
Under review as a conference paper at ICLR 2023

TEMPORAL DYNAMICS AWARE ADVERSARIAL
ATTACKS ON DISCRETE-TIME GRAPH MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world graphs such as social networks, communication networks, and rating
networks are constantly evolving over time. Many architectures have been de-
veloped to learn effective node representations using both graph structure and its
dynamics. While the robustness of static graph models is well-studied, the vul-
nerability of the dynamic graph models to adversarial attacks is underexplored. In
this work, we design a novel adversarial attack on discrete-time dynamic graph
models where we desire to perturb the input graph sequence in a manner that
preserves the temporal dynamics of the graph. To this end, we motivate a novel
Temporal Dynamics-Aware Perturbation (TDAP) constraint, which ensures that
perturbations introduced at each time step are restricted to only a small fraction
of the number of changes in the graph since the previous time step. We present a
theoretically-grounded Projected Gradient Descent approach for dynamic graphs
to find the effective perturbations under the TDAP constraint. Experiments on two
tasks — dynamic link prediction and node classification, show that our approach is
up to 4x more effective than the baseline methods for attacking these models. We
also consider the practical online setting where graph snapshots become available
in real-time and extend our attack approach to use Online Gradient Descent for
performing attacks under the TDAP constraint. In this more challenging setting,
we demonstrate that our method achieves up to 5x superior performance when
compared to representative baselines.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been shown to be vulnerable to adversarial perturbations
(Jin et al., 2020; Bojchevski & Günnemann, 2019; Dai et al., 2018; Wu et al., 2019; Zügner et al.,
2018; Ma et al., 2020a). This has raised major concerns against their use in important industrial
applications such as friend/product recommendation (Ying et al., 2018; Sankar et al., 2021; Tang
et al., 2020) and fraud detection (Zhao et al., 2021; Hooi et al., 2017). However, these advancements
in designing attack and defense mechanisms have predominantly focused on GNN models for static,
non-evolving graphs. In reality, the graph structure evolves with time as new interactions happen
and new connections are formed (Leskovec et al., 2007; Kossinets & Watts, 2006). GNN models that
incorporate the temporal information are shown to outperform their static counterparts in modeling
dynamic networks on tasks such as predicting link existence in the future (Kazemi et al., 2020;
Pareja et al., 2020; Sankar et al., 2020; Goyal et al., 2018; Chen et al., 2018).

However, the vulnerability of dynamic graph models to adversarial perturbations is less studied.
The design of adversarial attacks for dynamic graphs is challenging for two reasons — (1) Attacks
must simultaneously optimize both the edge(s) to perturb and when to perturb them, and more
importantly, (2) Attacks must preserve the original graph evolution after perturbation in order to
be less detectable. Attacks that disturb original graph evolution are not desired since they can be
detected as anomalies by defense mechanisms, e.g. graph anomaly detection methods (Akoglu et al.,
2015; Bunke et al., 2007; Cai et al., 2021). Therefore, it is crucial to formulate adversarial attacks
over snapshots such that they do not significantly alter the original change in the graph structure.

In this work, we introduce a novel Temporal Dynamics-Aware Perturbation (TDAP) constraint to
formulate evolution-preserving attacks on discrete-time dynamic graphs. This constraint asserts
that the number of modifications added at the current timestep should only be a small fraction of

1

Under review as a conference paper at ICLR 2023

Method Dynamic White-box Evasion Targeted TDAP Online

PGD (Xu et al., 2019b) 3 3 3
IG-JSMA (Xu et al., 2019b) 3 3 3
Fan et al. Fan et al. (2020) 3 3

Dyn-Backdoor (Chen et al., 2021a) 3 3
TGA (Chen et al., 2021b) 3 3 3 3

TD-PGD (proposed) 3 3 3 3 3 3

Table 1: Comparison of our attack with existing works on graph adversarial attacks. Note that an
attack is TDAP if the perturbations made are aware of the temporal dynamics.

the actual number of changes with respect to the preceding timestep. We show theoretically that
perturbations made under TDAP constraint preserves the rate of change both in the structural and the
embedding spaces. To find effective attacks under this proposed constraint, we consider a targeted,
white-box, and evasion setting. As noted in Table 1, no prior works exist that can find attacks under
our novel setting. Thus, we present a theoretically-grounded Temporal Dynamics-aware Projected
Gradient Descent (TD-PGD) approach. The locality of the constraint in time allows us to easily
extend this approach to find attacks in a more practical online setting (Mladenovic et al., 2021) that
has not been studied before for dynamic graphs. Here, perturbations are found in real-time without
any knowledge of the future snapshots. Our contributions can be summarized as follows:

1. We introduce a novel Temporal Dynamics-Aware Perturbation (TDAP) constraint to make per-
turbations in discrete-time dynamic graphs that preserves the evolution of the graphs.

2. We present a theoretically-grounded PGD-based white-box attack to find effective attacks on
dynamic graphs under the novel TDAP constraint in both offline and online settings.

3. We show that TD-PGD outperforms the baselines across 4 different datasets and 3 victim models
on both dynamic link prediction and node classification tasks.

4. We test the attacks on dynamic graphs in a novel online setting and show that the online version
of TD-PGD shows improved performance over existing baselines.

2 RELATED WORK

Representation Learning for Dynamic Graphs. GNNs have been combined with sequential mod-
eling architectures (Kazemi et al., 2020) to model dynamic graphs. For instance, discrete-time
graphs have been modeled by using GNNs and RNNs together in a pipeline (Narayan & Roe, 2018;
Manessi et al., 2020) or an embedded manner (Chen et al., 2018; Pareja et al., 2020). Attention-based
models have also been proposed to jointly encode the graph structure and its dynamics (Sankar et al.,
2020). For continuous-time graphs, both RNN (Kumar et al., 2019; Trivedi et al., 2017; 2019; Ma
et al., 2020b) and attention-based models (Rossi et al., 2020; Xu et al., 2020) have been proposed
such that embeddings are updated in real time upon an occurrence of a new event.

Adversarial attacks on graphs. Static GNNs are known to be vulnerable to adversarial attacks in
different settings (Jin et al., 2020). White-box attacks are studied assuming complete knowledge of
the underlying model Wu et al. (2019); Xu et al. (2019b). Limiting the model knowledge, gray-box
(Zügner et al., 2018) and black-box attacks (Dai et al., 2018) have also been proposed. In com-
parison, the literature on adversarial attacks for dynamic graphs is scarce. Time-aware Gradient
Attack (TGA) (Chen et al., 2021b) is a white-box evasion attack that greedily selects the perturba-
tions across time under a budget constraint. In addition, attacks to poison training data (Chen et al.,
2021a) and black-box attacks using RL approaches (Fan et al., 2020) have also been proposed.

Imperceptible perturbations. The most common strategy to formulate imperceptible attacks on
graphs is to bound the total number of perturbations. In the case of dynamic graphs, perturbations
must preserve the temporal flow to be imperceptible. Traditional anomaly detection algorithms
flag an instance to be anomalous if distance between consecutive snapshots crosses a threshold
(Akoglu et al., 2015). In particular, Graph Edit Distance and Hamming distance between adjacency
matrices have been used to monitor communication networks (Shoubridge et al., 2002; Bunke et al.,
2007). Neural approaches have looked at the consecutive change in the embedding space to detect
anomalies without feature extraction (Goyal et al., 2018; Cai et al., 2021).

2

Under review as a conference paper at ICLR 2023

3 METHODOLOGY

Problem Let G1,G2, · · · ,GT be the original graph snapshots and G′1,G
′
2 · · · ,G

′
T be the correspond-

ing perturbed snapshots. Note that Gi = (X i ,Ai) where X i ,Ai are the node features and the
adjacency matrix for snapshot i, respectively. Also, let M be a victim dynamic graph model that
we want to attack and let fM be a function that generates the corresponding node embeddings of
Gt given G1:t−1. Let ytask be the actual labels for a given task (for dynamic link prediction, these
correspond to binary labels representing link existence in the future snapshot).

Then, the objective of the attacker is to introduce structural perturbations St = A′t −At at each
timestep t < T such that the model inference at timestep T for the target entities Etg deteriorates.
More formally, the attacker solves the following optimization problem:

max
A′1,A

′
2,··· ,A

′
T−1

Ltask

(
ŷtask(fM(A′1:T−1)), ytask,Etg

)
(1)

such that C(A′1:T−1) holds

for some constraint function C on the perturbed adjacency matricesA′t for each time t. Here, ŷtask
denotes the predicted labels for the given task and Ltask is a task-specific loss, for example, a binary
cross entropy (CE) loss for link prediction.

The constraint function C is designed to ensure imperceptibility of the adversarial perturbations. In
the literature, a budget constraint has been widely used to enforce imperceptibility in graphs (Dai
et al., 2018) and computer vision (Goodfellow et al., 2014). However, this constraint only bounds
the total amount of perturbations that can be introduced by an attacker. When the input is dynamic,
as in the case of dynamic graphs, the perturbations should be constrained in the context of how
the input evolves. However, since the budget constraint completely ignores the graph dynamics, it
could lead to a drastic change in the evolution trend of the graph and thus, making the attacks easily
detectable. For instance, with the budget constraint, all the perturbations can be made at a single
time step, leading to an anomalous spike, which would be easily detected as a possible attack by
graph anomaly detection methods for dynamic graphs (Akoglu et al., 2015; Shoubridge et al., 2002;
Bunke et al., 2007). Thus, a constraint is desired that can ensure that the introduced perturbations
do not disrupt the evolving trend of the dynamic graphs.

3.1 TEMPORAL DYNAMICS-AWARE PERTURBATION (TDAP) CONSTRAINT

The simplest measure to study evolution is to consider the change in the input between consecutive
time steps. Thus, for a discrete-time input {xt}, this corresponds to considering the discrete-time
differential norm at time t, given by dxt = ‖xt − xt−1‖. Then, we propose

Proposition 1 The number of perturbations introduced to input x at time step t must not be more
than a fraction ε times the differential at t, i.e. TDAP(ε) := ‖x′t − xt‖ ≤ εdxt ∀t.

