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Abstract

We propose a new attention mechanism with001
linear complexity, ATP, that fixates Attention002
on Top Principal keys, rather than on each indi-003
vidual token. Particularly, ATP is driven by an004
important observation that input sequences are005
typically low-rank, i.e., input sequences can be006
represented by a few principal bases. There-007
fore, instead of directly iterating over all the008
input tokens, ATP transforms inputs into an or-009
thogonal space and computes attention only on010
the top principal bases (keys). Owing to the011
observed low-rank structure in input sequences,012
ATP is able to capture semantic relationships in013
input sequences with a few principal keys. Fur-014
thermore, the attention complexity is reduced015
from quadratic to linear without incurring a no-016
ticeable performance drop. ATP further reduces017
complexity for other linear layers with low-018
rank inputs, leading to more speedup compared019
to prior works that solely target the attention020
module. Our evaluations on various models021
(e.g., BERT and Llama) demonstrate that ATP022
achieves comparable accuracy with much lower023
computation and memory complexity than the024
standard attention mechanism. In particular,025
ATP barely loses accuracy with only 1/2 princi-026
pal keys, and only incurs around 2% accuracy027
drops with 1/4 principal keys.028

1 Introduction029

Transformers with self-attention have become a030

mainstream model architecture in many machine-031

learning tasks on natural language processing (Wolf032

et al., 2020), and computer vision (Khan et al.,033

2022; Dosovitskiy et al., 2020). In particular, ow-034

ing to the attention mechanism, transformers have035

been demonstrated to be more effective in learning036

semantic relationships from input sequences. This037

drives transformers to become the backbone of cur-038

rent large language models (LLMs) like ChatGPT039

(OpenAI) and Copilot (Microsoft).040

Despite their remarkable utility in real-world041

applications, transformers with standard self- 042

attention, however, incur quadratic complexity in 043

terms of sequence length (Vaswani et al., 2017). 044

To be specific, considering an input sequence with 045

length L (i.e., L tokens), each attention layer needs 046

O(L2) computation and memory complexity on 047

attention operations. Such a quadratic degree of 048

complexity renders transformers difficult to scale 049

with long input sequences. As a result, most LLM 050

services at scale backed by transformers incur sig- 051

nificant computation and memory footprints, which 052

can only be afforded by large companies with suf- 053

ficient computing power (Samsi et al., 2023). To 054

meet memory and computation resource constraints 055

during deployment, some transformer models (De- 056

vlin et al., 2018; Lan et al., 2020; Radford et al., 057

2018; Touvron et al., 2023) usually come with a 058

hard constraint on sequence length. However, in 059

many real-world tasks such as question-answering 060

(Wang et al., 2019), text summarization (El-Kassas 061

et al., 2021), enabling long sequence length is 062

crucial for capturing semantic relationships in a 063

broader context, and improving models’ perfor- 064

mance. 065

Therefore, at the core of transformers and LLM 066

services, lightweight self-attention mechanisms 067

play a key role in improving model performance 068

with longer sequences, as well as computation and 069

memory efficiency in deployment. 070

Current works on reducing the complexities of 071

transformers can be categorized in two ways. The 072

first line of research usually exploits redundancy in 073

query/key/value matrices or attention maps, while 074

the second approximates the Softmax-based atten- 075

tion with linear complexity. 076

Along the first line of works, Vyas et al. (2020) 077

reduces attention complexity via clustering queries 078

and only computes attention output for each clus- 079

ter. Its performance hinges on the performance 080

of clustering as well as the dimension in queries. 081

On the other hand, Linformer (Wang et al., 2020) 082
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chooses to reduce the number of keys/values via a083

