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Abstract
Purpose Probe-based confocal laser endomicroscopy (pCLE) enables intraoperative tissue characterization with improved
resection rates of brain tumours. Although a plethora of deep learning models have been developed for automating tissue
characterization, their lack of transparency is a concern. To tackle this issue, techniques like Class Activation Map (CAM)
and its variations highlight image regions related to model decisions. However, they often fall short of providing human-
interpretable visual explanations for surgical decision support, primarily due to the shattered gradient problem or insufficient
theoretical underpinning.
Methods In this paper, we introduce XRelevanceCAM, an explanation method rooted in a better backpropagation approach,
incorporating sensitivity and conservation axioms. This enhanced method offers greater theoretical foundation and effectively
mitigates the shattered gradient issue when compared to other CAM variants.
Results Qualitative and quantitative evaluations are based on ex vivo pCLE data of brain tumours. XRelevanceCAM effec-
tively highlights clinically relevant areas that characterize the tissue type. Specifically, it yields a remarkable 56% improvement
over our closest baseline, RelevanceCAM, in the network’s shallowest layer as measured by the mean Intersection over Union
(mIoU) metric based on ground-truth annotations (from 18 to 28.07%). Furthermore, a 6% improvement in mIoU is observed
when generating the final saliency map from all network layers.
Conclusion We introduce a newCAMvariation, XRelevanceCAM, for precise identification of clinically important structures
in pCLE data. This can aid introperative decision support in brain tumour resection surgery, as validated in our performance
study.
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Introduction

Probe-based confocal laser endomicroscopy (pCLE) enables
visualization of the tissue morphology at microscopic scale
without changes in the surgical setting. Pilot studies veri-
fied that this technique can identify residual cancer tissue
and improve resection rates of brain tumours. Automatic tis-
sue characterization with pCLE would support the surgeon
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in establishing diagnosis as well as, guiding robot-assisted
intervention procedures. Recently, Artificial Intelligence
(AI)methods havebeendeveloped for this purpose.However,
these high-capacity models face the significant drawback of
lack of transparency in decision making, limiting their usage
in interpretability-sensitive domains like AI-assisted diagno-
sis. Thus, the decision of a deep learning model supported
by human-faithful visual explanations would facilitate tis-
sue characterization. Particularly, visual explanations that
better align with clinical knowledge enable the surgeon to
place more trust in the model’s decision. To address this,
Explainable Artificial Intelligence (XAI) has emerged and
activation-driven methods like Class ActivationMap (CAM)
and its variants are popular XAI techniques that highlight
salient image areas where the model has paid attention.

Related work

Visual explanation is a convenient weakly supervised seg-
mentation method in AI-assisted surgical interventions for
decision support in tissue resection.Activation-drivenmethod
is a popular and computationally efficient class of explana-
tion methods that aims to visualize the features learnt from
a classification model, usually by applying a feature map
weighting strategy in a layer of the model. The weighting
factor formulation is different among the activation-driven
methods. The earliest work in this category is the Class Acti-
vationMap (CAM) [1] and its popular variantGradient-CAM
(GradCAM) [2] that generalizes the former work by averag-
ing the backpropagated gradient values (starting from the
logit score of the target class) of a feature map in a layer as
the weighting factor.

The axiom-basedGradCAM(XGradCAM) [3] introduced
two axioms to help impose theoretical supports in generat-
ing the weighting factor (the importance) on each feature
map in a layer, namely, the conservation axiom and the
sensitivity axiom. The conservation axiom is defined as
Sc(Al) = ∑

i j
∑

k wc
lk A

lk
i j , wherewc

lk is the weighting factor
for the kth feature map in layer l, with respect to class c,
Sc(Al) is the logit score of class c with activations in layer l,
and Alk

i j is the activation value at map location (i, j). The aim
of this axiom is to limit the non-explainable factors involved
in the saliencymap. The sensitivity axiom, on the other hand,
encourages the weighting factor of a feature map in a layer to
be the difference of the logit scores calculated before and after
zeroing out the activation values of that feature map. For-
mally, it is expressed as Sc(Al)−Sc(Al\Alk) = ∑

i j w
c
lk A

lk
i j ,

where Sc(Al\Alk) is the logit score of class c when zeroing
out the kth feature map in layer l. Intuitively, the change in
logit score when the feature map is removed is the empirical
importance of that feature map.

