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Abstract

The versatility of self-attention mechanism earned transformers great success in almost all data
modalities, with limitations on the quadratic complexity and difficulty of training. Efficient
transformers, on the other hand, often rely on clever data-modality-dependent construction to
get over the quadratic complexity of transformers. This greatly hinders their applications on
different data modalities, which is one of the pillars of contemporary foundational modeling. In
this paper, we lay the groundwork for efficient foundational modeling by proposing SAMSA
- SAMpling-Self-Attention, a context-aware linear complexity self-attention mechanism that
works well on multiple data modalities. Our mechanism is based on a differentiable sampling
without replacement method we discovered. This enables the self-attention module to attend
to the most important token set, where the importance is defined by data. Moreover, as
differentiability is not needed in inference, the sparse formulation of our method costs little
time overhead, further lowering computational costs. In short, SAMSA achieved competitive
or even SOTA results on many benchmarks, while being faster in inference, compared to
other very specialized models. Against full self-attention, real inference time significantly
decreases while performance ranges from negligible degradation to outperformance. We
release our source code in supplementary materials.

1 Introduction

Transformers (Vaswani et al., 2017) have been successfully applied to a wide variety of tasks on many
data modalities, namely sequence (Vaswani et al., 2017; Radford et al., 2019; Devlin et al., 2019), vision
(Dosovitskiy et al., 2021; Carion et al., 2020; Liu et al., 2023a), speech (Gulati et al., 2020; Gong et al.,
2021; Koutini et al., 2022), time-series (Liu et al., 2022; Jin et al., 2024), point cloud (Lee et al., 2019; Zhao
et al., 2021; Yang et al., 2019), and graph (Yun et al., 2019; Rampášek et al., 2022; Shirzad et al., 2023;
Ngo et al., 2023). This can be attributed to the permutation equivariance of transformers, which provides a
unique way of encoding structural information through positional encoding (absolute or relative positional
enccodings). Ultimately, transformers become the building blocks of contemporary foundational modelings.
While transformer can be the one architecture for all data modalities, quadratic complexity that hinders it
from processing very long sequences. To mitigate the problem of quadratic complexity, based on the data
modality they are working on (mostly sequence), efficient transformers (Beltagy et al., 2020; Ainslie et al.,
2020; Zhu et al., 2021; Zaheer et al., 2020; Shirzad et al., 2023) have been developed. This is great for its
original usage and some of the mentioned works have found their way to industrial applications. However, it
has a major flaw: it only works for the intended data modality and is often hard to adapt to another data
modality. For example, it is unreasonable to expect sliding window attention (Zhu et al., 2021) to work on
data with non-rigid data structures like point clouds or graphs. Without efficient building blocks working
across many data structures, future works toward AGI would be costly in both training and inference.

In this work, we develop towards data modality agnostic efficient transformer architecture to fill the literature
gap. Any satisfying architecture should respect the permutation equivariance that full self-attention adheres
to for versatility, be both sub-quadratic asymptotic computational cost for very large number of tokens, and be
efficient in common cases (i.e. 512 - 1024 tokens) for practical usage. Inspired by the finite-yet-directed nature
of human attention, we developed a parallelizable differentiable sampling without replacement algorithm
that allows models to learn to choose what set of tokens they should attend to. This parallelization of our
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differentiable sampling algorithm enables our model to be trained efficiently while the without-replacement
characteristic allows our model to maintain some functional expressivity. Since the result of one attention head
is not dependent on the input of any other attention head, different attention heads can use different sampled
sets of tokens. This consequentially enlarges the receptive field, which further increases the expressivity of
our model.

To demonstrate the effectiveness of our method on many data modalities, we conduct extensive experiments
on multilinear and non-multilinear data modalities. For multilinear data modalities, we experimented on
sequence data modality via the long-range arena benchmark (Tay et al., 2021) featuring four classification
tasks and one retrieval task on these datasets. For non-multilinear data modalities, we experimented on
graph and point cloud data modalities: graph classification/regression via peptides dataset (Singh et al.,
2015) from Long-Range Graph Benchmark (Dwivedi et al., 2022), object classification on ModelNet40 dataset
(Wu et al., 2015), and part segmentation on ShapeNet dataset (Chang et al., 2015). Compared to specialized
models with data-modality-specific inductive bias, we achieve competitive results while being much faster
than them. Against full self-transformers, the performance degradation was negligible, and in some cases,
unexpectedly outperformed full self-attention transformers. Aside from comparative experiments, we also
conducted many ablation studies to understand: the efficiency-performance trade-off, regularization effect of
sampling mechanisms, and training stability w.r.t number of sampled tokens and the sparse formulation.

In short, our contributions can be summarized as follows:

• Parallelizable differentiable sampling without replacement method and its integration to self-attention
mechanism,

• Fast training time and negligible extra cost for inference compared to transformers with negligible
performance loss,

• Demonstrated effectiveness on many data modalities, competitive results even against specialized
models.

