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Abstract

Atmospheric turbulence, caused by random fluctuations in the atmosphere’s re-
fractive index, introduces complex spatio-temporal distortions in imagery captured
at long range. Video Atmospheric Turbulence Mitigation (ATM) aims to restore
videos affected by these distortions. However, existing video ATM methods,
both supervised and self-supervised, struggle to maintain temporally consistent
mitigation across frames, leading to visually incoherent results. This limitation
arises from the stochastic nature of atmospheric turbulence, which varies across
space and time. Inspired by the observation that atmospheric turbulence induces
high-frequency temporal variations, we propose ConVRT, a novel framework for
consistent video restoration through turbulence. ConVRT introduces a neural video
representation that explicitly decouples spatial and temporal information into a spa-
tial content field and a temporal deformation field, enabling targeted regularization
of the network’s temporal representation capability. By leveraging the low-pass
filtering properties of the regularized temporal representations, ConVRT effec-
tively mitigates turbulence-induced temporal frequency variations and promotes
temporal consistency. Furthermore, our training framework seamlessly integrates
supervised pre-training on synthetic turbulence data with self-supervised learning
on real-world videos, significantly improving the temporally consistent mitigation
of ATM methods on diverse real-world data. More information can be found on
our project page: https://convrt-2024.github.io/

1 Introduction

Atmospheric turbulence poses a significant challenge in long-range imaging applications, causing
unique distortions in captured videos. These turbulence-distorted videos suffer from spatially-varying
and time-varying degradations, including blur and warping effects, due to the random fluctuations
of the refractive index in the atmosphere. These distortions significantly hinder the performance
of computer vision applications like object detection, recognition, and surveillance systems by
obscuring the true shapes, edges, and visual details of objects. Therefore, this work focuses on Video
Atmospheric Turbulence Mitigation (ATM), aiming to recover videos degraded by these atmospheric
distortions.

Mathematically, the process of capturing video through atmospheric turbulence can be modeled by
the following equation

∗Equal contributions † Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://convrt-2024.github.io/


Original

t0

t1

t2

DATUM + ours

t0

t1

t2

DATUM

t0

t1

t2

TMT

t0

t1

t2

VRT

t0

t1

t2

Figure 1: Temporally consistent restoration in video ATM is challenging. State-of-the-art methods
like DATUM (2) (CVPR’24) and TMT (3)(TCI’23), designed for video ATM, fail to maintain
temporal consistency in real-world atmospheric turbulence. For instance, they produce flickering
artifacts on a static pole.
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where Bt and Tt are blur and tilt process at t time stamp. ◦ denotes the application of tilt followed by
blur (1).

As described by Equation (1), the key challenge arises from the stochastic nature of atmospheric
turbulence, which varies across space and time, making temporally consistent video restoration
difficult. Figure 1 illustrates the challenge of temporal inconsistency by showing a static scene
captured with a stationary camera and object. Despite the static setup, the atmospheric turbulence
introduces erratic movements of the stationary traffic cone across frames, causing flickering artifacts
in the resulting video sequence. Notably, even state-of-the-art methods like DATUM (2), designed
for video turbulence mitigation, fail to produce temporally consistent mitigation results, result in
flickering video. This underscores the critical need for novel solutions tailored to address the challenge
of temporal consistency in video atmospheric turbulence mitigation.

1.1 Current State-of-the-Art in Atmospheric Turbulence Mitigation

Table 1: Comparison of recent supervised (S), self-
supervised (SS), and hybrid (S+SS) learning approaches for
image and video ATM.

Supervision Method Capability Critical Performance Factors

S

TSRWGAN (4) Static Scene Sequences Adversarial Learning
TurbNet (5) Image Advanced Simulator
PiRN-SR (6) Image Advanced Simulator

TMT (7) Video Physically-Grounded Model
DATUM (2) Video Physically-Grounded Model

Turb-Seg-Res (8) Video Advanced Simulator

SS

Mao et al. (9) Image Lucky Imaging & Denoisers
Li et al. (10) Image Degradation Est

TurbuGAN (11) Static Scene Sequences Adversarial Sensing Concept
NeRT (12) Static Scene Sequences Degradation Est

Diff. Template (13) Static Scene Sequences Optical Flow

S+SS ConVRT (ours) Video Representation Regularization

To address this complex and variable
degradation in images and videos, var-
ious methodologies have been devel-
oped. Current state-of-the-art meth-
ods can generally be categorized into
supervised and self-supervised learn-
ing manner.

