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ABSTRACT

Non-IID data distribution across clients and poisoning attacks are two main chal-
lenges in real-world federated learning systems. While both of them have attracted
great research interest with specific strategies developed, no known solution man-
ages to address them in a unified framework. To overcome both challenges, we
propose SmartFL, a generic approach that optimizes the server-side aggregation
process with a small amount of on-server proxy data (e.g., around one hundred
samples for CIFAR-10) via a subspace training technique. Specifically, the ag-
gregation weight of each participating client at each round is optimized using the
server-side proxy data, which is essentially the optimization of the global model
in the convex hull spanned by client models. Since at each round, the number
of tunable parameters optimized on the server side equals the number of partici-
pating clients (thus independent of the model size), we are able to train a global
model with massive parameters using only a small amount of server-side proxy
data. We provide theoretical analyses of the convergence and generalization ca-
pacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance
on both federated learning with non-IID data distribution and federated learning
with malicious clients.

1 INTRODUCTION

Data security and privacy have raised increasing interest in machine learning research, especially in
privacy-sensitive areas such as health care (Rieke et al., 2020). Federated Learning (FL) emerges as
an effective privacy-preserving machine learning approach to jointly optimize a global model over
decentralized data (Konečnỳ et al., 2016; Yang et al., 2019). Typically, generic FL involves multiple
rounds of clients’ local training followed by server-side aggregation. The server-side aggregation
plays an essential role that aggregates the client models into a global model, which is then used
to initialize the clients in the next training round. The standard aggregation strategy Federated
Averaging (FedAVG) (McMahan et al., 2017), which takes the sample number weighted average
over clients’ weights, is shown to converge to an ideal model as centralized training and works well
in IID data distribution without poisoning attacks (Zinkevich et al., 2010; McMahan et al., 2017;
Zhou & Cong, 2017).

However, in real-world scenarios, the non-IID distribution of data across clients and the poten-
tial presence of malicious clients severely compromise the effectiveness of standard FL aggrega-
tion (Konečnỳ et al., 2016; Yang et al., 2019; Yin et al., 2018). Plenty of advanced server-side
aggregation strategies have been proposed to address these two problems separately due to their
seemingly different objectives. Specifically, to tackle the non-IID distribution of data, prior studies
propose to reweight the updates based on statistics of local updates (Wang et al., 2020; Yeganeh
et al., 2020; Xiao et al., 2021) or perform further tuning with proxy data on the global model (Lin
et al., 2020; Chen & Chao, 2021a) in every communication round to alleviate the influence of large
deviation of clients’ local models. To improve robustness against attacks, Byzantine-robust aggre-
gations (Yin et al., 2018; Blanchard et al., 2017; Guerraoui et al., 2018) are introduced to exclude
statistically suspicious outliers of updates; proxy data are utilized to provide additional clues for
enhanced performance (Park et al., 2021; Cao et al., 2021).

Considering the practical scenario that the server has some reasonable knowledge of the task (i.e.,
a small amount of server proxy data), can we leverage such knowledge to optimize the aggrega-

1



Under review as a conference paper at ICLR 2023

tion process to handle challenges from malicious and heterogeneous clients? A straightforward
data-driven optimization strategy using proxy data would be further finetuning the global model ag-
gregated with FedAVG in every communication round, which is shown to be effective in tackling
non-IID distribution of data (Lin et al., 2020; Chen & Chao, 2021a) using ensemble knowledge dis-
tillation or ground truth labels. We term those approaches full-space training since they optimize the
global model in the entire parameter space. However, to tune the global model with massive param-
eters, a large amount of proxy data is required as the carrier of knowledge. Otherwise, severe over-
fitting may occur, which is verified in the experimental section (see Section 5.2). Unfortunately, in
real-world scenarios, federated learning is generally applied in privacy-sensitive areas, such as health
care, where collecting lots of on-server proxy data becomes almost impractical. What’s more, with
limited proxy data, the full-space training approaches are unlikely to mitigate the negative effects of
malicious clients, which have been aggregated into the global model with FedAVG as initialization.
This is verified in the experimental section (see Section 5.3). Also, full-space training leads to low
aggregation efficiency and long latency because of the large dataset used and huge amounts of pa-
rameters to optimize. Finally, it remains unclear whether the full-space training-based FL systems
can be theoretically guaranteed to converge to the optimum.

In light of the above-mentioned issues, we propose SmartFL with a generic and powerful aggre-
gation strategy that optimizes the aggregated global model via subspace training within the convex
hull spanned by the client models’ parameters. To be precise, each time after local training, SmartFL
updates the global model to be the optimal convex combination of the received client models’ pa-
rameters by fitting the on-server labelled proxy data. This extracted subspace is mainly inspired by
two facts. On the one hand, prior studies on mode connectivity (Garipov et al., 2018; Draxler et al.,
2018) show that low-cost solutions found by two networks can be connected by simple (e.g., piece-
wise linear) paths with constant error or loss. Some mathematical explanations (Kuditipudi et al.,
2019) for this phenomenon have been provided recently. On the other hand, this subspace naturally
contains the aggregation solutions of several prior efforts for heterogeneous FL and attack-robust
FL (Yeganeh et al., 2020; Xiao et al., 2021; Wang et al., 2020; Park et al., 2021). These facts suggest
that the extracted subspace has the potential to contain the desirable global model. Through con-
structing the subspace, we can significantly reduce the degree of freedom for training. This makes
SmartFL enjoy a much lower demand for on-server proxy data, better generalization, and higher ag-
gregation efficiency. What’s more, the negative effects of malicious clients can be readily alleviated
when the weights for malicious clients are optimized to low values. We also establish theoretical
guarantees on the convergence and generalization of SmartFL.

It is worth mentioning that our setup is practical, which assumes the server collects a small clean
labelled proxy dataset (around a hundred samples by default). Actually, on-server labelled proxy
data is widely utilized in the advanced aggregation methods for heterogeneous FL (Xiao et al.,
2021) and attack-robust FL (Cao et al., 2021; Park et al., 2021). The number of required proxy data
for SmartFL is among the lowest ones. To further empower practical usage for extreme conditions
and compare comprehensively with the state-of-the-art aggregation strategies for heterogeneous FL
using unlabelled proxy data (Lin et al., 2020; Chen & Chao, 2021a), we also extend to the usage of
a small amount of unlabelled data (SmartFL-U) for heterogeneous FL. Specifically, we optimize the
combination coefficients for labelled data with ground truth labels and unlabelled data with pseudo-
labels generated by the ensemble of clients. The corresponding full-space training counterparts for
our methods are regular Finetuning and FedDF (Lin et al., 2020) for labelled and unlabelled data,
respectively.

We conduct extensive experiments on CIFAR-10/100, MNIST, and 20Newsgroups. The results
demonstrate that SmartFL can boost the performance of FL with heterogeneous data distribution
with very few proxy data samples. For instance, with only 128 samples of server proxy data for
CIFAR-10, we can attain a significant performance improvement compared with state-of-the-art
methods for heterogeneous FL (Lin et al., 2020; Chen & Chao, 2021a; Xiao et al., 2021; Li et al.,
2020; Karimireddy et al., 2020) and full-space training counterparts (Lin et al., 2020; Chen & Chao,
2021a). Also, when malicious clients exist, our solution manages to defend against the attacks even
in the condition of a large portion of attacks and highly-non-IID distribution of data, yielding state-
of-the-art performance compared with existing attack-robust methods with proxy data (Cao et al.,
2021; Park et al., 2021) and statistical filtering-based methods (Yin et al., 2018; Blanchard et al.,
2017). Our contributions can be summarized as follows:
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• We propose SmartFL, which effectively optimizes server-side aggregation with a small
amount of proxy data via subspace training.