2 Related works

Efficient Transformers. The scalability of transformers is hindered by the quadratic complexity of
self-attention modules. Hence, numerous works have delved into sparsity (Beltagy et al., 2020; Ainslie et al.,
2020; Zaheer et al., 2020; Shirzad et al., 2023), low-rank projection (Wang et al., 2020), hashing-based method
(Kitaev et al., 2020), and kernel-based methods (Choromanski et al., 2021; Katharopoulos et al., 2020) to
sacrifice the expressivity of transformers for a sub-quadratic construction. Our review of contemporary efficient
transformers is influenced by this survey by (Tay et al., 2022). Linformer (Wang et al., 2020) is based on the
low-rank assumption of self-attention matrices, realized via projection matrices. As one of the earliest works in
efficient transformers, it has flaws in both scalability and fixed sequence length. Subsequent work like Linear
Transformer (Katharopoulos et al., 2020) redesigns the similarity kernel previously as a softmax of dot-product
score (or any other kernels) to one made of a linear probability cage. The modification frees them from
the recomputation of the multiplication of key-value matrices, making attention computational cost O(N),
where N refers to the number of tokens. Without softmax non-linearity, the rank of those attention matrices
is bounded by the number of dimensions of tokens, which loses much expressivity of transformer models.
Methods like (Beltagy et al., 2020) utilize three choices of fixed-sparsity-patterns: sliding window, dilated
sliding window, and global+sliding window. Similarly, (Zaheer et al., 2020) uses a combination of different
sparse patterns at one time: random attention, window attention, and global attention. On graphs, (Shirzad
et al., 2023) also combines different sparsity patterns but with a constraint on the random-generated one: it
has to be an expander graph. The hard-coded sparsity effectively linearized the complexity of transformers
and is empirically fast. However, intuitively, no pattern or finite set of patterns fits all problems; therefore,
there is also a line of work dedicated to a differentiable sparsity. (Roy et al., 2021) drew a relationship from
MIPS problem (Maximum Inner Product Search) and the Nearest-Neighbor Search algorithm, when both the
query and key vectors are unit vectors. With their online k-means algorithm, their method attends each query
vector to every key vector belonging to the same cluster, thus, bringing the complexity down to O(n1.5), with
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n is the number of tokens. Practically, however, their method is not fast as it needs a k-means construction
and extensive specialized implementation for sparse operators. Another perspective on efficient transformers
is making better implementation of vanilla transformers (Rabe & Staats, 2021; Dao et al., 2022; Dao, 2024).
(Rabe & Staats, 2021) proposed a neat trick for attention mechanism: chunking. While the mechanism is
simple, they have reduced the memory cost from quadratic to sublinear, effectively lifting the computation
constraint of GPU memory. (Dao et al., 2022) both reduces the frequency of data transfer between HBM and
SRAM within the GPU and derives a memory efficient backward pass. This allows quadratic attention scales
to the sequence length of 64000 and beyond. (Dao, 2024) is an incremental work from (Dao et al., 2022) with
better work partition and reduction in non-matmul FLOPS.

Continuous Relaxation Discrete operations are much used in decision problems (classification, next-word
prediction, plan, . . . ). However, these operations by nature are not amenable to gradient-based optimization
because that operation has gradients everywhere either zero or undefined. For example, the heaviside function
for binary choice:

H(x) =
{

0 if x < 0
1 if x ≥ 0

(1)

has gradient undefined at x = 0 and zero everywhere else. Since continuous relaxation of discrete operators and
algorithms is a complex study and the sampling operator is the core of our efficient transformer formulation,
we focus our literature review on differentiable sampling. To continuously relax the sampling operator, the
previous literature was developed based on the relaxation of choose, sort, and top-k algorithms (Jang et al.,
2017; Maddison et al., 2017; Kool et al., 2019; Xie et al., 2020; Blondel et al., 2020; Petersen et al., 2021). (Jang
et al., 2017; Maddison et al., 2017) is the foundational work on parameterization of discrete categorical variable.
They introduces the Gumbel-Softmax distribution that approximate categorical distribution exceptionally
well. There are some differences between the two works: (Jang et al., 2017) introduces straight through
estimator via application of path derivative (Bengio et al., 2013) and (Maddison et al., 2017) takes account of
density in their relaxed objective function. From differentiable categorical variable, differentiable sampling
with replacement can be obtained trivially by computing these stochastic categorical variable k-times, where
k is the number of samples. Differentiable sampling without replacement, however, is much trickier and is
an active area of research. (Kool et al., 2019) is one of the earliest work in differentiable sampling without
replacement. Their process of sampling without replacement, Gumbel Top-k, samples tokens sequentially with
logit normalization, applied in generative text models as stochastic beam search. (Xie et al., 2020) sees the
differentiable without replacement in another perspective: optimal transport, where loss function represents
how far away is the current solution from the optimal one. (Blondel et al., 2020) is an efficient estimation
of sort function differentiation through optimal transport via permutahedron projections. The projection
decreases the quadratic computational cost to O(n log n) forward pass and O(n) backward pass. (Petersen
et al., 2021) takes a pre-existing discrete parallelizable sorting/top-k algorithm (e.g. odd-even sorting network,
bitonic sorting network, selection network, . . . ) and relaxes all of the control flows for gradient estimation.

3 Background

3.1 Self-Attention Mechanism

Vanilla Self Attention. The self-attention mechanism is a core component of Transformer models for
long-range dependencies. Let X = {x1, x2, . . . , xn} ∈ Rn×d represent a set of tokens of n d-dimensional
vectors. The matrices Q, K, and V all in Rn×dh representing query, key, and value vectors are created via
learnable linear transformation of the input token matrix X:

Q = XWQ + 1nb⊤
q ,

K = XWK + 1nb⊤
k ,

V = XWV + 1nb⊤
v .
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Then, using the query, key, and value vectors, it creates another set of tokens by aggregating those value
vectors based on the dependencies defined through the attention map constructed by query and value vectors:

Attention(X) = Softmax
(

QK⊤
√

dh

)
V, (2)

This mechanism allows information aggregation of very far tokens and effectively captures complex long-range
relationships.

Efficient Quadratic Attention. Computing the given Attention function naively yields a quadratic
memory cost due to the need to store attention maps for backpropagation. However, its memory complexity
can be reduced into linear complexity by checkpointing (Rabe & Staats, 2021) or algebraic manipulation
of derivative function (Dao et al., 2022). Via fused kernel (Dao et al., 2022; Dao, 2024), the computational
cost of self-attention is further decreased through fewer memory operations between HBM and SRAM. This
allows better parallelization, making quadratic attention scales to the length of 64k and beyond.