low-dimensional projection. A pre-defined or learn-084

able projection layer is inserted into each attention085

layer. However, such a projection layer lacks a rig-086

orous guarantee to preserve information in inputs.087

Compared to simply approximating queries, keys,088

or values, another line of work approximates the089

Softmax-based attention using randomized feature090

mapping(Rahimi and Recht, 2007). In these works,091

standard attention is regarded as a kernel method,092

and can be approximated with low-dimensional093

kernels. For instance, Performers (Choromanski094

et al., 2020) shows that Softmax attention can be095

converted to a Gaussian kernel function. There-096

fore, self-attention can be potentially calculated at097

a lower dimension with linear complexity, as done098

in a Gaussian kernel function. Following such an099

idea, several works explore different kernels to ap-100

proximate Softmax attention (Katharopoulos et al.,101

2020a). However, the approximation methods with102

randomized feature mapping need to trade off ap-103

proximation accuracy and the number of random104

features. A low approximation error needs more105

random features but increases approximation com-106

plexity (Choromanski et al., 2020). Furthermore,107

while the aforementioned works reduce the com-108

plexity of the attention mechanism to linear, they109

still have not been seen in large-scale language110

models such as Llama (Touvron et al., 2023). One111

reason is that these methods cannot effectively pre-112

serve information when performing attention in low113

dimensions.114

In this paper, we propose a new attention mecha-115

nism with linear complexity, that maintains model116

performance with significantly reduced computa-117

tion and memory costs. The new attention mecha-118

nism, called ATP, is the first work that adapts self-119

attention with a low-rank structure in input embed-120

dings. In particular, ATP first analyzes an input121

sequence’s structure and obtains orthogonal bases.122

We observe that input sequences usually exhibit a123

high correlation among tokens, with a few orthogo-124

nal bases being more important than the rest. Then125

ATP computes attention only on the top principal126

bases ( we call them principal keys), rather than127

iterating over all keys as in the standard attention128

layer. Owing to the low-rank structure in input129

sequences, the new self-attention mechanism with130

few principal keys/values is sufficient to capture131

semantic relationships among tokens. As a result,132

compute and memory complexity is reduced from133

quadratic to linear in terms of sequence length.134

Furthermore, by exploiting low-rank structure in 135

inputs, not only is the complexity of attention re- 136

duced, but also the complexity of other linear lay- 137

ers. Hence, ATP achieves further computation re- 138

ductions compared to prior works focusing solely 139

on the Softmax operation. 140

Our evaluations on various models (e.g., BERT 141

and Llama) demonstrate ATP still maintains com- 142

parable accuracy with small fractional principal 143

keys/values. In particular, with only 1/4 principal 144

keys, ATP achieves accuracy almost as the original 145

model. With only 1/4 principal keys, ATP only in- 146

curs around 2% accuracy drop on BERT-base and 147

Llama2 models. 148

2 Preliminaries and Related Works 149

2.1 Standard Self-Attention 150

Standard self-attention consists of three matrices: 151

queries Q, keys K, and values V ∈ RL×d′ , where 152

L is sequence length and d′ is the hidden dimension. 153

For each query vector q ∈ Q, the self-attention 154

applies dot-product with all keys, followed by a 155

Softmax op to compute a score on each key. Each 156

score denotes a weight on the corresponding values. 157

Then the attention output A(q) is obtained as a 158

weighted average of all values: 159

A(q) = Softmax(q ·KT /
√
d) · V. (1) 160

The query/key/value matrices are obtained by 161

projecting input X ∈ RL×d with parameter 162

WQ,WK ,W V ∈ Rd×d′ as 163

Q,K, V = X · {WQ,WK ,W V }. (2) 164

In essence, the self-attention mechanism finds 165

the relations between a query and all keys, which 166

are measured by probability after Softmax. Then, 167

it averages corresponding values with the notion 168

that a key closer to the query should be assigned 169

larger weights (i.e., probability after Softmax). 170

2.2 Related Works on Efficient Self-Attention 171

Given an input sequence with length L, the 172

standard self-attention needs to perform L2 dot- 173

products for all token vectors to get the whole 174

attention map. As a result, it incurs complexity 175

of O(L2) on computations and memory, which 176

makes it difficult to scale with long inputs in many 177

tasks. As a result, current LLM services usually 178

require a significant amount of memory and com- 179

puting power, in order to support long sequences. 180
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In some cases, facing actual resource constraints,181

