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Abstract

Retrieval-Augmented Generation (RAG), by in-001
tegrating non-parametric knowledge from exter-002
nal knowledge bases into models, has emerged003
as a promising approach to enhancing response004
accuracy while mitigating factual errors and005
hallucinations. This method has been widely006
applied in tasks such as Question Answering007
(QA). However, existing RAG methods strug-008
gle with open-domain QA tasks because they009
perform independent retrieval operations and010
directly incorporate the retrieved information011
into generation without maintaining a sum-012
marizing memory or using adaptive retrieval013
strategies, leading to noise from redundant in-014
formation and insufficient information integra-015
tion. To address these challenges, we pro-016
pose Adaptive memory-based optimization for017
enhanced RAG (Amber) for open-domain QA018
tasks, which comprises an Agent-based Mem-019
ory Updater, an Adaptive Information Collec-020
tor, and a Multi-granular Content Filter, work-021
ing together within an iterative memory updat-022
ing paradigm. Specifically, Amber integrates023
and optimizes the language model’s memory024
through a multi-agent collaborative approach,025
ensuring comprehensive knowledge integration026
from previous retrieval steps. It dynamically ad-027
justs retrieval queries and decides when to stop028
retrieval based on the accumulated knowledge,029
enhancing retrieval efficiency and effectiveness.030
Additionally, it reduces noise by filtering irrele-031
vant content at multiple levels, retaining essen-032
tial information to improve overall model per-033
formance. We conduct extensive experiments034
on several open-domain QA datasets, and the035
results demonstrate the superiority and effec-036
tiveness of our method and its components. The037
source code is available 1.038

1 Introduction039

In recent years, Large Language Models (LLMs)040

(Brown et al., 2020; Achiam et al., 2023; Touvron041

1https://anonymous.4open.science/r/Amber-B203/

et al., 2023b; Anil et al., 2023) have demonstrated 042

exceptional performance across various tasks, in- 043

cluding question answering (QA) (Yang et al., 044

2018; Kwiatkowski et al., 2019), owing to their abil- 045

ity to capture diverse knowledge through billions 046

of parameters. However, even the most advanced 047

LLMs often suffer from hallucinations (Chen et al., 048

2023) and factual inaccuracies due to their reliance 049

on parametric memory. Additionally, it is imprac- 050

tical for these models to memorize all of the ever- 051

evolving knowledge. To address these challenges, 052

retrieval-augmented generation (RAG) (Borgeaud 053

et al., 2022; Izacard et al., 2023; Shi et al., 2023) 054

have garnered increasing attention. These models 055

retrieve passages relevant to the query from ex- 056

ternal corpora and incorporate them as context to 057

the LLMs, enabling the generation of more reli- 058

able answers. By integrating retrieved information, 059

retrieval-augmented LLMs maintain both the ac- 060

curacy and timeliness of their knowledge. Early 061

studies on RAG primarily focused on single-hop 062

queries (Lazaridou et al., 2022; Ram et al., 2023), 063

where answers can typically be found within a sin- 064

gle document. However, these methods often fall 065

short when handling complex QA tasks, such as 066

long-form QA and multi-hop QA, which require 067

aggregating information from multiple sources. Un- 068

like single-hop QA, these queries necessitate con- 069

necting and synthesizing information across mul- 070

tiple documents and cannot be solved by a single 071

retrieval-and-response step. For instance, the query 072

“Is Microsoft Office 2019 available in a greater 073

number of languages than Microsoft Office 2013?” 074

requires three reasoning steps: first, retrieving in- 075

formation about the languages supported by “Office 076

2019”; second, retrieving similar information for 077

“Office 2013”; and finally, comparing the two sets 078

of data to produce an answer. 079

To address this issue, Adaptive RAG has been 080

proposed. It adaptively selects appropriate retrieval 081

questions and timing based on the difficulty of the 082
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user query to flexibly capture more valuable knowl-083