For the case of dynamic graphs, when the graph structure evolves (for example, in social networks
and transaction networks (Pareja et al., 2020; Sankar et al., 2020)), this constraint becomes ‖A′t −
At‖1 ≤ εdAt . Alternatively, a dynamic graph may also involve a temporally-evolving signal at
each node (Rozemberczki et al., 2021; Li et al., 2017; Panagopoulos et al., 2021), in which case, this
constraint becomes ‖X ′t −X t‖1 ≤ εdX t .

In this work, we focus on dynamic graph structures such that the constraint C (in Equation 1) for the
perturbations is a TDAP constraint. The optimization problem for the attacker, thus, becomes

max
A′1,A

′
2,··· ,A

′
T−1

Ltask

(
ŷtask(fM(A′1:T−1)), ytask,Etg

)
(2)

such that ∀t ∈ (1,T) : ‖A
′
t −At‖

‖At −At−1‖
≤ ε

‖A′1 −A1‖ ≤ ε1,

where ε,ε1 are given parameters for this optimization. We use ‖·‖ to denote the 1-norm of the matrix
flattened into a vector, unless otherwise mentioned.

3

Under review as a conference paper at ICLR 2023

Implications. We show that TDAP constraint has the following implications on the perturbations:

1. Perturbations under TDAP constraint preserves the average rate of structural change.
Theorem 1 Let dA = 1

T

∑
t dAt ,dA′ = 1

T

∑
t dA

′
t . Then,

dA′ ≤ αdA+ β, (3)
for some constants α,β ∈R≥0.
Proof. By the definition of the perturbation matrix Sτ , dA′t = ‖A′t −A′t−1‖ = ‖(At + St) −
(At−1+St−1)‖. Then, using triangle inequality, we get dA′t ≤ ‖At +St‖+‖At−1+St−1‖. Again
using triangle inequality, dA′t ≤ ‖At‖+ ‖St‖+ ‖At−1‖+ ‖St−1‖. Now, since ‖Sτ‖ ≤ εdAt and
‖Aτ‖ is a constant, we get dA′t ≤ εdAt + εdAt−1 +C, for some constant C.
dA′ = 1

T

∑
t dA

′
t ≤ 1

T

∑
t (εdAt + εdAt−1 +C) ≤ 2ε 1

T

∑
t dAt +C. Hence, we get that dA′ ≤

αdA+ β, for some constants α,β ≥ 0.

2. Perturbations under TDAP constraint preserves the rate of embedding change.
Theorem 2 Let dZt = ‖Zt −Zt−1‖1. Then, for some constants γ,δ ∈R≥0,

dZ′ ≤ γdZ+ δ, (4)
Proof. Note that Zt = f (At ,At−1, · · · ,A1). We consider a stacked vector of flattened matrices
∀τ ∈ [0, t] : q≤τ = (qτ ,qτ−1, · · · ,q1,0,0, · · · ,0), where qi is the flattened vector of Aτ and
we append (t − τ) 0s to make all vectors q≤i of fixed dimension t. Then, by Cauchy’s Mean
Value Theorem in several variables, we have Zt − Zt−1 ≤ ∇f · (q≤t − q≤t−1), which gives us
‖Zt −Zt−1‖ ≤ ‖∇f ‖ ‖q≤t −q≤t−1‖ by Cauchy-Schwarz inequality. We note that ‖q≤t −q≤t−1‖1 =
‖(qt−qt−1, · · · ,q2−q1,q1)‖1 =

∑
t‖qt−qt−1‖1 = T dA. Thus, we have ‖Zt−Zt−1‖1 ≤ CdA for

some constant C ≥ 0. Using Theorem 1, we get dZ′ ≤ CdA′ ≤ AdA+B, for A = Cα,B = Cβ.
By mean-value theorem, we also have dZt ≥ ‖∇ft−1‖ ‖q≤t − q≤t−1‖cos(θ) = C2dA (θ is the
angle between q≤t and q≤t−1). Hence, dZ′ ≤ γdZ+ δ for some constants γ,δ ≥ 0.

We analyze the constants in these bounds in further detail in Appendix C.

3.2 ATTACK METHODS UNDER TDAP CONSTRAINT

While the TDAP constraint allows us to limit the effect of the perturbations on the graph’s evolution,
it is not clear how one can efficiently find perturbations that maximize a loss function under this
constraint. To this end, we present two algorithms to solve the optimization problem of Equation 2.

Greedy. A greedy strategy can be adopted to find effective perturbations under our TDAP constraint.
In this approach, perturbations are selected in a greedy manner based on their gradient values with
respect to the downstream loss. However, this does not scale well as one needs to find gradient
values corresponding to all the perturbations, which would be O(T |V |), where V denotes the set of
nodes. Thus, inspired by (Chen et al., 2021b), we find the perturbations in two steps — first, we find
the top-gradient perturbation at each time step and then, select the one that reduces the prediction
probability the most. In particular, we greedily select the perturbations with the lowest probability
such that TDAP(ε) is not violated for any time-step. We defer the full algorithm to Appendix A.

Temporal Dynamics-aware Projected Gradient Descent (TD-PGD). Since the constrained opti-
mization in Equation 2 has a general continuous objective, a greedy approach is only sub-optimal
(even for a simpler convex objective) with no theoretical guarantees. A more standard approach to
do optimization under a convex constraint is to use projected gradient descent (PGD) (Boyd et al.,
2004; Bubeck et al., 2015). Since our problem is in discrete-space, we first relax it into continu-
ous space, find the solution using PGD and then, randomly round it to obtain a valid solution for
the discrete problem. In particular, we relax the perturbation matrix St into a continuous vector st
and show that a closed-form projection operator exists for the TDAP(ε) constraint. Algorithm 1
demonstrates the steps involved in this approach (TD-PGD), following the result of Theorem 3.

Theorem 3 Suppose S denotes the feasible perturbation space for the constraints ‖A′t−At‖/‖At−
At−1‖ ≤ ε for all 1 < t < T and ‖A′1 −A1‖ ≤ ε1. Then, one can project a vector at onto S using
the following projection operator:

ΠS (at) =
{
P[0,1](at −µt) if ∃µt > 0 : 1T P[0,1](at −µt) = εt
P[0,1](at) if 1T P[0,1](at) ≤ εt

(5)

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Temporal Dynamics-aware Projected Gradient Descent

Require: TDAP variables εt (from Thm. 3), Initial vector s(0), Loss function Ltask , Actual labels
ytask , Target entities Etg , Time steps T , Learning rate ηi , Iterations N , Rounding iterations Nr

Ensure: Perturbation vector s(i) preserves TDAP(ε) at every time step t
1: for i = 1 to N do
2: Gradient descent: a(i) = s(i−1) + ηi∇Ltask({Gt ⊕ s

(i−1)
t ; ∀t}, ytask , Etg)

3: Projection: For all t ∈ [1,T − 1]: s(i)t =ΠS (a
(i)
t) according to Equation 5

4: St← ROUND (s(N)
t ,Nr , {εt}) from Algorithm 4.

where εt = εdAt = ε‖At −At−1‖ for t > 1, and P[0,1](x) = x if x ∈ [0,1], 0 if x < 0, and 1 if x > 1.

Proof. Please see Appendix B for the proof.

Following (Xu et al., 2019b), we use the bisection method (Boyd et al., 2004) to solve the equation
1T P[0,1](at − µt) = εt in µt for µt ∈ [min(at − 1),max(at)]. This converges in the logarithmic rate,
i.e. it takes O(log2[(max(at)−min(at − 1))/ξ]) time for ξ-error tolerance.

3.3 ONLINE ADVERSARIAL ATTACKS

We also consider the online version of the problem in Equation 2. In this setting, the perturbations
are added in real-time, i.e. they are both immediate and irrevocable. More formally, Equation 2
must now be solved considering online updates of the optimization variables, i.e., (1)A′t is updated
at time step t without any knowledge ofAt+1:T and (2)A′t remains unchanged for future time steps.
Note that TDAP constraint must still hold forA′t at all time steps t.

Online TD-PGD. Inspired from its theoretical guarantees in online convex optimization (Zinkevich,
2003), we use Online Projected Gradient Descent for our problem. In this framework, we are given
a function ft for each step t and the goal is to choose xt in an online manner such that the regret on
the offline optimum x∗t , R(f ,x) :=

∑
t (ft(xt)− ft(x∗t)) is minimized. In our problem, as defined in

Equation 2, we need to minimize a loss h(A1:T−1) at the final time step T . To use online gradient
descent, we thus need to write h as

∑
t ft(At) for some ft . Let us assume that h is a cross-entropy

loss and that the embeddings at each time t are encoded in a sequential manner. Then,

h({At}T−1t=1) = −
∑
d∈D

y(d) logp(d, {At}) =
∑
d∈D

y(d)
∑
t

− logp(d,At |A1, · · · ,At−1)

=
∑
t

−
∑
d∈D

y(d) logp(d,At |A1, · · · ,At−1).

Thus, we can define ft(At) = −
∑
d∈D y(d) logp(d,At |A1, · · · ,At−1), which is the prediction loss

for the data points D at time step t. Algorithm 1 can then be updated to find attacks in real time,
following Online Gradient Descent. In particular, for time t, we find perturbations s(i)t by replacing

the loss in line 2 with L({Gτ ⊕ s
(i−1)
τ }tτ=1, y(t), ·). Since the projection operator for TDAP (Equation

5) depends only on the current time step t, we can independently project for the current time, i.e.
line 3 remains s(i)t =ΠS (a

(i)
t). For more details about the algorithm, refer Appendix D.

