average of Image Recall@1 (IR@1) and Text Re-
call@l (TR@1), further averaged across multiple bench-

! As of December 2024, only 2.2M out of the original 3M samples were
available.
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mark datasets. Detailed results for each dataset can be
found in Appendix B. As shown in Figures 3 and 4, with-
out dataset scaling, our method consistently outperforms the
LDM-based approach in both retrieval and classification.
For both methods, the highest performance was achieved
when the CC3M/synthetic image ratio was 80%/20%, sur-
passing the performance obtained using only real images.
Specifically, our method achieved an average R@1 of
23.69% and a Top-1 accuracy of 17.97%, while the LDM-
based method reached 22.36% and 17.65%, respectively.
These results indicate that our method generates synthetic
images that are more effective for VLM training. The ab-
lation study on multiple embedding models is provided in
Appendix C.

Additionally, to evaluate the scalability of our method,
we conducted experiments in which synthetic images were
incrementally added to the CC3M dataset. As shown in
Figures 3 and 4, our method achieves the same or higher
peak performance as the LDM-based approach with fewer
synthetic samples. For example, in zero-shot retrieval, our
method achieves 27.75% R@1 at a 100%/60% ratio, sur-
passing the LDM’s peak of 27.58% with 40% fewer syn-
thetic samples. In zero-shot classification, our method
achieves 20.74% accuracy at 100%/60%, exceeding LDM’s
best result of 20.64% with 20% fewer synthetic samples.
These findings suggest that our method remains effective
even when used to scale existing datasets, providing syn-
thetic images that contribute meaningfully to VLM training.

4.4. Quantitative Evaluation of Synthetic Images

To assess how effectively our method reduces the gap be-
tween real and synthetic images, we computed the Fréchet
Inception Distance (FID) between CC3M real images and
images generated by our method and LDM, using 100K
randomly sampled text prompts. As shown in Figure 5,
our method achieved a lower FID (15.64) compared to
LDM (15.87), suggesting that the images generated by the
proposed method are closer in distribution to real images,
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Figure 6. Histogram of cosine similarity between synthetic images

and input text.

thereby narrowing the gap between synthetic and real im-
ages to a degree that is recognizable by the embedding mod-
els. We also evaluated image-text alignment by computing
CLIP-based cosine similarity scores across four CLIP mod-
els (OpenAl CLIP, LAION2B, DFN2B, DataComp1B). The
averaged similarity scores were visualized in Figure 6. Our
method consistently yielded higher frequencies of strong
text-image similarity compared to both real and LDM-
generated images, demonstrating improved semantic align-
ment and suggesting better suitability for VLM training.
Qualitative evaluation and representative examples of the
generated images can be found in Appendix D.

5. Conclusion

We proposed a method for constructing synthetic datasets
by optimizing the initial noise of a pre-trained diffusion
model. Leveraging multiple embedding models in a plug-
and-play manner, our approach improves both semantic
alignment and realism without additional model training.
Experiments show that our method enhances the effective-
ness of synthetic data for VLM training. A dataset with 20%
optimized synthetic images outperforms training on CC3M
and LDM-based datasets, achieving 23.69% retrieval and
17.97% classification accuracy. Moreover, better perfor-
mance is achieved with up to 40% fewer synthetic images,
demonstrating strong scalability. Although our method re-
lies on embedding models, aggregating multiple embed-
dings improves robustness. These results underscore the
potential of optimized synthetic data as a scalable and ef-
fective resource for VLM training.
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Supplementary Material

A. CLIP training details

In the experiments described in Section 4.3, we trained the
models according to Table 1. All CLIP models used in this
study are based on the OpenCLIP implementation [15], and
all evaluations are conducted using CLIP Benchmark [18].

Table 1. CLIP pre-training settings.

config CLIP
epochs 40
batch size 512
optimizer AdamW
learning rate 5x 1074
weight decay 0.5
optimizer momentum | S1, 82 = 0.9,0.98
learning rate schedule cosine decay
warmup epochs 1

B. Zero-shot Retrieval

The detailed results of the experiments in Section 4.3 are
shown in Table 4 and Table 5. In the case without scaling,
both the LDM-based method and our proposed method ex-
hibit a decline in IR@1 and TR@1 scores across all bench-
mark datasets as the proportion of generated images in-
creases. However, our method is more robust to perfor-
mance degradation compared to the LDM-based approach.
For instance, the LDM-based method shows a decrease
of approximately 42.48%(~ (22.36 — 12.86)/22.36) in
Ave. R@1 from its peak performance, whereas our method
shows a smaller drop of approximately 38.75(~ (23.69 —
14.51)/23.69)%.

As shown in Table 5, when scaling up the CC3M dataset,
the proposed method—using only 60% of the CC3M 100%
generated images—achieves higher performance on all
evaluation metrics except for TR@1 on Flickr30K, com-
pared to using 100% of the CC3M and 100% of images
generated by LDM.

Table 2. Zero-shot retrieval results of the ablation study on the
effect of using multiple embedding models.

DataComplB | DFN2B | Ave R@1
Ours v v 23.69
X v 22.33

[ LDM | X | x| 2236

Table 3. Zero-shot classification results of the ablation study on
the effect of using multiple embedding models.