Recently, RelevanceCAM [4] has been developed to mit-
igate the shattered gradient issue by using the Contrastive
Layer-wise Relevance Propagation (CLRP) [5] paradigm
which achieves remarkable weakly supervised segmenta-
tion results compared to other post hoc methods. This is
particularly relevant in the medical domain where pixel
annotations are scarce and localizing the semantic struc-
ture of tumours with models trained in a weakly supervised
manner is highly desired. RelevanceCAM is using two prop-
agation rules which have been proposed by the layer-wise
relevance score propagation (LRP) method [6], namely,
the LRP-ε rule and the LRP-αβ rule. LRP-ε is defined
as Rlk

i = ∑
j

aiwi j

ε+∑
i aiwi j

Rlk+1
j and LRP-αβ is defined as

Rlk
i = ∑

j

[
α

max(0,aiwi j )

ε+∑
i max(0,aiwi j )

− β
min(0,aiwi j )

ε+∑
i min(0,aiwi j )

]
Rlk+1
j ,

where Rlk
i is the spatial relevance score in layer k, ai is the

spatial activation value,wi j is theweight connection between
two neurons in layer i and layer j , and α and β are hyper-
parameters. In CLRP, the above propagation rules run from
the logit score of the target class after modifying the logit
score of the non-target classes as −L t

N−1 before the relevance
backpropagation. L t is the logit score of the target class, and
N is the total number of classes to be classified. Finally,
the weighting factor used in RelevanceCAM is computed by
simple averaging of all relevance scores in a feature map of
a layer, computed by the aforementioned propagation rules.

Most of the CAM-based methods have been devel-
oped based on the vanilla gradient backpropagation, which
is known to suffer from the shattered gradient problem
that causes poor class-specified feature localization in the
non-final layers [7]. However, features learnt by layers at
different depth of a neural network architecture are signif-
icant in oncology. This is because spatial features learnt
from the intermediate layers [8] and class discriminative fea-
tures learnt from the final layers can help localize tumour
regions semantically. The general relationship between the
propagation-based methods, like guided propagation [9] and
LRP, and the activation-drivenmethods is illustrated in Fig. 1.

Contributions

When a model is trained with image labels, the state-of-
the-art CAM-based methods either suffer from the shattered
gradient problem or lack theoretical support to calculate the
feature map attention factor in a layer. This causes sub-
optimal localisation of pathological structures in AI-assisted
decisionmaking during intraoperative surgical interventions.
In summary, the contributions of the paper are the following:

1. We propose a novel post hoc CAM-based method called
XRelevanceCAM (Axiom-driven RelevanceCAM) that
incorporates theoretical support into both the backpropa-
gation technique and the featuremap scoringmechanism.
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2. With the generated saliency maps, the qualitative results
show that our XRelevanceCAM is much more robust to
the shattered gradient problem compared to Relevance-
CAM. Also, it equips better semantic localisation ability
of clinically relevant areas which characterize the tissue
state compared to other state-of-the-art methods.

3. Through the performance evaluation study, we show that
XRelevanceCAM outperforms the current state-of-the-
art (SOTA) in terms of the mean Intersection over Union
(IoU) metric in all layers of the deep learning model.

4. The robustness of the method is more significant when
saliency maps from shallower layers are aggregated
because it incorporates spatial information from these
layers.

Proposedmethodology

Image classificationmodel

In our method, we adopt the pre-trained Selective Kernel
(SK) of the ResNeXt-50 [10] model as our scale-invariant
architecture to acquire multi-scale feature information. This
is because semantic structures in medical images appear in
multiple sizes. Ordinary deep learning models, like ResNeXt
[11], use the same receptive field size to capture features
which makes them less effective in recognizing image pat-
terns that appear much larger or smaller than the receptive
field size. The use of ResNeXt-50 as the backbone is for con-
venience only because SK-ResNeXt has a pre-trained copy
available in the Timm open source library [12] for transfer
learning. Our method is agnostic to the classification model
but models that have innate ability to capture features at mul-
tiple scales are highly recommended for medical data.

