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Abstract

In dental diagnosis and treatment planning, teeth segmentation is essential. Se-
mantic segmentation of 2D dental radiographs helps to analyze dental structures
precisely, detect anomalies in teeth, and evaluate oral health issues. However, creat-
ing segmentation masks is a time-consuming process and is prone to inaccuracies
due to complex tooth structures. In this research, we propose a self-supervised
learning approach for teeth segmentation using Modified ResUNet and Random
Block Masking as the pretext task, where random blocks in dental radiographs
are masked, and the model is trained to reconstruct the entire radiograph. We
utilize only 20% of the samples for training the down-stream task of semantic
segmentation. Our proposed approach outperforms state-of-the-art models such
as U-Net, PSPNet and performs comparably to LinkNet, trained on 80% of the
samples. Modified ResUNet trained on our approach is able to produce an accurate
segmentation mask even when the ground truth mask contains errors.

1 Introduction

Dental radiographs are helpful for dentists to identify different infections, cysts, fractures, tumors,
and dental caries [1], However, most dental radiographs have low image contrast, reduced brightness,
and noise, making it difficult to accurately evaluate them [2]. As a result, teeth segmentation
serves as a critical prerequisite for clinical dental analysis and surgical procedures, enabling dentists
to comprehensively assess oral conditions and subsequently diagnose conditions [3]. Solutions
developed by researchers have employed various supervised learning architectures, including Fully
Convolutional Networks (FCNs) like U-Net [3] and PSPNet [16], as well as Generative Adversarial
Networks (GANs) [19], Transformers [20], and Mask R-CNNs [18]. Although these approaches
achieve a higher Dice score and Jaccard index, they often necessitate a larger training dataset that
requires extensive manual annotation of segmentation masks, which is time-consuming, error prone
and costly [5].

To address these limitations, the need for a teeth segmentation method that can effectively process
dental radiographs using minimal annotated data is evident. Self-supervised learning techniques
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offer a promising solution to this challenge [6,7]. By leveraging the inherent structure and patterns
within dental X-ray images, self-supervised methods can learn meaningful representations without
relying on large amounts of labeled data. In this research, we propose Random Block Masking as a
self-supervised approach inspired by [6,7] for enhanced teeth segmentation with minimal annotated
data.

2 Related Works

With the recent developments in attention and transformer architecture, self-supervised learning
has gained traction in computer vision domains with scarce amounts of manually annotated data.
Conventional approaches for teeth segmentation employ encoder-decoder network architectures like
U-Net [9], U-Net++ [14], LinkNet [15] or pyramid-based architectures like PSPNet [16] or FPN [17].
These models specialise in enhancing and blending high-level and low-level features which is crucial
in dental segmentation where fine details and broader spatial information are key.

A more recent approach [18] to teeth segmentation uses Mask-RCNNs fine-tuned with a deep
ResNet101+FPN backbone. Toothpix [19] utilises cGANs for automatic pixel-level teeth segmenta-
tion in dental radiographs. The generator synthesises accurate annotations, while the discriminator
distinguishes between real annotations and generated annotations. [20] performs self-supervised
learning using SimMIM and UM-MAE with a Swin Transformer encoder, which then serves as the
backbone for Cascade Mask R-CNN with FPN in detection and instance segmentation tasks. [20]
splits their dataset into 5 folds, with 20% of the dataset in each fold, using 4 folds to train the model.
It is worth to mention that transformers are computationally expensive and memory intensive due to
their ability of attending to long sequences of tokens [25]. [21] incorporates an attention module into
U-Net to enhance the accuracy of tooth segmentation in CBCT radiographs by concentrating on the
most relevant features.

3 Methodology

3.1 Modified ResUNet

In this section we propose Modified ResUNet which is used for both pretext and down-stream tasks,
inspired by [8,9,10]. The architecture follows an encoder-decoder design, with four encoder and
decoder blocks, incorporating residual connections to address the vanishing gradient issue in deep
convolutional networks [10]. We also utilize skip connections as described in [9], which help maintain
spatial features between the encoder and decoder sections. Instead of concatenating the final output
of a residual block with its input, we enhance feature extraction by concatenating the output of the
first BatchNorm2D layer with the output of the residual block.