Supervised learning techniques in
ATM use turbulence simulators to gen-
erate paired training data (clean and
distorted images/video) that can be
used for training (14; 15; 16; 1; 17;
18). Fig.3(A) and the supervised learn-
ing section of Table 1 depict methods
that achieve significant results based
on large amounts of paired data. Despite the continual evolution of simulators, the persistent gap
between simulated and real-world atmospheric turbulence poses challenges for this design in han-
dling unseen real-world data. In videos, this drawback is further amplified, leading to issues like
temporally inconsistent mitigation. To address this temporal inconsistency issue, in addition to better
simulators, enlarging the dataset and model capacity are necessary, which substantially increases the
computational costs of training.

Self-supervised learning approaches for ATM employ internal learning techniques to leverage data
priors such as lucky images, internal data distributions, or blind degradation estimation, as depicted
in Fig. 3(B) and self-supervised learning section of Table 1. A key advantage of these methods is
their test-time optimization capability, allowing them to adapt to any test data. However, to date
these approaches have not been used to enforce temporal consistency in video ATM. Furthermore,
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Figure 2: Inspiration of our method: Atmospheric turbulence introduces high-frequency temporal
variations in videos due to the chaotic motion of air caused by temperature gradients and other energy
sources. These variations manifest as time-varying tilt and blur, deviating from the ground truth,
as evident in the rapidly fluctuating patterns along the temporal dimension (vertical axis) of the
y-t slice of the turbulence-distorted video (left). In contrast, the restored video of SOTA method
DATUM (2) (right) exhibits smoother temporal variations, indicating the mitigation of turbulence-
induced distortions. This key insight highlights the potential for regularizing temporal information to
effectively restore videos affected by atmospheric turbulence.

because they don’t exploit accurate learned image priors, the performance of self-supervised methods
in real-world turbulence mitigation often falls short of supervised learning approaches.

This paper develops a hybrid algorithm that can consistently mitigate real-world atmospheric turbu-
lence across video frames. Our pipeline can leverage the knowledge encoded in pre-trained models
while leveraging test-time optimization to adapt to the complexities of real-world turbulence. As
shown in Fig. 3(C) and the final section of Table 1, our pipeline leverages the strengths of both
self-supervised learning and simulation-based pre-training.

1.2 Motivation and Contribution

Our work is motivated by the insight, illustrated in Figure 2, that state-of-the-art ATM methods
struggle to remove the temporal distortions introduced by turbulence. That is, while existing methods
are reasonably effective at removing the spatial distortions (e.g., blur) introduced by turbulence, they
do not effectively remove the temporal distortions.

To address this challenge, we develop an approach that explicitly decouples spatial and temporal
information. This method leverages the low-pass filtering properties of neural networks to reduce
turbulence-induced degradations. Specifically, we propose a self-supervised method called ConVRT
(Consistent Video Restoration through Turbulence). ConVRT forms a neural representation of
the reconstucted video that explicitly decouples spatial and temporal information: The video is
represented with a spatial content field and a temporal deformation field. This decoupling allows
ConVRT to effectively regularize the temporal information while preserving spatial information and
fine details.

Through extensive evaluations, we demonstrate that ConVRT substantially improves temporally
consistency while also marginally improving per-frame restoration quality.