XRelevanceCAM for pathological structure
localisation

Our method

Similar to other post hoc CAM-variant techniques, our
framework consists of two components, namely, a chosen
backpropagation method (g in Fig. 1 such as vanilla gradi-
ent or LRP) to obtain backpropagated values, and a novel
feature map weighting method ( f in Fig. 1) based on the
propagated values in a layer. Although the CLRP propaga-
tion paradigm that RelevanceCAM has been using is known
to be theoretically grounded [6] and mitigated the shattered
gradient problem [7], its feature map weighting formulation
lacks theoretical foundation (simple averaging of backpropa-
gated values). In this paper, we use the same backpropagation
setting as in RelevanceCAM to obtain the spatial relevance
scores and propose a new feature map weighting strategy

(Eq.1) that satisfies the two axioms proposed by [3], namely,
the sensitivity and conservation axiom, as much as possible.
We form a new activation-driven saliency map method with
the feature map weighting factor calculated as follows:

wc
lk = 1

∑
i j A

lk
i j

∑

i j

Rlk,c
i j (1)

where Rlk,c
i j is the relevance score of a neuron obtained from

the CLRP backpropagation with the modified class scores at
location (i, j) of the kth featuremap in layer l and propagated
from class c and other notations are the same as before. In the
analysis below,we represent Rlk,c

i j by the function Rc
i j (A

l; k).
In the following sections, we provide the detailed derivation
process behind the solution given in Eq.1, by approximating
the optimal solution of the two axioms in tandem

Problem formulation for the conservation axiom

Adopted fromXGradCAM, we have the following optimiza-
tion problem to find the optimal wc

lk that satisfy the conser-

vation axiom [3]: argmin
wc
lk

∣
∣
∣Sc(Al) − ∑

i j
∑

k′ wc
lk′ Alk

′
i j

∣
∣
∣. By

definition of the conservation axiom, the weighted sum of
feature map activation values in each layer of the architec-
ture should be equal to the logit score of the target class
(Lc = Sc(Al) as a function of layer l activation Al ). How-
ever, in the CLRP propagation paradigm, each logit score
of non-target class is modified to − Lc

N (N is number of
classes) and by the LRP-based conservation property, the
sum of relevance scores in each layer for the target class is
Lc−(N −1) Lc

N . Therefore, in our case, Sc(Al) = Lc−(N −
1) Lc

N = ∑
k
∑

i j R
c
i j (A

l; k), with N = 2 and Rc
i j (A

l; k) is
the spatial relevance score as a function of the kth featuremap
in layer l activations. After rearranging the terms, we get
Sc(Al) = Lc = φc(Al)

∑
k
∑

i j R
c
i j (A

l; k) and φc(Al) =
(
(N − 1) Lc

N + ∑
k
∑

i j R
c
i j (A

l; k)
)

1∑
k
∑

i j R
c
i j (A

l ;k) for con-
venience. The final optimization problem for the conserva-
tion axiom becomes:

argmin
wc
lk

∣
∣
∣
∣
∣
∣
φc(A

l)
∑

k′

∑

i j

Rc
i j (A

l; k ′
) −

∑

k′

∑

i j

wc
lk′ Alk

′
i j

∣
∣
∣
∣
∣
∣

(2)

For a particular wc
lk in layer l, we can solve the optimization

problem by minimizing the | · | term:

φc(A
l)

∑

k′

∑

i j

Rc
i j (A

l; k) −
∑

k′

∑

i j

wc
lk A

lk
i j = 0

⇒ φc(A
l)

∑

i j

Rc
i j (A

l; k) = wc
lk

∑

i j

Alk
i j
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Fig. 1 General pipeline of the weakly supervised segmentation process. g is novel propagation technique. Function f is a novel weighting strategy

⇒ wc
lk

= φc(Al)
∑

i j A
lk
i j

∑

i j

Rc
i j (A

l; k)

Therefore, the optimal solution for the axiom-conservation

property is wc
lk = φc(Al )∑

i j A
lk
i j

∑
i j R

c
i j (A

l; k). Our quantitative
andqualitative evaluation shows that theφc(Al) termdoes not
have any effect on themethod, and to simplify the expression,
we set φc(Al) = 1 and rewrite the optimal solution as Eq.1.

