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Abstract

We propose a new attention mechanism with
linear complexity, ATP, that fixates Attention
on Top Principal keys, rather than on each indi-
vidual token. Particularly, ATP is driven by an
important observation that input sequences are
typically low-rank, i.e., input sequences can be
represented by a few principal bases. There-
fore, instead of directly iterating over all the
input tokens, ATP transforms inputs into an or-
thogonal space and computes attention only on
the top principal bases (keys). Owing to the
observed low-rank structure in input sequences,
ATP is able to capture semantic relationships in
input sequences with a few principal keys. Fur-
thermore, the attention complexity is reduced
from quadratic to linear without incurring a no-
ticeable performance drop. ATP further reduces
complexity for other linear layers with low-
rank inputs, leading to more speedup compared
to prior works that solely target the attention
module. Our evaluations on various models
(e.g., BERT and Llama) demonstrate that ATP
achieves comparable accuracy with much lower
computation and memory complexity than the
standard attention mechanism. In particular,
ATP barely loses accuracy with only 1/2 princi-
pal keys, and only incurs around 2% accuracy
drops with 1/4 principal keys.

1 Introduction

Transformers with self-attention have become a
mainstream model architecture in many machine-
learning tasks on natural language processing (Wolf
et al., 2020), and computer vision (Khan et al.,
2022; Dosovitskiy et al., 2020). In particular, ow-
ing to the attention mechanism, transformers have
been demonstrated to be more effective in learning
semantic relationships from input sequences. This
drives transformers to become the backbone of cur-
rent large language models (LLMs) like ChatGPT
(OpenAl) and Copilot (Microsoft).

Despite their remarkable utility in real-world

applications, transformers with standard self-
attention, however, incur quadratic complexity in
terms of sequence length (Vaswani et al., 2017).
To be specific, considering an input sequence with
length L (i.e., L tokens), each attention layer needs
O(L?) computation and memory complexity on
attention operations. Such a quadratic degree of
complexity renders transformers difficult to scale
with long input sequences. As a result, most LLM
services at scale backed by transformers incur sig-
nificant computation and memory footprints, which
can only be afforded by large companies with suf-
ficient computing power (Samsi et al., 2023). To
meet memory and computation resource constraints
during deployment, some transformer models (De-
vlin et al., 2018; Lan et al., 2020; Radford et al.,
2018; Touvron et al., 2023) usually come with a
hard constraint on sequence length. However, in
many real-world tasks such as question-answering
(Wang et al., 2019), text summarization (El-Kassas
et al., 2021), enabling long sequence length is
crucial for capturing semantic relationships in a
broader context, and improving models’ perfor-
mance.

Therefore, at the core of transformers and LLM
services, lightweight self-attention mechanisms
play a key role in improving model performance
with longer sequences, as well as computation and
memory efficiency in deployment.

Current works on reducing the complexities of
transformers can be categorized in two ways. The
first line of research usually exploits redundancy in
query/key/value matrices or attention maps, while
the second approximates the Sof tmax-based atten-
tion with linear complexity.

Along the first line of works, Vyas et al. (2020)
reduces attention complexity via clustering queries
and only computes attention output for each clus-
ter. Its performance hinges on the performance
of clustering as well as the dimension in queries.
On the other hand, Linformer (Wang et al., 2020)



chooses to reduce the number of keys/values via a
low-dimensional projection. A pre-defined or learn-
able projection layer is inserted into each attention
layer. However, such a projection layer lacks a rig-
orous guarantee to preserve information in inputs.
Compared to simply approximating queries, keys,
or values, another line of work approximates the
Softmax-based attention using randomized feature
mapping(Rahimi and Recht, 2007). In these works,
standard attention is regarded as a kernel method,
and can be approximated with low-dimensional
kernels. For instance, Performers (Choromanski
et al., 2020) shows that Softmax attention can be
converted to a Gaussian kernel function. There-
fore, self-attention can be potentially calculated at
a lower dimension with linear complexity, as done
in a Gaussian kernel function. Following such an
idea, several works explore different kernels to ap-
proximate Softmax attention (Katharopoulos et al.,
2020a). However, the approximation methods with
randomized feature mapping need to trade off ap-
proximation accuracy and the number of random
features. A low approximation error needs more
random features but increases approximation com-
plexity (Choromanski et al., 2020). Furthermore,
while the aforementioned works reduce the com-
plexity of the attention mechanism to linear, they
still have not been seen in large-scale language
models such as Llama (Touvron et al., 2023). One
reason is that these methods cannot effectively pre-
serve information when performing attention in low
dimensions.