4 EXPERIMENTAL SETUP

Datasets. We use 3 datasets for dynamic link prediction — Radoslaw1, UCI 1, and Reddit2.
Radoslaw and UCI are email communication networks, where two nodes (users) are connected if
they have an email communication at time t. Reddit is a hyperlink network representing directed
connections between subreddits if there is a hyperlink from one to the other at a given timestamp
(Kumar et al., 2018). For node classification task, we use one publicly-available dataset, DBLP-5

1http://konect.cc/networks/
2https://snap.stanford.edu/data/soc-RedditHyperlinks.html

5

http://konect.cc/networks/
https://snap.stanford.edu/data/soc-RedditHyperlinks.html

Under review as a conference paper at ICLR 2023

(Xu et al., 2019a). This is a co-author network with node attributes as word2vec representations of
the author’s papers. There are 5 node labels representing the different fields that the authors belong
to. Please refer to Appendix E for more details regarding the datasets.

Attack Methods. We consider 4 different attack methods to find perturbations under TDAP con-
straint. (1) TD-PGD is a projected gradient descent with a valid projection operator for the TDAP
constraint, as specified in Algorithm 1. (2) TGA(ε) greedily selects the perturbation with the high-
est gradient value of the loss (we adapt TGA (Chen et al., 2021b) to our setting, as specified in
Section 3.2). (3) DEGREE flips the edges (adds or deletes if already there) attached with the high-
est degree nodes in the graph at each time step, while making at most εdAt perturbations. (4)
RANDOM randomly flips (add or delete) at most εdAt edges at each time step t.

Victim Models. We test the performance of the above attack methods on 3 different discrete-time
dynamic graph models. (1) GC-LSTM (Chen et al., 2018) embeds GCN into an LSTM to encode
the sequence of graphs. (2) EVOLVEGCN (Pareja et al., 2020) uses a recurrent model (RNN-
LSTM) to evolve the weights of a GCN. We use the EVOLVEGCN-O version for our experiments.
(3) DYSAT (Sankar et al., 2020) utilizes joint structural and temporal self-attention to embed.

Metrics. We use the relative drop, as defined below, to evaluate the efficacy of the attack methods.

Rel. Drop (%) =
Perturbed performance−Original performance

Original performance
× 100, (6)

where performance is evaluated using ROC-AUC for dynamic link prediction and using Accuracy
for node classification.

In order to evaluate the detectability of the attack methods, we propose a novel metric Embedding
Variability (EV) to compare the consecutive embedding difference for the perturbed graph and that
for the original graph. Consecutive embedding difference has been used to identify anomalies in
the data (Goyal et al., 2018). Here, we measure how the range of this difference changes due to the
perturbation. In particular, we consider

EV (Z,Z′) :=
∣∣∣∣∣1− maxτ dZ′τ −minτ dZ′τ

maxτ dZτ −minτ dZτ

∣∣∣∣∣ (7)

This measures the relative variability of the consecutive change in the embedding space. For the
attacks to be less detectable, this metric should be close to 0. Note that we do not directly optimize
for this metric in our constraint.

5 RESULTS

We compare the performance of different attack methods for the 3 victim models on link prediction
and node classification tasks. We also test the attack performance on dynamic link prediction in the
novel online setting. For all the experiments, we vary ε from 0 to 1 and fix ε1 =mint>1 εt := εdAt .

5.1 DYNAMIC LINK PREDICTION

In this section, we show the attack performance on the task of dynamic link prediction (Sankar et al.,
2020; Pareja et al., 2020). The task here is to predict whether a link (u,v) will appear or not at the
future timestep. The objective of the attacker, thus, is to introduce perturbations in the past time
steps to make the model mispredict link’s existence in future. We test the victim models on the final
snapshot for a set of target links. We consider 3 different sets of 100 positive and 100 negative
random targets and show the mean relative ROC-AUC drop with error bars.

Figure 1 shows the performance of different attack methods on this task across different datasets and
models. TD-PGD outperforms the other baselines in all cases, except in GC-LSTM model trained
on Reddit. Moreover, TD-PGD is able to drop the AUC by up to 4 times the baselines and lead to
∼ 100% drop in the AUC, completely flipping the prediction. We also note that TD-PGD often has
a continuously decreasing slope and its performance saturates much later than the other baselines.
The second best baseline is often TGA(ε) but in many cases, it is only as good as random. One can
also note that EVOLVEGCN shows a larger drop than the other 2 models across all datasets. This
may pertain to the lower model complexity of EVOLVEGCN compared to others. We discuss these
results in further detail in Appendix H.

6

Under review as a conference paper at ICLR 2023

TD-PGD TGA() Degree Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

60

50

40

30

20

10

0
Re

l. D
ro

p
%

(a) Radoslaw, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %
(b) Radoslaw, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

60

40

20

0

Re
l. D

ro
p

%

(c) Radoslaw, GC-LSTM

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

8

6

4

2

0

2

Re
l. D

ro
p %

(d) UCI, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0
Re

l.
Dr

op
 %

(e) UCI, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%
(f) UCI, GC-LSTM

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(g) Reddit, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(h) Reddit, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0
Re

l. D
ro

p
%

(i) Reddit, GC-LSTM

Figure 1: Attack performance on dynamic link prediction task across datasets and models.

Detectability of the attack methods: Here, we use the EV metric, as defined in Section 4, to
assess how detectable the attack methods are under our constraint. Table 2 compares the attack
performance of the best method TD-PGD at ε = 0.5 and the corresponding variability in the em-
beddings, as given by Equation 7. One can note that E is smaller than 0.5 in all but one case and
that TD-PGD is able to cause up to 90% drop in performance while changing the evolution by only
a factor of 0.22, on average. This shows that TDAP allows for undetectable yet effective attacks.
Please refer to Appendix H for more analysis.

5.2 NODE CLASSIFICATION

In this section, we compare the attack performance on the task of semi-supervised node classification
(Pareja et al., 2020). In this task, the objective is to predict node labels of a set of nodes while
knowing the labels of the other nodes at that time step.

7

Under review as a conference paper at ICLR 2023

Dataset Model Rel. Drop % EV

Radoslaw
DYSAT 47.03 (5.42) 0.04 (0.18)

EVOLVEGCN 91.61 (3.58) 0.45 (1.29)
GC-LSTM 52.63 (5.09) 0.18 (1.16)

UCI
DYSAT 4.02 (2.08) 0.14 (0.25)

EVOLVEGCN 96.21 (0.17) 0.22 (0.35)
GC-LSTM 16.12 (0.75) 0.35 (0.47)

Reddit
DYSAT 23.24 (4.18) 0.14 (0.45)

EVOLVEGCN 79.31 (3.13) 0.81 (6.37)
GC-LSTM 15.59 (1.28) 0.36 (0.59)

Table 2: Comparison of attack performance and detectability (refer Section 4) for TD-PGD at
ε = 0.5. Mean values are noted with standard deviations in the parentheses.

TD-PGD TGA() Degree Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

5

4

3

2

1

0

Re
l. D

ro
p %

(a) DBLP-5, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30
25
20
15
10

5
0

Re
l. D

ro
p

%

(b) DBLP-5, EVOLVEGCN
0.

02
0.

06
0.

10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(c) DBLP-5, GC-LSTM

Figure 2: Attack performance on node classification task for top degree nodes across models.

Figure 2 shows the effect of structural perturbations on node classification task by different attack
strategies for the 3 models. Misclassifying the labels for influential top-degree targets can sig-
nificantly impact a model’s usability in practice. Therefore, we consider the performance on 50
top-degree nodes for each class. Results show that TD-PGD outperforms the baselines in all mod-
els except DYSAT, in which all attacks perform almost equally. In particular, TD-PGD is able to
cause a 30% drop in EVOLVEGCN while the baselines only lead to a drop of 5%. We show the
performance on random targets in Appendix H and note that feature perturbations are more effective
in these cases when the structural information is sparse.

5.3 ONLINE ADVERSARIAL ATTACKS

In this section, we consider the online setting as described in Section 3.3 and compare the online
version of TD-PGD with the RANDOM and DEGREE baselines on the dynamic link prediction task.
Since the loss at the final step is not available at time step t, one cannot select the perturbations in a
greedy manner of the gradients. Therefore, we do not have a TGA(ε) baseline for this setting.

Figure 3 shows the average performance of the three methods for dynamic link prediction task on 3
datasets over 3 random seeds. Please refer Appendix H for results on node classification. TD-PGD
outperforms the other online baselines in most cases and is able to achieve competent performance
to the offline version. In particular, it shows up to 5 times improvement over the existing baselines
(for EVOLVEGCN on UCI), which is close to the offline TD-PGD as shown in Figure 1. However,
TD-PGD does not perform well in Figures 3a and 3i. Online TD-PGD perturbs the graph at time t
according to the loss at that time step rather than the final step. While it is guaranteed to give strong
bounds for a convex objective, some models may learn a complex non-convex function in its input.
We conjecture that the degradation may be due to such functions being learned in these cases.

8

Under review as a conference paper at ICLR 2023

TD-PGD Degree Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

20

10

0

10
Re

l. D
ro

p
%

(a) Radoslaw, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%
(b) Radoslaw, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(c) Radoslaw, GC-LSTM

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

4

2

0

2

Re
l. D

ro
p %

(d) UCI, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0
Re

l.
Dr

op
 %

(e) UCI, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

12.5

10.0

7.5

5.0

2.5

0.0

Re
l.

Dr
op

 %
(f) UCI, GC-LSTM

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(g) Reddit, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(h) Reddit, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0
Re

l. D
ro

p
%

(i) Reddit, GC-LSTM

Figure 3: Online Attack performance on dynamic link prediction task across datasets and models.