Problem formulation for the sensitivity axiom

Adopted fromXGradCAM, we have the following optimiza-
tion problem to find the optimalwc

lk that satisfy the sensitivity
axiom.

argmin
wc
lk

∑

k

∣
∣
∣
∣
∣
∣

[
Sc(A

l) − Sc(A
l\Alk)

]
−

∑

i j

wc
lk A

lk
i j

∣
∣
∣
∣
∣
∣

(3)

Likewise, for each particular wc
lk in layer l, we find the solu-

tion by setting the | · | term to 0 so that Eq.3 is minimized:
⎡

⎣φc(A
l)

∑

k′

∑

i j

Rc
i j (A

l; k ′
) − φc(A

l\Alk)

∑

k′ :k′ �=k

∑

i j

Rc
i j (A

l\Alk; k ′
)

⎤

⎦ −
∑

i j

wc
lk A

lk
i j = 0

⇒
⎡

⎣ρ(Al; k) + φc(A
l)

∑

i j

Rc
i j (A

l; k)
⎤

⎦ =
∑

i j

wc
lk A

lk
i j

⇒ wc
lk = ρ(Al; k) + φc(Al)

∑
i j R

c
i j (A

l; k)
∑

i j A
lk
i j

⇒ wc
lk = �(Al; k)φc(Al)

∑
i j A

lk
i j

∑

i j

Rc
i j (A

l; k)

where Rc
i j (A

l\Alk; k ′
) is the recomputed spatial relevance

score that satisfies the LRP-based conservation property
[6] when Alk = 0 in layer l and ρ(Al; k) and �(Al; k)
are defined as ρ(Al; k) = ∑

k′ :k′ �=k

∑
i j

(
φc(Al)

Rc
i j (A

l; k ′
) − φc(Al\Alk)Rc

i j (A
l\Alk; k ′

)
)

and �(Al; k)
= ρ(Al ;k)+φc(Al )

∑
i j R

c
i j (A

l ;k)
φc(Al )

∑
i j R

c
i j (A

l ;k) . Therefore, the optimal solution

for the sensitivity axiom iswc
lk = �(Al ;k)φc(Al )∑

i j A
lk
i j

∑
i j R

c
i j (A

l; k).
Note that the�(·) term is hard to evaluate because it depends
on the term Ri j (Al\Alk; ·) in theρ(·) expression,which is the
redistribution of relevance scores for layer l after the activa-
tion values in its kth feature map are swapped with 0. Notice
that the optimal solution for the conservation and sensitivity
axioms only differs in the�(·) termwhich is hard to evaluate.
Also, the common φc(Al) term does not have any effect on
the result. Therefore, to approximate both axioms in tandem,
we set �(·) = 1 and we arrive to the final estimated solution
for both, given by Eq.1.
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Layer-wise saliencymaps aggregation

It iswell known that shallow layers of a neural network tend to
highlight the spatial details of an object but are not class dis-
criminative, whereas upper layers exhibit the opposite case
[13]. Therefore, we aggregate the saliencymaps from all lay-
ers in hope that the result gets the best of both worlds. In our
work, we generate one saliency map from each layer using
XRelevanceCAM, average the saliencymap values across all
layers, and scale the averaged saliency map using the min-
max normalization [14]. Our performance evaluations of the
saliency maps aggregation show that the semantic localisa-
tion performance of tumour structure heavily depends on the
explanation robustness of the shallow layers and the results
show that our XRelevanceCAM ismore reliable and captures
more semantic details of the class discriminative features
compared to other methods.

One limitation of this method is that the aggregation of
saliency maps from shallower layers is subject to the rep-
resentation quality (learnt feature quality) of the feature
extractor. To fully unlock the potential of this technique, a
powerful representation learningmodel such as SK-ResNeXt
can be used because it can capture discriminative class fea-
tures (e.g. psammoma bodies for the meningioma class) that
are scale invariant. This is known to be a very useful prop-
erty in training models targeted for medical images. On
the other hand, if a less powerful model like Resnet50 is
used, the final saliency map generated with layer aggrega-
tion may be less aligned with the clinical annotations. This
is because, despite achieving very high accuracy in classi-
fication, Resnet50 makes predictions based on contextual
information instead of discriminative class features.

Experiments and results

Data

Database Our dataset [15] consists of ex vivo pCLE videos
from two types of brain tumours, namely, Meningioma and
Glioblastoma (GBM). The data have been captured at a frame
rate of about 15 frames per second.We have 16 patients in the
GBMdata and 18 patients in theMeningioma data, and all the
data are grouped in the folder of their corresponding patients.
Clinically relevant areas have been manually annotated by
expert clinicians on the Meningioma data and correspond
to psammoma bodies. Similar clinically salient areas cannot
be defined for the GBM tumour class. We have a total of
12,392 images, with 5862 images in the Meningioma class
and 6530 images in the GBM class. Hence, our dataset is
approximately balanced. During the data splitting phrase, the
splitting process is performed at the patient level. A random
set of 80% of all data is used for training (27 patients), a

random set of 10% of the data is used as validation set (three
patients), and the rest serves as the test data (four patients)
for performance evaluation of our proposed method.