In this paper, we propose a new attention mecha-
nism with linear complexity, that maintains model
performance with significantly reduced computa-
tion and memory costs. The new attention mecha-
nism, called ATP, is the first work that adapts self-
attention with a low-rank structure in input embed-
dings. In particular, ATP first analyzes an input
sequence’s structure and obtains orthogonal bases.
We observe that input sequences usually exhibit a
high correlation among tokens, with a few orthogo-
nal bases being more important than the rest. Then
ATP computes attention only on the top principal
bases ( we call them principal keys), rather than
iterating over all keys as in the standard attention
layer. Owing to the low-rank structure in input
sequences, the new self-attention mechanism with
few principal keys/values is sufficient to capture
semantic relationships among tokens. As a result,
compute and memory complexity is reduced from
quadratic to linear in terms of sequence length.

Furthermore, by exploiting low-rank structure in
inputs, not only is the complexity of attention re-
duced, but also the complexity of other linear lay-
ers. Hence, ATP achieves further computation re-
ductions compared to prior works focusing solely
on the Softmax operation.

Our evaluations on various models (e.g., BERT
and Llama) demonstrate ATP still maintains com-
parable accuracy with small fractional principal
keys/values. In particular, with only 1/4 principal
keys, ATP achieves accuracy almost as the original
model. With only 1/4 principal keys, ATP only in-
curs around 2% accuracy drop on BERT-base and
Llama2 models.

2 Preliminaries and Related Works

2.1 Standard Self-Attention

Standard self-attention consists of three matrices:
queries @, keys K, and values V € RL*4 | where
L is sequence length and d’ is the hidden dimension.
For each query vector g € @, the self-attention
applies dot-product with all keys, followed by a
Sof'tmax op to compute a score on each key. Each
score denotes a weight on the corresponding values.
Then the attention output A(q) is obtained as a
weighted average of all values:

A(q) = Softmax(q - KT /Vd)- V. (1)

The query/key/value matrices are obtained by
projecting input X € RI*? with parameter
We WK WV e R as

QK V=X -{wewk wvy. )

In essence, the self-attention mechanism finds
the relations between a query and all keys, which
are measured by probability after Softmax. Then,
it averages corresponding values with the notion
that a key closer to the query should be assigned
larger weights (i.e., probability after Softmax).

2.2 Related Works on Efficient Self-Attention

Given an input sequence with length L, the
standard self-attention needs to perform L? dot-
products for all token vectors to get the whole
attention map. As a result, it incurs complexity
of O(L?) on computations and memory, which
makes it difficult to scale with long inputs in many
tasks. As a result, current LLM services usually
require a significant amount of memory and com-
puting power, in order to support long sequences.



In some cases, facing actual resource constraints,
some LLMs may need to limit the sequence length.

Current literature typically mitigates the lim-
itation via exploiting sparsity or redundancy in
attention matrices (Roy et al., 2021; Sun et al.,
2021; Vyas et al.,, 2020; Katharopoulos et al.,
2020a; Wang et al., 2020), or approximating the
self-attention operation. For sparsity and redun-
dancy in attention, exploiting low-rank structures
in query/key/value and attention maps shows great
potential. For instance, by exploring redundancy in
input query vectors, Vyas et al. (2020) propose to
first cluster query vectors, and use cluster centroid
vectors to represent all query vectors of the same
cluster. Hence, for all queries in the same cluster,
it only needs to compute the attention score once
on the centroid vector. With a reduced number of
vectors when performing self-attention, it reduces
the complexity of self-attention from quadratic to
linear. However, the cost is a noticeable error by
approximating many queries with the same clus-
ter, thereby leading to performance degradation.
On the other hand, Wang et al. (2020) project key
and value matrices into a low-dimensional space.
Specifically, with r keys and values in the low-
dimensional space, the method only needs to per-
form an attention op on r keys rather than L keys
as in the standard self-attention mechanism. How-
ever, due to the fact that the projection matrix is
pre-defined and learned from scratch, it is not guar-
anteed that the low-dimensional projection is effec-
tive in preserving information in the original key
and value matrices (Wang et al., 2020). Besides
query/key/value matrices, Nguyen et al. (2021);
Han et al. (2023) directly exploit redundancy in
the attention map, and approximate the attention
map with low-rank and sparse matrices. Therefore,
computation and memory costs of self-attention
can also be reduced.