2 Related Work

Implicit neural representations. Our work leverages a coordinate-based implicit neural repre-
sentation (INRs), which has been commonly adopted to model 2D images or 3D videos as multi-
layer perceptions (MLPs). INRs take 2D pixel coordinates (x, y), or 3D pixel coordinates with
temporal encoding, (x, y, t) and output the corresponding pixel values. These INRs demonstrate
exceptional performance when fitting images (19; 20; 21; 22; 23; 24; 25), videos (26; 22), 3D
shapes (27; 28; 26; 29; 30; 31), and optical components (32). Not only they are able to represent
these 2D or 3D signals, but they also show strong priors for solving inverse problems, such as image
super resolution (33), phase retrieval (34), and reducing optical aberration (35; 36; 37; 38).

Neural video representation. Our work aligns closely with the evolving field of neural video
representation (39; 40; 41; 42). While there are existing approaches (43; 44; 42; 45) that seek to
represent a video into decomposed layers, these primarily focus on clean videos and are not applicable
to videos with severe degradation turbulence. Our work extends the application of neural video
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Figure 3: Comparison of different learning approaches for image and video ATM. (a) ATM methods
in supervised learning face challenges in domain adaptation for real-world data. (b) Self-supervised
learning ATM methods mostly explore static video sequences, outputting one frame from multiple
frames as input. (c) Our hybrid pipeline is tailored for video ATM, combining supervised pre-training
and self-supervised learning to achieve consistent video restoration through turbulence

representation to scenarios heavily impacted by atmospheric turbulence. This extension is not trivial,
as it involves addressing the unique challenges posed by the dynamic and unpredictable nature of
turbulence, which are not considered in conventional video representations.

Atmospheric turbulence mitigation. Attempts to mitigate atmospheric turbulence (46; 47) have
applied optical flow (9; 48), B-spline grid (49), and diffeomorphism (50) to unwarp each distorted
image and then fuse and combine these registered distorted images into a clean and sharp image. The
fusion is usually modeled as patch-wise stitching (9) or blind deconvolution (51). Recent development
of high-performance GPUs and fast turbulence simulators (16; 18; 17; 15; 14) leads to new progress
in turbulence mitigation (15; 5; 11; 7; 12). However, previous efforts tend to overlook the importance
of temporal consistency on the reconstructed video. Our method, ConVRT, is specifically designed to
restore temporal consistency with on test-time optimization of a neural video representation.

Blind Video Restoration via deep video prior. Supervised video restoration methods (52; 53; 54; 55)
have made significant advancements but are constrained by the need for paired data, which increases
the value of blind video restoration. One promising direction involves leveraging deep priors. The
deep video prior (DVP) and DVP-based blind video consistency methods (56; 57) use convolutional
neural networks (CNNs) to learn image operators that exploit the implicit priors in CNNs to remove
video artifacts. These approaches have demonstrated impressive results in tasks such as colorization
and white-balancing. However, turbulence mitigation presents a more complex challenge compared to
these common degradations, involving spatially and temporally varying blur and tilt. This complexity
raises unexplored questions for these types of methods

3 Method

3.1 Overview of the Pipeline

The framework of our method, ConVRT, is presented in Figure 4. In this subsection, we provide a
high-level overview covering the design inspiration, the video representation mechanism, and the
training process.

Design Inspiration. As discussed in Section 1.2, the core design logic of ConVRT is to apply
temporal-wise regularization in video representation learning. For the representation, our method is
inspired by a series of works on tensor decomposition, commonly used to parameterize 3D volumes
in implicit neural representations (INR). These approaches enhance the ability to represent 3D signals
while reducing the number of required parameters (33; 58; 59). Building upon this, we developed the
ConVRT method.

Video Representation. ConVRT represents videos using two main components: the 3D Spatial-
Temporal Deformation Field (Tfield) and the 2D Spatial Content Field (Sfield). The process begins
with Tfield, which receives the pixel location (x, y, t) as input, where (x, y) are spatial coordinates
and t is the temporal frame index. Tfield outputs deformation offsets (∆x,∆y), indicating changes in
the pixel’s spatial position across frames relative to a canonical frame. These offsets are then used by
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Figure 4: Illustration of the proposed method. ConVRT represents a video with two fields: the
Temporal Deformation Field (Tfield) and the Spatial Content Field (Sfield). Regularization is applied
by constraining the dimensions of the Temporal Feature Map. Similarly, reducing the size of the
deformation MLP serves as additional regularization to promote temporal consistency.