3.2 Continuous Relaxation of Top-k Sampling

Top-k Sampling. The top-k sampling operation selects the best set of k objects out of others under a
criterion, deterministic or stochastic. The criterion function is a permutation invariant function that maps
a set of n vectors to a real number. The following equation describes a mathematical formulation of top-k
sampling:

Sample(X, k) = argmaxC(X,k)
S criterion(S), (3)

where X is the set of vector to sample from, k is the number of sampled vectors needing to be sampled, and
C(N, k) is the set of all k-combinations of set N . Since the argmax operator has no continuity, the derivative
of the sampled vectors with respect to the criterion is either zero or undefined, i.e., not useful. Therefore, it is
hard to integrate into neural networks. Early work (Papernot & McDaniel, 2018) had to resort to a two-stage
optimization. This circumvention, however, introduces additional complexity and worsens performance via
non-aligned objectives.

Straight Through Estimator. Before going deeper into the differentiable top-k literature, it is crucial
to explain a much simpler case: k = 1. To choose one vector from many, (Jang et al., 2017) provides a
differentiable approximation of the categorical distribution via Softmax with Gumbel noise added on logits:

GumbelSoftmax(π)[i] ≜ exp ((πi + gi)/τ)∑n
j=1 exp ((πj + gj)/τ)

,

where gi are independent and identically samples from Gumbel(0,1) distribution, πi are the unnormalized
logits, and τ is the temperature parameter that controls the smoothness of the distribution. By adjusting
τ , the Gumbel-Softmax can transition between a one-hot categorical distribution and a softer distribution,
enabling gradient-based optimization. The straight-through estimator, however, uses the above soft-categorical
function as a differentiable proxy for the hard-categorical function obtained by argmax:

ST-GumbelSoftmax(π)[i] ≜
{

1, if i = argmax(π),
0, otherwise,

∂ST-GumbelSoftmax/∂π ≜ ∂GumbelSoftmax/∂π.

A naive way to extend this to differentiable top-k (Kool et al., 2019) is to use Gumbel-Softmax to sample
from the unsampled vectors k times sequentially, named Gumbel-Topk. This is not parallelizable and has
unreliable gradients; therefore, it cannot be used inside repeating deep learning modules, e.g. transformer
layers.

4



Under review as submission to TMLR

QQKV

QQ

Compute
importance score

Choose top-(k+k) scores
Compare and select via 

Gumbel-Sigmoid

Multi-head Differentiable Sampling Without Replacement SAMpling Self Attention

Input KV

Block
BlockFlash Attention

Q

X

Support Vectors

Figure 1: Overview of our proposed model sampling-self-attention module SAMSA. The key-value vectors are
selected via top-k importance score computed using tokens’ latent. The Gumbel-Sigmoid reparameterization
provides gradients to guide the optimization process towards most important key-value pairs of vectors (left).
The sampled key-value vectors are then fed into Flash Attention to attend to the query vectors (right).

4 Method

4.1 Overview

Our method is a composition of context-aware sampling without replacement method (Section 4.2) and
the integration to self-attention mechanism (Section 4.4). Via reparameterization via Gumbel-Softmax, we
devised a parallelizable differentiable sampling without replacement as an innovation from Gumbel-Top-K
in existing literature (Kool et al., 2019) - a sequential method. Similar to Linformer (Wang et al., 2020)
applying low-rank approximation to key and value vectors, we attend query vectors to the sampled key and
value vectors. Inspired by the MoE architecture where each MLP chooses different subsets of tokens to
transform (Zhou et al., 2022), our architecture assigns different sets of key-value pairs to different heads.
This novel paradigm can be seen as mixture of attention experts, where each expert oversees different sets of
tokens. The method is summarized in Algorithm 1.

4.2 Parallelizable Differentiable Top-k Sampling

To be a viable key-value sampler for transformers, that method needs both great parallelizability and reliable
gradients for efficient model training. Here, we introduce the two methods that hold the needed properties:
trivial differentiable sampling with replacement and our proposed differentiable without replacement method.

With-Replacement Sampling. We define z as the importance score of vectors, representing the vec-
tors’ likeliness of being picked. The importance scores of vectors are computed via a neural network:
ImportanceScore(X) : Rn×m → Rn:

z ≜ ImportanceScore(X).

This simple method conditions the importance score of each token on the entire set of tokens, allowing
patterns with complex dependencies to emerge. If we allow the set of sampled vectors to contain duplicates,
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Algorithm 1 Sampling-based Transformer Layer
Input: Input token matrix X, sample size k
Output: Updated token matrix X

1: Transform tokens to query and key-value matrices.
2: X̂← RMSNorm(X)
3: Q← X̂Wq + 1nb⊤

q

4: P← X̂Wkv + 1nb⊤
kv

5: Compute multi-head importance scores
6: Z← MultiHeadImportanceScore(X)
7: Z← Z + Gumbel(0, 1). sample()
8: Concatenate with 2k support vector paddings
9: P← Concatenate(P, Psupp)

10: Z← Concatenate(Z, Zsupp)
11: Sample sets of key and value vectors
12: P̃← MultiHeadSample(Z, P, k)
13: K̃, Ṽ← Split(P̃)
14: Attend and transform tokens
15: X← X + FlashAttention(Q, K̃, Ṽ)
16: X̂← RMSNorm(X)
17: X← X + FFN(X̂)
18: Return X

Gumbel-Top-k algorithm can be parallelized simply by computing everything concurrently as follows:

Sample1(z, X, k) ≜ Concatenatek
i=1(ST-GumbelSoftmax(z)⊤X).