Besides removing redundancy in self-attention
operations, current works along the second line
of research attack the problem via approximating
Softmax operations with kernelization. Typically,
Choromanski et al. (2020) regard self-attention as
Softmax kernels: exp(q - k') with query q and
key k, and approximate it with the Gaussian ker-
nel function(Rahimi and Recht, 2007). Specifi-
cally, it estimates Softmax as: exp(q - k) —
E [¢(q) - #(k)"], where kernel function ¢(-) maps
a vector to a low-dimensional space. Therefore, the
dimension after kernelization is reduced, leading
to a reduction in self-attention operations. Along

this line, other works (Katharopoulos et al., 2020b;
Nguyen et al., 2021) explore different kernel func-
tions to approximate the self-attention function.
While the complexity is reduced, these kernel-
based approximations still incur large Softmax ap-
proximation errors given large hidden dimensions
in large models.

Therefore, a lightweight self-attention mecha-
nism with linear complexity is still needed, espe-
cially for current large models with huge computa-
tion and memory footprints.

3 Lowrank Structure in Sequences

Low-rank structures in inputs of language models
are an essential component, that, surprisingly, is
rarely exploited in current models for better compu-
tation and memory efficiency. Compared to model
parameters (Hu et al., 2021), inputs and internal
hidden states are usually more correlated, which
can be potentially exploited. Such a property has
also been observed in vision problems (Niu et al.,
2022; Andriushchenko et al., 2023) and used to
reduce the complexity of convolution operations.
This paper is the first work that investigates the
low-rank structure of input sequences in language
models, and, importantly, its potential to computa-
tion and memory saving. In this section, we first
analyze low-rank structures in transformers’ input
sequence. Then, in the next section, we present
ATP that leverages low-rank structures in inputs and
performs self-attention with significantly reduced
computation and memory footprints.

Transformer models comprise a stack of self-
attention layers. Each self-attention layer takes
input state X € RZ*¢, and computes output state
Y € RY*4, where L denotes the sequence length, d
is the dimension of each hidden state vector. Each
state vector corresponds to a token in the input
sequence. Owning to the semantic relationships
among tokens, these vectors are also correlated. To
formally measure such correlations, we adopt a
metric called SVD-Entropy.

In detail, we apply singular value decomposition
(SVD) to the hidden state as

L
x Zai-ui'v;‘r. 3)

i=1
We assume L. < d without loss of general-
ity. With Eq(3), we attains singular values {o;}
and corresponding principal components {v;}.



Then, based on Niu et al. (2022), we compute
SVD-Entropy as the “low-rankness" of X,

L
p=—log <Z 63) : )
i=1

i

.
> oy
=1

According to Niu et al. (2022), [2*] can denote
the number of necessary principal components to
sufficiently approximate input X. [2#] < L im-
plies that input state vectors in X are highly cor-
related such that only a few principal components
are sufficient to represent X .

With such a measure, we analyze the low-rank
structure of hidden states in language models. Fig-
ure 1 shows the distribution of low-rankness after
Llama-2’s embedding layer on BoolQ and MMLU
datasets, measured by ratio [2#] /L. A small ratio
implies that the embedding of a sequence is more
low-rank. We can easily observe that embeddings
of all sequences are highly low-rank, where 50%
or even fewer principal components are sufficient
to approximate embedding vectors without error.
Moreover, longer sequences usually exhibit more
low-rank structure compared to shorter sequences.
Note that the observation implies that exploiting
the low-rankness of input data can be more effec-
tive compared to the low-rankness of models (Hu
et al., 2021). Such a crucial observation presents
great potential for reducing the dimension of inputs,
thereby leading to more efficient self-attention with
reduced computation and memory complexities, es-
pecially for long sequences. Low-rankness analysis
of other models is deferred to Appendix A.

where 7; =

4 ATP Methodology

In this section, we introduce ATP, a generic trans-
former architecture with a new efficient self-
attention.  ATP introduces a rank-aware self-
attention mechanism that reduces the complexity of
self-attention to linear given the low-rank structure
in input sequence embeddings.