Data Pre-processingAt the pre-processing stage, we cen-
tre crop each frame to the size of the largest square space
within the circle in each frame (230 pixels by 230 pixels)
to remove black border areas and commercial logos. Sub-
sequently, we take every other frame (even number indexed
frames) in each video starting from the first frame because
consecutive frames look very similar.

Performance evaluation study

For performance evaluation, we use weakly supervised
segmentation (WSS) and evaluate themIoU between the seg-
mented salient regions from the explanation map and the
ground-truth manual annotations. The exact segmentation
procedure from the explanation map refers to [3] and the
task is performed on the annotated data only (Meningioma
class). For all experiments, quantitative results of each evalu-
ationmetric are obtained using the correctly classified images
and we assess the saliency maps from both qualitative and
quantitative perspectives by comparing the performance rel-
ative to the most recent activation-driven methods.

Model training and CAM implementation

We use the SK variant of ResNeXt_32x4d (SK-ResNeXt)
[10] architecture as the backbone throughout all experiments
unless explicitly specified. During the training phase, we use
pre-trained weights to initialize the classification model and
optimize the weights using cross entropy loss with image
level labels. The learning rate begins with 0.001 and adjusts
with the AdaMax [16] optimizer. The fine-turning process
stops automatically after no consecutive improvement for
ten epochs on the split-out validation data. Furthermore, ran-
dom vertical flip, random horizontal flip, random rotation,
and random colour contrast are the only data augmentations
used during the fine-tuning phase to introduce variation in
the data. The trained parameters are obtained from the Timm
library [12] and model fine-tuning is done using the Pytorch
framework [17] andGoogle Colab. Implementation of differ-
ent CAM variants in the following experiments is obtained
from the Torch-CAM library [18].

Per-layer performance evaluation

Table 1 shows the mIoU metric score for each layer, with
respect to each CAM-variant. All methods have similar per-
formance for the upper layers, and what differentiates the
methods themost is the performance from the shallow layers.
In particular, compared with our most competitive baseline
RelevanceCAM, themarginal improvement reached asmuch
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as 10% in layer one (a 56% improvement), and the average
per-layer performance of XRelevanceCAM exceeds ≈ 4%.
Performance gain is much more noticeable compared to the
widely used GradCAM and GradCAM++. Figure2 shows
the sample saliency maps for each layer generated by each
CAM-based method to complement the quantitative find-
ings. Figure3 shows the saliency masks extracted from the
saliency maps in each layer of the model, as well as the
respective ground truths provided by the clinicians. In addi-
tion, the visualizations show thatmost of themethods are less
robust in the shallow layers while XRelevanceCAM demon-
strates a propensity for highlighting significantly fewer false
positive tissue compared to the alternatives. This characteris-
tic is of great significance in the context of AI-assisted tissue
characterization during surgery, as the explanation that better
aligns with the clinical knowledge earn more trust from (or
give more confidence to) the surgeons.

Evaluation on intermediate layers

Why bother to extract class relevant evidence from the inter-
mediate layers could be a question that people raise.We adopt
the argument from [4] where XRelevanceCAM only uses the
relevance scores computed from CLRP propagation to find
the per-channel weighting factor without modifying the spa-
tial activation values of each feature map. As a result, deep
neural network architectures possess an innate capability to
identify class-specific features not only at deeper layers but
also at the intermediate layers, going beyond just low-level
semantic features such as edges. By incorporating a layer-
wise aggregation mechanism, the resulting Class Activation
Map effectively captures extensive semantic information,
from all layers, pertaining to the tumour class.