• As far as we know, SmartFL is the first FL framework that simultaneously handles two
major challenges in FL systems (i.e., non-IID distribution of data and poisoning attacks) in
a unified framework.

• We provide theoretical analysis for convergence and generalization capacity for SmartFL.

• Extensive experiments on multiple datasets with non-IID data distribution and poisoning
attacks demonstrate the superiority of our method.

2 RELATED WORK

2.1 FEDERATED LEARNING WITH NON-IID DATA DISTRIBUTION

Increasing research efforts are devoted to improving the FL performance with heterogeneous data
distribution. They can be classified into modifying local training and modifying server-side aggre-
gation. In this section, we focus on the latter one, which is more closely related to our work. More
related works on improving local training are discussed in Appendix A. Several prior studies pro-
pose to reweight the model updates with some statistical property. FedNova (Wang et al., 2020)
proposes to normalize the aggregation weights according to the local training steps. IDA (Yeganeh
et al., 2020) sets the weights according to the inverse distance of the client models to the global
model. FedAvgM (Hsu et al., 2019) further goes beyond the weighted average and adopts server-side
momentum to improve the aggregation. Recently, solutions leveraging server unlabelled/labelled
data to further tune the aggregated global model in every communication round have drawn much
research attention with promising performance. Specifically, FedDF (Lin et al., 2020) leverages
ensemble knowledge with average logits of clients’ predictions on the server unlabelled data to fine-
tune the global model. FedBE (Chen & Chao, 2021a) further proposes generating pseudo labels
with the Bayesian ensemble technique and validates that the ground truth labels (referred as Fine-
tuning in our paper) lead to the best finetuning performance if available. FedET (Cho et al., 2022)
and FedAUX (Gu et al., 2022) include more carefully logit ensembling strategies. However, these
solutions have a high demand for data on the server to tune the global model, which is not always re-
alistic for FL systems, even for unlabelled data. ABAVG (Xiao et al., 2021) uses proxy data accuracy
on the server labelled dataset to determine the aggregation weight of clients to enable quality-aware
aggregation. However, this solution heuristically assumes the coefficients should be proportional to
the proxy data accuracy, which does not fully utilize the ground truth knowledge and does not get
pleasant gain.

2.2 ATTACK-RESISTANT AGGREGATION

It is well known that FL is vulnerable to poisoning attacks due to a vast number of uncontrolled
clients, some of which may be malicious (Shejwalkar et al., 2022). Plenty of attack-resistant ag-
gregation methods are proposed to tackle the problem. Blanchard et al. (2017) propose a vector-
wise filtering technique named Krum and raises attention to Byzantine-robust aggregation tech-
niques. Afterward, dimension-wise filtering techniques are introduced, such as Median (Yin et al.,
2018), Trimmed Mean (Yin et al., 2018), and signSGD based on majority voting (Bernstein et al.,
2019). Also, advanced vector-wise filtering methods include Multi-Krum (Blanchard et al., 2017),
Bulyan (Guerraoui et al., 2018), RFA (Pillutla et al., 2019), RSA (Li et al., 2019), DnC (Shejwalkar
& Houmansadr, 2021), residual-based reweighting (Fu et al., 2021), and attack-adaptive aggregation
(Wan & Chen, 2021). Most of these solutions can guarantee the success of defense under certain
assumptions, such as IID distribution of data or the constrained portion of malicious clients. How-
ever, such assumptions do not always hold in real scenarios. The recent work (Karimireddy et al.,
2022) provides CClip, which combines bucketing with existing solutions to provide a convergence-
guaranteed defense under non-IID scenarios, yet still cannot deal with a large portion of attackers.
Leveraging proxy data provides the possibility to further leverage server knowledge to help defend
against attacks. FLTrust (Cao et al., 2021) maintains a server model and utilizes the statistical proper-
ties of the client model and server model to reweight the client updates. Sageflow (Park et al., 2021)
combines entropy-based filtering and loss-based reweighting with the proxy data. Both methods
leverage proxy data to perform some statistical analysis to heuristically reweight the client updates,
while our method directly uses server proxy data to optimize the aggregation and leads to stabler
defense performance, faster convergence, and functionality beyond solely tackling attacks such as
improving FL with heterogeneous data distribution without attacks.
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3 BACKGROUND

Generic FL. Suppose we have M clients with local private dataset Dm = {(xi, yi)}|Dm|
i=1 drawn

from the heterogeneous local distributions, and D = ∪Mm=1Dm denotes all data from all clients,
which can be viewed as sampled from the global distribution. Then the generic federated learning
optimization problem can be formulated as

min
w
L(w,D) =

M∑
m=1

αmLm(w,Dm), (1)

where w ∈ Rd is the model parameter, αm = |Dm|
|D| , and Lm(w,Dm) = 1

|Dm|
∑

ξ∈Dm
ℓ(w, ξ) is

the empirical risk for client m with ℓ(·, ·) being the loss function. We denote the optimal solution of
(1) as w∗.

FedAVG. Since the data is retained on local clients, the optimization problem cannot be directly
solved. To approximately approach the problem, a standard solution is FedAVG (McMahan et al.,
2017), which aggregates the locally trained models to a global shared model on the server. The
global model wt+1 is aggregated as follows at the end of t-th communication round:

wt+1 =
1

Ct

∑
m∈Mt

αmwt
m = wt +

1

Ct

M∑
m=1

αm∆t
m, (2)

where Mt ⊂ [M ] = {1, 2, . . . ,M} is the set of clients sampled in the t-th round, Ct =∑
m∈Mt αm, wt

m denotes the client m’s local model trained with the local dataset Dm at the end of
t-th communication round, and ∆t

m = wt
m −wt denotes the cumulative local updates of client m

in round t.

4 SMARTFL

4.1 METHOD

In this section, we introduce SmartFL with a generic and powerful server-side aggregation strategy
to smartly aggregate an optimized global model from clients’ updated models using a small amount
of proxy data. Through optimizing the aggregation process in every communication round, SmartFL
simultaneously tackles various challenging conditions (i.e., non-IID data distribution and poisoning
attacks) and enables a stable and robust aggregation. We first introduce the formulation of server-
side optimization problem and the straightforward regular training scheme. Then, we demonstrate
the key component of SmartFL, i.e., the subspace training technique, to overcome the drawbacks
of regular data-driven optimization on the entire model parameters. Afterward, we show the strategy
for the extension to unlabelled proxy data. Finally, we provide the implementation and overall
process (algorithm 1).