Without-Replacement Sampling. The weakness of sampling with replacement is that it creates duplicates.
These duplicates waste computational resources on the same pieces of information, which harms the expressivity
of transformers relying on sampling. This proposed method of without-replacement sampling relies on a
novel proxy soft gradient estimator we devised. To begin with, we started with a hypothetical inefficient
but parallelizable method: select one set of sampled vectors from sets of all sets of sampled vectors using
Gumbel-Softmax (this is the definition in Equation 3). This is equivalent to a continuous relaxation of the
discrete brute-force combinatorial optimization algorithm. By defining the likeliness of choosing one set (i.e.
the importance score of sets of vectors) as the sum of the importance scores of its elements, we have:

z∗ ≜ ConcatenateC(N≤n,k)
S (

S∑
i

zi),

X∗ ≜ ConcatenateC(N≤n,k)
S (vec(XS)⊤),

Sample2(z, X, k) ≜ ST-GumbelSoftmax(z∗)⊤X∗,

where C(N, k) is the set of all k-combinations of set N , N≤n is the set of all natural numbers less than or
equal to n, vec is the matrix vectorization function obtained by stacking the columns of the input matrix
on top of one another, XS is the matrix of the row vectors with indices in S of X. This definition of the
importance scores of sets has a clear advantage: not needing to enumerate over the entire C(n, k) at inference.
Since using all possible combinations to generate one gradient vector for a single optimization step is overkill,
an immediate improvement is local search - a sequential algorithm. Intuitively, this allows us to put the
optimization steps of local search and gradient descent in the same for loop. For local search, we define the
current solution as the set with the highest importance score. The locality of an index set S is then described
as the collection of index sets, each differing from S by exactly one element:

Current ≜ argmax(z∗) = ArgTopK(z)
Local(S) ≜ {x : x ∈ C(X, k) and |x− S| = 1}
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Using local search as the base discrete combinatorial optimization algorithm, we compare the current solution
against one of its localities, using Gumbel-Softmax reparameterization. The average result from comparing
k(n− k) pairs of solutions is given as follows:

i ≜ ArgTopK(z, k),
j ≜ ArgTopK(−z, n− k),
p ≜ Jk,n−k,

∂p/∂z ≜ ∂
(
ST-GumbelSigmoid

(
zi1⊤

n−k − 1kz⊤
j

))
/∂z,

Sample(z, X, k)[m] ≜
n−k∑
v=1

X[im] ∗ p[m, v] + X[jv] ∗ (1− p[m, v])
n− k

,

where Jm,n is all-ones matrix with m rows and n columns, 1k are the all-one vectors of length k. The
Gumbel Sigmoid function is the Gumbel Softmax when the number of categories is equal to two (details in
Appendix D), similar to the relationship between Sigmoid and Softmax functions. To further cut down the
optimization cost, we select i as top-k most important and j as top-k second most important index vectors.

4.3 Graph Modeling

The complexity of the graph data structure is needed for the claim of working on many data modalities of ours.
Unfortunately, existing literature deemed self-attention alone insufficient for graph and they created very
complicated methods: e.g. combination between Message Passing Neural Network (MPNN) and self-attention
layers (Rampášek et al., 2022; Ying et al., 2021; Yun et al., 2019). This makes it hard to adapt to other
data modalities. We identify the reason transformers need so many modifications just to be barely working
on graphs is the inability to process both the nodes and edges information simultaneously. Therefore, we
propose Graph-Bridge, a simpler approach treating both nodes and edges as tokens, which can be applied to
any self-attention network without complicated constructions.

Formulation. Given a graph G = (V, E) where V represents the set of nodes and E represents the set
of edges, the objective is to learn a mapping F : G→ Rd that captures the structural properties of G in a
d-dimensional latent space. Each node vi ∈ V is associated with a feature vector xi ∈ Rf , and each edge
eij = (vi, vj) ∈ E is associated with a feature vector eij ∈ Rg.

Positional Encoding. To integrate node and edge information, we introduce a novel graph positional
encoding (PE) mechanism. Let pi ∈ Rd denote the positional encoding of node vi. We define pi as a random
vector sampled from a normal distribution:

pi ∼ N (0, diag(σ2)) + ϕ(xi),

where σ2 is a learnable variance d-dimensional vector and ϕ : Rf → Rd is a multi-layer perceptrons (MLPs)
to inject node feature into positional encodings. For each edge eij , its positional encoding pij is computed as:

pij = pi − pj .

While summation is usually used to combine positional encodings, in this case, we use subtraction for edge
encoding to preserve the directional information of graph edges.

Node and Edge Transformation. To map node and edge representations into a common latent space,
we use two separate MLPs, ϕV : Rd × Rf → Rd and ϕE : Rd × Rg → Rd, defined as:

hi = ϕV (pi, xi),
hij = ϕE(pij , eij),
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where hi and hij are the transformed representations of node vi and edge eij , respectively. These features are
then processed by subsequent transformer layers, allowing complex relationships between nodes and edges to
be recognized.

Compare to other Graph-PE. This method is simple and efficient to compute: requiring only random
feature generation, gathering operation on the randomly generated node PE for edges, and MLP features.
This is different to existing graph positional encodings like Random-Walk PE (Ma et al., 2023a) (hard to
parallelize) and Laplacian PE (Rampášek et al., 2022) (inherently computationally expensive). While being
different, how this method works is surprisingly similar to random-walk PE: each self-attention propagates
signals through edge tokens, i.e. we have merged the sequential process of random-walk and multi-layer
neural network altogether.

4.4 Integration to Self-Attention Mechanism

While a straightforward integration of our sampling method into the self-attention mechanism is functional,
we can achieve significant improvements. The following sections outline our enhancements.

Mixture of Attention Experts. While global attention mechanisms are highly parallelizable and efficient,
they limit each token’s local receptive field since all tokens attend to the same set of selected tokens. Each
attention head operates independently, making self-attention outputs invariant to token permutations within
each head. Inspired by MoE (Mixture of Experts) (Zhou et al., 2022), we propose a method where each
attention head selects a distinct subset of sampled tokens. This process is parallelizable since the h-sampling
processes are independent. Formally, the multi-head importance score Z is computed by:

Z ≜ MultiHeadImportanceScore(X).

And the multi-head sampling function MultiHeadSample as follows:

P̃ ≜ MultiHeadSample(Z, P, k)
= Stackh

i=1(Sample(Z...,i, P, k)),

where Z...,i is the ith column vector of Z matrix. By incorporating this mixture of attention experts, our
sampling transformer significantly enhances its local receptive field by a factor of h. For instance, a transformer
with four attention heads and a 25% sampling rate can learn a full self-attention pattern if necessary.