6 CONCLUSION

Our work has shown that state-of-the-art dynamic graph models can be effectively attacked while
preserving the temporal dynamics. We introduce a novel Temporal Dynamics-Aware Perturbation
(TDAP) constraint to devise perturbations in discrete-time dynamic graphs that preserves the graph
evolution in both the structural and embedding spaces. Next, we present an effective PGD-based
approach to find perturbations under this constraint and show improved attack performance than
baselines in both offline and online settings. We hope that our work serves as a first step towards
opening exciting research avenues on studying attacks and defense mechanisms for both discrete and
continuous-time dynamic graphs. Some limitations of our current exposition can be noted. First, the
proposed method TD-PGD is not memory-efficient and may not scale to larger graphs (more details
in Appendix G). Second, randomly rounding the solution to discrete space may lead to suboptimal
perturbations. Future work can study more effective and efficient methods to attack dynamic graphs
under TDAP constraint in the more restrictive black-box setting.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description:
a survey. Data mining and knowledge discovery, 29(3):626–688, 2015.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Horst Bunke, Peter J Dickinson, Miro Kraetzl, and Walter D Wallis. A graph-theoretic approach to
enterprise network dynamics, volume 24. Springer Science & Business Media, 2007.

Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li, and Haifeng Chen. Struc-
tural temporal graph neural networks for anomaly detection in dynamic graphs. In Proceedings
of the 30th ACM International Conference on Information & Knowledge Management, pp. 3747–
3756, 2021.

Jinyin Chen, Xueke Wang, and Xuanheng Xu. Gc-lstm: Graph convolution embedded lstm for
dynamic link prediction. arXiv preprint arXiv:1812.04206, 2018.

Jinyin Chen, Haiyang Xiong, Haibin Zheng, Jian Zhang, Guodong Jiang, and Yi Liu. Dyn-backdoor:
Backdoor attack on dynamic link prediction. arXiv preprint arXiv:2110.03875, 2021a.

Jinyin Chen, Jian Zhang, Zhi Chen, Min Du, and Qi Xuan. Time-aware gradient attack on dynamic
network link prediction. IEEE Transactions on Knowledge and Data Engineering, 2021b.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR,
2018.

Houxiang Fan, Binghui Wang, Pan Zhou, Ang Li, Meng Pang, Zichuan Xu, Cai Fu, Hai Li, and Yi-
ran Chen. Reinforcement learning-based black-box evasion attacks to link prediction in dynamic
graphs. arXiv preprint arXiv:2009.00163, 2020.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34, 2021.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dy-
namic graphs. arXiv preprint arXiv:1805.11273, 2018.

Bryan Hooi, Kijung Shin, Hyun Ah Song, Alex Beutel, Neil Shah, and Christos Faloutsos. Graph-
based fraud detection in the face of camouflage. ACM Transactions on Knowledge Discovery
from Data (TKDD), 11(4):1–26, 2017.

Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adver-
sarial attacks and defenses on graphs: A review, a tool and empirical studies. arXiv preprint
arXiv:2003.00653, 2020.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21
(70):1–73, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10

Under review as a conference paper at ICLR 2023

Gueorgi Kossinets and Duncan J Watts. Empirical analysis of an evolving social network. science,
311(5757):88–90, 2006.

Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. Community interaction and
conflict on the web. In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
pp. 933–943. International World Wide Web Conferences Steering Committee, 2018.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph
neural networks. Advances in neural information processing systems, 33:4756–4766, 2020a.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Attacking graph convolutional
networks via rewiring. arXiv preprint arXiv:1906.03750, 2019.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 719–728, 2020b.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via
rewiring. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1161–1169, 2021.

Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks.
Pattern Recognition, 97:107000, 2020.

Andjela Mladenovic, Avishek Joey Bose, Hugo Berard, William L Hamilton, Simon Lacoste-Julien,
Pascal Vincent, and Gauthier Gidel. Online adversarial attacks. arXiv preprint arXiv:2103.02014,
2021.

Apurva Narayan and Peter HO’N Roe. Learning graph dynamics using deep neural networks. IFAC-
PapersOnLine, 51(2):433–438, 2018.

George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. Transfer Graph Neural
Networks for Pandemic Forecasting. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence, 2021.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional net-
works for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 5363–5370, 2020.

Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Faloutsos, and Nagiza F
Samatova. Anomaly detection in dynamic networks: a survey. Wiley Interdisciplinary Reviews:
Computational Statistics, 7(3):223–247, 2015.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci. Chickenpox
cases in hungary: a benchmark dataset for spatiotemporal signal processing with graph neural
networks. arXiv preprint arXiv:2102.08100, 2021.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 519–527, 2020.

11

Under review as a conference paper at ICLR 2023

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Peter Shoubridge, Miro Kraetzl, WAL Wallis, and Horst Bunke. Detection of abnormal change in a
time series of graphs. Journal of Interconnection Networks, 3(01n02):85–101, 2002.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on social
apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 2269–2279, 2020.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In international conference on machine learning, pp. 3462–3471.
PMLR, 2017.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
resentations over dynamic graphs. In International conference on learning representations, 2019.

Bin Wang, Teruaki Hayashi, and Yukio Ohsawa. Hierarchical graph convolutional network for data
evaluation of dynamic graphs. In 2020 IEEE International Conference on Big Data (Big Data),
pp. 4475–4481. IEEE, 2020.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples for graph data: Deep insights into attack and defense. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4816–
4823. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963/ijcai.2019/669. URL https://doi.org/10.24963/ijcai.2019/669.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive represen-
tation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Yameng Gu, Xiao Liu, Jingchao Ni, Bo Zong, Haifeng
Chen, and Xiang Zhang. Adaptive neural network for node classification in dynamic networks.
In 2019 IEEE International Conference on Data Mining (ICDM), pp. 1402–1407. IEEE, 2019a.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–
983, 2018.

Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk:
A flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
2672–2681, 2018.

Tong Zhao, Bo Ni, Wenhao Yu, Zhichun Guo, Neil Shah, and Meng Jiang. Action sequence augmen-
tation for early graph-based anomaly detection. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 2668–2678, 2021.

Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in dynamic
graph using attention-based temporal gcn. In IJCAI, pp. 4419–4425, 2019.

Dali Zhu, Yuchen Ma, and Yinlong Liu. A flexible attentive temporal graph networks for anomaly
detection in dynamic networks. In 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pp. 870–875. IEEE, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pp. 928–936,
2003.

12

https://doi.org/10.24963/ijcai.2019/669

Under review as a conference paper at ICLR 2023

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856, 2018.

13

Under review as a conference paper at ICLR 2023

APPENDIX

A GREEDY APPROACH

Algorithm 2 Greedy Algorithm (TGA(ε))

Require: TDAP variables εt (from Equation 5), Initial perturbation vector s(0), Loss function Ltask ,
Probability function pM predicting link existence probability, actual labels ytask , Target entities
Etg , Time steps T .

1: For all t: G′t←Gt . Attack history H← φ.
2: while True do
3: for t=1 to T do
4: st← φ
5: for ntg in Etg do
6: grads[v]← ∂Ltask(G′1:T−1)/∂(ntg ,v) for v in V .
7: Pick the first v in the descending order of grads such that (ntg ,v) < S.
8: st .append((ntg ,v)).
9: probs.append(pM(G′t ⊕ st))

10: Pick sτ in the descending order of probs such that ‖Ht ⊕ sτ‖ ≤ εt .
11: if no τ found then
12: break
13: G′t←Gt ⊕ st .
14: Ht←Ht ⊕ st .

B PROOF OF THEOREM 3

Suppose S denotes the feasible perturbation space for the constraints ‖A′t −At‖/‖At −At−1‖ ≤ ε
for all 1 < t < T and ‖A′1 −A1‖ ≤ ε1. Then, one can project a vector at onto S using the following
projection operator:

ΠS (at) =
{
P[0,1](at −µt) if∃µt > 0 : 1T P[0,1](at −µt) = εt
P[0,1](at) if 1T P[0,1](at) ≤ εt

(8)

where εt = εdAt = ε‖At −At−1‖ for t > 1, and P[0,1](x) = x if x ∈ [0,1], 0 if x < 0, and 1 if x > 1.

Proof. Let the perturbation vector be s = [s1,s2, · · · ,sT−1]T . Then, for all t ∈ [2,T − 1], since
st = At −At−1, our constraint becomes ‖st‖ ≤ εdAt ≤ ε ‖At −At−1‖ =: εt , which reduces to
1T st ≤ εt . For t = 1, we have ‖A′1(V1)−A1(V1)‖ ≤ ε1, which also becomes 1T s1 ≤ ε1. Hence, we
have the constraint 1T st ≤ εt for all t.

By definition, then, projection operator must be ΠS (a) = argmins∈S
1
2‖s− a‖

2, where S = {s ∈
[0,1]n | 1T st ≤ εt ∀t}. This reduces to the following optimization problem:

ΠS (a) = argmin
s∈S

1
2

∑
t∈[1,T]

‖st − at‖2 + I[0,1](st), (9)

such that ∀t ∈ [1,T] : 1T st ≤ εt

where I[0,1](x) = 0 if x ∈ [0,1]n and∞ otherwise.

This can be solved by the Lagrangian method. We note that the Lagrangian function of the above
optimization problem is L(s,a,µ) =

∑
t∈[1,T]

(
1
2‖st − at‖

2 + I[0,1](st) +µt(1T st − εt)
)
.

∂L/∂st = 0 =⇒ st = at − µt . However, if st,i < 0 or st,i > 1 for any i, then L = ∞. Thus, the
minimizer to the above function is s∗t = P[0,1](at −µt), where P[0,1](x) = x if x ∈ [0,1], 0 if x < 0 and
1 if x > 1. In addition, the solution must satisfy the following KKT conditions ∀t:

14

Under review as a conference paper at ICLR 2023

(1) µt(1T s∗t − εt) = 0, (2) µt ≥ 0, (3) 1T s∗t ≤ εt .

If µt > 0, then we must have 1T P[0,1](at −µt) = εt . Otherwise if µt = 0, then 1T P[0,1](at) ≤ εt .