Server-side Optimization. We aim to leverage server proxy data to optimize the global model
based on the clients’ local models. Note that the server-side optimization is performed on the global
model wt+1, for t = 0, 1, 2 . . . , T , in the server-side aggregation process at the end of every com-
munication round. For simplicity, we denote the global model as w and demonstrate the on-server
optimization for the aggregation at the end of t-th communication round as follows. Assuming the
server holds a small amount of unbiased labelled proxy data Ds sampled from the global distribu-
tion D, we can optimize the global model w with the empirical risk on the proxy data, denoted as
Ls(w,Ds) =

1
|Ds|

∑
ξ∈Ds

ℓ(w, ξ).

A straightforward data-driven optimization strategy is further finetuning the global model initialized
with FedAVG, which is validated to be effective in dealing with non-IID data distribution in the
prior study (Chen & Chao, 2021a) if plenty of proxy data is available. The optimization process is
as follows:

Initialization : w ← 1

Ct

∑
m∈Mt

αmwt
m; Full-space Trainig : min

w
Ls(w,Ds). (3)

However, this strategy suffers from severe overfitting in the practical scenario, where the on-server
proxy dataset is not likely to be impractically large. Also, this method can not effectively eliminate
the effects of poisoning attacks.

Subspace Training for Server-side Optimization. Inspired by prior studies on mode connectivity
and the success of reweighting-based methods for heterogeneous/attack-robust FL, as we discussed
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in the introduction section, we constrain the optimization process in the promising subspace, i.e.,
the convex hull spanned by the clients’ models. Instead of training the global model in the entire pa-
rameter space, we optimize the model in the reduced subspace with a significantly lower dimension.
The subspace optimization problem at the end of communication round t can be formulated as

min
w
Ls(w,Ds), s.t. w =

∑
m∈Mt

pmwt
m, and p ∈ Λ, (4)

where pm is the aggregation coefficient for client m, and Ls(w,Ds) is the empirical risk, Λ is
defined as

Λ = {p ∈ RM : pm ≥ 0 for m ∈Mt, pm ≡ 0 for m ∈ [M ] \Mt, and
∑

m∈Mt

pm = 1}.

Note that in solving problem (4), we optimize w over its coefficients p with fixed wt
m. We denote

Ls(w,Ds), with a slight abuse of notation, as Ls(p,Ds) and the problem can then be rewritten as
min
p∈Λ
Ls(p,Ds). (5)

We would like to point out that all the elements in [M ] \Mt are fixed to be 0, and Λ is essentially
a |Mt| dimensional set. Thus, we only need to optimize |Mt| parameters, i.e., pm with m ∈ Mt,
instead of the entire neural network parameter space. This aggregation process can find the optimal
model fusion, i.e., a convex combination of client models trained on non-IID datasets, by learning on
the labelled proxy data. Benefiting from such a small optimization space, the generalization ability
of our approach can be significantly reinforced so that it can work well even with a small amount
of proxy data. This will be further discussed in our theoretical analysis. Moreover, when malicious
clients exist, our aggregation can mitigate their negative effects by optimizing corresponding pm to
small values.

Extension to Unlabelled Samples. Note that for the labelled proxy data, the loss function ℓ(·, ·)
of the empirical risk Ls (w,Ds) for server-side optimization is the same as the global optimization
in (1), which is cross entropy loss in practice. To further facilitate the practical usage for different
conditions and fairly compare with the full-space training solutions using unlabelled proxy data for
heterogeneous FL (Lin et al., 2020; Chen & Chao, 2021a), we provide an extension to unlabelled
samples (SmartFL-U). Specifically, we utilize the exact strategy in the prior work (Lin et al., 2020)
to generate pseudo labels with clients’ ensemble logits and use Kullback-Leibler divergence loss to
drive the global model to mimic the prediction of the ensemble of client models. The only difference
is that we train the model in the reduced subspace instead of full space in Lin et al. (2020). Since
there is no quality guarantee for the pseudo labels generated from client predictions, SmartFL-U is
only applied for the empirical study of handling heterogeneous data distribution. Our theoretical
analysis and studies on FL with poisoning attacks focus on SmartFL with labelled proxy data.

Algorithm 1: SmartFL.
for each communication round t = 0, . . . , T do
Mt ← selected subset of the M clients
for each client m ∈Mt in parallel do

wt
m ← Client-LocalUpdate(m,wt)

end
initialize the aggregation coefficients with local samples as
pt,0 ← α̃ with α̃m = αm/Ct for all m ∈Mt and otherwise α̃m = 0
for j in {1, . . . , Es} do

update in mini-batches pt,j ← projΛ
(
pt,j−1 − ηs∇Ls(p,Ds)

)
end
pt ← pt,Es

wt+1 ←
∑

m∈Mt
ptmwt

m

end
return wT+1

Implementation and Overall Process. Algorithm 1 demonstrates the overall process of SmartFL.
The optimization process in (5) can be solved by general projected stochastic gradient descent al-
gorithms (Zhou et al., 2021). To stabilize the training process, we can optionally introduce some
regularization terms into our aggregation process. Specifically, when dealing with non-IID data
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distribution, we can adopt the L2-norm based regularization as follows:

min
p∈Λ
J (p) = Ls(p,Ds) + λ · 1

2
∥p− α̃∥22, (6)

where α̃m = αm/Ct for all m ∈ Mt and otherwise α̃m = 0. This regularization encourages
SmartFL to find a good aggregation near the averaged model.

4.2 THEORETICAL ANALYSIS

In this section, we provide a convergence property of SmartFL under poisoning attacks. Then,
we show the advantages of SmartFL over FedAVG and full-space training regarding generalization
capacity. Detailed description and derivations are deferred to Appendix B.
Property 1 (Convergence). [informal] Assume in each server-side aggregation, there exists at least
one honest client among the M sampled clients. With other assumptions specified in the appendix,
the expected error of SmartFL, i.e., E

[
L(wT ,D)− L(w∗,Ds)

]
, can converge linearly as T →∞.

Remark. The above result shows that SmartFL can converge to the optimum w∗ in the global
optimization problem (1) efficiently even when a large number of malicious clients exist, which is
consistent with our empirical results (see Section 5.3). Note that in Property 1, we allow the data
on the clients to be non-IID. Therefore, this result holds naturally for the cases of non-IID data
distribution without poisoning attacks.
Property 2 (Generalization in Aggregation). Assume Λ contains |Λ| discrete choices. Denote the
dataset D−1

s generated by replacing one sample in Ds with another arbitrary sample. We assume
there exists κ > 0, such that |Ls(w,Ds) − Ls(w,D−1

s )| ≤ κ/|Ds| for all w. Given the received
client models wt

m, m ∈ Mt in round t, with the probability at least 1− δ, the server-side aggrega-
tions wSmart and wAVG of SmartFL and FedAVG satisfy
(i) the generalization upper bound:

EDsLs(wSmart,Ds) ≤ Ls(wSmart,Ds) + κ

√
ln(2|Λ|/δ)

2|Ds|
, (7)

(ii) when the L2-norm is adopted, SmartFL has the generalization gap with FedAVG:

EDsLs(wSmart,Ds) ≤ EDsLs(wAV G,Ds)−
λ

2
∥p∗ − α̃∥2 + κ

√
ln(4|Λ|/δ)

2|Ds|
+ κ

√
ln(4/δ)

2|Ds|
, (8)

where p∗ is the optimum of problem (5), α̃ is defined in Eqn.(6), and the expectation is taken over the global
data distribution since Ds is sampled from the global distribution D.