some LLMs may need to limit the sequence length.182

Current literature typically mitigates the lim-183

itation via exploiting sparsity or redundancy in184

attention matrices (Roy et al., 2021; Sun et al.,185

2021; Vyas et al., 2020; Katharopoulos et al.,186

2020a; Wang et al., 2020), or approximating the187

self-attention operation. For sparsity and redun-188

dancy in attention, exploiting low-rank structures189

in query/key/value and attention maps shows great190

potential. For instance, by exploring redundancy in191

input query vectors, Vyas et al. (2020) propose to192

first cluster query vectors, and use cluster centroid193

vectors to represent all query vectors of the same194

cluster. Hence, for all queries in the same cluster,195

it only needs to compute the attention score once196

on the centroid vector. With a reduced number of197

vectors when performing self-attention, it reduces198

the complexity of self-attention from quadratic to199

linear. However, the cost is a noticeable error by200

approximating many queries with the same clus-201

ter, thereby leading to performance degradation.202

On the other hand, Wang et al. (2020) project key203

and value matrices into a low-dimensional space.204

Specifically, with r keys and values in the low-205

dimensional space, the method only needs to per-206

form an attention op on r keys rather than L keys207

as in the standard self-attention mechanism. How-208

ever, due to the fact that the projection matrix is209

pre-defined and learned from scratch, it is not guar-210

anteed that the low-dimensional projection is effec-211

tive in preserving information in the original key212

and value matrices (Wang et al., 2020). Besides213

query/key/value matrices, Nguyen et al. (2021);214

Han et al. (2023) directly exploit redundancy in215

the attention map, and approximate the attention216

map with low-rank and sparse matrices. Therefore,217

computation and memory costs of self-attention218

can also be reduced.219

Besides removing redundancy in self-attention220

operations, current works along the second line221

of research attack the problem via approximating222

Softmax operations with kernelization. Typically,223

Choromanski et al. (2020) regard self-attention as224

Softmax kernels: exp(q · kT ) with query q and225

key k, and approximate it with the Gaussian ker-226

nel function(Rahimi and Recht, 2007). Specifi-227

cally, it estimates Softmax as: exp(q · kT ) →228

E
[
ϕ(q) · ϕ(k)T

]
, where kernel function ϕ(·) maps229

a vector to a low-dimensional space. Therefore, the230

dimension after kernelization is reduced, leading231

to a reduction in self-attention operations. Along232

this line, other works (Katharopoulos et al., 2020b; 233

Nguyen et al., 2021) explore different kernel func- 234

tions to approximate the self-attention function. 235

While the complexity is reduced, these kernel- 236

based approximations still incur large Softmax ap- 237

proximation errors given large hidden dimensions 238

in large models. 239

Therefore, a lightweight self-attention mecha- 240

nism with linear complexity is still needed, espe- 241

cially for current large models with huge computa- 242

tion and memory footprints. 243

3 Lowrank Structure in Sequences 244

Low-rank structures in inputs of language models 245

are an essential component, that, surprisingly, is 246

rarely exploited in current models for better compu- 247

tation and memory efficiency. Compared to model 248

parameters (Hu et al., 2021), inputs and internal 249

hidden states are usually more correlated, which 250

can be potentially exploited. Such a property has 251

also been observed in vision problems (Niu et al., 252

2022; Andriushchenko et al., 2023) and used to 253

reduce the complexity of convolution operations. 254

This paper is the first work that investigates the 255

low-rank structure of input sequences in language 256

models, and, importantly, its potential to computa- 257

tion and memory saving. In this section, we first 258

analyze low-rank structures in transformers’ input 259

sequence. Then, in the next section, we present 260

ATP that leverages low-rank structures in inputs and 261

performs self-attention with significantly reduced 262

computation and memory footprints. 263

Transformer models comprise a stack of self- 264

attention layers. Each self-attention layer takes 265

input state X ∈ RL×d, and computes output state 266

Y ∈ RL×d, where L denotes the sequence length, d 267

is the dimension of each hidden state vector. Each 268

state vector corresponds to a token in the input 269

sequence. Owning to the semantic relationships 270

among tokens, these vectors are also correlated. To 271

formally measure such correlations, we adopt a 272

metric called SVD-Entropy. 273

In detail, we apply singular value decomposition 274

(SVD) to the hidden state as 275

X
SVD−−→

L∑
i=1

σi · ui · vT
i . (3) 276

We assume L ≤ d without loss of general- 277

ity. With Eq(3), we attains singular values {σi} 278

and corresponding principal components {vi}. 279
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Then, based on Niu et al. (2022), we compute280