edge for answering open-domain QA tasks, achiev-084

ing a balance between effectiveness and efficiency.085

However, these methods still have several prob-086

lems. First, each retrieval operates independently087

and lacks a summarizing memory of previous re-088

trieval fragments, which may cause the outputs to089

reflect only limited knowledge from specific re-090

trieval steps while neglecting the integration and091

interaction of retrieved information from different092

steps. Second, when the LLM uses these retrieved093

fragments for reasoning, it does not actively evalu-094

ate the validity of the information. Consequently,095

without the ability to determine when to proactively096

stop retrieval based on known information or up-097

date the queries that need to be retrieved, it may098

lead to inefficiencies or the retrieval of irrelevant099

information. Third, the effective parts within the100

retrieved text segments are very few, and excessive101

redundant information introduces noise, which can102

obscure important details and negatively impact the103

model’s performance.104

To this end, we propose Adaptive memory-based105

optimization for enhanced RAG (Amber). Amber106

comprises three core components: Agent-based107

Memory Updater (AMU), Adaptive Information108

Collector (AIC), and Multi-granular Content Filter109

(MCF). These components work in unison to au-110

tomatically integrate and update retrieved informa-111

tion as the LLM’s memory, dynamically adjust the112

queries based on known information, and employ113

multi-granular content filtering during retrieval to114

retain useful information and reduce noise, thereby115

achieving outstanding performance. Firstly, to ad-116

dress the issue in which each retrieval operates inde-117

pendently and lacks a summarizing memory of pre-118

vious retrieval fragments, AMU employs a multi-119

agent collaborative approach. By coordinating var-120

ious agents, AMU optimizes the LLM’s current121

memory. This process ensures that the knowledge122

structure is continuously refined and enriched, ef-123

fectively integrating all valuable information from124

previous retrieval steps. Secondly, AIC utilizes the125

real-time memory generated by AMU to update the126

queries that need to be retrieved and decides when127

to stop retrieval. By automatically adjusting the128

retrieval process based on the accumulated knowl-129

edge, AIC ensures that subsequent retrievals are130

more targeted and efficient, effectively addressing131

the challenge of insufficient knowledge accumula-132

tion and avoiding unnecessary retrievals. Lastly,133

we fine-tune the LLM to function as MCF to reduce134

noise during retrieval. MCF includes two levels of 135

filtering capabilities. Firstly, it assesses the validity 136

of the entire retrieved text segment and the query, 137

determining whether the information is relevant 138

and useful. Secondly, from the valid retrieved seg- 139

ments, it filters out irrelevant content and retains 140

essential information. This approach effectively re- 141

duces redundant information and highlights crucial 142

details, thereby enhancing the overall performance 143

of the model. 144

In summary, our contributions are as follows. 145

• We propose the Agent-based Memory Updater, 146

which uses a multi-agent approach to integrate 147

information and form memory from previous re- 148

trievals, optimizing the LLM’s memory. 149

• We develop the Adaptive Information Collector, 150

which updates retrieval queries and decides when 151

to stop retrieval, making the process more tar- 152

geted and efficient. 153

• We introduce the Multi-granular Content Filter 154

to reduce noise by filtering irrelevant content at 155

multiple levels, enhancing model performance. 156

• Extensive experiments validate the effectiveness 157

of Amber, showing significant improvements 158

over existing methods in open-domain QA. 159

2 Related Work 160

Open-domain QA Open-domain Question An- 161

swering (OpenQA) (Voorhees et al., 1999) seeks 162

to provide answers to questions expressed in nat- 163

ural language that are not restricted to a specify 164

domain. Modern methods for Open QA tasks 165

typically adopt the Retriever-and-Reader frame- 166

work (Chen, 2017; Wang et al., 2024a). With the 167

advancement of open-domain QA, multi-hop QA 168

(Joshi et al., 2017; Yang et al., 2018) and long- 169

form (Stelmakh et al., 2022; Lyu et al., 2024) have 170

gradually emerged. This more complex QA further 171

necessitates the system to extensively collect and 172

contextualize from the multiple documents (typ- 173

ically through iterative processes) in order to ad- 174

dress more intricate queries. In particular, (Khot 175

et al., 2022; Khattab et al., 2022) suggested break- 176

ing down multi-hop queries into simpler single-hop 177

queries, iteratively utilizing LLMs and the retriever 178

to address these sub-queries, and then combining 179

their results to construct a comprehensive answer. 180

Unlike the decomposition-based method, other re- 181

cent studies, such as (Yao et al., 2022) and (Trivedi 182

et al., 2022), explored a technique that creates a 183

logical sequence of reasoning steps with document 184
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Original Question:  Who sings back vocals with piano one of these nights, the song?

z

Knowledge Retriever

External Knowledge:

k1: Wikipedia: One of these nights is the fourth audio album …

k2: who wrote one of these nights? one of these night was written by Don Henley and Glen Frey…

k3: One of These Nights" is the fourth studio album by American rock band …

Chunk-Level Filter

Filtered Chunks:

c1,  c2,  c6…

Sentence-Level Filter

Extracted Sentences:

p1,  p2,  p6…

Memory Generate 

Agent 

Update 

Memory?

Generate New Query

Answer  Generate 

Response:  On the song “One of These Nights” by the Eagles, the piano is played by Glen Frey.

Multi-granular Content Filter
Agent-based Memory Updater

Adaptive Information Collector

Reviewer Challenger Refiner

Memory

MemoryQuery

MemoryQueryQuery

who wrote one of 

these nights? one 

of these night 

was written by 

Don Henley and 

Glen Frey

one of these 

night was 

written by 

Don Henley 

and Glen 

Frey

Retrieved chunk Filtered content

Figure 1: Illustration of the Amber framework. Amber is an adaptive Retrieval-Augmented Generation (RAG)
approach incorporating three key components: the Adaptive Information Collector (AIC), the Multi-Granular
Content Filter (MCF), and the Agent-Based Memory Updater (AMU). The MCF filters chunks irrelevant to the
query and extracts the most useful sentences. Subsequently, the AMU updates the generated memory notes. Finally,
the AIC evaluates the quality of the memory and determines whether further iterations are necessary.