Remark. The bound in Eqn.(7) demonstrates that, in each aggregation, SmartFL can general-
ize well because of the extremely small set Λ, which is essentially a |Mt|-dimension space. We
can also see that this upper bound is independent of the model size. In contrast, the generaliza-
tion bound of the full-space training approaches corresponds to Eqn.(7) would be Ls(w, Ds) +

κ
√

ln(2|W|/δ)/2|Ds| with |W| being the number of discrete choices in the entire parameter space,
which would be larger than |Λ| by lots of orders of magnitude due to the high dimension. This
verifies the superiority of SmartFL in generalization over full-space training approaches. The result
in Eqn.(8) shows that SmartFL can generalize better than FedAVG by learning the weights for each
client model, since λ

2 ∥p
∗ − α∥2 can dominate the last two items in Eqn.(8). These properties are

consistent with our empirical results in Section 5.2.

5 EXPERIMENTS

5.1 SETUP

Datasets, models, and settings. We consider four datasets: CIFAR-10/100 (Krizhevsky et al.,
2009), MNIST (Deng, 2012), and 20 Newsgroup (Lang, 1995) for both computer vision and nat-
ural language processing tasks. Detailed dataset descriptions are illustrated in Appendix C. We
evaluate different FL methods on the architectures of logistic regression, 2-layer ConvNet (LeCun
et al., 1998), MobileNet(Howard et al., 2017), ResNet-8 (He et al., 2016) and ShuffleNet (Ma et al.,
2018). For the methods involving on-server data, we randomly sample 128 training samples as un-
labelled/labelled proxy data on the server by default, and the others are distributed to the clients. For
other models, all the training data are distributed to clients. We evaluate the FL methods with the
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Table 1: Comparison of maximum top-1 test accuracy achieved by different FL methods with ResNet-8 on
CIFAR-10 in T = 200 communication rounds with different degrees of data heterogeneity α and participation
rates C. ∗Methods assume the availability of unlabelled proxy data. †Methods assume the availability of
labelled proxy data.

α = 0.01 α = 0.04 α = 0.16
Method C = 40% C = 20% C = 40% C = 20% C = 40% C = 20%

FedAVG 35.77±2.82 27.00±4.09 59.29±2.43 57.68±2.65 69.02±0.83 71.57±0.20
FedProx 39.40±2.42 37.79±5.37 60.89±1.71 59.84±1.65 68.37±0.50 71.58±1.62
Scaffold 39.63±2.53 30.35±3.98 59.75±1.98 57.73±1.43 68.73±1.06 71.76±0.45

FedDF∗ 37.51±0.95 25.59±2.33 59.63±1.57 59.28±0.80 68.72±1.36 70.60±1.32
FedBE∗ 36.27±2.31 27.25±3.68 58.86±1.91 59.40±5.11 69.06±0.70 70.47±1.34
SmartFL-U∗ 43.37±2.06 32.88±4.00 60.94±1.18 61.18±2.65 70.38±0.58 72.10±0.36

ABAVG† 38.36±5.83 31.59±7.75 61.89±2.13 61.18±2.84 69.77±0.97 71.20±1.20
Finetuning† 46.52±3.81 34.54±6.56 60.50±0.40 60.66±1.20 69.01±0.30 71.52±0.53
SmartFL† 53.65±2.30 50.13±1.66 63.09±0.97 64.73±0.46 70.57±0.49 72.12±0.15

official test set with the global model. We give the results over three times of experiments and report
mean ± standard deviation.

Federated learning environment. Similar to the prior studies (Gu et al., 2022; Chen & Chao,
2021b), we consider FL system with a practical number n = 80 clients with partial participa-
tion rate C ∈ {20%, 40%60%}. To simulate non-IID data distributions across clients, we
follow prior studies (Lin et al., 2020; Chen & Chao, 2021a) to use the Dirichlet distribution
to create non-IID distribution of client training data. (Hsu et al., 2019) The parameter α con-
trols the degree of non-IIDness. The smaller the value of α, the partition is closer to that one
client only holds samples from a single class. Overall, we consider various non-IID degrees with
α ∈ {0.01, 0.04, 0.1, 0.16, 0.32, 0.64, 1}. For the studies involving poisoning attacks, we consider
two kinds of attacks, including Label Flip Attack (Fung et al., 2018) and Omniscient Attack (Blan-
chard et al., 2017), which represent the data poisoning attack and model poisoning attack for FL,
respectively. Specifically, Label Flip Attack switches the label to be the next class of the ground
truth, while Omniscient Attack negates the original benign gradients.

Baselines. We consider both state-of-the-art solutions against non-IID data distribution and poi-
soning attacks. For the studies on robustness against non-IID distribution without poisoning at-
tacks, we include 1) without proxy data: FedAVG (McMahan et al., 2017), FedProx (Li et al., 2020),
Scaffold (Karimireddy et al., 2020), 2) leveraging unlabelled proxy data (i.e., FedDF (Lin et al.,
2020) and FedBE (Chen & Chao, 2021a)), 3) leveraging labelled proxy data(i.e., ABAVG (Xiao
et al., 2021)) and full-space Finetuning with labelled proxy data. For the studies on robustness
against poisoning attacks under different scenarios, besides the applicable ones of the mentioned
solutions, we further include Median (Yin et al., 2018), Krum (Blanchard et al., 2017), and Trimmed
Mean (Yin et al., 2018), and the state-of-the-art defense with the availability of labelled proxy data,
i.e., Sageflow (Park et al., 2021) and FLTrust (Cao et al., 2021). Detailed descriptions and settings
of baselines are shown in Appendix C.

Detailed local training setting and server aggregation setting. For the local training of all the
models, we use the fixed learning rate of η = 10−3 and the batch size of 32 with Adam opti-
mizer (Kingma & Ba, 2014). Local training epoch E is set to 1, and the total round is 200. For the
on-server optimization of our method, we use the batch size of 32 and Adam optimizer, fix Es = 20,
and ηs = 1e− 2 for SmartFL with labelled data, ηs = 5e− 4 for SmartFL-U with unlabelled data
by default. More detailed hyperparameter settings are demonstrated in Appendix C.

5.2 ROBUSTNESS AGAINST NON-IID DISTRIBUTION OF DATA

Performance overview for different scenarios. We evaluate the performance of SmartFL on a
widely used benchmark of image classification on CIFAR-10 under various scenarios. Table 1
summarizes the results. Our observations are as follows: First, FedAVG suffers from significant
performance degradation when the data distribution is highly non-IID, and the advanced training
technique FedProx and Scaffold can alleviate the problem to some extent. Second, leveraging a
practical amount of server proxy data with advanced aggregation strategies can further improve
the performance in most cases, indicating the potential of improving aggregation with reasonable
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(a) CIFAR-10 (b) CIFAR-100
Figure 1: Effects of the amount of server data. We compare our method with Finetuning and FedDF with
labelled and unlabelled server data, respectively. The horizontal axis is the size of the server data, while the
vertical axis is the test accuracy. We can see that our method shows superior performances given different
amounts of server data in both scenarios.