SVD-Entropy as the “low-rankness" of X ,281

µ = − log

(
L∑
i=1

σ̄2
i

)
, (4)282

where σ̄i =
σi

L∑
i′=1

σi′

.283

According to Niu et al. (2022), ⌈2µ⌉ can denote284

the number of necessary principal components to285

sufficiently approximate input X . ⌈2µ⌉ ≪ L im-286

plies that input state vectors in X are highly cor-287

related such that only a few principal components288

are sufficient to represent X .289

With such a measure, we analyze the low-rank290

structure of hidden states in language models. Fig-291

ure 1 shows the distribution of low-rankness after292

Llama-2’s embedding layer on BoolQ and MMLU293

datasets, measured by ratio ⌈2µ⌉ /L. A small ratio294

implies that the embedding of a sequence is more295

low-rank. We can easily observe that embeddings296

of all sequences are highly low-rank, where 50%297

or even fewer principal components are sufficient298

to approximate embedding vectors without error.299

Moreover, longer sequences usually exhibit more300

low-rank structure compared to shorter sequences.301

Note that the observation implies that exploiting302

the low-rankness of input data can be more effec-303

tive compared to the low-rankness of models (Hu304

et al., 2021). Such a crucial observation presents305

great potential for reducing the dimension of inputs,306

thereby leading to more efficient self-attention with307

reduced computation and memory complexities, es-308

pecially for long sequences. Low-rankness analysis309

of other models is deferred to Appendix A.310

4 ATP Methodology311

In this section, we introduce ATP, a generic trans-312

former architecture with a new efficient self-313

attention. ATP introduces a rank-aware self-314

attention mechanism that reduces the complexity of315

self-attention to linear given the low-rank structure316

in input sequence embeddings.317

4.1 Self-Attention with Low-Rank Inputs318

Given low-rank input X ∈ RL×d with r principal319

components, we write it as320

X = U ·X ′, (5)321

where U ∈ RL×r, and X ′ ∈ Rr×d denotes322

the principal components. Since X is low-rank,323
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Figure 1: Distribution of low-rankness of Llama-2’s
embedding on MMLU and BoolQ dataset, measured by
ratio ⌈2µ⌉ /L. Almost all sequences can be sufficiently
approximated with less than half principal components
without incurring error. Longer sequences exhibit a
more low-rank structure.

query/key/values matrices obtained by projecting 324

X are also low-rank. That is, 325

Q,K, V = U ·X ′ ·
{
WQ,WK ,W V

}
= U ·

{
Q′,K ′, V ′} . (6) 326

By the matrix rank inequality (Banerjee and Roy, 327

2014), we have rank({Q,K, V }) ≤ rank(X ′) = 328

r. 329

Then we start from the standard self-attention, 330

and show the computations can be significantly 331

reduced with low-rank keys/values. We omit the 332

normalization in Softmax and write self-attention 333

with query q on all keys/values as exp(q,KT ) · V . 334

With low-rankness of input X , we can break down 335

the self-attention as 336

exp(q ·KT ) · V = exp(q ·K ′T · UT ) · U · V ′

(7) 337

By the Taylor expansion on the exp function on 338

ech value, we have the following approximation, 339

exp(q,KT ) · V
≃ 1 · U · V ′ + q ·K ′T · UT · U · V ′

= 1 · U · V ′ + q ·K ′T · V ′

= (1 · U + q ·K ′T ) · V ′ = A′ · V ′,

(8) 340
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where 1 ∈ R1×L, and UT · U = I . Similar as341