retrieval. Additionally, (Jiang et al., 2023) pro-185

posed a method that involves iteratively fetching186

new documents when the tokens in the generated187

sentences exhibit low confidence, and (Jeong et al.,188

2024) proposed a retrieval strategy based on the189

complexity of the questions. However, The meth-190

ods mentioned above neglect both the quality of191

retrieved documents and the generation of mem-192

ory. Therefore, it is essential to propose a method193

aimed at enhanceing the quality of both retrieval194

and memory generation.195

Retrieval-Augmented Generation. RAG has be-196

come essential for enhancing the response quality197

of large language models (LLMs). Early strate-198

gies (Izacard et al., 2023) relied on single-time199

retrieval, inputting the retrieved passages directly200

into LLMs to generate answers. However, these201

methods often fell short in complex tasks like multi-202

hop and long-form question answering, failing to203

capture sufficient information. To address these204

limitations, multi-time retrieval (Trivedi et al.,205

2022; Borgeaud et al., 2022) was explored, though206

it risked incorporating irrelevant data, leading to207

poor-quality responses. This led to the develop-208

ment of Adaptive RAG (ARAG), which dynam-209

ically adjusts retrieval strategies based on real-210

time feedback, determining optimal retrieval times211

and content. Key innovations include Flare (Jiang 212

et al., 2023), which triggers new retrievals for 213

low-confidence tokens, and Self-RAG (Asai et al., 214

2023), which uses self-reflective markers to as- 215

sess content quality. These adaptive approaches 216

enhance retrieval relevancy and accuracy, while 217

agent-based models like ReAct (Yao et al., 2022) 218

further augment RAG’s flexibility and intelligence. 219

Nevertheless, we argue that the above methods 220

overlook the quality issues in both retrieval and 221

agent generation, resulting in inaccurate answers. 222

3 Methods 223

In this section, we define the task and present an 224

overview of our proposed method, Amber (illus- 225

trated in Figure 1). Following this, we provide a 226

detailed explanation of each individual component. 227

3.1 Problem Formulation 228

RAG aims to enhance the generation quality of 229

LLMs by integrating relevant information from an 230

external document corpus D = {d1, d2, . . . , dn}. 231

Given a user input x or a query q, the core of RAG 232

involves using a retriever R to identify and select a 233

subset of pertinent documents from D. The LLM 234

then leverages both the original input and these 235

retrieved documents to produce an improved output. 236

Generally, this process seeks to achieve an output 237
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y based on the input and retrieved context.238