Learnable Support Vector Paddings. Simply attending all query vectors to a set of sampled key and
value vectors has a limitation: when the number of tokens is less than k (the number of sampled tokens),
our algorithm fails. To address this issue, we introduce 2k learnable key and value vectors, each associated
with learnable importance scores, which are sampled concurrently with input tokens. The process can be
described mathematically as follows:

P← Concatenate(P, Psupp),
Z← Concatenate(Z, Zsupp)

where P : Rn×2d is the key-value matrix, Z : Rn×h is the multi-head importance score matrix, Psupp : R2k×2d

is the learnable support vector matrix, and Zsupp : R2n×h is the learnable multi-head importance score matrix.
These vectors and learned importance scores function is much similar to support vectors and Lagrange
multipliers in traditional kernel methods, effectively introducing additional decision boundaries within the
self-attention mechanism. Consequently, this not only enhances the learning capacity of transformers but
also ensures stable training by consistently attending to a fixed number of tokens.

Architecture Details. Our transformer architecture employs the Pre-RMSNorm formulation (Chen et al.,
2018; Zhang & Sennrich, 2019), which has been demonstrated to accelerate convergence rates. For the
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residual branch, we utilize a zero-initialized learnable scalar multiplier (Bachlechner et al., 2021), with a
modification: the learnable scalar multiplier is shared across all network layers. The self-attention modules in
our architecture are adapted to incorporate our sampling mechanism, as discussed in detail. The importance
score neural network for each self-attention module is implemented as a simple multi-layer perceptron, as
the latent representations produced by the preceding transformer stack already exhibit sufficient complexity
and expressiveness. Finally, to align with recent advancements in language modeling, we integrate flash
attention (Dao et al., 2022; Dao, 2024) into our architecture, which offers higher throughput and reduced
memory usage. The full algorithm is summarized in Algorithm 1, which is in the overview section.

4.5 Complexity Analysis

For an input token X ∈ Rn×d with query and key weights WQ, WK ∈ Rd×da and k sampled tokens, the
computational costs per 1-head transformer layer are:

• Linear transformations for Q, K, V: O(nd2),

• Calculating token importance scores: O(nd),

• Selecting top-k tokens: O(n + k) forward, O(n + k2) backward,

• Attention between n queries and top-k keys: O(nkdh),

• FFN network: O(nd2).

For large number of tokens (n≫ d), the asymptotic time and space complexity of SAMSA layer is O(n).

5 Experiments

5.1 Experiment Design

Our SAMSA models are either using hard/soft sampling indicating whether the straight through estimator is
used or not. We have trained 45 models to measure the effectiveness of our method, both the performance
and efficiency-wise of our model, against full self-attention (Flash Attention v2 (Dao, 2024)) and other
specialized SOTA models on three data modalities (Sequence, Point Cloud, and Graph) on 4 datasets (Long
Range Arena (all five), ModelNet40, ShapeNetPart, and Long Range Graph Benchmark (only Peptides)). To
minimize any possible bias when comparing between baselines, we use no data augmentation and identical
hyperparameters across different tasks. This also implies we conducted little hyperparameter tuning and
mostly focused on the architectural design.

5.2 Performance-Efficiency Trade-offs

We evaluated the performance of our SAMSA model on nine different datasets using six distinct SAMSA
model configurations. The detailed results is presented in Table 1.

Trade-offs against Full Self-Attention. At a 50% sampling rate, SAMSA is significantly faster and
cheaper to compute than full self-attention, particularly due to the hard formulation, which avoids the need for
gradient estimation during inference. Performance-wise, SAMSA consistently outperforms full self-attention,
even at very low sampling rates (e.g., Retrieval: 128 / 4k). This superior performance is likely due to the
regularization effect introduced by the sampling operator. Early in training, the random selection of tokens
acts like DropAttention regularization (Zehui et al., 2019), preventing overfitting by ensuring attention is
not overly concentrated on specific tokens. As training progresses, the sampler becomes more effective at
identifying important tokens, reducing the regularization effect and allowing for more targeted attention.
This dynamic aligns with known phenomena where early-stage regularization accelerates convergence, leading
to improved overall performance (Liu et al., 2023b).
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Table 1: Performance/Runtime of the full self-attention (Vaswani et al., 2017) compared to SAMSA with
three different sampling sizes and two sampling formulations. Green and Red indicate SAMSA having
better or worse statistics compared to full self-attention, respectively. The results of full self-attention in LRA
are obtained from (Ma et al., 2023b). It has better performance than what reported in the dataset paper (Tay
et al., 2021). The results of full self-attention in LRGB are obtained from the dataset paper (Dwivedi et al.,
2022). The results of full self-attention on Shape Classification on ModelNet40 is run by ourselves, with the
exact same hyperparameters as other SAMSA models. The results of PartSegmentation on ShapeNetPart is
obtained from PointBERT (Yu et al., 2022).

SAMSA Full Self-Attention

Exp Settings Sampling Size 128 256 512 N/A
Soft/Hard Sampling Soft Hard Soft Hard Soft Hard