3.2 Random Block Masking

We propose a self-supervised pretext task called Random Block Masking, inspired from inpainting
and Masked Auto Encoder [6,7]. This task involves masking random blocks in dental radiographs and
training the model to reconstruct the entire dental X-ray. This approach helps in extracting structural
features of the teeth, which are essential for the downstream task of teeth segmentation. Masking
ratio can dynamically vary from 15% to 75% as the number of blocks can vary from 2 to 5, each
covering 15% of the image, while conventional masking techniques like MAE [6] use a constant
masking ratio of 25% across all images.

Additionally, since our dataset contains radiographs from different age groups, the presence of a full
set of 32 teeth is not consistent across all images. Our solution involves passing the Sobel [12] filtered
output of the image, concatenated with the masked X-ray. This guides the model in generating the
entire dental radiograph.

3.3 Teeth Segmentation

For the down-stream task of teeth segmentation, Modified ResUNet trained on the pretext task of
Random Block Masking is used without modifications to its architecture. The model is trained using
a combination of Dice and Binary Cross-Entropy losses. Dice loss helps in achieving accuracy in an
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Figure 1: Model overview.

Dental X-ray Masked X-ray Sobel Filter Dental X-ray Masked X-ray Sobel Filter

Figure 2: The above image shows sample masked X-ray image, X-ray image and Sobel filter.

imbalanced dataset and Binary Cross-Entropy treats it as a pixel-wise classification task. Additional
information is provided in the appendix.

4 Results and Discussion

We have utilized the publicly available dataset [11], consisting of 598 dental radiographs. This dataset
has been annotated by 12 individuals and includes a total of 15,318 segmented teeth. The model is
trained on the NVIDIA Tesla P100 GPU, with 16GB memory and 3584 CUDA cores.

4.1 Results related to Random Block Masking

We have achieved an impressive Structural Similarity Index [22] of 0.912, Learned Perceptual Image
Patch Similarity [23] of 0.088, and Features Similarity Index Matrix score [24] of 0.956 in the pretext
task of Random Block Masking. We trained our Modified ResUNet model for 80 epochs using the
Adam optimizer [26] with an initial learning rate of 0.0001, utilizing L1 loss [13] for training. A
qualitative analysis is included in the appendix.

Dental X-ray Masked X-ray Generated X-ray Dental X-ray Masked X-ray Generated X-ray

Figure 3: Sample output images of the pretext task.
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4.2 Results related to Teeth Segmentation

Our self-supervised approach trained on 20% of the samples in the dataset, has achieved a higher accu-
racy in terms of Dice score and Jaccard score compared to models such as U-Net, LinkNet and PSPNet
trained on 80% of the samples. A qualitative and quantitative analysis with the aforementioned
models is included in the appendix.

Table 1: Performance Comparison of SOTA models and our approach
Model Train. Data Dice Jaccard

U-Net
0.2 0.673 0.564
0.3 0.715 0.643
0.8 0.844 0.753

PSPNet
0.2 0.824 0.700
0.3 0.779 0.638
0.8 0.847 0.734

LinkNet
0.2 0.805 0.675
0.3 0.865 0.763
0.8 0.899 0.818

Model Train. Data Dice Jaccard

Modified
ResUNet

0.2 0.785 0.698
0.3 0.814 0.736
0.8 0.867 0.794

Our
approach

0.2 0.874 0.778
0.3 0.881 0.786
0.8 0.892 0.804

Dental X-ray Ground Truth Generated mask Dental X-ray Ground Truth Generated mask

Figure 4: Sample output of the downstream task trained on 20% of samples in the dataset with pretext
task of Random Block Masking.

4.3 Model Performance with Inaccurate Ground Truth

Due to human involvement in annotation, errors exist in the ground truth segmentation mask. Our
approach has predicted the correct segmentation mask despite incorrect ground truth, due to our novel
self supervised technique of Random Block Masking.

Dental X-ray Incorrect mask Generated mask Dental X-ray Incorrect mask Generated mask

Figure 5: Instances demonstrating our model’s ability to produce precise segmentation masks despite
flaws in the ground truth mask.

5 Conclusion

In this paper we introduce Modified ResUNet for our self-supervised learning technique of Random
Block Masking, followed by the down-stream task of teeth segmentation. We achieve accuracy
scores rivaling traditional segmentation architectures while simultaneously learning features marked
incorrectly in the ground truth mask. We believe that the proposed method can encourage more
applications of self-supervised learning in the field of healthcare, reducing the amount of manually
annotated data required. As a continuation to our work, we propose multi-class segmentation to
distinguish between different classes of teeth - incisors, canines or wisdom teeth.
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Appendix

The following sections will provide additional details on the methodology, experimentation, and
qualitative analysis.