3.2 Amber Overview239

Figure 1 presents the architecture of Amber, an240

adaptive memory updating iterative RAG method.241

It consists of three main components: an Agent-242

based Memory Updater, an Adaptive Information243

Collector, and a Multi-granular Content Filter.244

Given a query q, we initialize the LLM’s memory245

M0 as an empty set. Acting as the primary sched-246

uler, the Adaptive Information Collector initiates247

the iterative loop. At each iteration t, we retrieve248

the top k text chunks Ct = {ct1, ct2, . . . , ctk} from249

the corpus D based on q. The Multi-granular250

Content Filter then assesses the relevance of each251

chunk cti to q and filters out irrelevant content, re-252

taining the most pertinent sub-paragraphs to form253

the refined document set Pt. Subsequently, the254

Agent-based Memory Updater employs three255

agents—the Reviewer, Challenger, and Refiner—to256

collaboratively integrate the new references Pt with257

the previous memory Mt−1, producing the updated258

memory Mt. These agents ensure that the mem-259

ory is optimized for answering q. The adaptive260

information collector then evaluates whether the261

LLM can adequately respond to q using the current262

memory Mt. If not, it generates a new retrieval263

query qt+1 based on Mt and q and proceeds to the264

next iteration. If the LLM can answer q satisfacto-265

rily, the adaptive information collector terminates266

the loop. After the iterative process concludes, we267

use the final memory MT as context to generate268

the answer α ∈ A through the LLM’s zero-shot269

in-context learning (ICL).270

3.3 Agent-based Memory Updater (AMR)271

In real-world scenarios, user queries vary signifi-272

cantly in complexity, necessitating the formulation273

of tailored strategies for each query. Enhanced274

LLM based on memory provide an effective solu-275

tion to this challenge. Memory, which represents276

the information known to the LLM during retrieval,277

enables the model to determine retrieval strategies278

effectively. Among these, memory updating is a279

critical component. It requires the LLM to leverage280

historical and newly retrieved information to regen-281

erate the latest memory aligned with the query.282

Inspired by the concept of multi-agent collab-283

oration, we propose an Agent-based Memory284

Updater framework, which employs a coopera-285

tive, multi-agent approach to memory updating.286

Specifically, AMR consists of three independent287

agents: the Reviewer, the Challenger, and the Re- 288

finer. Through iterative dialogue, these agents re- 289

flect upon and optimize the memory. The inputs to 290

AMR include the current memory mt, the retrieved 291

passages pt for the current query qt, and the origi- 292

nal user query q. Based on these inputs, the LLM 293

initially generates an updated memory mt+1. 294

Reviewer. As the primary evaluator in the AMR 295

framework, the Reviewer examines the proposed 296

memory update mt+1 using the current memory 297

mt, retrieved passages pt, and user query q. The 298

Reviewer assesses the correctness and relevance 299

of mt+1 to the user’s intent, identifying strengths 300

and weaknesses. By sharing evaluations with the 301

Challenger and Refiner, the Reviewer facilitates 302

collaborative refinement and coordinates strategies 303

to ensure alignment with collective goals. This 304

evaluation process ensures memory updates are 305

rigorously reviewed, improving the LLM’s retained 306

information. 307

Challenger. Acting as the critical analyst, the 308

Challenger builds upon the Reviewer’s assessment 309

by examining mt+1, identifying potential flaws and 310

overlooked constraints. Through interaction with 311

the Reviewer and Refiner, the Challenger scruti- 312

nizes the validity of the memory update, raising 313

probing questions about conflicts with existing 314

knowledge or unmet user requirements. These in- 315

teractions enable collective strategy adaptation, en- 316

suring mt+1 is robust and well-aligned with both 317

the user query and knowledge base. 318

Refiner. As the agent responsible for implement- 319

ing improvements, the Refiner synthesizes feed- 320

back from the Reviewer and Challenger to refine 321

mt+1. It translates critiques into concrete modifica- 322

tions, focusing on enhancing accuracy, clarity, and 323

adherence to user query. The Refiner resolves is- 324

sues identified by other agents, producing a revised 325

mt+1 that better satisfies objectives. Through col- 326

laboration with the Reviewer and Challenger, the 327

Refiner streamlines the feedback loop and main- 328

tains modification records, contributing to an effec- 329

tive refinement cycle. 330

Through the complementary collaboration of the 331

Reviewer, Challenger, and Refiner within AMR, 332

the proposed method effectively leverages the 333

strengths of each agent. This triadic interaction en- 334

sures that memory updates undergo rigorous evalu- 335

ation, critical examination, and precise refinement. 336

As a result, the updated memory mt+1 becomes 337

increasingly accurate, relevant, and aligned with 338

the user’s query across multiple iterative cycles. 339
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3.4 Adaptive Information Collector (AIC)340

We propose the Adaptive Information Collector341

as the primary scheduler to control the entire RAG342

workflow. The role of AIC is to evaluate whether343

the information currently available in the memory,344

generated by the AMU, is sufficient to answer the345

user query q.346

Specifically, each iteration of AIC follows three347

key steps. The process initializes with the user348

query q0 = q and an empty memory m0 =349

∅. Firstly, AIC begins by retrieving the top k350

text chunks Ct = {ct1, ct2, . . . , ctk} from the cor-351

pus D based on the current query qt using a re-352

trieval mechanism. Next, the query q, the re-353

trieved text chunks Ct, and the current memory354

mt are input into the Agent-based Memory Up-355

dater (AMU), which generates an updated memory356

mt+1 = AMU(qt, Ct,mt). Lastly, AIC then eval-357

uates whether the updated memory mt+1 contains358

sufficient information to fully answer the query359

q. If the memory is deemed sufficient, the iter-360

ative process terminates, and the latest memory361

mT , along with the query q, are inputted into the362

LLM using in-context learning to produce the fi-363

nal answer a. However, if the updated memory364

mt+1 is insufficient, AIC generates a refined query365

qt+1 = AIC(q, qt,mt+1). to target the missing in-366

formation and proceeds to the next iteration. This367

iterative approach ensures that the final memory368

mT is comprehensive and well-aligned with the369

user’s informational needs.370

This iterative design allows AIC to dynamically371

refine queries and memory updates, ensuring that372

the final memory mT contains the necessary infor-373

mation to answer the user’s query comprehensively.374

3.5 Multi-granular Content Filter (MCF)375

The Adaptive Information Collector, despite lever-376

aging the filtering capabilities of the Agent-based377

Memory Updater and employing adaptive retrieval378

to refine the query qt, often retrieves the top k text379

chunks Ct = {ct1, ct2, . . . , ctk} that still include ir-380

relevant information. These irrelevant parts can381

be categorized into two levels: chunk-level irrele-382

vance, where an entire chunk ci may be unrelated to383

the query q, and sentence-level irrelevance, where384

even within a relevant chunk ci, only a subset of the385

sentences may be pertinent to the query q, while386

the remainder constitutes noise.387

Based on these insights, we used STRINC,388

CXMI metrics, and GPT-4 (detail see in appendix389

A) to generate a multi-granular content filter dataset 390

and subsequently fine-tuned a LLM using multi- 391

task learning to create the Multi-granular Content 392

Filter, denoted as Fc. This content filter operates 393

hierarchically, applying two levels of filtering to 394

each chunk ci. 395

At the first level, a chunk-level filtering prompt, 396

formulated as fc(promptchunk, q, pi), determines 397

whether a chunk is relevant to q. If fc returns False, 398

the chunk is directly discarded; otherwise, it pro- 399

gresses to the second level. The chunk-level filter 400

is defined as: 401

fc(promptchunk, q, ci) =

{
True, if ci relevant to q

False, if ci not relevant to q

(1) 402

At the second level, a sentence-level evaluation 403

is performed for chunks that pass the initial fil- 404

ter, where pi = fc(promptsentence, q, ci) assesses 405

each sentence within the chunk to retain the rele- 406

vant sentences. The output of this stage is a refined 407

set of relevant sentences Pt = {p1, p2, . . . , pm}, 408

where pi are the relevant sentences. 409

This hierarchical filtering approach significantly 410

reduces noise in the retrieved information by iso- 411

lating only the relevant content at both chunk and 412

sentence levels. The MCF, ensures that AIC oper- 413

ates with higher precision, improving the quality 414

and relevance of the memory mt in each iteration 415

and, consequently, the overall performance. 416

4 Experimental Setup 417

In this section, we present the datasets, models, 418

metrics, and implementation details. More experi- 419

ment setup can see appendix A and B. 420

4.1 Datasets and Evaluation Metrics 421

To simulate a realistic scenario, where different 422

queries have varying complexities, we use both the 423

single-hop, multi-hop and long-form QA datasets 424

simultaneously, in the unified experimental setting. 425

Single-hop QA For simpler queries, we use three 426

benchmark single-hop QA datasets, which consist 427

of queries and their associated documents contain- 428

ing answers, namely 1) SQuAD v1.1 (Rajpurkar, 429

2016), 2) Natural Questions (Kwiatkowski et al., 430

2019) and 3) TriviaQA (Joshi et al., 2017). 431

Multi-hop QA To consider more complex query 432

scenarios, we use two benchmark multi-hop 433

QA datasets, which require sequential reasoning 434
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Table 1: Performance comparison of Amber with baseline models. The bold and underlined values indicate the
best and second-best results across all models. Overall, Amber consistently achieves superior performance across
all datasets, demonstrating its effectiveness in answering questions.