Sfield. Sfield queries the Canonical Spatial Feature Map (C) at the modified location (x+∆x, y+∆y)
to retrieve the corresponding feature from a trainable feature map. This feature is subsequently
processed by an MLP to predict the RGB intensity values for the pixel location (x, y, t).

Training Overview. During training, the trainable parameters include all feature maps and the
Multi-Layer Perceptrons (MLP) described below. The loss function measures the difference between
the predicted RGB intensity values and the corresponding pixel colors in the restored video, obtained
using any ATM method. Since no ground-truth data is available, ConVRT is designed to overfit each
partially restored video; however, its limited capacity for capturing temporal information prevents it
from overfitting to turbulence artifacts

3.2 Temporal Deformation Field Tfield with Regularization

We represent the input video’s spatial-temporal features using two main components: the Spatial
Feature Map and the Temporal Feature Map. The Spatial Feature Map (M ) acts as a dictionary for
spatial features, with dimensions RH×W×Q1 , where H is the frame height, W is the frame width, and
Q1 is the number of spatial feature channels. Each pixel coordinate (x, y) serves as a key to retrieve
the corresponding spatial feature vector Mx,y ∈ RQ1 . The Temporal Feature Map (N ) functions as a
dictionary for temporal features, with dimensions RTres×Q1 . Here, Tres is the regularized temporal
resolution and Q1 is the number of temporal feature channels.

To construct the spatial-temporal feature vector Vx,y,t at a specific pixel location (x, y, t), we first
query the Spatial Feature Map M using the pixel coordinates (x, y), extracting the spatial feature
vector Mx,y ∈ RQ1 . Next, we query the Temporal Feature Map N using the time coordinate
t, extracting the temporal feature vector Nt ∈ RQ1 . These vectors are then combined using the
Hadamard product, which performs element-wise multiplication, to form the spatial-temporal feature
vector:

Vx,y,t = Mx,y ⊙Nt (2)

This Hadamard product effectively combines the spatial and temporal features, creating a compact
and efficient representation of the video’s spatial-temporal characteristics. This Vx,y,t is then fed into
a compact MLP, referred to as the deformation MLP. The details of the deformation MLP are provided
in the supplementary material. The deformation MLP outputs the offsets (∆x,∆y) necessary for
warping the canonical spatial feature map.

To regularize the temporal representation capability of the Temporal Feature Map (N ), we constrain
its dimensions to RTres×Q1 , where Tres is much smaller than the total number of video frames
(T ). Consequently, multiple neighboring frames share the same temporal feature. For example,
frames at t− 1, t, and t+ 1 may query the same temporal feature Nt due to the reduced temporal
resolution. Additionally, we define the deformation MLP with a reduced number of parameters. Both
regularizations decrease the representation capacity of the temporal features, promoting smoother
and more consistent temporal dynamics across frames, as inspired by our motivation experiment.
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3.3 Spatial Content Field

The Spatial Content Field focuses on accurately representing the spatial details of each video frame.
Unlike the Spatial Feature Map (M ) used in the Temporal Deformation Field, we initialize a new
optimizable feature map, denoted as the Canonical Spatial Feature Map (C), with dimensions
RH×W×Q2 , where H is the frame height, W is the frame width, and Q2 is the number of spatial
feature channels specific to this field.

Each pixel coordinate (x, y) is adjusted by the deformation offsets (∆x,∆y), resulting in new
coordinates (x + ∆x, y + ∆y). These adjusted coordinates are then used to query the Canonical
Spatial Feature Map (C), retrieving the spatial feature vector Cx+∆x,y+∆y ∈ RQ2 . These spatial
features are processed by a Content MLP, which transforms the spatial feature vector Cx+∆x,y+∆y

into the final RGB intensity values for the corresponding pixel. The details of the Content MLP are
provided in the supplementary material. This transformation ensures that the spatial details of the
video frame are accurately captured and represented.