4.1 Self-Attention with Low-Rank Inputs

Given low-rank input X € RZ*? with r principal
components, we write it as

X=U- X, (5)

where U € RLX" and X' € R™ 4 denotes
the principal components. Since X is low-rank,
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Figure 1: Distribution of low-rankness of Llama-2’s
embedding on MMLU and BoolQ dataset, measured by
ratio [2#] /L. Almost all sequences can be sufficiently
approximated with less than half principal components
without incurring error. Longer sequences exhibit a
more low-rank structure.

query/key/values matrices obtained by projecting
X are also low-rank. That is,

QK V=U -X"-{we,wk w"}

=U-{Q K V'}. ©

By the matrix rank inequality (Banerjee and Roy,
2014), we have rank({Q, K,V}) < rank(X') =
.

Then we start from the standard self-attention,
and show the computations can be significantly
reduced with low-rank keys/values. We omit the
normalization in Softmax and write self-attention
with query g on all keys/values as exp(q, K1) - V.
With low-rankness of input X, we can break down
the self-attention as

exp(q-KT)-V=exp(q- K" -U)-U-V'
(M

By the Taylor expansion on the exp function on
ech value, we have the following approximation,

exp(q, KT) -V
~1.U-V+q-KT.UT.U.-V
=1.U-V' +q-KT-V
=(1-U+q-KT). V=4V,

(®)



where 1 € RY™XL and UT - U = I. Similar as
Softmax, normalization is applied row-wise on the
new attention map A’.

Eq(8) shows that self-attention on all token vec-
tors X can be converted to attention on all principal
keys K'. More importantly, different from the stan-
dard self-attention where each key corresponds to
a token in the input sequence, these principal keys
denote all principal bases drawn from X’. That is,
ATP converts the attention operation from individ-
ual token vectors to principal basis vectors. The
observation is very crucial given low-rank input
X. The reason is that, given low-rank input with
r < L, based on Eq(8), for each query, we only
need to perform dot-product on r vectors, rather
than L vectors as in the standard self-attention.
Therefore, the self-attention does not incur O(L?)
computation and memory costs. Instead, the costs
scale linearly with sequence length, L, and the num-
ber of principal components, r. Figure 2 shows a
point-to-point comparison between the standard
self-attention and the low-rank self-attention. The
low-rank self-attention shares a similar procedure
as the stand self-attention, while the difference
is that the low-rank self-attention performs dot-
product on r principal keys.

Remark 4.1 Unlike works such as (Wang et al.,
2020) that attain low-dimensional key/value matri-
ces via hard-coded/learnable projection, we adopt
a more rigorous method based on SVD to find the op-
timization low-dimensional space, that preserves
most energy of input X with r principal compo-
nents.

4.2 Tansformers with Low-Rank Attention

With the low-rank self-attention above, we can
adapt the transformer architecture to input se-
quences with highly low-rank structure. To the best
of our knowledge, this is the first adaptation that
takes input low-rank structure into model design,
and reduces complexities for the whole pipeline.
As a transformer model is usually built with a
stack of encoder/decoder layers with the same ar-
chitecture, to simplify, we only show the archi-
tecture adaptation for one encoder/decoder layer,
which will be replicated to the rest of the layers.
The first step is to analyze input X and attain its
principal components. To that end, we decompse
input X using SVD, and attain the principal compo-
nents X' based on Eq(3): X' = [oyvy, -+, 0.v,].
However, the exact SVD incurs a complexity of
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(b) Low-rank self-attention.

Figure 2: Standard self-attention and low-rank self-
attention. Low-rank self-attention share the same pro-
cedure as the standard self-attention, but with only r
principal keys and values.

O(Ld?), which can be a performance bottleneck
given the large dimension of each vector in X. To
avoid such a quadratic complexity, we adopt an
approximated SVD algorithm as

X' =[orv1, -+, 000

.
= argmin 'X — g o; U - viT
i=1

o, U, V1. r

®

Essentially, the optimization above is to find r
principal components that preserve most energy
in X, while ignoring the orthogonality constraint
on the components. To simplify the optimization
above, o; can be fused with v; to reduce the number
of variables to be optimized. By the alternating op-
timization in Alg 1 in Niu et al. (2022) (duplicated
in Appendix B), we can attain  most principal
components which preserved most energy in X.
Compared to the standard SVD decomposition, the
approximation in Eq(9) incurs a linear complex-
ity of O(rLd), thereby preventing SVD being the
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Figure 3: Transformer encoder/decoder with low-rank
self-attention. Input X is first fed to SVD to attain the
principal components, X’. Then, X’ is fed to an en-
coder/decoder layer with low-rank self-attention.

bottleneck in the whole pipeline.