Evaluation of layer-wise saliencymap aggregations

We investigate the advantages of incorporating saliencymaps
from all layers in the context of the weakly supervised
segmentation. Specifically, Table 2 presents much greater
improvement in mIoU performance (31.83% vs 38.2% in
XRelevanceCAM)when shallower layers are included, using
the SK-ResNeXt backbone. The incremental gain in per-
formance decreases as we consider shallower layers. All
compared methods exhibit inferior performance when layer
one is taken into account, except our XRelevanceCAM. The
saliency maps of shallow layers in Fig. 2 provide insight into
the quantitative resultswheremostmethods give noisy expla-
nation maps in layers one and two. Overall, the localisation
performance of discriminative clinical structure is the best
(38.20%) when saliency maps of all layers are aggregated
compared to other from a single layer, with the SK-ResNeXt
backbone. On the other hand, as shown in Table 2, when the
ResNet50 backbone is used the performance of XRelevance-

CAM deteriorates if layer 2 or layer 1 is included. A similar
performance drop is also observed for the other methods as
well. This is likely attributed to the representation quality
of the feature extractor as explained in Sect. 3.3. However,
we should note that the partially/fully aggregated saliency
maps using XRelevanceCAM still outperform other state-of-
the-art CAM variants with the ResNet50 backbone. Sample
saliency map results as well as saliency mask comparisons
with the ground-truth masks are provided in Fig. 4.

Sensitivity analysis using layer dropout

Previous experiments are evaluated based on a point esti-
mation (one set of weights for the same model). However,
the performance evaluation metric (mIoU) of explanation
methods inherits the uncertainty from the stochasticity of
model weights during optimisation. To better account for this
uncertainty and inspired by the work from Gal et al. [23],
we re-train a classification model with additional Dropout
[24] layers and evaluate the explainability method with the
dropout layers turned on. This setup simulates a collection
of different neural network models which can be used to
assess the average performance of an explainability method.
In our experiment, each layer consists of multiple blocks of
the same architecture. We modify the SK-ResNeXt model
with one dropout layer after each layer with probability of
dropout rate set to 0.1. The dropout mechanism is always
turned on during the training and evaluation phase. In partic-
ular, the performance evaluationmetric (mIoU) is obtained at
the evaluation phase by passing each input ten times through
the model and averaging the CAM result in each pass.

Table 3 shows the mIoU in each layer as well as that from
aggregating saliency maps from all layers. With our XRele-
vanceCAM,we see that the averagemIoU for layer one, layer
two, and layer three exceeds the same metric for all other
methods. The average mIoU performance from layer four
is comparable to the other compared methods. Furthermore,
the mIoU for layer aggregation also indicates that XRele-
vanceCAM outperforms the other methods. One remark is
that when applying the dropout layer during the evaluation
phase, the metric performances shown in Table 3 gets worse
than usual. Therefore, the performance ranking between the
comparedmethods ismore important than the absolutemIoU
value. To demonstrate the impact of using dropout during
evaluation, we also include themIoU results in Table 3 for the
same model but discarding the stochasticity effect induced
by the dropout after each layer.

Sanity check for XRelevanceCAM

We follow the experimental procedure proposed by Adebayo
et al. [25] to evaluate the validity of our proposed XRele-
vanceCAM. We execute the cascading layer randomization
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Table 1 Per-layer IoU (%)
performance in weakly
supervised segmentation task,
using SK-ResNeXt

Activation-driven methods Layer 1 Layer 2 Layer 3 Layer 4 Average per-layer

GradCAM [2] 16.38 18.46 33.14 31.82 24.95

GradCAM++ [19] 8.44 20.23 35.01 32.15 23.96

XGradCAM [3] 14.40 24.77 36.20 31.82 26.80

HiResCAM [20] 15.06 21.93 30.56 31.82 24.84

LayerCAM [21] 22.19 27.50 32.0 31.70 28.34

RelavanceCAM [4] 18.0 30.37 33.42 31.0 28.19

XRelevanceCAM (ours) 28.07 31.83 35.11 32.31 31.83

Average Per-layer metric is obtained by averaging the numbers in its corresponding row. The best result is
indicated in bold

Fig. 2 Comparison of various activation-driven methods for the sampled frames with SK-ResNeXt as the backbone. The first row contains the
sampled test images and the saliency maps generated from our XRelevanceCAM. The black blobs are the target areas in the images