A Random Block Masking

The dataset [11] includes patients across age demographics and many suffer from common dental
abnormalities like missing or misaligned teeth or implants. The Sobel filtered input helps the
model generate the entire dental radiograph by providing information on edges, number of teeth,
structure, and shape of the teeth behind the random masked block. The filter also helps avoid
generating anatomically incorrect shapes or the blurring of sharp boundaries in the reconstructed
output. Consequently, providing the Sobel filtered input enhances structural definition and clarity of
output images, providing the model with additional cues for interpreting masked regions.

We have trained the model using L1 loss [13], that aids in generating X-rays that are pixel-wise
accurate with smoother outputs. L1 loss focuses on minimizing the average deviation across pixels
and it is less sensitive to large outliers such as noise and aberrant regions like high contrast or metallic
implants, making it suitable for generating X-ray images from masked X-ray images.

L1 loss is defined as follows,

L1 =
1

N ×M

N∑
i=1

M∑
j=1

|Iij − Îij | (1)

where N and M are the dimensions of the image, Iij is the pixel value of the X-ray at position (i, j),
and Îij is the pixel value of the generated image at the same position.

B Teeth Segmentation

With the weights from the pretext task of Random Block Masking, we train Modified ResUNet for the
down-stream task of segmentation using a combination of Dice and Binary Cross-Entropy (BCE) loss.
The combination of Dice and BCE loss optimises for both region overlap and pixel-wise accuracy.

Dice loss is defined as follows,

LDice = 1−
2
∑N

i=1

∑M
j=1 pijgij∑N

i=1

∑M
j=1 pij +

∑N
i=1

∑M
j=1 gij

(2)

where pij and gij are the predicted value and the ground truth respectively, for pixel (i, j).

Binary Cross-Entropy (BCE) loss is defined as follows,

LBCE = − 1

N

N∑
i=1

M∑
j=1

[gij log(pij) + (1− gij) log(1− pij)] (3)

where N is the number of pixels, pij is the predicted probability for pixel (i, j), and gij is the ground
truth. The combination of Dice loss and BCE loss where α and β are hyperparameters are set to 0.7
and 0.3 respectively,

L = α · LDice + β · LBCE (4)
α = 0.7, β = 0.3 (5)

C Extended Experimentation and Discussion

This section presents a comprehensive analysis, using quantitative and qualitative methodologies
to provide a more in-depth examination on our approach. Since we have utilized only 20% of the
samples in the dataset for training the down stream task, to ensure better robustness we tested with
multiple seed values and we achieved similar accuracy [27]. We evaluate our pretext task’s results
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using the Structural Similarity Index (SSIM). SSIM is typically used when evaluation of structures
should not be influenced by luminance, as is the case in this task.

SSIM is defined as follows,

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where x is the reference image, y is the generated image, µx is the mean of x, σ2
x is the variance of x,

σxy is the covariance of x and y, c1 and c2 are constants.

Learned Perceptual Image Patch Similarity (LPIPS) is used to calculate perceptual similarity. It uses
the activations of the network for evaluation as the representational space corresponds to human-like
perception. The formula for LPIPS is mentioned below,

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ŷlhw − x̂l
hw)∥22 (7)

Where x, y are input images; l is a network layer; ŷlhw, x̂l
hw are activations at position (h,w).

Feature SIMilarity (FSIM) index was proposed for Image Quality Assessment (IQA) and is composed
of 2 components - Phase Congruency (PC) and Gradient Magnitude (GM). PC is important as it is
invariant to light variation while GM is computed to store contrast information.

FSIM =

∑
x∈Ω SL(x) · PCm(x)∑

x∈Ω PCm(x)
(8)

where SL(x) = [SPC(x)]
α · [SG(x)]

βSPC(x) =
2PC1(x) · PC2(x) + T1

PC2
1(x) + PC2

2(x) + T1

(9)

SG(x) =
2G1(x) ·G2(x) + T2

G2
1(x) +G2

2(x) + T2
PCm(x) = max(PC1(x),PC2(x)) (10)

For teeth segmentation the metrics used are Dice score, Jaccard index, Precision and Recall. Dice
score is defined as follows. Dice Loss is defined in equation 2.