Then, principal components X’ are fed into a
self-attention layer to attain principal keys and
values as in Eq(6). With the principal keys and
values, ATP performs attention as in Eq(8), and
feedforward to obtain output states Y. The next
encoder/decoder layer follows the same procedure
first to attain principal components of Y and per-
form low-rank self-attention.

Combine with Position Encoding. For abso-
lution or relative position encoding vectors P for
a sequence (Devlin et al., 2018; Lan et al., 2020;
Shaw et al., 2018), they are added to token embed-
dings before an encoder/decoder layer. Therefore,
we can still directly apply SVD to the input vec-
tors, X + P, and obtain principal components for
low-rank self-attention.

For rotatory position embedding (Su et al., 2021;
Touvron et al., 2023), the position encoding vec-
tors are added after query/key projection. That is,
k=x -WHK.R; where R; isa rotary matrix corre-
sponding to a transformation for a token at position
1, « denotes one input vector in X. While the low-
rank structure might change during the rotation, we
can still attain a low-rank key matrix by projecting
the key matrix into a low-dimension space with U
as in Eq(8).

Therefore, the low-rank self-attention mecha-
nism is compatible with current position encoding
methods.

4.3 Complexity Analysis

Self-attention with low-rank inputs not only re-
lieves computation and memory pressure for at-

tention operations, but also reduces complexity for
other linear layers. Table 1 lists computations and
the corresponding complexity of the standard and
low-rank self-attention. Due to the reduced number
of components in X', query/key/value projection
only needs to project r vectors rather than L to-
ken vectors as the standard self-attention, thereby
resulting in r keys and value vectors with dimen-
sion d’. Hence, both the computation and mem-
ory during the projection are reduced by L/r. On
the other hand, when performing attention, the
low-rank attention only needs to compute the at-
tention score on r principal keys, rather than L
token keys as the standard self-attention. There-
fore, the computation and memory complexities are
also reduced by L /r. Note that the additional SVD
only incurs computation complexity of O(rLd),
which is linear in term of L, and is relatively small
compared to computations in the standard self-
attention. In addition, more computation saving
can be achieved by decomposing hidden state vec-
tors to the FeedForward layer. In this paper, we
mainly focus on self-attention layers.
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Figure 4: Actual running time of low-rank self-attention
compared to the standard mechanism with different
sequence lengths (r=128). The running time of the
standard self-attention increases quadratically with the
sequence length. Low-rank self-attention reduces the
running time to almost linear.

Figure 4 shows actual speedups of low-rank self-
attention compared to the standard self-attention
given different sequence lengths. Note that the stan-
dard self-attention, as expected, incurs quadratic
running time with increasing input sequence length.
On the other hand, the running time of the low-rank
self-attention scales almost linearly with sequence
length. The time gap between them grows rapidly
with long sequences. This shows that the stan-
dard self-attention indeed comes with a severe bot-
tleneck on real performance with long sequences,
while the low-rank self-attention significantly re-
duces actual running time.



Mechanism ‘ Standard

‘ Low-rank

Computation Complexity Memory | Computation Complexity Memory
Projection X -Ww O(Ldd")  O(Ld) X -w O(rdd) O(rd)
Attention Q-KT O(L2d") O(L?) QK™ O(rLd)  O(rL)

Table 1: Computation and memory complexity with low-rank input. Low-rank self-attention reduces the complexity
of attention from quadratic to linear. It also reduces complexities for other linear layers (L: sequence length, r: rank,

d: dimension of X, d’: dimension of hidden state).

S Empirical Evaluation

In this section, we evaluate the low-rank attention
on benchmark models and datasets. To investi-
gate the applicability of low-rank attention in a
wide range of applications, we choose models with
different sizes. For datasets, we focus on long
sequences, which usually incur significant compu-
tation and memory pressure during inference.