Softmax, normalization is applied row-wise on the342

new attention map A′.343

Eq(8) shows that self-attention on all token vec-344

tors X can be converted to attention on all principal345

keys K ′. More importantly, different from the stan-346

dard self-attention where each key corresponds to347

a token in the input sequence, these principal keys348

denote all principal bases drawn from X ′. That is,349

ATP converts the attention operation from individ-350

ual token vectors to principal basis vectors. The351

observation is very crucial given low-rank input352

X . The reason is that, given low-rank input with353

r ≪ L, based on Eq(8), for each query, we only354

need to perform dot-product on r vectors, rather355

than L vectors as in the standard self-attention.356

Therefore, the self-attention does not incur O(L2)357

computation and memory costs. Instead, the costs358

scale linearly with sequence length, L, and the num-359

ber of principal components, r. Figure 2 shows a360

point-to-point comparison between the standard361

self-attention and the low-rank self-attention. The362

low-rank self-attention shares a similar procedure363

as the stand self-attention, while the difference364

is that the low-rank self-attention performs dot-365

product on r principal keys.366

Remark 4.1 Unlike works such as (Wang et al.,367

2020) that attain low-dimensional key/value matri-368

ces via hard-coded/learnable projection, we adopt369

a more rigorous method based on SVD to find the op-370

timization low-dimensional space, that preserves371

most energy of input X with r principal compo-372

nents.373

4.2 Tansformers with Low-Rank Attention374

With the low-rank self-attention above, we can375

adapt the transformer architecture to input se-376

quences with highly low-rank structure. To the best377

of our knowledge, this is the first adaptation that378

takes input low-rank structure into model design,379

and reduces complexities for the whole pipeline.380

As a transformer model is usually built with a381

stack of encoder/decoder layers with the same ar-382

chitecture, to simplify, we only show the archi-383

tecture adaptation for one encoder/decoder layer,384

which will be replicated to the rest of the layers.385

The first step is to analyze input X and attain its386

principal components. To that end, we decompse387

input X using SVD, and attain the principal compo-388

nents X ′ based on Eq(3): X ′ = [σ1v1, · · · , σrvr].389

However, the exact SVD incurs a complexity of390
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∈
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d
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(a) Standard self-attention.
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(b) Low-rank self-attention.

Figure 2: Standard self-attention and low-rank self-
attention. Low-rank self-attention share the same pro-
cedure as the standard self-attention, but with only r
principal keys and values.

O(Ld2), which can be a performance bottleneck 391

given the large dimension of each vector in X . To 392

avoid such a quadratic complexity, we adopt an 393

approximated SVD algorithm as 394

X ′ = [σ1v1, · · · , σrvr]

= argminσ,u,v1,·,r

∥∥∥∥∥X −
r∑

i=1

σi · ui · vT
i

∥∥∥∥∥ .
(9)

395

Essentially, the optimization above is to find r 396

principal components that preserve most energy 397

in X , while ignoring the orthogonality constraint 398

on the components. To simplify the optimization 399

above, σi can be fused with vi to reduce the number 400

of variables to be optimized. By the alternating op- 401

timization in Alg 1 in Niu et al. (2022) (duplicated 402

in Appendix B), we can attain r most principal 403

components which preserved most energy in X . 404

Compared to the standard SVD decomposition, the 405

approximation in Eq(9) incurs a linear complex- 406

ity of O(rLd), thereby preventing SVD being the 407
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Low-Rank Attention

WQ WK WV

SVD

Norm

Feedforward

X

Y

X′

Projection

Figure 3: Transformer encoder/decoder with low-rank
self-attention. Input X is first fed to SVD to attain the
principal components, X ′. Then, X ′ is fed to an en-
coder/decoder layer with low-rank self-attention.