(a) Proxy Data Accuracy (b) Test Accuracy
Figure 2: Generalization ability with a small amount of server data. We compare SmartFL with Finetuning,
which directly finetune the model parameters with the proxy data in every communication round. We can ob-
serve that Finetuning quickly reaches 100% accuracy on the server data, while our method prevents overfitting
and consistently demonstrate better test performance.

server knowledge. Third, for both data availability settings of labelled and unlabelled data, SmartFL
and SmartFL-U consistently outperform the full-space training tuning counterpart, i.e., Finetuning
and FedDF, as well as the advanced ensemble solution FedBE and heuristic reweighting solution
ABAVG by a noticeable margin under various non-IIDness and participation rate settings. More-
over, we further demonstrate in Appendix D.1.1 that SmartFL greatly accelerates convergence and
requires much fewer communication rounds to achieve the target accuracy. More experiment on
20newsgroup are shown in Appendix D.1.2. Overall, the results indicate that SmartFL effectively
improves the robustness of server-side aggregation against non-IID data distribution.

Figure 3: Comparison of
effects of biased server
proxy data on SmartFL
and Finetuning.

In-depth Analysis. We investigate the effect of the amount of server
data on CIFAR-10/100 with ResNet-8, under the high level of hetero-
geneity with α = 0.01 and C = 40%. For unlabelled/labelled data,
we compare SmartFL/SmartFL-U with FedAVG and full-space training
counterpart FedDF/Finetuning. As shown in Figure 1, with a reasonable
amount of proxy labelled/unlabelled data, all the optimization strategies
outperform FedAVG and benefit from the increase of available data. Our
solution consistently outperforms the full-space training counterparts in
two datasets for both labelled and unlabelled data. This aligns with our
intuition that a limited amount of proxy data can not well supervise the
learning of a deep learning model with massive parameters, while our
extracted subspace effectively solves the problem and enables taking ad-
vantage of even a small amount of data.

We then empirically demonstrate the generalization ability with a small amount of server data
by comparing SmartFL with the full-space training counterpart, i.e., Finetuning, on CIFAR-10 with
ResNet-8 and α = 0.01, C = 40%. As shown in Figure 2, for the Finetuning approach, even though
we only finetune the aggregated model for one epoch on the server at each round to try to elimi-
nate overfitting, the accuracy calculated over the proxy data still converges to 100% after multiple
rounds, while the test accuracy does not boost significantly. On the other hand, though our method
does not achieve perfect proxy data accuracy, its test performance consistently surpasses the Fine-
tuning, which verifies its robustness against overfitting. Moreover, Figure 3 shows the performance
with various class imbalance degree of server proxy data under the same setting (the imbalance
degree is calculated with the maximum class sample number divided by the minimum class sample

8
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(a) MNIST

(b) CIFAR-10

Figure 4: Defence against attacks on MNIST/CIFAR-10 with the degree of data heterogeneity α = 0.01 and
α = 0.1, respectively, under different types of attacks (Label Flip and Omniscient Attack) and different attack
rates AR = 0.4/0.7.

number). SmartFL demonstrates strong robustness on highly-imbalanced proxy data. Overall, the
results verify that by optimizing the coefficient p, which has a much lower dimension than the model
parameters w, our method is less prone to overfitting the proxy data and more robust to imbalanced
proxy data.

5.3 ROBUSTNESS AGAINST ATTACKS

We demonstrate the robustness of our solution against Label Flip Attack and Omniscient Attack in
various scenarios. We experiment on CIFAR 10 with α ∈ {0.1, 1}, C = 60% and model ResNet-8,
and MNIST with α ∈ {0.01, 1}, C = 60% and model 2-layer ConvNet, and consider attack rate
AR ∈ {0.2, 0.3, 0.4, 0.7}. Figure 4 demonstrates the server test accuracy in the federated learning
process with attack rate AR = 0.4/0.7 and high data heterogeneity. More results in all the scenarios
are shown in Appendix D.2. For Attack Rate = 0.7, the classical defenses against attack are not
applicable because their assumption that less than half of the clients are malicious does not hold. We
have the following observations. First, weight-based statistical solutions generally cannot perform
well when the data distribution is highly non-IID, which is in line with prior studies (Karimireddy
et al., 2022), indicating the potential to leverage additional server knowledge to further improve the
robustness. Second, on-server full-space training after performing FedAVG, i.e., Finetuning, is hard
to dilute the influence of poisoned models with a small amount of server data. Third, the state-
of-the-art methods using labelled proxy data (i.e., Sageflow and FLTrust) show a relatively good
performance defending against both attacks but still suffer from unstable learning and some failure
cases. Finally, SmartFL yields stable and good performance against various attacks in different
scenarios, indicating the effectiveness of mitigating negative effects from malicious clients through
subspace training.

6 CONCLUSION AND DISCUSSIONS

Data heterogeneity across clients and poisoning attacks are among the main bottlenecks for robust
server-side aggregation. In this work, we propose SmartFL, which optimizes the aggregation to
overcome both challenges by subspace training. We extract a reduced subspace spanned by the
clients’ models to achieve effective and efficient optimization of the global model in every com-
munication round with a small amount of proxy data. We provide theoretical analysis for SmartFL
on convergence and generalization ability. Extensive experiments demonstrate the state-of-the-art
performance of SmartFL for both FL with non-IID data distribution and FL with poisoning attacks.
We involve more discussions in Appendix E.
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7 REPRODUCIBILITY STATEMENT

We use the framework of the prior work (Gu et al., 2022) (https://github.com/fedl-repo/fedaux). All
the experiments in the paper are based on public datasets. The hyperparameters used to reproduce
our methods and baselines are provided in Section 5.1 and Appendix C. We provide the source code
with a demo script in the supplementary material.
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Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
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SUPPLEMENTARY MATERIAL

• Appendix A: additional related work (cf. section 2 of the main paper).

• Appendix B: proof and additional analysis (cf. subsection 4.2 of the main paper).

• Appendix C: additional details of experimental setups (cf. subsection 5.1 of the main
paper).

• Appendix D: additional experimental results and analysis (cf. subsection 5.2 and subsec-
tion 5.3 of the main paper).

• Appendix E: additional discussions (cf. section 6 of the main paper).

A ADDITIONAL RELATED WORK

A.1 TRAINING IN SUBSPACE

Several prior studies (Li et al., 2018; Gur-Ari et al., 2018; Vinyals & Povey, 2012) uncover the
low-dimensionality essence in training neural networks, laying the foundation for the research on
training in subspace. Li et al. (2018) first proposes to train networks in a smaller, randomly oriented
subspace and demonstrate that the required dimension is much lower than the original dimension of
parameters to obtain a relatively good performance. Afterward, Gressmann et al. (2020) proposes
re-drawing the random subspace during training to improve the performance. Recently, Li et al.
improves the random-oriented subspace by analyzing the optimization trajectory, and verifies that a
carefully-extracted 40-dimensional space is enough to achieve comparable performance to regular
training. The following study (Li et al., 2022) applies subspace training in adversarial training prob-
lems to prevent overfitting. In our work, we take advantage of the efficiency and generalization of
subspace training to optimize server-side aggregation. We leverage prior knowledge on aggregation
for FL to construct the subspace as the convex hull spanned by client models.