Fig. 3 Saliency masks generated by each layer for various methods. The first row is the same set of sampled images for each layer. The second row
shows the ground-truth masks of the relevant clinical structures. The third row shows the saliency masks generated from XRelevanceCAM
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Fig. 4 a Sample saliency masks generated with layer 4 + 3 + 2 + 1
for each CAM variants. b Sample saliency map of XRelevanceCAM
when progressively aggregate an extra shallower layer. We see that
more semantic details are captured with more layers involved in gener-

ating the saliency map cWorkflow diagram of layer-wise saliency map
aggregation of XRelevanceCAM. This also shows another example of
gradually capturing the details of the psammonma bodies of the tissue
(the black blobs)

task by progressively re-initializing the model with random
weights stage-by-stage (layer-by-layer). Figure5 shows the
XRelevanceCAM visual results for layer three using the
ResNet50 model and we see that the quality of the saliency
map gradually deteriorates. According to [25], this demon-
strates that XRelevanceCAM is a valid explanation method.

Axiom evaluations

We adopt the same axiom analysis from [3] to verify the the-
ory behind Eq.1. Specifically, the performance for the sensi-
tivity axiom is evaluated with the metric

1
N

∑N
n

∑
k

∣
∣
∣Sc(Aln)−Sc(Aln\Alkn )−∑

i j wc
lk Ri j (A

l
n;k))

∣
∣
∣

∑
k |Sc(Aln)−Sc(Aln\Alkn )| and the met-

ric 1
N

∑N
n

∣
∣
∣Sc(Aln)−

∑
k
∑

i j wc
lk Ri j (A

l
n;k)

∣
∣
∣

|Sc(Aln)| is used to evaluate the

conservation axiom, where Al
n is the activations of layer l for

image n, Alk
n is the kth feature map activation in layer l for

image n, Ri j (·) is spatial relevance score, and N is number
of test images [3]. For fair comparisons, Sc(·) is the con-
trastive score (defined in Sect. 3.2) for RelevanceCAM and
XRelevanceCAM, and set to the vanilla logit score for the
rest of the methods. Evaluation results of the conservation
axiom are reported in Table 4 and we see that our method
has the best performance compared to the others. Regard-
ing the sensitivity axiom, the results in Table 4 show that
XRelevanceCAM outperforms RelevanceCAM and is com-
parable to LayerCAM. The above analysis indicates that our
weighting strategy wc

lk = 1∑
i j A

lk
i j

∑
i j R

lk,c
i j approximates

both axioms well.
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Table 2 mIoU (%) performance in weakly supervised segmentation task with saliency maps aggregation, using ResNet50 [22] and Selective Kernel
ResNeXt [10] as backbones

Activation-driven methods Model Layer 4 Layer 4 + 3 Layer 4 + 3 + 2 Layer 4 + 3 + 2 + 1

GradCAM [2] SK-ResNeXt 31.82 33.86 32.73 31.74

ResNet50 23.18 25.11 23.98 21.48

GradCAM++ [19] SK-ResNeXt 32.15 34.87 35.32 33.79

ResNet50 24.47 24.60 19.63 16.73

XGradCAM [3] SK-ResNeXt 31.82 34.99 35.51 34.95

ResNet50 23.18 27.24 25.92 24.78

HiResCAM [20] SK-ResNeXt 31.82 32.77 33.33 32.61

ResNet50 23.18 23.38 22.66 22.32

LayerCAM [21] SK-ResNeXt 31.70 33.16 34.70 34.38

ResNet50 23.15 24.01 22.54 21.64

RelevanceCAM [4] SK-ResNeXt 31.0 33.13 35.79 35.93

ResNet50 24.02 27.25 24.20 23.30

XRelevanceCAM (ours) SK-ResNeXt 32.31 34.45 37.04 38.20

ResNet50 23.68 29.20 27.66 26.10

Best result with respective to each model is highlighted in bold

Table 3 Sensitivity analysis using layer dropout for each CAM variants [10]

Activation-driven methods Dropout [24] Layer 1 Layer 2 Layer 3 Layer 4 Layer 4 + 3 + 2 + 1