DataComp1B | DFN2B | ImageNetlk
Ours v v 17.97
X v 17.76
[ LDM | X | X [ 1765 |

C. Effect of Using Multiple Embedding Models

We examine the effect of using multiple embedding mod-
els. For zero-shot retrieval and classification, we used the
same evaluation datasets and trained models using a dataset
composed of 80% CC3M and 20% synthetic images, which
yielded the best performance without dataset scaling. Re-
sults are shown in Tables 2 and 3.

As Table 2 shows, optimizing only with the DFN2B
CLIP model resulted in an average R@1 of 22.43%,
a 1.36% drop compared to using multiple models, and
slightly below LDM. For classification, Table 3 shows a
Top-1 accuracy of 17.76%, 0.2% lower than with multiple
models, but still outperforming LDM.

These results suggest that a single embedding model
can still yield strong performance, particularly in classifi-
cation. However, using multiple models consistently im-
proves zero-shot performance across tasks.

D. Qualitative evaluation of synthetic images

Upon a detailed examination of the synthetic images, we
observed several notable improvements. For instance, in
Figure 7(a)-(c), we found instances in which images that
initially failed to align with the input text were effectively
realigned through our optimization process. Additionally,
Figure 7(d) illustrates cases where, even though the original
image exhibited good text-image alignment, the proposed
method produced an image with improved visual quality.
However, we also encountered failure cases, such as those
shown in Figure 7(e)-(f), where crucial semantic informa-
tion from the initial noise was lost. Addressing this issue
could further enhance training performance.



Table 4.

Results of Zero-Shot Retrieval

Method Ratio of dataset copstruction Flickr8K Flickr30K MSCOCO Ave.
CC3M Synthetic Image IR@1 TR@l1 | IR@1 TR@1 | IR@1 TR@1 | R@1
100% X 2295 29.10 | 21.55 2860 | 11.96 15.63 | 21.63
80% 20% 23.03 2939 | 2334 29.89 | 12.12 1641 | 22.36
= 60% 40% 23.01 3050 | 21.34 28.60 | 12.18 15.53 | 21.86
@) 40% 60% 21.08 27.70 | 20.62 27.30 | 10.69 13.74 | 20.19
= 20% 80% 17.08 24.09 | 1645 21.99 8.11 10.44 | 16.38
X 100% 15.37 1850 | 14.33 15.19 6.74 7.00 12.86
80% 20% 24.14 3339 | 22.80 32.19 | 12.51 17.12 | 23.69
o 60% 40% 2345 30.89 | 2347 3140 | 11.53 16.04 | 22.80
5 40% 60% 2336 3039 | 21.11 2649 | 1141 14.82 | 21.26
20% 80% 19.56  28.09 | 2044 24.79 | 1091 14.15 | 19.66
X 100% 17.52  19.59 | 16.74 17.20 7.68 8.35 14.51

Table 5. Scaling Results of Zero-Shot Retrieval
Method Ratio of dataset construction Flickr8K Flickr30K MSCOCO Ave.
CC3M Synthetic Image IR@1 TR@l | IR@1 TR@1l | IR@l1 TR@1 | R@1
100% X 2295 29.10 | 21.55 28.60 | 11.96 15.63 | 21.63
100% 20% 2486 3339 | 2471 31.29 | 13.54 17.57 | 24.23
S 100% 40% 26.60 3379 | 26.53 3540 | 1435 19.38 | 26.01
@) 100% 60% 27.14  35.10 | 26.69 36.50 | 14.61 19.40 | 26.57
= 100% 80% 2791 3630 | 28.72 36.70 | 14.89 20.26 | 27.46
100% 100% 27.82 3630 | 27.86 37.70 | 15.14 20.65 | 27.58
100% 20% 23.05 3050 | 21.53 2840 | 11.23 14.69 | 21.57
v 100% 40% 2734 3569 | 27.50 36.59 | 1479 19.74 | 26.94
8 100% 60% 28.13 38.60 | 28.06 36.00 | 15.17 20.52 | 27.75
100% 80% 2894 3560 | 29.84 38.60 | 16.08 2240 | 28.58
100% 100% 2847 36.50 | 29.30 3959 | 1593 21.76 | 28.59




(b) beautiful blush pink and gray living room -
christmas decorating ideas for the home

(d) a dog in the snow

(e) a compass lying on a topographic map (f) national flag above the building

Figure 7. Images generated by the proposed method. The text below each image represents the input text used to generate the image. Left:
Image generated from the initial noise. Right: Image generated from the optimized noise.



	Introduction
	Related Work
	Synthetic Image for Model Training
	Latent Optimization of Diffusion Model

	Method
	Overview of the Proposed Method
	Formulation as Noise Optimization

	Experiments
	Dataset Setup
	Image Generation and Pre-Training Details
	Results of Zero-Shot Tasks
	Quantitative Evaluation of Synthetic Images

	Conclusion
	Acknowldgements
	CLIP training details
	Zero-shot Retrieval
	Effect of Using Multiple Embedding Models
	Qualitative evaluation of synthetic images