bottleneck in the whole pipeline.408

Then, principal components X ′ are fed into a409

self-attention layer to attain principal keys and410

values as in Eq(6). With the principal keys and411

values, ATP performs attention as in Eq(8), and412

feedforward to obtain output states Y . The next413

encoder/decoder layer follows the same procedure414

first to attain principal components of Y and per-415

form low-rank self-attention.416

Combine with Position Encoding. For abso-417

lution or relative position encoding vectors P for418

a sequence (Devlin et al., 2018; Lan et al., 2020;419

Shaw et al., 2018), they are added to token embed-420

dings before an encoder/decoder layer. Therefore,421

we can still directly apply SVD to the input vec-422

tors, X + P , and obtain principal components for423

low-rank self-attention.424

For rotatory position embedding (Su et al., 2021;425

Touvron et al., 2023), the position encoding vec-426

tors are added after query/key projection. That is,427

k = x ·WK ·Ri, where Ri is a rotary matrix corre-428

sponding to a transformation for a token at position429

i, x denotes one input vector in X . While the low-430

rank structure might change during the rotation, we431

can still attain a low-rank key matrix by projecting432

the key matrix into a low-dimension space with U433

as in Eq(8).434

Therefore, the low-rank self-attention mecha-435

nism is compatible with current position encoding436

methods.437

4.3 Complexity Analysis438

Self-attention with low-rank inputs not only re-439

lieves computation and memory pressure for at-440

tention operations, but also reduces complexity for 441

other linear layers. Table 1 lists computations and 442

the corresponding complexity of the standard and 443

low-rank self-attention. Due to the reduced number 444

of components in X ′, query/key/value projection 445

only needs to project r vectors rather than L to- 446

ken vectors as the standard self-attention, thereby 447

resulting in r keys and value vectors with dimen- 448

sion d′. Hence, both the computation and mem- 449

ory during the projection are reduced by L/r. On 450

the other hand, when performing attention, the 451

low-rank attention only needs to compute the at- 452

tention score on r principal keys, rather than L 453

token keys as the standard self-attention. There- 454

fore, the computation and memory complexities are 455

also reduced by L/r. Note that the additional SVD 456

only incurs computation complexity of O(rLd), 457

which is linear in term of L, and is relatively small 458

compared to computations in the standard self- 459

attention. In addition, more computation saving 460

can be achieved by decomposing hidden state vec- 461

tors to the FeedForward layer. In this paper, we 462

mainly focus on self-attention layers. 463
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Figure 4: Actual running time of low-rank self-attention
compared to the standard mechanism with different
sequence lengths (r=128). The running time of the
standard self-attention increases quadratically with the
sequence length. Low-rank self-attention reduces the
running time to almost linear.

Figure 4 shows actual speedups of low-rank self- 464

attention compared to the standard self-attention 465

given different sequence lengths. Note that the stan- 466

dard self-attention, as expected, incurs quadratic 467

running time with increasing input sequence length. 468

On the other hand, the running time of the low-rank 469

self-attention scales almost linearly with sequence 470

length. The time gap between them grows rapidly 471

with long sequences. This shows that the stan- 472

dard self-attention indeed comes with a severe bot- 473

tleneck on real performance with long sequences, 474

while the low-rank self-attention significantly re- 475

duces actual running time. 476
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Mechanism Standard Low-rank

Computation Complexity Memory Computation Complexity Memory
Projection X ·W O(Ldd′) O(Ld′) X ′ ·W O(rdd′) O(rd′)
Attention Q ·KT O(L2d′) O(L2) QK ′T O(rLd′) O(rL)

Table 1: Computation and memory complexity with low-rank input. Low-rank self-attention reduces the complexity
of attention from quadratic to linear. It also reduces complexities for other linear layers (L: sequence length, r: rank,
d: dimension of X , d′: dimension of hidden state).

5 Empirical Evaluation477

In this section, we evaluate the low-rank attention478

on benchmark models and datasets. To investi-479

gate the applicability of low-rank attention in a480

wide range of applications, we choose models with481

different sizes. For datasets, we focus on long482

sequences, which usually incur significant compu-483

tation and memory pressure during inference.484

Model. We choose BERT-base (encoders only)485

as the small model (Devlin et al., 2018), Llama2-7B486

(decoder only) as the medium model, and Llama2-487

13B as the large model (Touvron et al., 2023). Ta-488

ble 2 lists their detailed architecture parameters.489

Note that all three models adopt the standard self-490

attention mechanism.491

BERT Llama2-7B Llama2-13B

# att layers 12 32 40
# heads/layer 12 32 40
# head dim 64 128 128

Table 2: Architecture parameters of BERT-base,
Llama2-7b and Llama2-13B.