C INTERPRETING THE THEORETICAL BOUNDS ON EVOLUTION

In this section, we analyze the constants in the theoretical bound on the average structural change
after perturbation under TDAP constraint, as proved in Theorem 1. In particular, we show how
Theorems 1 and 2 shows that a local TDAP constraint preserves the average trend of structural and
embedding change as a linear combination of the original trends. Thus, if the linear factors are small
enough, then, the average trend of evolution remains well-preserved. This ensures imperceptibility
as perturbations that lead to a change in the trend of structural/embedding evolution can be easily
detected by various anomaly detection algorithms (Cai et al., 2021; Goyal et al., 2018). In particular,
while the TDAP constraint allows us to find a bound on the perturbed trend in terms of the original
trend, no existing constraints give us such a bound. This is because we constrain the number of
perturbations introduced at each time step to be within a factor of the changes introduced in the
original graph at that time step while existing constraints only impose a global constraint on the
perturbations over all time steps.

One can note that α = 2ε and β = 1
T

∑
t ‖At‖+ ‖At−1‖ = 2

T

∑
t ‖At‖ − ‖AT ‖ ≤ 2

T

∑
t‖At‖. In other

words, the average rate of structural change after perturbations within a TDAP constraint remains
within a factor of 2 times the permitted fraction for the TDAP constraint of the original average rate,
plus 2 times the average no. of edges in the adjacency matrix. Since we consider a targeted case,
the adjacency matrix includes only a single column and the additive factor corresponds to 2 times
the average degree of the target vertex over all time steps. Since ε is a parameter that is chosen by
the attacker, a small enough ε allows the attacker to preserve the evolution within a small enough
multiplicative factor. The additive shift in the trend is equal to twice the average degree of the target
vertex, which can inform the choice of the target for the attacker according to his permitted limit.

In comparison, a simple budget constraint gives no bound on the average structural change in terms
of the original change. This is because,

∑
t‖St‖ ≤ B, where B is the budget. Thus, using similar

calculations as Theorem 1, we get dA′t ≤ 2
T B + 2

T

∑
t‖At‖. Therefore, perturbations introduced

using a budget constraint can exceed the average trend of structural change when B/T > εdAt .

D ONLINE GRADIENT DESCENT

Problem 1 Given a convex set K and at every step i = 1,2, · · · ,T , we are presented with fi such
that we have to choose a solution x(i) ∈ K at every step in a way that minimizes the regret R =∑
i(fi(x

(i))− fi(x∗)) without knowing the future functions fi+1:T .

Lemma 1 (Zinkevich, 2003) Let G denote an upperbound on ‖∇fi(x)‖2 for any x ∈ K and any i,
and let D = maxx,y∈K‖x − y‖2 be the diameter of K. The online gradient descent algorithm with
η = D

G
√
T

gives a regret per step of at most 2DG√
T

after T steps.

Online Gradient Descent requires replacing ∇f (x(i)) with ∇fi(x(i)). Algorithm 3 presents the corre-
sponding online version for TD-PGD.

E DATA STATISTICS AND PRE-PROCESSING

Table 3 shows the statistics of the datasets used in this paper. DBLP-5 is the node classification
dataset with 5 labels while the others are dynamic link prediction datasets with varying sizes. The
datasets span over differing periods of time. We split each of them into finite number of timesteps
to keep a large enough number of time steps while maintaining a realistic period of splitting.
Radoslaw is split using a 3-week period in 13 snapshots while the 13 snapshots in UCI denote a

15

Under review as a conference paper at ICLR 2023

Algorithm 3 Online Projected Gradient Descent for dynamic graphs

Require: Current time t, TDAP variable εt , Initial perturbation vector s(0), Loss function Ltask ,
Actual labels ytask , Target entities Etg , Learning rate ηi , Iterations N , Rounding iterations Nr .

Ensure: Perturbation vector s(i)t preserves TDAP(ε)
1: for i = 1 to N do
2: Gradient descent: a(i)t = s(i−1)t + ηi∇Ltask({Gτ ⊕ s

(i−1)
τ ; ∀τ ∈ [1, t]}, ytask(t), Etg)

3: Projection: s(i)t =ΠS (a
(i)
t)

4: St← ROUND (s(N)
t ,Nr , εt) from Algorithm 4.

2-week period. The Reddit dataset is spanned over 3 years, thus we use a 2-month split to obtain
the 20 snapshots. We use the publicly available pre-processed data for DBLP-5 (Xu et al., 2019a).

For datasets with no node features, i.e., Radoslaw, UCI, and Reddit, we use uniformly random
features with dimension 10. The pre-processed DBLP-5 has 100 node features for each node.

Nodes # Edges # Time-steps # Labels

Radoslaw 167 22K 13 -
UCI 1.9K 24K 13 -

Reddit 35K 715K 20 -
DBLP-5 6.6K 43K 10 5

Table 3: Description of the datasets.

F ADDITIONAL DETAILS ON EXPERIMENTAL SETUP

F.1 SETUP

We consider a targeted setting with single targets, that are selected using either a random sampling
or a degree-biased sampling. Each target is attacked one-by-one and the total performance of an
attacker is measured using either an ROC-AUC or an Accuracy over the set of sampled targets.

F.2 HYPERPARAMETERS

For TD-PGD optimization, we used ADAM optimizer (Kingma & Ba, 2014) with the initial learn-
ing rate of 10. The initial perturbation vector s(0) was initialized with all ones, thus, giving each
perturbation an equal chance at the start. The algorithm was run for 50 iterations. We use Bi-
nary Cross Entropy loss for training dynamic link prediction and Weighted Cross Entropy for node
classification.

As we show in the Appendix H.6, TGA(ε) algorithm does not scale well to higher ε and larger
perturbation space. For this reason, we stop the greedy search if the time taken exceeds 300 s,
which is at least 3 times that of TD-PGD.

F.3 VICTIM MODEL TRAINING

Table 4 shows the performance on the test set of the victim models on different datasets. The
performance is evaluated using ROC-AUC for the dynamic link prediction and using Accuracy for
the node classification tasks. The test set for dynamic link prediction task denotes the edges and
non-edges in the final snapshot, while for node classification, we use a 20% held-out set of nodes as
the test set for noting the performance and attacking.

16

Under review as a conference paper at ICLR 2023

Dataset Model Perf.

Radoslaw
DYSAT 0.743

EVOLVEGCN 0.742
GC-LSTM 0.813

UCI
DYSAT 0.952

EVOLVEGCN 0.873
GC-LSTM 0.968

Reddit
DYSAT 0.947

EVOLVEGCN 0.939
GC-LSTM 0.941

DBLP-5 DYSAT 0.699
EVOLVEGCN 0.687

GC-LSTM 0.695

Table 4: Performance (Perf.) on test set for different datasets and models. For Radoslaw, UCI,
Reddit, we use ROC-AUC as the performance metric and for DBLP-5, Accuracy is used.

F.4 IMPLEMENTATION

We use the TorchGeometric-Temporal 3 implementation of EVOLVEGCN and GC-LSTM to train
these models. For DYSAT, we use the pytorch implementation 4. We adapt the official code of
TGA5 to implement the greedy approach. For TD-PGD implementation, we adapt the DeepRobust
6 implementation for dynamic graphs under TDAP constraint. Full code is provided in the attached
supplementary for reference.

G COMPLEXITY ANALYSIS

TGA(ε): It makes O(ε
∑
t dAt) backward calls to the victim model for gradient calculation. Let

the gradient calculation takes Tbw for a modelM. Then, the total time for the greedy is given by
O(ε

∑
t dAtTbw).

TD-PGD: It makesO(N) backward calls to the victim model for gradient calculation. In addition,
the projection step takes O(

∑
t log2[(max(at)−min(at − 1))/ξ]) time per iteration and the random

rounding takes O(
∑
t |st |) = O(T |V |) time. Therefore, the total time taken by TD-PGD is given by

O(NTbw +N
∑
t log2[(max(at)−min(at − 1))/ξ] + T |V |).

Note that the bottleneck, here, is the term Tbw and TD-PGD replaces the dependence on the no. of
perturbations to a constant (which is fixed to 50 in the experiments for all the datasets). Therefore,
while TGA(ε) finds it hard to scale to larger datasets, TD-PGD can scale as long as there is enough
memory. It is worthwhile to note here that TD-PGD would clearly need more memory storage as
it needs to store the complete perturbation vector s in the memory during optimization. A recent
paper proposes an alternative method, called PR-BCD, which stores only optimizes for a fixed set of
random perturbations (Geisler et al., 2021). Such an approach can be employed with our projection
operator to scale to larger datasets at fixed memory usage. We leave testing the effectiveness of this
approach on large dynamic graphs for the future.

3https://pytorch-geometric.readthedocs.io/en/latest/index.html#
4https://github.com/FeiGSSS/DySAT pytorch
5https://github.com/jianz94/tga
6https://github.com/wenqifan03/RobustTorch

17

https://pytorch-geometric.readthedocs.io/en/latest/index.html#
https://github.com/FeiGSSS/DySAT_pytorch
https://github.com/jianz94/tga
https://github.com/wenqifan03/RobustTorch

Under review as a conference paper at ICLR 2023

H ADDITIONAL EXPERIMENTS

H.1 PGD PERFORMANCE ON DIFFERENT MODELS

Figure 4 compares the TD-PGD attack performance over random targets of different victim models
for dynamic link prediction. One can note that EVOLVEGCN is the least robust among these models
as TD-PGD causes the most drop in this model across datasets. On the other hand, GC-LSTM and
DYSAT show similar drop with DYSAT being slightly more robust among them. One can explain
this result using the architectural differences between these models as DYSAT, being an attention-
based architecture, makes use of more parameters than other models. GC-LSTM embeds GCN
into an LSTM and thus, uses the number of parameters than a combination of GCN and LSTM.
EVOLVEGCN uses a LSTM architecture to evolve the weights of a GCN, which is more efficient.

H.2 DYNAMIC LINK PREDICTION ON TOP-DEGREE TARGETS

Figure 5 shows the attack performance on dynamic link prediction with targets being 100 top-degree
edges and non-edges each. These targets are picked in the decreasing order of the sum of the degrees
of the end-nodes over the time-steps. One can note that TD-PGD outperforms the existing baselines
in most cases for these targets as well.