Sequence

ListOPS L=2048 Acc↑ 41.53 41.13 41.89 40.57 41.33 40.88 37.11

Pathfinder L=1024 Acc↑ 81.97 71.83 80.55 69.71 79.74 72.28 71.83

Image L=1024 Acc↑ 48.64 48.24 48.73 47.38 48.24 46.75 42.94

Text L=2048 Acc↑ 64.74 65.42 65.53 65.42 65.38 65.42 65.21

Retrieval L=4096 Acc↑ - 82.05 - 81.89 - 81.81 79.14

Graph Pept-func L=450 AP↑ 72.01 72.01 71.42 72.21 - 72.45 63.26

Pept-struct L=450 MAE↓ 0.2519 0.2458 - 0.2515 - 0.2468 0.2529

Point Cloud ModelNet40 L=1024 Acc↑ 91.11 90.91 91.72 90.95 91.35 91.39 91.07

ShapeNetPart L=2500 IoU↑ - 85.74 - 85.87 - 85.62 85.1

Inference Speed (1024 tokens) 1.63× 2.17× 1.44× 1.62× 1.08× 1.44× 1×

Trade-offs between Different Sampling Rates. Efficiency-wise, Table 1 shows that SAMSA’s inference
speed decreases with lower sampling rates and can be twice as fast as full self-attention on an A100.
Performance-wise, the table also shows that a sampling rate of 256 tokens per head outperforms both full
self-attention and higher sampling rates, suggesting that not all tokens equally impact attention effectiveness.
This "sampling nonlinearity" may help filter out redundant tokens. Additionally, SAMSA’s performance
on easy tasks like LRA-Text and LRA-Image decreases as sampling rates increase, indicating a potentially
stronger regularization effect of lower sampling rates.

Trade-offs between Hard and Soft Sampling. Hard-SAMSA is much faster than soft-SAMSA, with
a 33% speed advantage at a 50% sampling rate. However, hard-SAMSA underperforms in certain tasks,
likely due to discrepancies between the forward and backward passes in Gumbel-Softmax (Jang et al., 2017).
Notably, hard-SAMSA’s learning curves in the Pathfinder task are volatile, reflecting the adverse effects of the
straight-through estimator. Interestingly, earlier navigation through "breakpoints" leads to worse performance,
possibly due to flat local minima, as shown by the stair-like learning curves (figure in Appendix E). However,
it should be noted that hard-SAMSA performance is not inferior to soft-SAMSA with a counter-example:
superior performance on graph data modality.

5.3 Sampling vs. Specialized Models

Aside from comparing against full self-attention, we also compare our model against the SOTA-specialized
model on each of our experimented data modalities (sequences, graph, and point cloud).

Sequences. In Table 2, our model has competitive results against many other efficient transformers and
the full attention transformer. From the table, it can be seen that MEGA (Ma et al., 2023b) and S4 (Gu
et al., 2022) have the highest performance. This is true and expected because recurrent and locality via
EMA are very strong inductive bias, making the model only work for sequences. Therefore, it is natural
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Table 2: (Long Range Arena) Accuracy on the full suite of long range arena (LRA) tasks. Bold indicates
best sequence-models while underline indicates best data modality agnostic models.

Method ListOps Text Retrieval Image Pathfinder Modality
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 Sequence
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 Any
Performer (Choromanski et al., 2021) 18.01 65.40 53.82 42.77 77.05 Any
Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 Any
Luna-256 (Ma et al., 2021) 37.98 65.78 79.56 47.86 78.55 Any

Transformer (Vaswani et al., 2017) 37.11 65.21 79.14 42.44 71.83 Any

S4 (Gu et al., 2022) 88.65 76.02 87.09 86.09 86.05 Sequence
MEGA (Ma et al., 2023b) 63.14 90.43 91.25 90.44 96.01 Sequence

hard-SAMSA (Ours) 41.12 65.42 81.89 48.24 72.27 Any
soft-SAMSA (Ours) 41.88 65.53 82.05 48.73 81.97 Any

Table 3: Experimental results on Peptides func and Peptides struct. The results of methods other than ours
are taken from their respective works and LRGB (Dwivedi et al., 2022). We report the means and standard
deviations of 4 random seeds.

Method Peptides Struct
MAE ↓

Peptides Func
AP ↑

GCN (Kipf & Welling, 2017) 0.3496 ± 0.0013 0.5930 ± 0.0023
GINE (Xu et al., 2019) 0.6346 ± 0.0071 0.5498 ± 0.0079
GatedGCN (Bresson & Laurent, 2017) 0.3420 ± 0.0013 0.5864 ± 0.0077
GatedGCN + RWSE (Bresson & Laurent, 2017) 0.3357 ± 0.0006 0.6069 ± 0.0035

Drew-GCN + LapPE (Gutteridge et al., 2023) 0.2536 ± 0.0015 0.7150 ± 0.0044
GraphGPS + LapPE (Rampášek et al., 2023) 0.2500 ± 0.0005 0.6535 ± 0.0041
GRIT (Ma et al., 2023a) 0.2460 ± 0.0012 0.6988 ± 0.0082
Graph VIT (He et al., 2023) 0.2449 ± 0.0016 0.6942 ± 0.0075
GraphMLP Mixer (He et al., 2023) 0.2475 ± 0.0015 0.6921 ± 0.0054
MPNN + VN + RWSE (Cai et al., 2023) 0.2529 ± 0.0009 0.6685 ± 0.0062

24-layer hard-SAMSA (ours) 0.2458 ± 0.0013 0.7221 ± 0.0042
24-layer soft-SAMSA (ours) 0.2519 ± 0.0011 0.7171 ± 0.0051

that our method, which is designed for multiple-data modalities, cannot outperform methods like those.
Against weaker to no inductive bias like the rest, we achieved better performance on every task except text
classification (losing Luna-256 by 0.25%).

Graph. In Table 3, our model has outperformed most methods in the two tasks we tested. This shows the
efficacy of our newly proposed Graph-PE. Note that, our method’s learnable positional encoding is computed
cheaply, and how cheap the computation is best represented in Table 4. The table shows that our entire
model computes everything even before other methods finish their positional encoding computation. It also
shows the efficacy of the SAMSA model as a very deep network, which is also different from traditional graph
learning methods which cannot extend beyond 8 layers due to over-smoothing.

Table 4: Runtime of Graph Positional Encoding on one epoch on A100 compared to our 24-layer SAMSA
model. The runtime of LapPE and RWPE are taken from (Dwivedi et al., 2022).