Methods
single-hop QA multi-hop QA Long-form QA

SQuAD Natural Questions TriviaQA 2WikiMQA HotpotQA ASQA
acc f1 acc f1 acc f1 acc f1 acc f1 str-em str-hit

No Retrieval NoR 12.6 18.41 24.0 27.49 49.8 52.69 28.4 35.6 19.8 25.17 35.5 8.9

Single-time RAG

Vanilla (Qwen2-7b) 32.2 27.7 36.2 24.62 60.6 49.63 36.2 39.0 37.8 37.2 43.5 18.5
Vanilla (Llama3-8b) 30.4 36.08 33.2 38.99 58.2 60.28 22.2 26.2 34.2 42.2 38.7 13.7
Vanilla (GPT-3.5) 34.4 37.88 35.9 38.43 63.8 63.49 35.4 38.2 38.6 44.36 47.77 21.62
Self-Refine 32.1 33.04 35.8 35.17 61.2 58.91 35.9 38.6 38.2 43.8 42.1 16.6
Self-Rerank 31.1 35.19 34.3 39.05 60.7 59.84 34.8 32.1 35.6 42.2 35.0 11.4
Chain-of-note 31.8 33.94 35.2 37.66 61.0 58.33 35.1 39.7 36.8 45.0 40.3 15.6

Adaptive RAG

ReAct 33.6 34.85 35.4 38.37 60.9 59.83 34.6 37.3 37.5 46.9 32.9 8.3
Self-RAG 32.7 33.84 37.9 39.17 60.3 58.94 29.8 30.8 35.3 44.4 40.9 16.5
FLARE 32.9 35.81 36.4 38.94 61.1 57.75 38.2 42.8 37.2 47.8 34.9 9.5
Adaptive-RAG 33.0 38.3 44.6 47.3 58.2 60.7 46.4 49.75 44.4 52.56 42.1 15.8
Adaptive-Note 29.0 33.61 40.0 45.38 59.6 59.72 39.4 39.1 39.0 46.6 43.7 17.7

Ours
Amber (Qwen2-7b) 36.8 38.43 47.8 49.84 65.8 62.77 56.0 52.73 52.6 51.13 49.7 25.2
Amber (Llama3-8b) 34.6 39.37 44.2 50.49 63.6 62.79 43.8 43.5 45.8 53.72 44.7 18.8
Amber (GPT-3.5) 35.8 39.06 47.4 52.01 66.8 66.08 46.7 45.95 47.4 53.55 51.3 26.3

over multiple documents, namely 1) 2WikiMul-435

tiHopQA (2WikiMQA) (Ho et al., 2020) and 2)436

HotpotQA (Yang et al., 2018). For both single-437

hop QA and multi-hop QA, we report the accu-438

racy (acc) and F1-score (f1) as evaluation metrics,439

where acc measures if the predicted answer con-440

tains the ground-truth, and f1 measures the number441

of overlapping words between the predicted answer442

and the ground-truth.443

Long-form QA We select an English dataset444

ASQA (Stelmakh et al., 2022). Specially, we use445

the ASQA dataset with 948 queries recompiled by446

ALCE (Gao et al., 2023) and apply ALCE’s official447

evaluation metrics, involving String Exact Match448

(str-em) and String Hit Rate (str-hit).449

4.2 Baseline&LLMs450

We extensively compare three types of baselines: 1)451

No Retrieval (NoR), which directly feeds queries452

into LLMs to output answers without any retrieval453

process; 2) Single-time RAG (STRAG), which re-454

trieves knowledge in a one-time setting to answer455

the original queries; 3) Adaptive RAG (ARAG),456

which leverages an adaptive forward exploration457

strategy to retrieve knowledge to enhance answer458

quality. For STRAG, we select Vanilla RAG,459

Chain-of-note (Yu et al., 2023), Self-Refine, and460

Self-Rerank are simplified from Self-RAG (Asai461

et al., 2023). For ARAG, we include five recent462

famous methods for comparison - FLARE (Jiang463

et al., 2023), Self-RAG, ReAct (Yao et al., 2022),464

Adaptive-RAG (Jeong et al., 2024) and Adaptive-465

Note (Wang et al., 2024b). Additionally, we con-466

duct experiments on multiple LLMs, including467

Qwen2-7b (Yang et al., 2024), Llama3-8b (Tou- 468

vron et al., 2023a) and GPT-3.5 (OpenAI gpt-3.5- 469

turbo-instruct). We default to using Llama3-8b 470

as the Multi-granular Content Filter LLM, detail 471

experiment setting about multi-filter content see ap- 472

pendix A. Unless otherwise specified, Llama3-8b 473

was employed as the default model. 474

5 Results and Analysis 475

In this section, we evaluate our proposed frame- 476

work, Amber, on six real-world datasets and com- 477

pare it against several baselines, including No re- 478

trieval, single-time and adaptive RAG methods. 479

5.1 Main Results. 480

We implemented the Amber on six datasets. The 481

comparison with baseline models is summarized in 482

Table 1. Key observations are as follows: 483

Amber vs. Single-time RAG. Results show that 484

our method surpassed all STRAG for all six QA 485

datasets. Meanwhile, it is noteworthy that our 486

method outperformed Vanilla by over 30% on the 487

Natural Questions, 2WikiMQA, and HotpotQA 488

datasets. Even on the remaining three datasets, 489

it still achieved an approximate 10% improve- 490

ment. These achievements highlight its superiority 491

and effectiveness. An intuitive explanation is that 492

STRAG heavily depends on the quality of one- 493

time retrieval, whereas our method can adaptively 494

explore more knowledge in the corpus and filter 495

useless chunks and irrelevant sentence in chunk. 496

Therefore, it is able to demonstrate that our method 497

preserves more and more effective knowledge. 498
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Amber vs. Adaptive RAG. In Table 1, we con-499