H.3 EMBEDDING VARIABILITY

In this section, we plot the raw values of embedding variability (EV) of different models with in-
creasing ε. Figure 6 shows the mean EV values with their standard deviations at different ε, while
Figure 7 shows the median values with the interpercentile range (10% and 90%). We note that
mean and median values are close to zero for all the methods (only DEGREE reaches 1). DEGREE is
usually the most detectable of the methods based on the variability caused in the embeddings. Huge
variance in Figure 6 can be attributed to the existence of outliers in the data as the median and 90%
quantile value is usually low for all methods, except for DEGREE (as shown in Figure 7).

H.4 NODE CLASSIFICATION OVER RANDOM TARGETS

In this section, we compare the attack performance on the node classification task over randomly-
selected target nodes from the test set. In addition to structural perturbations, we also do feature
perturbations while following the TDAP constraint.

Structural perturbations Figure 8 compares the drop caused by different attack methods on the
node classification task for different models over random targets. One can note that all attack models
perform as good as the other on EVOLVEGCN and DYSAT, while TD-PGD outperforms others on

GCLSTM EvolveGCN DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(a) Radoslaw

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(b) UCI

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(c) Reddit

Figure 4: PGD performance on dynamic link prediction task across datasets and models.

18

Under review as a conference paper at ICLR 2023

TD-PGD TGA() Degree Random

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

50

40

30

20

10

0

Re
l. D

ro
p

%

(a) Radoslaw, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(b) Radoslaw, EVOLVEGCN

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(c) Radoslaw, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

6

4

2

0

2

4

Re
l. D

ro
p %

(d) UCI, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(e) UCI, EVOLVEGCN

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(f) UCI, GC-LSTM

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %

(g) Reddit, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(h) Reddit, EVOLVEGCN

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

60

40

20

0

Re
l. D

ro
p

%

(i) Reddit, GC-LSTM

Figure 5: Attack performance on dynamic link prediction task across datasets and models for top-
degree targets.

19

Under review as a conference paper at ICLR 2023

TD-PGD TGA() Degree Random

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

0.4
0.2
0.0
0.2
0.4
0.6
0.8

EV

(a) Radoslaw, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

1.0

0.5

0.0

0.5

1.0

1.5

2.0

EV

(b) Radoslaw, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

2

1

0

1

2

3

EV

(c) Radoslaw, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(d) UCI, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(e) UCI, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(f) UCI, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

1

2

3

EV

(g) Reddit, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

40

20

0

20

40

EV

(h) Reddit, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

1

0

1

2

3

4

EV

(i) Reddit, GC-LSTM

Figure 6: Comparison of embedding variability (EV) on link prediction task across datasets and
models. We show mean values for each method with standard deviation as error bars.

20

Under review as a conference paper at ICLR 2023

TD-PGD TGA() Degree Random

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.1

0.2

0.3

EV

(a) Radoslaw, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(b) Radoslaw, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.1

0.2

0.3

EV

(c) Radoslaw, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

2.0

EV

(d) UCI, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(e) UCI, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.5

1.0

1.5

EV

(f) UCI, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

1

2

3

4

EV

(g) Reddit, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

1

2

3

4

5

EV

(h) Reddit, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

1

2

3

4

5

EV

(i) Reddit, GC-LSTM

Figure 7: Comparison of embedding variability (EV) on link prediction task across datasets and
models. We show median values with the interpercentile range as error bars (10% and 90%).

21

Under review as a conference paper at ICLR 2023

Dataset Model Rel. Drop % EV

Radoslaw
DYSAT 47.03 (5.42) 0.00 (0.00, 0.04)

EVOLVEGCN 91.61 (3.58) 0.25 (0.03, 0.79)
GC-LSTM 52.63 (5.09) 0.07 (0.01, 0.19)

UCI
DYSAT 4.02 (2.08) 0.06 (0.01, 0.39)

EVOLVEGCN 96.21 (0.17) 0.11 (0.01, 0.62)
GC-LSTM 16.12 (0.75) 0.20 (0.03, 0.85)

Reddit
DYSAT 23.24 (4.18) 0.02 (0.00, 0.34)

EVOLVEGCN 79.31 (3.13) 0.13 (0.02, 1.23)
GC-LSTM 15.59 (1.28) 0.13 (0.02, 0.84)

Table 5: Comparison of attack performance and detectability (refer Section 4) for TD-PGD at
ε = 0.5. Median values are noted with 10% and 90% quantile values in the parentheses.

TD-PGD TGA() Degree Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

2

1

0

1

2

Re
l. D

ro
p %

(a) DBLP, DYSAT

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

3

2

1

0

Re
l. D

ro
p %

(b) DBLP, EVOLVEGCN
0.

02
0.

06
0.

10

0.
30

0.
50

0.
70

0.
90

Epsilon

20

15

10

5

0

Re
l. D

ro
p

%

(c) DBLP, GC-LSTM

Figure 8: Structural perturbation performance on node classification task over random targets.

GC-LSTM by a factor of 2. No attack method is found to achieve a significant drop, i.e., below
5%, in the accuracy of DYSAT and EVOLVEGCN on DBLP.

Feature perturbations Further analysis shows that feature perturbations are more effective in this
task for random targets. Here, the task is to introduce continuous perturbations SXt =X ′t −X t such
that ‖X ′t −X t‖ ≤ εdX t for all t. Equation 1, thus, becomes

max
X ′1,X

′
2,··· ,X

′
T−1

Ltask

(
ŷtask(fM(X ′1:T−1)), ytask,Etg

)
(10)

such that ∀t ∈ (1,T) : ‖X
′
t −X t‖

‖X t −X t−1‖
≤ ε

‖X ′1 −X 1‖ ≤ ε1.

We adapt the Algorithm 1 to this problem to find effective perturbations. In particular, we replace st
to denote the feature perturbation vector at time t, i.e., the vector corresponding toX ′t−X t . Finally,
since the perturbations are supposed to be in continuous space, we remove the rounding step (line
4) and return the matrix form of {st} as SX . Thus, TD-PGD can be used to find effective attacks in
the feature perturbation setting as well.

However, since TGA(ε) and DEGREE takes decisions based on the structure, we omit these base-
lines for this setting. We use RANDOM to introduce uniformly random perturbations in the feature
matrices of the random nodes.

Figure 9 compares the attack performance of the two feature perturbation methods on DBLP-5 over
random targets. One can note that TD-PGD is able to achieve around 30% drop for all the models

22

Under review as a conference paper at ICLR 2023

TD-PGD Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30
25
20
15
10

5
0

Re
l. D

ro
p

%

(a) DBLP, DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

25

20

15

10

5

0

Re
l. D

ro
p

%

(b) DBLP, EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(c) DBLP, GC-LSTM

Figure 9: Feature perturbation performance on node classification task over random targets.

TD-PGD Degree Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

1.0

0.5

0.0

0.5

1.0

1.5

Re
l. D

ro
p

%

(a) DYSAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

0.50

0.25

0.00

0.25

0.50

0.75

Re
l.

Dr
op

 %

(b) EVOLVEGCN
0.

02
0.

06
0.

10

0.
30

0.
50

0.
70

0.
90

Epsilon

15.0
12.5
10.0
7.5
5.0
2.5
0.0

Re
l.

Dr
op

 %

(c) GC-LSTM

Figure 10: Online adversarial attacks on random targets for DBLP.

while it could not drop the performance below 5% for these random targets using structural pertur-
bations. This can be explained by the low degree of these targets (average ∼ 10 over 10 time steps)
which allows for a small no. of perturbations per time step according to the TDAP constraint. Fur-
thermore, the node features here correspond to the word2vec attributes of the author papers while the
labels represent the field of the author. Thus, there is a strong connection between the attributes and
the downstream labels, which makes feature perturbation more effective than structural co-author
perturbations to flip predicted labels for the classification task.

H.5 ONLINE ADVERSARIAL ATTACKS

In this section, we show the performance of the 3 methods in the online setting for node classification
on the DBLP dataset. Figures 10 and 11 show performance over random and top-degree targets
respectively. One can note that TD-PGD shows competitive performance over other baselines while
obtaining a 5x gain in the relative drop for GC-LSTM.

H.6 RUNNING TIME

Figure 12 compares the running time per target for different attack methods on the largest dataset,
Reddit. The times are averaged over 200 targets from 3 different seeds and error bars note the
standard deviation. TGA(ε) is the most expensive method in terms of time and scales almost linearly
with ε (capped at 300 s). TD-PGD takes around half the time than TGA(ε) and remains constant
with increase in ε. This trend can be attributed to the difference in the complexity of the two
methods, as shown in Appendix G.

23

Under review as a conference paper at ICLR 2023

TD-PGD Degree Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

4

3

2

1

0
Re

l. D
ro

p %

(a) DYSAT

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

3

2

1

0

Re
l. D

ro
p %

(b) EVOLVEGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

50

40

30

20

10

0

Re
l. D

ro
p

%

(c) GC-LSTM

Figure 11: Online adversarial attacks on top degree targets for DBLP.

TD-PGD TGA() Degree Random

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

0

100

200

300

Tim
e/

ta
rg

et
 (s

)

(a) Reddit, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

100

200

300

400

500

Tim
e/t

ar
ge

t (
s)

(b) Reddit, EVOLVEGCN
0.

02
0.

10

0.
30

0.
50

0.
70

0.
90

Epsilon

0

100

200

300

400

Tim
e/

ta
rg

et
 (s

)

(c) Reddit, GC-LSTM

Figure 12: Running time of different attack methods on the largest dataset (Reddit)

Figure 13 compares the average running time of different methods at varying size of the dataset
for a fixed ε (here = 0.5). As noted in Table 3, Radoslaw is the most dense and Reddit is the
largest dataset in terms of edges. We find that TD-PGD scales at a smaller rate than TGA(ε) across
different victim models.