Datasets. For BERT-base, we choose SST-2,492

Squad (Wang et al., 2019), and IMDB(Maas et al.,493

2011). In particular, the IMDB dataset consists of494

long sequences that exhibit more low-rank struc-495

tures. For Llama2-7B and Llama2-13B, we choose496

two of the official benchmark datasets: MMLU497

(Hendrycks et al., 2021) and BoolQ (Clark et al.,498

2019).499

5.1 BERT-base500

For all datasets, we start from a pre-trained model,501

replace each self-attention layer with the low-rank502

self-attention, and finetune the model. Owing to503

the model size, we finetune full parameters. Train-504

ing details are provided in Appendix C. Table 3505

lists the final model accuracy on SST-2, Squad,506

and IMDB. We can observe that BERT-base with507

low-rank self-attention preserves models’ perfor-508

mance. In particular, with 1/2 principal keys used,509

the model with low-rank self-attention barely loses 510

accuracy. This indicates that owing to the low-rank 511

structure in sequences, 1/2 principal keys preserve 512

most information in inputs. Surprisingly, we can 513

further see that even only keeping 1/8 principal 514

keys, the model still achieves a comparable accu- 515

racy as the model with standard self-attention. 516

1/8 1/4 1/2 3/4 full

80

90

100

60

complexity

en
er

gy
ra

tio
(%

)

SST-2

Squad

IMDB

Figure 5: Energy ratio (∥X ′∥2F / ∥X∥2F ) in low-rank
hidden representations. Embeddings of all three datasets
exhibit highly low-rank structures, with 1/2 principal
components preserving almost all energy.

Figure 5 shows the relative energy kept in the 517

low-rank keys. We observe that for 1/2 princi- 518

pal keys are sufficient to keep almost all energy in 519

inputs, which is aligned with model accuracy in 520

Table 3. On the other hand, compared to Squad 521

and IMDB, SST-2 exhibits a more low-rank struc- 522

ture, with even 1/8 principal keys still preserving 523

near 90% energy. The observation explains BERT- 524

base’s performance on SST-2 that even low-rank 525

self-attention with only 1/8 principal keys only 526

incurs a ∼ 3% accuracy drop. 527

5.2 Llama2 528

We obtain pre-trained Llama2-7B/13B models 529

from the Hugging Face repo 1. Starting from the 530

pre-trained models, we replace their attention lay- 531

ers with low-rank self-attention. For MMLU and 532

BoolQ, since they have different formats, we will 533

first finetune the model on the datasets for a few 534

1https://huggingface.co/meta-llama
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Model Original 1/2 1/4 1/8

SST-2 92.32± 0.2 92.1± 0.17 91.0± 0.23 89.2± 0.26
Squad 88.15± 0.3 87.93± 0.2 87.23± 0.34 84.94± 0.28
IMDB 91.45± 0.2 90.97± 0.19 89.65± 0.3 87.28± 0.3

Table 3: BERT-base accuracy on SST-2, Squad, and IMDB using low-rank self-attention.

iterations (See Appendix C for more finetuning535

parameters), and then evaluate their performance536

on the validation dataset. Appendix D provides537

prompt formats for MMLU and BoolQ during train-538

ing and validation. To reduce training workload,539

we use LoRA (Hu et al., 2021) to finetune the pro-540

jection matrix for queries/keys/values with rank of541

32, and fix other layers.542

For MMLU, we obtain the first predicted logit543

vector from the model given an input sequence, and544

compute the probability on the four tokens: A, B,545

C, D. The token with the highest probability will546

be the predicted answer. For BoolQ, we adopt a547

similar procedure but compute the probability on548

the two tokens: Yes, No, and output the token with549

the highest probability. Note that we ignore other550

tokens that might have the highest probability.551

Figure 6 shows the accuracy of Llama2-7B and552

13B on MMLU using ATP. We can observe that553

on all categories, ATP achieves accuracy close to554

original Llama2-7B and 13B with standard self-555

attention. In particular, owing to the highly low-556

rank structure in input sequences, with 1/2 princi-557

pal keys, the model performance with ATP is almost558

identical to the original model. Furthermore, even559

with only 1/4 principal keys, ATP still does not560

incur a significant accuracy drop. Similar perfor-561

mance of LLama2-7B and 13B with the low-rank562

self-attention holds on the BoolQ dataset, as listed563

in Table 4. Therefore, ATP effectively leverages564

low-rank structure in input sequences and performs565

self-attention with a few top principal keys, leading566

to performance close to the original model but with567

significantly reduced complexities.568

Model Orig 1/2 1/3 1/4

7B 0.795 0.791 0.789 0.763
13B 0.839 0.836 0.819 0.816

Table 4: Llama2 on BoolQ with low-rank self-attention.
Performance is not greatly affected even a small fraction
of principal keys/values are used in attention layers.