Dice Score = 1− Dice Loss (11)

The Jaccard Index, also known as Intersection over Union (IoU), measures the similarity between
two sets by dividing the size of their intersection by the size of their union, indicating the overlap
between the sets. Jaccard index is defined below,

Jaccard Index =
|A ∩B|
|A ∪B|

(12)

Precision refers to the number of true positives divided by the total number of positive predictions
(i.e., the number of true positives plus the number of false positives). Precision is defined as follows,

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(13)

Recall is calculated by dividing the number of true positives by the total number of positive instances,
which includes true positives and false negatives. Recall is defined as follows,

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(14)

D Limitations

Our approach has not been tested on multiple dental radiograph datasets, and we have not performed
a quantitative analysis to verify the model’s accuracy when the ground truth mask contains errors.
Furthermore, the effectiveness of Random Block Masking as a pretext task remains unexplored in
other healthcare tasks and across different domains.
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E Quantitative and Qualitative Analysis

The tables below provide a more detailed quantitative analysis. In general, the variation across
all metrics is minimal [27] at just 0.4%, when training our Random Block Masking approach for
segmentation with the modified ResUNet using different seed values and 20% of the samples in the
dataset.

Table 2: Performance Comparison of SOTA models and our approach.

Model Training Dataset Dice Jaccard Precision Recall

U-Net [9]

0.1 0.628 0.547 0.613 0.712
0.2 0.673 0.564 0.665 0.748
0.3 0.715 0.643 0.709 0.798
0.8 0.844 0.753 0.845 0.898
0.9 0.876 0.789 0.867 0.876

PSPNet [16]

0.1 0.787 0.648 0.744 0.835
0.2 0.824 0.700 0.835 0.812
0.3 0.779 0.638 0.757 0.802
0.8 0.847 0.734 0.832 0.862
0.9 0.787 0.649 0.819 0.757

LinkNet [15]

0.1 0.600 0.431 0.832 0.441
0.2 0.805 0.675 0.840 0.706
0.3 0.865 0.763 0.861 0.871
0.8 0.899 0.818 0.909 0.892
0.9 0.893 0.807 0.909 0.880

Modified ResUNet

0.1 0.765 0.687 0.745 0.834
0.2 0.785 0.698 0.779 0.865
0.3 0.814 0.736 0.807 0.827
0.8 0.867 0.794 0.857 0.857
0.9 0.907 0.823 0.892 0.867

Random Block Masking
+ Modified ResUNet

0.1 0.851 0.740 0.851 0.870
0.2 0.874 0.778 0.869 0.882
0.3 0.881 0.786 0.874 0.889
0.8 0.892 0.806 0.878 0.907
0.9 0.911 0.827 0.910 0.912

Table 3: Performance metrics of dataset with different seed values.

Seed Dataset Dice Jaccard Precision Recall

42

0.1 0.846 0.727 0.823 0.863
0.2 0.872 0.774 0.870 0.876
0.3 0.881 0.787 0.877 0.886
0.8 0.896 0.812 0.888 0.905
0.9 0.912 0.834 0.934 0.910

3407

0.1 0.855 0.748 0.842 0.872
0.2 0.875 0.779 0.870 0.882
0.3 0.882 0.786 0.869 0.894
0.8 0.891 0.804 0.873 0.911
0.9 0.910 0.825 0.912 0.915

0

0.1 0.852 0.745 0.832 0.876
0.2 0.878 0.782 0.867 0.889
0.3 0.881 0.787 0.878 0.886
0.8 0.890 0.802 0.874 0.907
0.9 0.911 0.824 0.884 0.912
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Input Sobel Epoch 1 Epoch 10 Epoch 20 Epoch 50 Epoch 75 Target

Figure 6: Sequential learning of our model on the Random Block Masking pretext task.
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Masked Radiograph Ground Truth Generated Radiograph

Figure 7: Qualitative Analysis of Random Block Masking.
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Input PSPNet[16] U-Net[6] LinkNet[15] Ours Ground Truth

Figure 8: Qualitative Comparison with SOTA models.
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Input Radiograph Ground Truth Generated Mask

Figure 9: Instances demonstrating imperfect ground truth, however our model performs better due to
self supervised learning.
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