A.2 FEDERATED LEARNING WITH NON-I.I.D. DATA DISTRIBUTION

In this section, we supplement the other line of solutions discussed in the main paper for heteroge-
neous FL, i.e., modifying local training and inference. Multiple branches of solutions are proposed
to solve non-i.i.d data distribution through modifying local training and inference process. Several
solutions propose to mitigate client drift through regularing local training. FedPROX (Li et al.,
2020) and FedDYN (Acar et al., 2021) propose to regularize the drift of local model with global
model. MOON (Li et al., 2021a) introduces a contrastive loss and SCAFFOLD (Karimireddy et al.,
2020) introduces control variates to correct local gradients. Data sharing or augmentation based so-
lutions (Shin et al., 2020; Oh et al., 2020; Yoon et al., 2021; Zhao et al., 2018) approach the problem
from the data perspective and add to some shared/augmented data in local training to alleviate data
heterogeneity. Personalized FL (Kulkarni et al., 2020; T Dinh et al., 2020; Hanzely et al., 2020; Li
et al., 2021b) is also a branch of solutions that modify the local inference process. Instead of training
a global model, these approaches seek to find the best local model, and the evaluation is performed
locally. Recently, a work (Chen & Chao, 2021b) proposes to bridge generic FL and personalized FL
to improve performance.

B PROOF AND ADDITIONAL ANALYSIS

B.1 PROOF OF PROPERTY 1

We prove the property 1 with the following definitions and assumptions, which are widely adopted
in the existing related studies (Xie et al., 2019; 2020; Park et al., 2021).

Definition 1 (L-smoothness). We say a differentiable f(w) L-smoothness if there exists L > 0 such
that

f(v)− f(w) ≤ ⟨∇f(w),v −w⟩+ L

2
∥v −w∥2,∀w,v.

14



Under review as a conference paper at ICLR 2023

Definition 2 (Polyak-Łojasiewicz (PL) Inequality(Polyak, 1964)). A function f(w) satisfies the
Polyak-Łojasiewicz (PL) inequality if there exists a constant µ > 0, such that

f(w)− f(w∗) ≤ 1

2µ
∥∇f(w)∥2,∀w,

where w∗ is the minimum of f(w).
Assumption 1. We assume in each iteration t, there exists at least one honest client it among the
M clients, who return the local models, in a sense that

⟨∇Ls(w
t,Ds),∆

t
it⟩+ γ∥∇Ls(w

t,Ds)∥2 ≤ ϵ,

where γ > 0 and ϵ > 0 are two constants.
Remark. Assumption 1 is practical and it is adopted in attack-robust studies (Xie et al., 2019;
2020). It means that Ls(w

t,Ds) can be reduced a little by involving ∆t
it

into wt. If it is not
satisfied in some extreme round, we can skip it and wait for the next communication round.
Assumption 2. Given the client models w1, . . . ,wM , we assume |L(p,D) − Ls(p,Ds)| < δ/2
holds for a small constant δ > 0.
Remark. Note that L(p,D) = 1

|D|
∑

ξ∈D ℓ(w, ξ), and Ls (p,Ds) = 1
|Ds|

∑
ξ∈Ds

ℓ(w, ξ), where
w is the weighted average of the given client models with coeffecient p. Also, as mentioned in
Section 4, we assume Ds is sampled from global distribution D. As our p has a low dimension,
L(p,D) can be approximated by Ls(p,Ds) with a small subset Ds.

Then, we would like to rephrase Property 1 into a more formal form below:
Property 3. Besides Assumptions 1 and 2, we assume the losses L(wt,D) and Ls(w

t,Ds) are
L-smoothness and satisfy the PL inequality (potentially non-convex ). Further, for the true and
stochastic gradients, we assume that ∥∇L(wt,D)∥2 ≤ V1, V2 ≤ ∥∇Ls(w

t,Ds)∥2 ≤ V1 and
∥∇Ls(w

t,Ds) − ∇L(w,D)∥2 ≤ V3 with V1 ≥ V2 > 0 and V3 > 0. Then, for our SmartFL, we
have

E
[
L(wT ,D)− L(w∗,D)

]
≤(1− 2µγ

V2

V1
)TE

[
L(w0,D)− L(w∗,D)

]
+

V1

2µγV2

[
η

(
1

2
V3 +

L+ 1

2
V1

)
+ ϵ+ δ

]
,

where η < min(1, 1/L).

Proof. of Property 3:
Denote the honest client in iteration t to be it and from Assumption 1, we have

⟨∇Ls(w
t,Ds),∆

t
it⟩ ≤ −γ∥∇Ls(w

t,Ds)∥2 + ϵ.

Thus, we can have

⟨∇L(wt,D),∆t
it⟩

≤ ⟨∇L(wt,D)−∇Ls(w
t,Ds),∆

t
it⟩ − γ∥∇Ls(w

t,Ds)∥2 + ϵ

≤ ⟨∇L(wt,D)−∇Ls(w
t,Ds),∆

t
it⟩ − γ

V2

V1
∥∇L(wt,D)∥2 + ϵ

≤ ηit
2
∥∇L(wt,D)−∇Ls(w

t,Ds)∥2 +
ηit
2
∥∇Ls(w

t,Ds)∥2 − γ
V2

V1
∥∇L(wt,D)∥2 + ϵ

≤ −γ V2

V1
∥∇L(wt,D)∥2 + ηit

2
V1 +

ηit
2
V3 + ϵ.

where ηit = ∥∆t
it
∥/∥∇Ls(w

t,Ds)∥, which can be controlled by tuning the learning rate and length
of local training. Therefore, we can assume ηit ≤ η < min(1, 1/L).

Notice that in our server-side aggregation, we search the model fusion in the convex hull spanned
by the received client models, which contains these models. Therefore, we have

Ls(w
t+1,Ds) ≤ Ls(w

t
it ,Ds).
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From Assumption 2, we can get
L(wt+1,D) ≤ Ls(w

t+1,Ds) + δ/2 ≤ Ls(w
t
it ,Ds) + δ/2 ≤ L(wt

it ,D) + δ.

According to the smoothness of L(w,D), we can get

E
[
L(wt+1,D)− L(w∗,D)

]
≤ E

[
L(wt

it ,D)− L(w
∗,D)

]
+ δ

≤ E
[
L(wt,D)− L(w∗,D) + ⟨∇L(wt,D),∆t

it⟩+
L

2
∥∆t

it∥
2

]
+ δ

≤ E
[
L(wt,D)− L(w∗,D)− γ

V2

V1
∥∇L(wt,D)∥2

]
+

η

2
V3 +

L+ 1

2
ηV1 + ηϵ+ δ

≤ (1− 2µγ
V2

V1
)E

[
Ls(w

t,Ds)− Ls(w
∗,Ds)

]
+ η

(
1

2
V3 +

L+ 1

2
V1

)
+ ϵ+ δ.

Hence, for the model after T aggregations, we can have

E
[
L(wT ,D)− L(w∗,D)

]
≤(1− 2µγ

V2

V1
)TE

[
L(w0,D)− L(w∗,D)

]
+

V1

2µγV2

[
η

(
1

2
V3 +

L+ 1

2
V1

)
+ ϵ+ δ

]
By choosing an appropriate γ satisfying 0 < 1 − 2µγ V2

V1
< 1, the expected error can converge

linearly.