I TIME-AWARE PERTURBATION: DISCUSSION

Clarifications: A targeted attack requires the derivative to be with respect to targets only. Thus,
‖At −At−1‖ in Equation 2 considers adjacency matrices over the target nodes in the set Etg only.
An untargeted attack, on the other hand, would take the differential norm over all the entities in the
input (i.e., all the nodes in a graph).

J EXTENDED RELATED WORK

Adversarial attacks on static graphs. Various attack environments, based on attacker’s knowledge
and intention, are studied in the literature to assess model performance under adversarial attacks on
static graphs (Jin et al., 2020). In the literature, adversarial attacks are studied in different settings
based on (a) attacker’s knowledge of the underlying model (white-box v/s black-box), (b) their
intention for the attack (targeted v/s untargeted), and (c) the timing of their attack (poisoning v/s
evasion) (Jin et al., 2020). Each such combination allows us to assess the model’s performance in
different attack environments.

24

Under review as a conference paper at ICLR 2023

DBLP UCI Rado Reddit
Dataset

50

100

150

200

250

Ti
m

e/
ta

rg
et

 (s
)

Dyn-PGD
Greedy

(a) DYSAT

DBLP UCI Rado Reddit
Dataset

100

200

300

400

500

Ti
m

e/
ta

rg
et

 (s
)

Dyn-PGD
Greedy

(b) EVOLVEGCN

DBLP UCI Rado Reddit
Dataset

50

100

150

200

250

Ti
m

e/
ta

rg
et

 (s
)

Dyn-PGD
Greedy

(c) GC-LSTM

Figure 13: Running time of different attack methods at ε = 0.5. Here, Rado means Radoslaw.

We consider a white-box, targeted, evasion setting where the objective is to introduce targeted per-
turbations to an already trained, fixed victim model assuming complete knowledge about its ar-
chitecture and parameters. Optimization approaches for white-box evasion attacks in static graph
literature include PGD (Xu et al., 2019b) and IG-JSMA (Wu et al., 2019). In the present work, we
show how to use PGD to generate effective perturbations on dynamic graphs under our novel TDAP
constraint. Secondly, IG-JSMA is proposed for the case of static graphs under a global budget con-
straint. It is not clear how the importance scores calculated for each edge in the graph sequence
would be chosen in a greedy manner to hold our local TDAP constraint.

Adversarial attacks on dynamic graphs. Adversarial attack on dynamic graphs is an underex-
plored problem and no direct baselines exist that study attacks on dynamic graphs that can preserve
temporal evolution (in particular, the proposed TDAP constraint). We only found three works that
study adversarial attacks on dynamic graphs (Chen et al., 2021a;b; Fan et al., 2020). Out of these,
only Chen et al. (2021b) considers a white-box evasion (test-time) attack, which is the same set-
ting as ours. We adopt the greedy strategy proposed in Chen et al. (2021b) to our constraint to
find feasible perturbations for our problem setting as the TGA(ε) baseline. Other methods either
consider black-box attacks (Fan et al., 2020) or train-time (backdoor) attacks (Chen et al., 2021a),
which cannot be directly applied here. This is because white-box attacks assume full knowledge
of the victim model while black-box attacks find perturbations in a model-agnostic manner, which
would be suboptimal in a setting where model knowledge is available. Secondly, backdoor attacks
considers the objective of finding a trigger sequence of subgraphs that is added to the train graphs
such that the model trained on these perturbed train graphs misclassifies a target link. In contrast, we
introduce edge-level perturbations directly to the end-points of the target link (instead of subgraphs)
during test time which implies that the trained model parameters are not updated.

Imperceptible Attacks. In addition to bounding the total number of perturbations with a budget,
other strategies have been developed to make the attacks imperceptible for static graphs. These
include rewiring the perturbed edges (Ma et al., 2019; 2021), perturbing the low degree nodes (Ma
et al., 2020a), and preserving the degree/feature distribution statistics (Zügner et al., 2018).

K ADDITIONAL PROOFS

Theorem 4 dA′ ≥ |1− 2ε|dA

Proof. TDAP ensures that ‖A′t −At‖1 ≤ ε‖At −At−1‖1. Now, we note that since ‖·‖1 ≥ ‖·‖2, we
also get ‖A′t −At‖2 ≤ ε‖At −At−1‖1.

Further note that ‖x− y‖2 ≤ c implies y− cer ≤ x ≤ y+ cer for all unit vectors er (‖er‖ = 1). Thus,
‖A′t −At‖2 ≤ ε‖At −At−1‖1 impliesAt − ε‖At −At−1‖1er ≤A′t ≤At + ε‖At −At−1‖1er .
Substituting the above inequalities for A′t and A′t−1 in ‖A′t −A′t−1‖1, we get ‖A′t −A′t−1‖1 ≥
‖At −At−1 − ε‖At −At−1‖er,1 − ε‖At−1 −At−2‖er,2‖1, for some unit vectors er,1,er,2.

Using reverse triangle inequality, ‖A′t −A′t−1‖1 ≥
∣∣∣‖At −At−1‖1 − ε‖‖At −At−1‖1er,1+

25

Under review as a conference paper at ICLR 2023

‖At−1 −At−2‖1er,2‖1
∣∣∣ ≥ ∣∣∣‖At −At−1‖1 − ε(‖At −At−1‖1‖er,1‖1 + ‖At−1 −At−2‖1‖er,2‖1)

∣∣∣,
where the last inequality is by triangle inequality. Summing both sides over all time steps,
we get

∑
t‖A

′
t − A′t−1‖1 ≥

∑
t |‖At −At−1‖1 − ε(‖At −At−1‖1 + ‖At−1 −At−2‖1)| ≥∣∣∣∑t ‖At −At−1‖1 − ε(‖At −At−1‖1 + ‖At−1 −At−2‖1)

∣∣∣. Replacing
∑
t‖At − At−1‖ as dA,

we get dA′ ≥ |1− 2ε|dA.

Theorem 5 ‖Z′t −Zt‖ ≤ Cε‖At −At−1‖

Proof. By Cauchy’s MVT, Z′t −Zt ≤ ∇f · q′t − qt , which gives us ‖Z′t −Zt‖ ≤ ‖∇f ‖ ‖q′t − qt‖ by
Cauchy-Schwarz inequality. Note that ‖q′t−qt‖1 = ‖A

′
t−At‖1. Thus, ‖Z′t−Zt‖ ≤ ‖∇f ‖ ‖A

′
t−At‖ =

C‖A′t −At‖ ≤ Cε‖At −At−1‖, by the definition of TDAP constraint.

Theorem 6 dZ′ ≥ χdZ

Proof. Note that Zt = f (At ,At−1, · · · ,A1). We consider a stacked vector of flattened matrices
∀τ ∈ [0, t] : q≤τ = (qτ ,qτ−1, · · · ,q1,0,0, · · · ,0), where qi is the flattened vector of Aτ and we
append (t − τ) 0s to make all vectors q≤i of fixed dimension t. Then, by Cauchy’s Mean Value
Theorem in several variables, we have Zt−Zt−1 ≥ ∇ft−1 ·(q≤t−q≤t−1), which gives us ‖Zt−Zt−1‖ ≥
‖∇ft−1‖ ‖q≤t − q≤t−1‖cos(θ) by the definition as θ is the angle between q≤t and q≤t−1. We note
that ‖q≤t − q≤t−1‖1 = ‖(qt − qt−1, · · · ,q2 − q1,q1)‖1 =

∑
t‖qt − qt−1‖1 = T dA. Thus, we have

‖Zt −Zt−1‖1 ≥ C3dA for some constant C3 ≥ 0. Using Theorem 4, we get dZ′ ≥ C3dA′ ≥ C3|1−
2ε|dA. By mean-value theorem and Cauchy-Schwarz inequality, we also have dZt ≤ ‖∇f ‖ ‖q≤t −
q≤t−1‖ = C4dA. Hence, dZ′ ≥ C3|1− 2ε|dA ≥ C3

C4
|1− 2ε|dZ = χdZ for some constant χ ≥ 0.

L ANOMALY DETECTION WITH TDAP CONSTRAINT

Anomaly detection methods for dynamic graphs can be divided into two broad categories based on
the available input Akoglu et al. (2015); Ma et al. (2021); Ranshous et al. (2015).

Supervised methods. Ground-truth labels for anomalous edges are known or estimated from the
data. A model is trained to minimize a supervised loss to classify the labeled edges in the training
set. For example, Cai et al. (2021); Zhu et al. (2020) use Cross Entropy loss while Zheng et al.
(2019); Wang et al. (2020) use margin loss on a parameterized anomalous score that is calculated
for each edge using end-to-end trained node embeddings. Since these anomaly detection methods
are trained on supervisory signals that may not be accessible to an attacker, evading these anomaly
detectors is not the focus of our work.

Unsupervised methods. Here, anomalies are detected by studying certain properties of the dy-
namic graph in the structural or embedding space. Victim graph representation models can employ
such unsupervised strategies as a defense mechanism against adversarial perturbations. Thus, an
attacker must be able to defend against such methods to be effective in practice. The focus of our
current work is thus to make the unsupervised methods fail to detect adversarial edges as anomalies.

Traditional methods have studied, different graph distance metrics between consecutive snapshots
such as graph edit distance, hamming distance, and spectral distance, to detect anomalous snapshots
Shoubridge et al. (2002); Bunke et al. (2007). If the distance with the previous snapshot exceeds a
threshold then the instance is deemed anomalous. These papers, however, have focused on effec-
tively detecting graph anomalies instead of edge anomalies at any point in time. In our work, we
consider a targeted attack setting, where perturbations (anomalies) are added to only change the lo-
cal behavior around the target and not the global graph dynamics. A graph-level anomaly detection
would thus not be able to detect local perturbations. For this reason, we study these distance metrics
for just the ego-network around the target node. Theorems 1 and 4 show that the average rate of
structural change remains preserved within certain factors that can be tuned to fool these detectors.
Suppose one had chosen a threshold B such that dAt ≥ B is defined an anomaly. If initially the
graph sequence was not anomalous on average, i.e., dA ≤ B, then after perturbation, dA′ ≥ B would

26

Under review as a conference paper at ICLR 2023

happen if dA′ ≥ |1−2ε|dA ≥ B, i.e., dA ≥ B/(|1−2ε|). Thus, one can choose a value of ε such that
this does not hold for a given threshold B and snapshot dynamics dA.