GradCAM [2] On 10.19 16.52 23.99 25.88 24.52

Off 9.57 17.06 24.79 25.03 23.89

GradCAM++ [19] On 9.97 11.11 26.42 26.09 25.59

Off 9.23 12.14 27.03 25.29 25.54

XGradCAM [3] On 12.15 17.55 24.81 25.87 26.58

Off 11.57 18.73 25.05 25.03 25.82

HiResCAM [20] On 9.14 15.12 21.68 25.87 25.57

Off 9.51 15.28 22.41 26.00 25.21

LayerCAM [21] On 9.22 14.85 22.41 25.99 24.49

Off 9.72 16.05 22.86 25.13 24.51

RelevanceCAM [4] On 17.87 22.08 28.08 25.98 28.57

Off 12.69 26.71 35.37 31.90 35.20

XRelevanceCAM (ours) On 20.26 24.53 29.02 25.96 29.62

Off 18.67 28.39 36.06 32.38 35.40

Best result is highlighted in bold with respect to each dropout status in the modified SK-ResNeXt backbone

XRelevanceCAM on ImageNet

To verify the generalisability of XRelevanceCAM on a dif-
ferent domain,we select ImageNet [26]. This is an alternative
dataset to evaluate the target object localisation performance
(the explainability) of our XRelevanceCAM because the
characteristics of natural images are inherently different to
medical images. Figure6 shows sample images from Ima-
geNet as well as, the saliency maps generated from layers
one and three using the ResNet50 backbone. The figure also
shows the saliency masks extracted from the corresponding
saliency maps. We see that the qualitative results from XRel-

evanceCAM completely outperform XGradCAM and are on
par with our main competitor, RelevanceCAM, in terms of
target object localisation ability. Quantitative results are not
included as ImageNet does not have ground-truth voxel anno-
tations for evaluation. However, we do argue that from the
qualitative results in Fig. 6, ourXRelevanceCAMgeneralizes
well to other datasets and domains.
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Fig. 5 Visualization of the stage three in cascading layer-wise randomization on Resnet50 [22]. Top: sample Meningioma input. Bottom: sample
Glioblastoma input

Table 4 Axiom evaluation
(lower the better) in the split-out
test data

Activation-driven methods Axiom [3] Layer 1 Layer 2 Layer 3 Layer 4 Average

GradCAM [2] Conservation 1.26 0.88 0.61 0.001 0.689

Sensitivity 1 0.999 0.999 0.999 0.999

GradCAM++ [19] Conservation 460.11 628.16 105.31 5.484 299.77

Sensitivity 2.912 2.09 0.925 0.994 1.73

XGradCAM [3] Conservation 0.981 0.937 1.873 0.0018 0.948

Sensitivity 0.998 0.994 0.994 0.999 0.996

HiResCAM [20] Conservation 0.981 0.938 1.872 0.0018 0.948

Sensitivity 0.998 0.994 0.994 0.999 0.995

LayerCAM [21] Conservation 15.136 5.619 3.434 0.143 6.083

Sensitivity 0.904 0.977 0.992 0.998 0.968

RelevanceCAM [4] Conservation 0.56 0.12 0.13 1.30 0.528

Sensitivity 1.01 0.93 0.82 2.40 1.29

XRelevanceCAM (ours) Conservation 0.02 0.01 0.0089 0 0.0097

Sensitivity 0.98 0.91 0.79 1.41 1.02

Best result with respective to each axiom is highlighted in bold

Conclusion

In this paper, we have introduced XRelevanceCAM that is
more theoretically grounded and mitigates the shattered gra-
dient problem that is shared by the most state-of-the-art
CAM-based methods. The weakly supervised segmentation
evaluation on pCLE data confirms that XRelevanceCAM
successfully highlights the semantic structure of the tumours’
discriminative features, with the best outcome when saliency
maps of all layers are combined. Extensive analysis verifies
the potential of our proposed method to be used intraoper-
atively for AI-assisted tissue diagnosis during brain tumour

resections and ourXRelevanceCAM is generalizable to other
datasets and domains.

Recently, XAI methods have received criticism due to
their subjectivity [27] and inherently interpretable mod-
els like [28] gain popularity in high-stake decision making
applications. In the case of AI-assisted surgery, extensive
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Fig. 6 Each sampled image consists of four rows, including the saliency maps and the corresponding extracted saliency masks from layer one and
layer three
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validation of XAI methods against ground-truth annotations
defined by expert clinicians can provide confidence about the
robustness of the appliedXAImethods.Awell-designedXAI
method should be capable of revealing whether the model’s
decisions are based on contextual features or on class-specific
characteristics (e.g. presence of psammomabodies onmenin-
gioma pCLE images). More importantly, surgeons should
leverage XAI methods to enhance their understanding and
trustworthiness of AI models, while remain responsible to
make the final decision.
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