duct an in-depth comparison of our approach with500

several existing ARAG models,including FLARE,501

Self-RAG, ReAct, Adaptive-RAG and Adaptive-502

Note. Our method consistently outperforms base-503

lines in single-hop, multi-hop, and long-form QA504

tasks, particularly in accuracy. Even compared505

to the state-of-the-art ARAG method, it improves506

by over 10%, demonstrating its superiority, effec-507

tiveness, and robustness. We provide an in-depth508

analysis of the baseline limitations and the fac-509

tors contributing to our success. First, ReAct510

and Flare relies on LLMs’ internal knowledge to511

guide retrieval decisions, but its inherent overcon-512

fidence (Zhou et al., 2023) may hinder retrieval513

efficacy by neglecting existing knowledge. In con-514

trast, our method employs a greedy strategy to first515

gather information extensively, followed by a care-516

ful assessment of whether to incorporate new, use-517

ful knowledge into the existing framework. This518

process optimizes knowledge extraction and signif-519

icantly enhances response accuracy. Second, Self-520

RAG faces challenges in training effective models521

for complex tasks due to numerous classifications522

such as labeled inputs, retrieved paragraphs, and523

output categorizations. Unlike this approach, our524

Multi-granular Content filter training strategy is525

relatively simple, yet it maximizes the utilization526

of valuable information through multiple iterations527

and agent-based memory. Third, The Adaptive-528

RAG method adapts retrieval strategies based on529

query complexity, and Adaptive-Note generates530

new memory in each iteration until memory growth531

stabilizes. However, both of them neglect passage532

quality, which affects answer accuracy. Instead,533

our method focuses on the importance of retrieving534

relevant paragraphs, aiming to minimize the impact535

of irrelevant information on the LLM’s decision-536

making when answering questions.537

5.2 Classifier Performance538

(a) Qwen2-7b (b) Llama3-8b

Figure 2: Confusion matrix for fine-tuned LLMs.
Our Fine-Tuned LLMs serve as excellent classifiers.

To understand the performance of the proposed539

classifier, we analyze its effectiveness across two 540

LLM models. As shown in figure 2, whether in 541

Llama3-8b or Qwen2-7b, our Amber classifier, 542

achieves over 90% accuracy in classifying useful 543

retrieved passages. Furthermore, it successfully ex- 544

cludes more than 40% of negative retrieved knowl- 545

edge, significantly improving the quality of the 546

knowledge and eliminating irrelevant information.

(a) ASQA (b) SQuAD

(c) Natural Questions (d) TriviaQA

(e) 2WikiMQA (f) HotpotQA

Figure 3: Results of the in-depth comparison under
a fair top-k. 547

5.3 In-depth comparison under a fair top-k 548

Under the same raw top-k setting, ARAG meth- 549

ods generally retrieve more passages compared to 550

single-step methods. Unfortunately, while we can 551

specify the top-k value for each step, the inherent 552

retrieval uncertainly in ARAG prevents us from 553

controlling the total number of retrieved passages. 554

To ensure a fairer performance comparsion, we ad- 555

dress the discrepancy by calculating the average 556

number of unique passages retrieved per sample 557

across all adaptive steps, which we term the fair 558

top-k. Figure 3 illustrates the overall performance 559

of Vanilla RAG under this fair-top-k setting. It is 560

evident that as the number of retrieved passages 561

increases, the Vanilla method shows little to no 562

significant improvement. These findings further 563

emphasize the superiority of our method. 564

5.4 Ablation Study 565

To analyze the contributions of components in 566

the proposed Amber method, particularly the fine- 567

tuning of the Multi-granular Content Filter and the 568

Agent-based Memory Updater in Adaptive infor- 569

mation Collector, we conducted an ablation study 570

7



LLM Qwen2-7b LLama3-8b GPT3.5

metrix acc f1 acc f1 acc f1

Amber 56.0 52.73 43.8 43.5 46.7 45.95

Multi-granular Content Filter

w/o CF 52.2 49.78 41.5 40.51 43.5 42.37
w/o SF 55.1 50.67 42.8 42.17 45.2 43.84

w/o ALL 51.6 48.39 40.9 40.12 42.4 41.65

Agent-Based Memory Updater

w/o AM 53.5 50.97 42.7 41.63 44.3 42.85

Table 2: Ablation study on the 2WikiMQA dataset.