B.2 PROOF OF PROPERTY 2

Proof. (i) Eqn.(7) can be obtained immediately from the bounded difference inequality (Corollary
2.21 of (Wainwright, 2019)).

(ii) As the L2 regularization is adopted, from the server-side aggregation of SmartFL and note that
α̃ ∈ Λ, we have

J (p∗) ≤ J (α̃).

That is
Ls(p

∗,Ds) + λ · 1
2
∥p∗ − α̃∥22 ≤ Ls(α̃,Ds),

which is equivalent to

Ls(wSmart,Ds) + λ · 1
2
∥p∗ − α̃∥22 ≤ Ls(wAVG,Ds),

Then, similarly with (i), we have, with probability at least 1− δ/2,
EDsLs(wSmart,Ds)

≤ Ls(wSmart,Ds) + κ

√
ln(4|Λ|/δ)

2|Ds|

≤ Ls(wAVG,Ds)−
1

2
∥p∗ − α̃∥22 + κ

√
ln(4|Λ|/δ)

2|Ds|
. (9)

For wAVG, using bounded difference inequality, we have, with probability at least 1− δ/2,

Ls(wAVG,Ds) ≤ EDs
Ls(wAVG,Ds) + κ

√
ln(4/δ)

2|Ds|
. (10)

Combine the equations (9) and (10), we can get, with probability at least 1− δ,

EDsLs(wSmart,Ds) ≤ EDsLs(wAVG,Ds)−
λ

2
∥p∗ − α̃∥2 + κ

√
ln(4|Λ|/δ)

2|Ds|
+ κ

√
ln(4/δ)

2|Ds|
.

(11)
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C DETAILED EXPERIMENTS SETUPS

C.1 DATASET

CIFAR-10/100 (Krizhevsky et al., 2009) contain 50K training and 10K testing images for 10/100
class. MNIST (Deng, 2012) includes 60K training and 10K testing samples of written digits. The
20newsgroups (Lang, 1995) text dataset comprises around 20K news documents belonging to 20
categories, and it is split into 18K documents for training and 2000 documents for testing.

C.2 BASELINES

• FedAVG (McMahan et al., 2017): The standard communication-efficient aggregation strat-
egy for federated learning.

• FedPROX (Li et al., 2020): An advanced method for heterogeneous federated learning
technique that regularizes the drift of local model with the global model.

• Scaffold (Karimireddy et al., 2020): An advanced method for heterogeneous federated
learning technique that introduces control variates to current local gradients.

• FedDF (Lin et al., 2020): An advanced aggregation strategy for heterogeneous federated
learning using knowledge distillation with unlabelled proxy data.

• FedBE (Chen & Chao, 2021a): An advanced aggregation strategy for heterogeneous feder-
ated learning using bayesian ensemble-based knowledge distillation with unlabelled proxy
data.

• ABAVG (Xiao et al., 2021): An advanced aggregation strategy for heterogeneous federated
learning using validation accuracy to reweight the clients with labelled proxy data.

• Finetuning: An advanced aggregation strategy for heterogeneous federated learning us-
ing labelled proxy data to finetune the aggregated model in every communication round,
mentioned in Chen & Chao (2021a).

• Median (Yin et al., 2018): A Byzantine-robust aggregation strategy that calculates
dimension-wise median for client updates.

• Krum (Blanchard et al., 2017): A Byzantine-robust aggregation strategy that vector-wisely
selects an update.

• Trimmed Mean (Yin et al., 2018): A Byzantine-robust aggregation strategy that dimension-
wisely removes a certain portion of the largest and smallest updates and calculates the mean
of remaining values.

• Sageflow (Park et al., 2021): A state-of-the-art attack-resistant aggregation strategy that
combines entropy-based filtering and loss-based reweighting with labelled proxy data.

• FLTrust (Cao et al., 2021): A state-of-the-art attack-resistant aggregation strategy that
maintains a server model, trains the server model with labelled proxy data, and reweights
the client updates with the server update.

C.3 DETAILED HYPERPARAMETER SETTING

Baseline. Generally, we follow the settings of the original papers without otherwise mentioning
them. For the local training of FedPROX, we always tune the parameter according to the suggestion
of the original paper to obtain the best performance for various conditions. For baseline models
involving on-sever optimization with unlabelled/labelled data, the learning rate ηs is tuned from
[5e − 5, 1e − 2], and the epochs is tuned from Es = {1, 5, 10, 20}. Same as ours, the batch size
is 32, and Adam Optimizer is used for on-server optimization. It is worth mentioning that the full-
space training methods, i.e., Finetuning, FedDF, and FedBE, generally have the best performance
with small epoch numbers 1, 5, and 5, respectively. This phenomenon aligns with our analysis for
overfitting with a few proxy samples using full-space training. For FedBE, the sampling number for
models is set to 10, according to the original paper.

SmartFL & SmartFL-U. The default setting is mentioned in Section 5.1. Since the optimal balance
parameter λ depends on multiple factors (e.g., participation rates, and data heterogeneity), we always
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tune λ ∈ {1, 5, 15} for the experiment for non-IID data distribution (Table 1). It is worth mentioning
that our method is not highly sensitive to λ and the optimization without regularization can already
get a significant performance gain. Notice that for the in-depth analysis (Figure 1,Figure 2,Figure 3),
we do not include the regularization term, namely, set λ = 0 to fairly compare with full-space
training technique. For the experiments involving poisoning attacks(Figure 4,Figure 6,Figure 7), the
regularization term is also not involved. Also, we enlarge the server training epoch Es to be 50 for
the experiment with attacks on CIFAR-10 since the server-side optimization requires more steps to
converge under poisoning attacks.

D ADDITIONAL EXPERIMENTS

D.1 ROBUSTNESS AGAINST DATA HETEROGENEITY

In this section, we include additional experiments on robustness against data heterogeneity, includ-
ing convergence speed and the extension to the NLP task.

D.1.1 CONVERGENCE SPEED

Table 2: Comparison of the number of communication rounds to reach target accuracy. We evaluate different
FL methods with ResNet-8 on CIFAR-10 with different degrees of data heterogeneity α and participation rates
C = 0.4. ∗Methods assume the availability of unlabelled proxy data. †Methods assume the availability of
labelled proxy data.

α = 0.01 α = 0.04 α = 0.16 α = 0.32 α = 0.64
Method target = 0.35 target = 0.57 target = 0.68 target = 0.72 target = 0.735

FedAVG 196.3±35.9 136.7±37.5 150.3±18.1 165.0±21.0 151.7±37.0
FedPROX 101.0±5.0 133.7±36.0 157.7±15.0 150.0±20.7 111.0±26.5
Scaffold 137.7±10.6 125.0±11.4 128.0±38.5 135.0±18.7 113.0±25.6

FedDF∗ 160.0±15.1 127.0±25.5 168.7±38.1 164.3±10.0 162.3±39.6
FedBE∗ 182.3±15.9 132.0±31.2 143.7±32.9 177.0±10.0 146.7±49.2
SmartFL-U∗ 135.3±22.0 117.7±11.2 91.0±11.1 153.0±33.0 124.0±46.5

ABAVG† 176.0±39.8 165.0±25.4 115.7±26.1 149.3±15.0 129.7±14.6
Finetuning† 72.3±6.0 96.0±12.2 97.3±3.8 197.0±25.1 177.3±24.6
SmartFL† 34.7±6.1 48.3±2.1 58.3±1.5 121.3±22.1 98.0±17.6

Highly non-i.i.d. distribution of data also severely influences the convergence speed of standard
aggregation strategies. Table 2 shows the number of communication rounds for the different methods
to reach the target accuracy with ResNet-8 on CIFAR-10. Advanced aggregation strategies for
heterogenous FL also accelerate convergence compared with FedAVG. SmartFL always requires
much fewer communication rounds to achieve target performance in all conditions, indicating the
efficiency and effectiveness of optimizing the aggregation via subspace training.