Method LapPE RWPE SAMSA (whole model)

Peptides Struct 73s 53s 35s
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Table 5: Inference time (in seconds) of the networks for ModelNet40 classification test split in 1 A100 and 8
CPUs with a batch size of 32. The results of PointNet and DGCNN are taken from (Kaba et al., 2023).

Method PointNet DGCNN hard-SAMSA (ours) soft-SAMSA (ours)

Inference Time 18s 23s <1s 1s

Table 6: Experimental results on ModelNet40 dataset (Wu et al., 2015) and part segmentation results on
ShapeNetPart dataset (Chang et al., 2015) against point-cloud specialized baselines.

Method ModelNet40 ShapeNetPart
mAcc↑ OA↑ c. IoU↑ i. IoU↑

PointNet (Charles et al., 2017) 86.2 89.2 80.4 83.7
Set Transformer (Lee et al., 2019) - 90.4 - -
PointNet++ (Qi et al., 2017) - 91.9 81.9 85.1
SpecGCN (Wang et al., 2018) - 92.1 - -
PointCNN (Li et al., 2018) 88.1 92.2 84.6 86.1
DGCNN (Wang et al., 2019) 90.2 92.2 82.3 85.1
PointWeb (Zhao et al., 2019) 89.4 92.3 - -
SpiderCNN (Xu et al., 2018) - 92.4 81.7 85.3
PointConv (Wu et al., 2019) - 92.5 82.8 85.7
Point2Sequence (Liu et al., 2019) 90.4 92.6 - 85.2
KPConv (Thomas et al., 2019) - 92.9 85.1 86.4
InterpCNN (Mao et al., 2019) - 93.0 84.0 86.3
Point Transformer (Zhao et al., 2021) 90.6 93.7 83.7 86.6
hard-SAMSA (Ours) 88.9 91.3 83.8 85.8
soft-SAMSA (Ours) 88.7 91.7 - -

Point Cloud. Performance-wise, Table 6 shows that SAMSA has competitive results against other point
cloud models. This is mainly because our model does not include any data-modality-specific inductive bias
(like the usage of kNN for locality heuristic); therefore, it is susceptible to overfitting in scenarios where data
is not abundant. Our method is also much faster than others, up to 18× faster than PointNet (which is the
most small, simple, efficient point cloud model), as shown in Table 5.

6 Conclusion

SAMSA (SAMpling-based Self-Attention) mechanism addresses the limitations of traditional transformers by
reducing the quadratic complexity typically associated with self-attention. Unlike other efficient transformers
that are often data-modality-specific, SAMSA provides a versatile, context-aware linear complexity solution
that can be applied across various data modalities. By employing a differentiable sampling method to focus
on the most important tokens, SAMSA achieves competitive or even state-of-the-art results on multiple
benchmarks. Additionally, SAMSA’s sparse formulation during inference minimizes computational costs,
offering faster inference times with little in performance, and in some cases, even outperforming full self-
attention transformers.

Limitations. Despite the promising results achieved with SAMSA, there are certain limitations on the
misaligned gradients of hard sampling formulation, which makes our model hard to converge in more difficult
optimization problems (Pathfinder). This misaligned gradient issue in hard sampling methods is mostly from
the misestimation of gradients of the non-chosen path. We believe that future work should focus more precise
gradient estimation would result in an inference-fast model with much better accuracy.
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A Datasets

ModelNet40. The ModelNet40 dataset (Wu et al., 2015) consists of 12,311 pre-aligned shapes divided
into 40 classes, where the train and test sets consist of 9,843 instances and 2,468 instances respectively.
ModelNet40 is the pioneer large-scale 3D CAD dataset. Unlike previous CAD datasets (Shilane et al., 2004),
ModelNet40 is the pioneer large-scale dataset that is diverse in terms of both class and samples per class.

ShapeNetPart. The ShapeNetPart dataset consists of 16,881 pre-aligned 3D shapes from 16 categories and
is a part of a larger dataset: ShapeNetCore (51,300 3D models) (Chang et al., 2015). The 3D shapes in the
ShapeNetPart dataset are annotated with 50 segmentation parts in total representing virtual real-world 3D
semantic models. ShapeNet provides a diverse variety of shape annotations and corresponding shapes. The
full ShapeNet dataset a is multitude containing upright and front orientation vectors, parts and keypoints,
shape symmetries, but we only account for the part-segmenting task in our work.

Long Range Arena. The Long Range Arena (LRA) (Tay et al., 2021) is a composition benchmark of
5 tasks: ListOps (Nangia & Bowman, 2018), ImDB review (Maas et al., 2011), ACL Anthology Network
(Radev et al., 2009), Grayscaled CIFAR-10 (Krizhevsky & Hinton, 2009), and Pathfinder (Linsley et al.,
2018). These five tasks are all classification and they feature very long sequences: ListOps (2,048 tokens),
ImDB review (1,024 tokens), ACL Anthology Network (4,096 tokens), Grayscaled CIFAR-10 (1,024 tokens),
and Pathfinder (1,024 tokens). All five tasks involves tackling long-ranged data structures and manifold
categorizations, challenging networks’s generalization powers as well as memory and time efficiencies.

Long Range Graph Benchmark. The Long Range Graph Benchmark (LRGB) (Dwivedi et al., 2022)
is a graph composition of five datasets. But in our work, we only consider two peptide molecular tasks:
Peptides-struct and Peptides-func. The chemical structures and features of these peptides are represented
as graph of around 155 nodes and diameter of around 57. These challenges are suitable for evaluating long
range receptive fields of graph-based deep learning networks. Peptides-struct and Peptides-func are much
similar, except the former is a graph regression task while the other is a graph classification task.

B Training Strategies and Data Preprocessing

We use the pytorch framework (Paszke et al., 2019) to conduct our empirical experiments.

Here is the list of the common hyperparameters:

• Optimizer: AdamW (Loshchilov & Hutter, 2019)

• Batch size: 32

• Learning rate: 0.001

• β1, β2: 0.9, 0.999

• Learning scheduler: Cosine Annealing

• Learning rate warm-up: Linear Warmup-2000 steps

• Gradient Clipping: Max Gradient Norm (2.0)

Our training phase details can be visited in Table 7.