on the 2WikiMQA dataset. The above components571

comprise three key components:572

• Chunk-Level Filter (CF): Input: Query and re-573

trieved chunk. Output: useful / useless.574

• Sentence-Level Filter (SF): Input: query and575

filtered chunk. Output: filtered sentences.576

• Agent-Based Memory Updater (AMU):577

whether to use agent-based method for memory.578

Effect of the Multi-granular Content Filter. To579

evaluate the contribution of each Multi-granular580

Content Filter component, we systematically re-581

moved one type of content. Additionally, remov-582

ing both two types (w/o ALL) effectively disables583

the content filter stage. The results, presented in584

Table 2, show that the model achieves its best per-585

formance when both two filter strategy are used586

together. Conversely, removing any single type587

of data leads to a noticeable decline in perfor-588

mance, highlighting the importance of each com-589

ponent in enhancing the framework’s overall ef-590

fectiveness. Interestingly, the performance when591

Sentence-Level Filter (w/o SF) are excluded re-592

mains higher than when Chunk-Level Filter (w/o593

CF) are omitted. This indicates that, The Chunk-594

Level Filter plays a more significant role in our595

approach, effectively filtering out irrelevant chunk596

information to a large extent.597

Impact of Agent-based Memory Updater. To598

examine the role of Agent-based Memory Up-599

dater(w/o AMU) in Amber, we conducted an ab-600

lation experiment by removing the AMU module.601

As shown in Table 2, removing this module sig-602

nificantly decreases performance. This highlights603

the agent’s critical role in memory generation. The604

agent ensures the creation of more efficient mem-605

ory, thereby enabling the LLM to provide more606

accurate responses.607

The ablation study highlights the importance of608

each content filter component and the agent-based609

memory module. Multi-granular Content Filter610

top-k
2WikiMQA HotpotQA ASQA

(acc) (f1) (acc) (f1) (str-em) (str-hit)

Vanilla
top-3 36.3 36.82 35.9 37.8 42.5 17.5
top-5 37.0 37.45 37.6 38.16 42.78 18.14
top-7 35.6 35.48 39.8 38.4 43.53 17.93

Ours
top-3 53.2 40.3 50.9 49.4 48.3 23.5
top-5 56.0 42.73 52.6 51.13 49.7 25.2
top-7 55.2 41.7 52.8 51.02 50.1 25.6

Table 3: Amber with different top-k with Qwen2-7b.

max-iter
2WikiMQA HotpotQA ASQA

(acc) (f1) (acc) (f1) (str-em) (str-hit)

1 53.2 38.95 50.4 49.73 45.3 20.9
2 55.3 40.72 51.8 50.08 47.4 23.2
3 56.0 42.73 52.6 51.13 49.7 25.2

Table 4: Amber with varying max iterations in AIC.

and Agent-based Memory Updater significantly 611

enhance the performance of the Amber framework. 612

5.5 Parameter Analysis 613

Impact of top-k. In Table 3, we present a com- 614

parison between our method and Vanilla RAG 615

across different top-k settings. The results demon- 616

strate that our approach consistently outperforms 617

Vanilla RAG under the same top-k conditions, high- 618

lighting its robustness in achieving reliable im- 619

provements regardless of the number of retrieved 620

passages. Additionally, in most cases, the perfor- 621

mance of our system improves as the number of 622

retrieved passages (top-k) per step increases. 623

Impacts of max iterations As shown In Table 624

4, performance on these complex QA datasets im- 625

proves with increasing iterations, peaking at 3. We 626

therefore recommend setting the max iterations to 627

3 for optimal performance. 628

6 Conclusion 629

In this paper, we propose a novel RAG method, 630

Amber, based on memory-adaptive updates. Our 631

approach introduces a collaborative multi-agent 632

memory updating mechanism, combined with an 633

adaptive retrieval feedback iteration and a multi- 634

granular filtering strategy. This design enables effi- 635

cient information gathering and adaptive updates, 636

significantly improving answer accuracy while re- 637

ducing hallucinations. We validated Amber and its 638

core components across several open-domain QA 639

datasets. Extensive experiments prove the superior- 640

ity and effectiveness of Amber. 641
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Limitation. Although Amber has made signifi-642

cant progress in open-domain question answering643

with RAG, there are still some limitations. First,644

the framework requires multiple fine-tuning steps645

to train the Multi-granular Content Filter, which646

necessitates the collection of a substantial amount647

of data, as well as considerable computational re-648

sources and time. Second, since Amber requires649

multiple accesses to the LLM, answering each ques-650

tion takes more time compared to the vanilla ap-651

proach. In future work, we plan to design a more652

time-efficient and generalizable fine-tuning strat-653

egy to improve the quality of open-domain question654

answering, thereby enhancing the overall effective-655

ness of Amber.656
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A Multi-granular Content Filter856