Embedding-based anomaly detection strategies have also been proposed that work in an unsuper-
vised manner. Yu et al. (2018) clusters the embeddings of a sampled edge set at each timestep and
flags an edge to be anomalous if its distance in the embedding space from each cluster exceeds a
threshold. One can note that TDAP-constrained solutions would be effective against such a detector
as well since as noted in Theorem 5, embeddings before and after perturbation change only by a
small factor of the actual change in the adjacency matrices relative to the previous timestep. Thus,
the distance of edge embeddings from the cluster centers would change according to the structural
evolution at that time. We further show this with empirical evidence as below.

Another embedding-based method uses the norm distance between embeddings in consecutive snap-
shots to find anomalies when the distance exceeds a threshold Goyal et al. (2018). Theorems 2 and
6 directly note that the embedding distance between consecutive snapshots would be preserved. We
also show empirical evidence of this preservation via our metric Embedding Variability. Note that
Embedding Variability measures the ratio of the range of the consecutive embedding distance before
and after the perturbation. Thus, if the embedding variability is κ, it means the range of dZτ after
perturbation is 1+κ (or 1−κ) times the range of dZτ before perturbation. If the threshold was set
to be D, then our perturbation would be anomalous if D ≥ dZτ ≥ D/(1 + κ). Thus, we can choose
an ε such that the obtained EV (i.e., κ) does not satisfy the above inequality for a given threshold D
and embedding evolution dZτ . In this work, we show how κ varies with different ε and can be as
low as 0.04 even for an ε = 0.5.

L.1 EMPIRICAL ANALYSIS

Netwalk. In this section, we test the efficacy of Netwalk anomalous scores to detect perturbations
made under the TDAP constraint. We used the 3 victim representation models (as above) to ob-
tain the embeddings and used the K-Means algorithm with k = 5 for clustering at each time step.
Perturbations are selected from the TD-PGD algorithm and the edge embeddings are clustered in
the original and perturbed embedding space for a fixed set of held-out training edges. The anoma-
lous score is then calculated as the average distance of the perturbed edges to the nearest cluster’s
centroid in the corresponding embedding space.

Figure 14 shows anomalous score of the Netwalk algorithm Yu et al. (2018) of the perturbed edges in
different victim models for different datasets. One can note that the anomalous score in the perturbed
embedding space almost perfectly overlaps the anomalous score in the original embedding space.
One exception is Figure 14b where the distance after perturbation increases significantly over the
original space as ε increases. We also conducted a 2-sample t-test between original and perturbed
anomalous scores at each epsilon value for each model and dataset. The hypothesis of the two
distributions being similar was accepted (i.e., p-value > 0.05) in all but five cases. These were
EvolveGCN for Radoslaw at ε = 0.3,0.5,0.7,0.9 and DySAT for Radoslaw at ε = 0.9. Thus,
perturbations under the TDAP constraint are not easily detectable by the Netwalk algorithm.

DynGem. DynGem detects anomalies based on the value dZt at each time t. While Embedding
Variability gives an idea of how different the distribution of dZt is before and after perturbation,
the value can still be arbitrarily low. Thus, we conduct a 2-sample t-test between dZ and dZ′ for
each model-dataset pair at different epsilons, to see if the distributions are different. Table 6 show
p-values for each case and highlights the cases where the null hypothesis of the two distributions
was not rejected (i.e., p-value > 0.05). One can note that the t-test found a difference in dZ in only
40 out of 117 cases across 3 datasets, 3 victim models, and 13 epsilon values.

M RANDOMIZED ROUNDING FOR TD-PGD

We use randomized rounding for TD-PGD in order to efficiently obtain a valid discrete perturbation
solution from the continuous vector obtained by running N iterations of the PGD loop. Inspired by
existing works on using PGD for graphs Xu et al. (2019b); Geisler et al. (2021), we do randomized
rounding for a fixed number of iterations and pick the solution that maximizes the loss while satis-
fying the constraint. Furthermore, to ensure fast convergence, we adopt the top-k heuristic sampling
strategy in the first iteration Geisler et al. (2021). Algorithm 4 describes the steps taken in TD-PGD

27

Under review as a conference paper at ICLR 2023

Original Perturbed

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0
Di

sta
nc

e t
o c

en
tro

id

(a) Radoslaw, DYSAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

Di
sta

nc
e t

o c
en

tro
id

(b) Radoslaw, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.2

0.4

0.6

0.8

Di
sta

nc
e t

o c
en

tro
id

(c) Radoslaw, GC-LSTM

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

Di
sta

nc
e t

o c
en

tro
id

(d) UCI, DYSAT

0.
02

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

0.00

0.01

0.02

0.03

0.04
Di

sta
nc

e t
o c

en
tro

id

(e) UCI, EVOLVEGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sta

nc
e t

o c
en

tro
id

(f) UCI, GC-LSTM

Figure 14: Distance of the embeddings to the nearest centroid for the perturbed edges at different
epsilons before and after perturbation.

Dataset Model Epsilon p-value (dZ′ ,dZ)

Radoslaw

DYSAT [0.02, 0.9] ≥ 0.8387
EVOLVEGCN [0.02, 0.2) ≥ 0.2054
EVOLVEGCN [0.2,0.9] ≤ 0.0002*

GC-LSTM [0.02,0.3) ≥ 0.1704
GC-LSTM [0.3,0.9] ≤ 0.0432*

UCI

DYSAT [0.02, 0.9] ≥ 0.9252
EVOLVEGCN [0.02, 0.3) ≥ 0.0878
EVOLVEGCN [0.3,0.9] ≤ 0.0197*

GC-LSTM [0.02, 0.2) ≥ 0.2674
GC-LSTM [0.2,0.9] ≤ 0.0378*

Reddit

DYSAT [0.02, 0.9] ≥ 0.9636
EVOLVEGCN [0.02, 0.3) ≥ 0.0735
EVOLVEGCN [0.3,0.9] ≤ 0.0271*

GC-LSTM [0.02, 0.6) ≥ 0.0554
GC-LSTM [0.6,0.9] ≤ 0.0270*

Table 6: Significance values from 2-sample t-test between dZ′ and dZ. Bold rows indicate that
the difference is not significant and thus, DynGem-based anomalous scoring would be ineffective to
detect TDAP perturbations as made by our method TD-PGD.

to obtain a valid discrete solution. Note that in the case of online TD-PGD, this algorithm runs for
a single time step t instead of T − 1.

28

Under review as a conference paper at ICLR 2023

Algorithm 4 ROUND(s,Nr , {εt})
Require: Perturbation vector s, Number of randomized iterations Nr , TDAP variables εt .

1: St← 0 for all t
2: Lbest←−∞
3: for t = T − 1 to 1 do
4: Pt← Select the top bεtc perturbations based on the values of st .
5: St[k] = 1 if k ∈ Pt otherwise 0.
6: Lbest←Ltask({Gt ⊕St ; ∀t}, ytask , Etg)
7: for i = 2 to Nr do
8: St[i] ∼ Bernoulli(st) for each t
9: if ‖St[i]‖ ≤ εt for all t then

10: L[i]←Ltask({Gt ⊕St[i]; ∀t}, ytask , Etg)
11: if L[i] > Lbest then
12: St← St[i], Lbest←L[i]
13: return St for all t.

N POTENTIAL NEGATIVE SOCIETAL IMPACTS

Our work presents the first comprehensive study on adversarial attacks on discrete-time dynamic
graphs and shows that existing learning models in this domain are vulnerable to even those attacks
that can preserve original evolution of graphs. Dynamic graphs can model a large variety of so-
cially critical data structures, ranging from social media, epidemiology, finance, biology, and road
networks. Our work shows that state-of-the-art deep learning prediction models are vulnerable to
perturbations under the TDAP constraint. This means that these models are not suitable for de-
ployment in environments where adversarial attacks under a TDAP constraint are realistic. If these
models are deployed in such a setting, adversarial attacks proposed in this work can be used by an
adversary to hamper the predictions. However, it must be noted that none of the models used in
this work are known to be deployed in the real-world. Secondly, TDAP constraint with a large ε
may not be realistic in many applications. Thus, our study has an overall positive impact on the
society as it allows practitioners to test the robustness of their models under a practical constraint
before deploying in vulnerable environments. Although our attacks can be adopted by adversaries
for negative use, it is important to put it out in the community so that the model designers are made
aware of these attacks that are specifically designed to evade detection.

29

	Introduction
	Related Work
	Methodology
	Temporal Dynamics-Aware Perturbation (TDAP) Constraint
	Attack Methods Under TDAP Constraint
	Online Adversarial Attacks

	Experimental Setup
	Results
	Dynamic Link Prediction
	Node Classification
	Online Adversarial Attacks

	Conclusion
	Greedy Approach
	Proof Of Theorem 3
	Interpreting The Theoretical Bounds On Evolution
	Online Gradient Descent
	Data statistics and pre-processing
	Additional Details On Experimental Setup
	Setup
	Hyperparameters
	Victim Model training
	Implementation

	Complexity Analysis
	Additional Experiments
	PGD Performance On Different Models
	Dynamic Link Prediction On Top-Degree Targets
	Embedding Variability
	Node Classification Over Random Targets
	Online Adversarial Attacks
	Running Time

	Time-Aware Perturbation: Discussion
	Extended Related Work
	Additional proofs
	Anomaly Detection With TDAP Constraint
	Empirical Analysis

	Randomized Rounding for TD-PGD
	Potential Negative Societal Impacts