As for the input preprocessing, our works are as follows:

• Long Range Arena: We simply use one-hot encoding vectors as inputs.

• Long Range Graph Benchmark: We input the whole graph, with both node and edge as tokens.
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Table 7: Training hyperparameter details.

Task Dataset Learning Rate Gradient Clipping Weight Decay No. of Epochs

Point Cloud ModelNet40 0.002 2.0 0.1 200/600
ShapeNetPart 0.002 2.0 0.1 600

Sequence

ListOPS 0.001 2.0 0.01 50
Text 0.001 2.0 0.01 50
Retrieval 0.001 2.0 0.01 50
Image 0.001 2.0 0.01 50
Pathfinder 0.001 2.0 0.01 50

Graph Peptides-struct 0.001 2.0 0.01 240
Peptides-func 0.0004 2.0 0.01 160

• ModelNet40: Following previous work (Charles et al., 2017), we use farthest point sampling to
sample 1024 initial points with normals.

• ShapeNetPart: We operate on the initial 2,500 point-normal without any change to the dataset.

All of the classification task training processes utilize Cross Entropy Loss, without label smoothing normaliza-
tion. For Peptides-struct, we use SmoothL1Loss for optimization as the measuring metric is Mean Absolute
Error (MAE). For Peptides-Func, we use threshold = 0.5 for Average Precision computation, implying we do
not tune threshold parameter based on training data, aligning with previous methods.

C Architectural Specification

Table 8 shows our model’s architectural hyperparameters, for reproducibility purposes.

Table 8: Architectural details.

Dataset ndepth dmodel dFFN nheads pdropout pdroppath

ModelNet40 6 256 768 8 0.1 0.1
ShapeNetPart 8 256 768 8 0.1 0.1
LRA-ListOPS 6 256 768 8 0.1 0.0
LRA-Pathfinder 6 128 512 8 0.3 0.0
LRA-Text 4 128 512 8 0.3 0.0
LRA-Image 8 128 512 8 0.3 0.0
LRA-Retrieval 6 128 512 8 0.3 0.0
LRGB-Peptides-Func 24 128 512 8 0.3 0.2
LRGB-Peptides-Struct 24 128 512 8 0.3 0.2

LRA Tasks use Sinusoid-1D positional encodings.

D Miscellaneous

ST-Gumbel-Sigmoid’s Formula:
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GumbelSigmoid(π)[i] ≜ 1
1 + exp ((πj + gj)/τ) ,

ST-GumbelSigmoid(π) ≜ 1
{

1, if π ≤ 0,

0, otherwise,

∂ST-GumbelSigmoid/∂π ≜ ∂GumbelSigmoid/∂π,

where gi are independent and identically samples from Gumbel(0,1) distribution, πi are the unnormalized
logits, and τ is the temperature parameter that controls the smoothness of the distribution.

Implementation of our Graph-Bridge PE in PyTorch:

class GraphBridge(nn.Module):
### Generate Randomized Absolute Positional Encoding for Graphs.
### Input: node_features (b, n_nodes, d_nodes), edge_features (b, n_edges, d_edges),

connection (b, n_edges, 2)↪→

def __init__(self, d_model, d_random_feature):
super().__init__()
self.d_model = d_model
self.d_random_features = d_random_feature
self.hadamard_coeffs_l = nn.Parameter(torch.ones(1, 1, self.d_random_features),

requires_grad=True)↪→

self.hadamard_coeffs_r = nn.Parameter(torch.ones(1, 1, self.d_random_features),
requires_grad=True)↪→

self.mlp_node, self.mlp_edge, self.mlp_node_pe = MLP(...), MLP(...), MLP(...)

def forward(self, node_features, edge_features, mask_node, mask_edge, connection,
**kwargs):↪→

b, n_nodes, _ = node_features.shape
node_random_positional_l = torch.randn(b, n_nodes, self.d_random_features,

device=node_features.device).unsqueeze(2) *
F.softplus(self.hadamard_coeffs_l)

↪→

↪→

node_random_positional_r = torch.randn(b, n_nodes, self.d_random_features,
device=node_features.device).unsqueeze(2) *
F.softplus(self.hadamard_coeffs_r)

↪→

↪→

node_random_positional = torch.cat([node_random_positional_l,
node_random_positional_r], dim=2)↪→

node_features_add_pe =
self.mlp_node_pe(node_features).reshape(node_features.shape[0],
node_features.shape[1], 2, self.d_random_features)

↪→

↪→

node_random_positional = node_random_positional + node_features_add_pe
connection = connection.unsqueeze(-1).expand(-1, -1, -1, self.d_random_features)
edge_pe = torch.gather(F.pad(node_random_positional, (0, 0, 0, 0, 0,

edge_features.shape[1])), dim=1, index=connection)↪→

edge_pe = torch.subtract(edge_pe[:, :, 0, :], edge_pe[:, :, 1, :])
node_features = self.mlp_node(torch.cat([node_features,

node_random_positional.reshape(b, n_nodes, 2 * self.d_random_features)],
dim=2))

↪→

↪→

edge_features = self.mlp_edge(torch.cat([edge_features, edge_pe], dim=2))

return {
'x': torch.cat([node_features, edge_features], dim=1),
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'mask': torch.cat([mask_node, mask_edge], dim=1),
'n_nodes': n_nodes,
'n_edges': edge_features.shape[1]

}

E Learning Curves of Our Models

Figure 2, 3, 4 show the learning curve of SAMSA in various settings, providing for future understanding of
how our model learned. All of the lines are plotted with EMA-5 smoothing.
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Figure 2: Learning Curves of SAMSA models in Sequence Tasks
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Figure 3: Learning Curves of SAMSA models in Graph Tasks
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Figure 4: Learning Curves of SAMSA models in Point Cloud Tasks
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