STEM humanities social other

0.3

0.4

0.5

0.25

A
cc

Orig 1/2 1/3 1/4

(a) Llama2-7B.

STEM humanities social other

0.3

0.4

0.5

0.6

0.25

A
cc

(b) Llama2-13B.

Figure 6: LLama2 on MMLU (random guess: 0.25).
Low-rank self-attention effectively preserves perfor-
mance on all subjects, even with 1/4 principal keys.

6 Conclusion 569

In this work, we propose a low-rank self-attention 570

mechanism, ATP, significantly reducing computa- 571

tion and memory complexity for transformers and 572

LLMs. ATP leverages low-rank structures in input 573

sequences and sufficiently represents each input se- 574

quence with a few top principal components. Then, 575

ATP designs a low-rank self-attention layer that first 576

attains principal keys/values given a low-rank input. 577

Then, it performs attention only on top principal 578

keys/values, rather than on each individual token 579

embedding. Therefore, ATP reduces the attention 580

complexity from quadratic to linear in terms of se- 581

quence length. Owing to low-rank structures in 582

input sequences, a few top principal keys/values 583

are sufficient to preserve information in input se- 584

quences. Evaluation of BERT and Llama models 585

shows ATP achieves performance close to original 586

models with much-reduced computation and mem- 587

ory footprints. 588
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7 Limitations589

Limitations. One of the limitations of this work is590

that we evaluate ATP on BERT and Llama2 models.591

While performance on other models may differ. We592

will evaluate more models and datasets in future593

works.594

Potential Risk. While this work is aimed at595

lowering the barrier of deploying LLMs, it may be596

misused by malicious parties to quickly deploy and597

run adverse LLM services for their purposes.598
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A Lowrank Structure in Other Model744

Figure 7 shows the low-rankness of BERT model745

on IMDB dataset. We can also observe that most746

sequences exhibists low-rank structures. In partic- 747

ular, long sequences are more low-rank, which is 748

aligned with the observation in Sec 3. 749
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Figure 7: Distribution of low-rankness of BERT-
base’s embedding on IMDB dataset, measured by ratio
⌈2µ⌉ /L.

B Alternating Optimization 750

Algorithm 1: Alternating Opt for SVD.

Data: r,X,
{
u0
i ,v

0
i

}r
i=1

Result: {ui,vi}ri=1

for i in 1, · · · , r do
for j in 1, · · · , 2 do

/* Alternating optimization */

uj
i =

X·vj−1
i

∥vj−1
i ∥2

F

;

vj
i =

XT ·uj
i

∥uj
i∥

2

F

;

end
ui,vi = uj

i ,v
jT

i ;

X = X − uj
i · v

jT

i ;
end

C Finetune Hyperparameters 751

For BERT-base and Llama2 models, we conduct a 752

grid search on learning rate (1e-5, 2e-5, 5e-5, 1e-4, 753

2e-4, 5e-4), and weight decay (1e-3, 5e-3, 1e-2, 754

5e-2). Table 5 and 6 list the best hyperparameters 755

found during fine-tuning.

max len batch size epochs lr wd

512 32 20 5e-5 1e-2

Table 5: Finetuning hyperparameters for BERT-base on
SST-2, Squad, and IMDB.

756
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max len batch size iters lr wd

2048 32 400 2e-4 1e-2

Table 6: Finetuning hyperparameters for Llama 2-
7B/13B on MMLU and BoolQ.

D Prompt Format for MMLU and BoolQ757

Table 7 and 8 list the prompt format for MMLU758

and BoolQ dataset.

The following are multiple choice questions (with answers).
One of the reasons that the government discourages
and regulates monopolies is that
A. producer surplus is lost and consumer surplus is gained.
B. monopoly prices ensure productive efficiency but cost
society allocative efficiency.
C. monopoly firms do not engage in significant research
and development.
D. consumer surplus is lost with higher prices and lower
levels of output.
Answer:
C

Table 7: MMLU prompt format

759

Below is an instruction that describes a task. Write a response
that appropriately completes the request.
### Instruction:
is harry potter and the escape from gringotts a roller coaster ride
### Input:
Harry Potter and the Escape from Gringotts is an indoor steel
roller coaster ***
### Answer:
Yes

Table 8: BoolQ prompt format
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