D.1.2 EXTENSION TO NLP TASK

Table 3: Comparison of maximum test accuracy
achieved by different methods with Logistic Regression
on 20newsgroup with C = 40%.

Methods α = 0.01 α = 0.04 α = 0.16

FedAVG 30.64±3.2 38.58±2.3 59.76±1.9
FedDF∗ 36.10±2.6 38.87±3.1 59.90±1.5
SmartFL-U∗ 39.53±1.9 43.10±1.8 60.32±1.0

Finetune† 37.10±3.5 37.22±2.5 59.93±1.1
SmartFL† 44.51±1.1 47.33±1.3 60.77±0.7

To verify the effectiveness of our method be-
yond the computer vision domain, we also
evaluate our method using logistic regression
on 20newsgroup (Lang, 1995), a popular NLP
benchmark for news classification. As shown in
Table 3, SmartFL and SmartFL-U outperform
the full-space training counterpart and FedAVG
by a large margin across different α with both
labelled and unlabelled proxy data.
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D.2 ROBUSTNESS AGAINST ATTACKS

This section includes more results and comprehensive analysis under different scenarios for the
MNIST and CIFAR-10 datasets in the setting mentioned in Section 5.3. Figure 6 and Figure 7 show
a comparison of various aggregation strategies on MNIST and CIFAR-10 with high and normal data
heterogeneity under Label Flip and Omniscient Attack. We have the following observation classified
by the methods:

First, statistical filtering-based Byzantine-robust methods such as Krum, Trimmed Mean, and Me-
dian can successfully defend against attacks in most cases when the attack rate is small and non-i.i.d.
degree is not high, which is in line with the prior studies (Yin et al., 2018; Blanchard et al., 2017)
However, they are not applicable when the attack rate get higher than half. Also, their performance
is largely degraded when the data distribution is highly non-IID.

Second, the full-space training counterpart (i.e., Finetuning) performs relatively well among the
methods on MNIST when the attack is not high but worse on CIFAR-10. This is because, for the
simpler dataset, even overfitting on proxy data can to some extent help robust aggregation, while
it does not work for the harder dataset. The results verify our intuition that finetuning massive
parameters on a small amount of data can not dilute the negative effect brought by malicious clients.

Third, the methods leveraging server proxy data get the most competitive performance among all the
solutions, suggesting the potential to improve the robustness of the server-side aggregation against
attacks with reasonable server knowledge.

• ABAVG (Xiao et al., 2021), which uses the validation accuracy on proxy data to reweight
the clients, performs relatively well in defending against Label Flip Attack but fails to de-
fend against Omniscient attack. This is because, with a Label Flip attack, the attacker
models are trained to predict a wrong label, and therefore the weight can be adjusted to a
small value according to their low validation performance. However, for the model poison-
ing attack, the validation performance is not necessarily low enough.

• Sageflow (Park et al., 2021), which combines entropy-based filtering and loss-based
reweighting, can get competitive performance under both types of attacks when the attack
rate is not high and the distribution is not highly non-IID. However, it still fails in other
conditions, especially with the Omniscient attack in that when the distribution is highly
non-IID, the entropy of benign and malicious clients is not well separated.

• FLTrust (Cao et al., 2021) is the most competitive baseline that maintains a server model
with proxy data and reweights the client updates according to the similarity with server
model updates. We can observe that such a strategy enables robustness against attacks in
almost all scenarios, especially model poisoning attacks, in that it can successfully capture
and exclude the updates in an inverse direction of the server model. However, we still
observe the instability of such a method during training since the stochastic gradient of the
server model can not stably ensure “good” aggregation in all communication rounds. This
can be a severe problem and sometimes leads to failure, as shown in Figure 7c.

Finally, different from the above solutions that heuristically leverage server proxy data, we aggregate
a global model with optimized combination coefficients for client models with proxy data in every
communication round and stably mitigate the negative effects brought by malicious clients.

E DISCUSSIONS

This section discusses the limitation and possible solutions. Since we still optimize the combination
weights for the local clients, one limitation of SmartFL is that the aggregated client model should
be the same architecture and can not be directly applied on heterogeneous model architectures.
This can be alleviated by using multiple groups of model architectures. As illustrated in FedDF (Lin
et al., 2020), knowledge distillation on unlabelled data using ensemble logits can allow information
flow across models of different groups of architectures, and the server can use the ensemble of ag-
gregated global models to make the final prediction. Here we show that our solution for unlabelled
data (SmartFL-U) shares the merits of regular knowledge distillation (Lin et al., 2020) in allowing
information flow across heterogeneous neural architectures (Li & Wang, 2019) by using the en-
semble logits of all clients to supervise the combination with groups. Figure 5 visualizes the test
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accuracy in every communication round of ensemble performance of SmartFL and the state-of-the-
art FedDF for heterogeneous model architectures (ResNet-8, MobileNet, and ShuffleNet) with 128
unlabelled data on CIFAR-10, and 512 unlabelled data on CIFAR-100. SmartFL consistently dom-
inates FedDF, demonstrating the effectiveness of breaking the knowledge barrier of heterogeneous
models by leveraging averaged logits to optimize the global models in the subspace. We leave the
possible improvement through leveraging both ground truth labels and ensemble client knowledge
as future work.

(a) CIFAR-10 (b) CIFAR-100

Figure 5: Studies on Heterogeneous Model Architectures (ResNet- 8, MobileNet, and ShuffleNet). We compare
our method with FedDF with unlabelled proxy data on CIFAR-10/100. We show the test accuracy of server
ensemble model in every communication round.
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(a) MNIST, α = 0.01, Label Flip

(b) MNIST, α = 0.01, Omniscient

(c) MNIST, α = 1, Label Flip

(d) MNIST, α = 1, Omniscient

Figure 6: Defence against Attacks on MNIST with the degree of data heterogeneity α = 0.01 and
α = 1, under different types of attacks (Label Flip and Omniscient Attack) and different attack rates
AR ∈ {0.2, 0.3, 0.4, 0.7}.
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(a) CIFAR-10, α = 0.1, Label Flip

(b) CIFAR-10, α = 0.1, Omniscient

(c) CIFAR-10, α = 1, Label Flip

(d) CIFAR-10, α = 1, Omniscient

Figure 7: Defence against Attacks on CIFAR-10 with the degree of data heterogeneity α = 0.1 and
α = 1, under different types of attacks (Label Flip and Omniscient Attack) and different attack rates
AR ∈ {0.2, 0.3, 0.4, 0.7}.
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