Model. We choose BERT-base (encoders only)
as the small model (Devlin et al., 2018), Llama2-7B
(decoder only) as the medium model, and Llama?2-
13B as the large model (Touvron et al., 2023). Ta-
ble 2 lists their detailed architecture parameters.
Note that all three models adopt the standard self-
attention mechanism.

| BERT | Llama2-7B | Llama2-13B

# att layers 12 32 40

# heads/layer 12 32 40

# head dim 64 128 128
Table 2: Architecture parameters of BERT-base,

Llama2-7b and Llama2-13B.

Datasets. For BERT-base, we choose SST-2,
Squad (Wang et al., 2019), and IMDB(Maas et al.,
2011). In particular, the IMDB dataset consists of
long sequences that exhibit more low-rank struc-
tures. For Llama2-7B and Llama2-13B, we choose
two of the official benchmark datasets: MMLU
(Hendrycks et al., 2021) and BoolQ (Clark et al.,
2019).

5.1 BERT-base

For all datasets, we start from a pre-trained model,
replace each self-attention layer with the low-rank
self-attention, and finetune the model. Owing to
the model size, we finetune full parameters. Train-
ing details are provided in Appendix C. Table 3
lists the final model accuracy on SST-2, Squad,
and IMDB. We can observe that BERT-base with
low-rank self-attention preserves models’ perfor-
mance. In particular, with 1/2 principal keys used,

the model with low-rank self-attention barely loses
accuracy. This indicates that owing to the low-rank
structure in sequences, 1/2 principal keys preserve
most information in inputs. Surprisingly, we can
further see that even only keeping 1/8 principal
keys, the model still achieves a comparable accu-
racy as the model with standard self-attention.
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Figure 5: Energy ratio (||X’[|% /|| X||3) in low-rank
hidden representations. Embeddings of all three datasets
exhibit highly low-rank structures, with 1/2 principal
components preserving almost all energy.

Figure 5 shows the relative energy kept in the
low-rank keys. We observe that for 1/2 princi-
pal keys are sufficient to keep almost all energy in
inputs, which is aligned with model accuracy in
Table 3. On the other hand, compared to Squad
and IMDB, SST-2 exhibits a more low-rank struc-
ture, with even 1/8 principal keys still preserving
near 90% energy. The observation explains BERT-
base’s performance on SST-2 that even low-rank
self-attention with only 1/8 principal keys only
incurs a ~ 3% accuracy drop.

5.2 Llama2

We obtain pre-trained Llama2-7B/13B models
from the Hugging Face repo !. Starting from the
pre-trained models, we replace their attention lay-
ers with low-rank self-attention. For MMLU and
BoolQ, since they have different formats, we will
first finetune the model on the datasets for a few

"https://huggingface.co/meta-1lama
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Model Original 172 1/4 1/8

SST-2 | 92.324+0.2 92.1+0.17 91.04+0.23 89.2+0.26
Squad | 88.15+0.3 87.93+0.2 87.23+£0.34 84.94+0.28
IMDB | 91.454+0.2 90.97+0.19 89.65+0.3 87.28+0.3

Table 3: BERT-base accuracy on SST-2, Squad, and IMDB using low-rank self-attention.

iterations (See Appendix C for more finetuning
parameters), and then evaluate their performance
on the validation dataset. Appendix D provides
prompt formats for MMLU and BoolQ during train-
ing and validation. To reduce training workload,
we use LoRA (Hu et al., 2021) to finetune the pro-
jection matrix for queries/keys/values with rank of
32, and fix other layers.

For MMLU, we obtain the first predicted logit
vector from the model given an input sequence, and
compute the probability on the four tokens: A, B,
C, D. The token with the highest probability will
be the predicted answer. For BoolQ, we adopt a
similar procedure but compute the probability on
the two tokens: Yes, No, and output the token with
the highest probability. Note that we ignore other
tokens that might have the highest probability.

Figure 6 shows the accuracy of Llama2-7B and
13B on MMLU using ATP. We can observe that
on all categories, ATP achieves accuracy close to
original Llama2-7B and 13B with standard self-
attention. In particular, owing to the highly low-
rank structure in input sequences, with 1,/2 princi-
pal keys, the model performance with ATP is almost
identical to the original model. Furthermore, even
with only 1/4 principal keys, ATP still does not
incur a significant accuracy drop. Similar perfor-
mance of LLama2-7B and 13B with the low-rank
self-attention holds on the BoolQ dataset, as listed
in Table 4. Therefore, ATP effectively leverages
low-rank structure in input sequences and performs
self-attention with a few top principal keys, leading
to performance close to the original model but with
significantly reduced complexities.