3.4 Training Objectives

Temporal Consistency Regularization. To ensure temporal stability across video frames, we use a
disparity estimation network (MiDas (60)) to calculate pixel-wise disparities. These disparities serve
as weights for the predicted warp (one of Dfield’s outputs), helping to maintain spatial consistency
over time. The loss is defined as:

Ltemp = (1− Disparity(I)) · ∥Predicted Warp∥1 (3)

where Disparity(I) measures the pixel-level disparity, and ∥Predicted Warp∥1 enforces sparsity in
the grid changes. The design of Ltemp minimizes the L1 norm of the predicted warp, conditioned
by 1 − Disparity(I), to prioritize consistency in far regions based on the depth information. This
focused approach on temporal consistency significantly reduces the propagation of turbulence-induced
distortions, ensuring a smooth transition between frames.

Similarity Loss. The Similarity Loss Term is given by:

Lsim = λmseLmse + λssimLssim + λlpipsLlpips (4)

where λmse, λssim, and λlpips are weights for each term. This loss term assesses the fidelity of the
predicted output compared to the outputs of arbitrary ATM methods, incorporating Mean Squared
Error (MSE), Structural Similarity Index Measure (SSIM) (61), and Learned Perceptual Image
Patch Similarity (LPIPS) (62). This multifaceted approach ensures a comprehensive evaluation of
reconstruction quality.

Overall Loss. The overall loss combines the similarity loss with temporal consistency and semantic
enhancement:

Ltotal = Lsim + λtempLtemp. (5)

4 Experiments

4.1 Datasets and Training Details

We adopt several real-world datasets for evaluation, including the OTIS (63), HeatChamber (5), subset
of BVI-CLEAR dataset (64), TSR-WGAN dataset (4) and DOST (65). We trained the ConVRT
model individually on each video clip with a learning rate of 2× 10−3, using the Adam optimizer
(66). For each video clip, the batch size equals to the number of frames in that clip. The spatial
resolution of both the trainable spatial feature map and the canonical spatial feature map matches the
original frame resolution after square cropping. The temporal resolution parameter Tres was set to 5,
with parameters Q1 and Q2 configured to 128 and 256, respectively. More details about the network
settings are provided in the supplementary material. Training was conducted on a single RTX A6000.

4.2 Evaluation Strategy

We selected VRT(52), TMT(3), and DATUM(2) as the base video methods for ConVRT due to their
state-of-the-art performance in video restoration and video ATM. TurbNet(5) is selected for base
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Figure 5: Visualization of our method’s effectiveness in mitigating real-world atmospheric turbulence
compared to existing methods. The leftmost image shows the original frame with a green box marking
the zoom-in crop area for KLT tracking and a red line for the Y-t slice, shown in the bottom left. The
right side displays two rows: the first shows zoom-in KLT tracking results for baseline methods and
their outputs enhanced by our method, and the second shows zoom-in Y-t slices highlighting the
temporal consistency achieved. Note the significant reduction in erratic movements in our results.

image method. We also directly applied ConVRT to the original video without the base methods to
assess its standalone performance. To evaluate the consistency of turbulence removal in videos, we
employed four metrics for quantitative evaluation and two interframe-related methods for qualitative
assessment.

Temporal Consistency and Per-frame Quality. We used PSNR and SSIM to measure the per-frame
reconstruction quality. Following (67), we utilized the average warp error to quantify the temporal
consistency of the restored video. The warp error between two consecutive frames is defined as:

Ewarp(Vt, Vt+1) =
1∑N

i=1 M
(i)
t

N∑
i=1

M
(i)
t

∣∣∣V (i)
t − V̂

(i)
t+1

∣∣∣2
2
, (6)

where V̂
(i)
t+1 is the warped frame by optical flow at time t+ 1 and M

(i)
t ∈ 0, 1 is the occlusion mask

estimated by the methods proposed in (68). The average warp error across the entire video sequence
is calculated as:

Ewarp(V ) =
1

T − 1

T−1∑
t=1

Ewarp(Vt, Vt+1). (7)
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Video-based ATM Image-based ATM No Base Method Other Restoration Method
Turb Type Dataset Metrics

TMT + ConVRT Gain DATUM + ConVRT Gain TurbNet + ConVRT Gain Ori + ConVRT Gain VRT + ConVRT Gain

Ewarp ↓ 24.21 19.78 -4.43 22.43 17.77 -4.66 41.48 17.36 -24.12 24.33 16.19 -8.14 25.77 16.19 -9.58
PSNRx−t ↑ 18.45 18.60 +0.15 19.41 19.60 +0.19 18.40 19.33 +0.93 23.86 24.18 +0.32 23.84 24.18 +0.34
Flowtv ↓ 5695.27 2786.99 -2908.28 5794.12 2509.21 -3284.91 17030.68 2383.29 -14647.39 9471.83 2154.55 -7317.28 9314.95 2154.55 -7160.40
PSNR ↑ 18.41 18.59 +0.18 19.25 19.46 +0.21 18.27 18.98 +0.71 19.79 19.96 +0.17 19.69 19.96 +0.27

HeatChamber(63)

SSIM ↑ 0.67 0.68 +0.01 0.69 0.70 +0.01 0.63 0.68 +0.05 0.67 0.68 +0.01 0.68 0.68 +0.01

Real Slicetv ↓ 1365.77 387.40 -978.37 1237.91 365.09 -872.82 3124.37 638.03 -2486.34 1344.28 294.93 -1049.35 1579.10 313.47 -1265.63OTIS(63) Flowtv ↓ 7334.87 963.53 -6371.34 6742.56 871.26 -5871.30 11454.92 811.78 -10643.15 7827.12 670.35 -7156.77 8985.64 662.76 -8322.87

Slicetv ↓ 115.34 109.71 -5.63 129.34 113.92 -15.42 377.62 210.78 -166.84 172.82 104.76 -68.06 186.76 105.31 -81.45CLEAR (64) Flowtv ↓ 3916.67 960.54 -2956.13 4023.44 933.97 -3089.47 11827.17 995.37 -10831.80 8333.30 845.42 -7487.88 9120.35 852.03 -8268.32

Slicetv ↓ 129.22 135.70 +6.48 123.32 124.93 +1.61 523.47 311.07 -212.40 151.65 115.07 -36.58 168.90 118.22 -50.68TSRWGAN(4) Flowtv ↓ 2176.51 419.36 -1757.15 2279.42 411.80 -1867.61 6038.92 474.29 -5564.63 3460.89 394.22 -3066.67 3700.43 393.54 -3306.89

Table 2: Performance improvements achieved by applying our proposed ConVRT across various
model architectures and datasets. The No Base Method columns show the results when the methodol-
ogy was applied directly to the original frames, labeled as Ori. Gains are highlighted for each metric,
showing the effectiveness of ConVRT in enhancing the temporal consistency in video ATM.

GT Zoom-In GT Synth Turb TMT TMT + Ours DATUM DATUM + Ours𝒚

𝒕

Y-t Slice

Patch

Figure 6: Comparison of turbulence mitigation techniques on a synthetic dataset. Left: Ground truth
(GT) frame and corresponding Y-t slices. Right: Zoom-in views of KLT tracking (top row) and Y-t
slices (bottom row) for baseline methods and the enhancements brought by our method.

In addition to the warp loss, inspired by (69), we also calculate the Total Variation loss of the X-t
slice, Slicetv, and Total Variation of the optical flow, Flowtv, to quantitatively measure whether the
temporal variation of time slices in restored videos are small.

KLT Trajectories. We employed the KLT tracker (70) to track feature points and plot their trajec-
tories, as shown in Figure 5. KLT tracking is directly based on image gradient information, such
that common issues in turbulence restoration, i.e., blurriness, artifacts, and temporal inconsistency,
are reflected in the tracked trajectories. Smooth and coherent trajectories indicate temporally con-
sistent restoration, while erratic or discontinuous trajectories suggest the presence of artifacts or
inconsistencies.

x-t Slice. We plotted x-t slices to visualize the motion of a row of pixels, as illustrated in Figure 5. If
the video restoration is temporally consistent, the x-t slice plot will exhibit smooth and continuous
curves. In contrast, non-smooth or jagged curves in the x-t slice indicate temporal inconsistencies or
artifacts in the restored video.