Model | Orig 172 13 1/4

7B 0.795 0.791 0.789 0.763
13B | 0.839 0.836 0.819 0.816

Table 4: Llama2 on BoolQ with low-rank self-attention.
Performance is not greatly affected even a small fraction
of principal keys/values are used in attention layers.
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Figure 6: LLama2 on MMLU (random guess: 0.25).
Low-rank self-attention effectively preserves perfor-
mance on all subjects, even with 1/4 principal keys.

6 Conclusion

In this work, we propose a low-rank self-attention
mechanism, ATP, significantly reducing computa-
tion and memory complexity for transformers and
LLMs. ATP leverages low-rank structures in input
sequences and sufficiently represents each input se-
quence with a few top principal components. Then,
ATP designs a low-rank self-attention layer that first
attains principal keys/values given a low-rank input.
Then, it performs attention only on top principal
keys/values, rather than on each individual token
embedding. Therefore, ATP reduces the attention
complexity from quadratic to linear in terms of se-
quence length. Owing to low-rank structures in
input sequences, a few top principal keys/values
are sufficient to preserve information in input se-
quences. Evaluation of BERT and Llama models
shows ATP achieves performance close to original
models with much-reduced computation and mem-
ory footprints.



7 Limitations

Limitations. One of the limitations of this work is
that we evaluate ATP on BERT and Llama2 models.
While performance on other models may differ. We
will evaluate more models and datasets in future
works.

Potential Risk. = While this work is aimed at
lowering the barrier of deploying LLMs, it may be
misused by malicious parties to quickly deploy and
run adverse LLM services for their purposes.
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A Lowrank Structure in Other Model

Figure 7 shows the low-rankness of BERT model
on IMDB dataset. We can also observe that most

10

sequences exhibists low-rank structures. In partic-
ular, long sequences are more low-rank, which is
aligned with the observation in Sec 3.
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Figure 7: Distribution of low-rankness of BERT-
base’s embedding on IMDB dataset, measured by ratio
[2#] /L.

B Alternating Optimization

Algorithm 1: Alternating Opt for SVD.
Data: r, X, {U?a ”?}2:1
Result: {u;, v;};_,
foriin1l,--- ,rdo

for jin1,---,2do

/* Alternating optimization */
. i—1
o = Xl |
i j—1(2°
i XTul,
vi - j 2
[[w!]] -
end
— ) 2y
Ui, Uy = U;,U;
X=X-—ul v
= w; v
end

C Finetune Hyperparameters

For BERT-base and LLlama2 models, we conduct a
grid search on learning rate (le-5, 2e-5, Se-5, le-4,
2e-4, Se-4), and weight decay (le-3, 5e-3, le-2,
5e-2). Table 5 and 6 list the best hyperparameters
found during fine-tuning.

max len ‘ batch size ‘ epochs ‘ Ir ‘ wd

512 | 32 | 20 |5e-5 le2

Table 5: Finetuning hyperparameters for BERT-base on
SST-2, Squad, and IMDB.



max len ‘ batch size ‘ iters ‘ lr ‘ wd

2048 | 32 | 400 | 2e-4 | le-2

Table 6: Finetuning hyperparameters for Llama 2-
7B/13B on MMLU and BoolQ.

D Prompt Format for MMLU and BoolQ

Table 7 and 8 list the prompt format for MMLU
and BoolQ dataset.

The following are multiple choice questions (with answers).
One of the reasons that the government discourages

and regulates monopolies is that

A. producer surplus is lost and consumer surplus is gained.
B. monopoly prices ensure productive efficiency but cost
society allocative efficiency.

C. monopoly firms do not engage in significant research
and development.

D. consumer surplus is lost with higher prices and lower
levels of output.

Answer:

C

Table 7: MMLU prompt format

Below is an instruction that describes a task. Write a response
that appropriately completes the request.

### Instruction:

is harry potter and the escape from gringotts a roller coaster ride
### Input:

Harry Potter and the Escape from Gringotts is an indoor steel
roller coaster ***

### Answer:

Yes

Table 8: BoolQ prompt format
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