4.3 Qualitative and Quantitative Improvements on Existing Methods.

Table 3: Ablation Study of Ltemp and Tres. Com-
parison of PSNRimg , SSIM, and PSNRx−t scores,
showing the impact of Ltemp and Tres. The exper-
iment is conducted on a synthetic dataset created
using turbulence simulator(15). The base model is
TurbNet.

Method Tres Ltemp PSNRImg ↑ SSIM ↑ PSNRx−t ↑
TurbNet - - 22.57 0.673 24.20
+ ConVRT 15 23.29 0.679 24.86
+ ConVRT 8 23.91 0.694 25.51
+ ConVRT 5 24.16 0.701 26.02
+ ConVRT 5 ✓ 24.31 0.709 26.05

Qualitative Real-world Cases. Our method,
ConVRT, achieves notable temporal consistency
in videos distorted by real atmospheric turbu-
lence. As shown in Figure 5, the original tur-
bulence and baseline methods exhibit "zig-zag"
KLT tracking trajectories, indicating erratic mo-
tion caused by turbulence. In contrast, incor-
porating ConVRT results in smoother trajecto-
ries, demonstrating its effectiveness in consis-
tently removing turbulence artifacts throughout
the video. The x-t slice further illustrates that
ConVRT effectively smooths row pixel motion
over time, reducing the flickering effects typi-
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Figure 7: Ablation study and canonical image visualization. Our method mitigates residual turbulence
using Ltemp and lower Tres. Canonical image is visualizvisualized from Canonical Spatial Feature
Map C.
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Figure 8: Illustration of camera shake simulation using Brownian Motion. In the Y-t slice plots,
we observe similarities between camera shake and turbulence. The plots also demonstrate the
effectiveness of our approach in handling both camera shake alone and in combination with turbulence.

Original Li et al DATUM + Ours Original Li et al DATUM + OursMao et al

Figure 9: Experimental results compare ConVRT with unsupervised and test-time optimization
methods by Li et al. (10) and Mao et al. (9) on moving objects. Both baselines fail to capture motion,
replacing moving parts with the average background, while ConVRT effectively handles them

cally observed in turbulence-distorted videos. This improved performance underscores the capability
of ConVRT to handle real-world turbulence, providing more stable and visually coherent video
sequences.

Qualitative Synthetic Cases. Similarly, on synthetic video, As shown in Figure 6, our method
enhances temporal turbulence removal when applied to baseline methods. The video dynamics gener-
ated by ConVRT closely resemble the ground-truth videos, effectively smoothing out atmospheric
turbulence. The improved KLT trajectories further demonstrate this temporal consistency.

Quantitative Results. We evaluated the performance of our proposed ConVRT method across real-
world datasets containing both static and dynamic scenes, as shown in Table 2. ConVRT demonstrates
consistent improvements across models and most of datasets, underscoring its broad applicability.
On the HeatChamber dataset, which provides real-world paired data through a controlled heating
mechanism, we calculated PSNR values to further substantiate ConVRT’s effectiveness. onVRT
consistently improves PSNR, demonstrating robust enhancement of temporal consistency, especially
given PSNR’s sensitivity to pixel misalignment.

4.4 Ablation Study

Regularized temporal resolution Tres is critical for ensuring temporal consistency. Lowering it results
in smoother transitions but loses fine details, while a higher value preserves details but increases
the risk of flickering. We conducted an ablation study on the impact of Tres and Ltemp, as shown
in Table 3, with qualitative results in Figure 7. These results demonstrate the effectiveness of our
representation field design in regularizing irregular turbulence motion.

9



Original Original + ours DATUM DATUM + ours

First Frame

End Frame

Y-t Slice

Patch

Synthetic Turbulence𝒚

𝒕

Figure 10: Mitigation capability of our method without using base restoration methods for pre-
processing. The scene is an elephant raising its head.

4.5 Analysis

Why It Works. Our method’s effectiveness stems from two key factors. First, it leverages the distinct
differences in motion patterns, particularly the regularity of optical flow directions within a short time
window, between regular object movement and atmospheric turbulence, as discussed in Section 1.2.
This distinction also enables our method to handle camera shake, which shares similar irregular
patterns with turbulence. The results of this capability are illustrated in Figure 8. Second, our method
includes a robust video representation that overcomes limitations in unsupervised methods for static
scenes. As illustrated in Figure 9, these methods often struggle on moving objects, blending them
into static backgrounds. In contrast, our approach preserves object integrity across frames, making it
well-suited for video-based turbulence mitigation.

Mitigation Capability without Base Restoration Methods. Even without a base restoration method
to provide partially restored frames, our approach could improve temporal consistency, as shown in
Figure 10. However, we recommend combining our method with other restoration techniques. This
allows user to benefit from the sharpness improvements offered by supervised methods, while also
taking advantage of the temporal consistency improvements provided by ConVRT.

Visualizing Trainable Feature Maps. We visualize the canonical image by inputting the canonical
spatial feature map into the content MLP without applying ∆x and ∆y, as shown in the Figure 7. The
canonical image contains most of the video’s content, providing a base representation from which
other frames can be derived. Consequently, the canonical spatial field in our video representation
functions similarly to a key frame in video compression, serving as a reference for other frames in
the sequence to query information.

5 Limitations

While ConVRT offers significant improvements in video atmospheric turbulence mitigation, there
are two limitations. First, as a neural representation method, ConVRT’s performance depends on
accurate video representation and currently optimized to capture motion with precision in short
clips. Extending this to longer sequences and more complex motions is a potential area for future
exploration. Second, ConVRT processes a 25-frame video at 540x540 resolution in approximately 10
minutes, including DATUM as base method. Although much faster than Mao’s (165 minutes) and
Li’s (300 minutes) methods, there is still room for improving computational efficiency, especially for
larger or more complex sequences.

6 Conclusion

In this paper, we present ConVRT, a novel approach aimed at enhancing temporal consistency in
video ATM tasks. ConVRT uses a dual-field approach—Temporal Deformation Field and Spatial
Content Field—to accurately capture spatial information while regularizing temporal information,
focusing on regular object motion rather than irregular turbulence. Combined with any ATM method,
ConVRT leads to visibly improved temporal consistency.
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A Appendix / supplemental material

A.1 MLP Network Details

Our network architecture consists of two MLPs: a content MLP and a deformation MLP. The content
MLP has 4 fully-connected layers, with an input dimension of Q1, a hidden dimension of 128, and an
output dimension of 2, representing ∆x and ∆y. The deformation MLP comprises 6 fully-connected
layers, with an input dimension of Q2, a hidden dimension of 256, and an output of 3 channels
representing RGB intensity.

A.2 Position Encoding

Position encoding for spatial and temporal indices is embedded within the trainable feature map, as
these indices are trainable. We directly use x, y, and t to query the corresponding feature tensors
from the feature maps. Notably, in the temporal feature map, neighboring features are shared across
multiple frames, with each frame weighted differently due to explicit regularization.
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Figure 11: Mitigation capability of our method without using base restoration methods for pre-
processing.

A.3 Additional Results on Mitigation Capability without Base Restoration Methods.

Additional results highlighting our method’s mitigation capability independently of base restoration
techniques are presented in Figure 11.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All those experiment details are reported in section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We didnt include error bars calculation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4 discusses the resource needed for our work
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: 1 discusses the positive influence this work could bring to related research
fields. For social-wise impact, the influence is difficult for us to figure out.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work doesn’t involve any possibility of being misused.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All related documents are well-studied.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Justification: We don’t have experiments related to human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We don’t have experiments related to human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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