In Amber, for the Multi-granular content filter, we857

finetune the LLaMA 3-8B and Qwen 2-7B models858

using the LLamaFactory framework. Specifically,859

for the query-reference classification task, we fine-860

tune the model into two categories: useful and use-861

less, retaining only the useful ones. For the context862

filter, we use only the extracted content from the863

original passages and feed it into the LLMs. Both864

fine-tuning processes are conducted over 2 epochs,865

with the per-device training batch size set to 4.866

Chunk-Level Filter The accuracy of responses867

generated by LLMs can be significantly compro-868

mised by noisy retrieved contexts (Yoran et al.,869

2023). To mitigate this, we introduce the Chunk-870

Level Filter module to enhance response accuracy871

and robustness. This module utilizes LLMs to fil-872

ter out irrelevant knowledge. Rather than directly873

querying an LLM to identify noise, we incopo-874

rate a Natural Language Inference (NLI) frame-875

work (Bowman et al., 2015) for this purpose. Spe-876

cially, for a query q and retrieved reference r, the877

NLI task evaluates whether the knowledge contains878

reliable answers, or usefule information aiding the879

response to the question. This results in a judgment880

j categorized as useful or useless. The operation881

of the Chunk-Level Filter can be mathematically882

represented as :883

Fθ(q, r) → j ∈ {useful, useless} (2)884

Knowledge is retained if the NLI result is classified885

as useful, and the reference is discarded when the886

NLI result is classified as useless. The NLI training887

dataset is constructed semi-automatically. We pro-888

vide task instruction, query q, along with retrieved889

reference r as prompt to GPT-4, which then gener-890

ated a brief explanation e and a classification result891

j. The prompt template is as follows:892

[Instruction]: Your task is to solve the
NLI problem: given the premise in [Knowl-
edge] and the hypothesis that "The [Knowl-
edge] contains reliable answers aiding the
response to [Question]". You should clas-
sify the response as useful and useless.
[Question]:{Question}
[Knowledge]:{Knowledge}
[Format]:{Explanation}{NLI result}

893

Sentence-Level Filter Followed by previous894

work (Wang et al., 2023), we use the STRINC895

measure for single-hop QA datasets and CXMI for 896

multi-hop datasets. We train the sentence-Level Fil- 897

ter models Mslf , using context filtered with above 898

two measures. To create training data for Mslf , 899

for each training sample with query q, we concate- 900

nate the retrieved passages P and query q, then, 901

we apply the filter method f to obtain filtered con- 902

text toutput as output. The s is the sentence of the 903

retrieved passages, and toutput can be represented 904

as: 905

toutput = [stext | sstrinc == 1] (3) 906
907

toutput = [stext | scxmi >= threshold] (4) 908

We train Mslf by feeding in query and retrieved 909

passages P , and ask it to generate filtered context. 910

B Retriever & Corpus 911

To ensure a fair comparison of all baselines, we 912

align the retriever and corpus across all methods 913

for each dataset. For both single-hop and multi-hop 914

datasets, we employ BM25 (Robertson et al., 1995), 915

implemented in the search tool Elasticsearch, as the 916

foundational retriever. For the external document 917

corpus, we use the Wikipedia corpus preprocessed 918

by (Karpukhin et al., 2020) for single-hop datasets, 919

and the preprocessed corpus by (Trivedi et al., 920

2022) for multiple-hop datasets. For long-form 921

ASQA dataset, we employ dense retriever GTR- 922

XXL (Ni et al., 2021) and use the corpus provided 923

by ALCE, consisting of the 2018-12-20 Wikipedia 924

snapshot, segmented into 100-word passages. 925

C Implementation Details 926

For computing resources, we utilize NVIDIA 4090 927

GPUs with 24GB of memory. Additionally, due to 928

the frequent access to the LLM, we employ VLLM 929

as the inference framework. The software stack 930

includes Python 3.10.15, VLLM 0.6.3.post1, Py- 931

Torch 2.5.0, and CUDA 12.1. 932

D Detailed prompt 933

We present all the prompts used in our method 934

in Tables A3 and A4. In Table A3, we detail 935

the prompt for the Multi-granular Content Filter. 936

Specifically, at the Memory Initialization stage, 937

query represents the original query q, and refs 938

refers to the retrieved k passages obtained by feed- 939

ing the original query q into the retriever. At the 940

Iterative Information Collection stage, query still 941

represents the original query q, and note refers to 942

11



the content of the optimal memory Mopt. Addition-943

ally, as mentioned in the main text, LLMs tend to944

ask similar questions if previous ones were not well945

resolved. To address this, we introduce the already-946

asked questions list query log to avoid repetition.947

At the Note-Updating stage, query still refers to948

q, while refs represents new retrieved k passages949

based on the updated queries, and note refers to950

Mopt. In the Memory Updating phase, query repre-951

sents the original query q, while best note and new952

note represent Mopt and Mcur, respectively.953

In the Multi-granular Content Filter stage, for the954

Chunk-Level Filter, External_knowledge refers to955

the retrieved k passages, from which we filter out956

useless passages, retaining only the useful ones.957

Next, for the Sentence-Level Content Filter, con-958

text refers to each useful passage. After passing959

through this filter, we extract important sentences960

from the passages to generate the answer.961

In the Agent-based Memory Update, we assume962

three roles in the memory generation process: re-963

viewer, challenger, and refiner. The reviewer evalu-964

ates the strengths and weaknesses of the note mem-965

ory based on the query and refs. The challenger,966

using the reviewer’s feedback, provides sugges-967

tions to revise and enhance the memory. Finally,968

the refiner uses both the reviewer’s insights and the969

challenger’s suggestions to refine and generate the970

new memory. In the final memory updating phase,971

we compare the new memory with the initialized972

memory to select the best memory.973
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Prompt of the Memory Initialization Stage
Instruction:
Based on the provided document content, write a note. The note should integrate all relevant information
from the original text that can help answer the specified question and form a coherent paragraph. Please
ensure that the note includes all original text information useful for answering the question.

Question to be answered: {query}
Document content: {refs}

Please provide the note you wrote:
Prompt of the Iterative query rewritten Stage

Instruction:
Task: Based on the notes, propose a new question. The new question will be used to retrieve documents
to supplement the notes and help answer the original question. The new question should be concise and
include keywords that facilitate retrieval. The new question should avoid duplication with the existing
question list.

Original question: {query}
Notes: {note}
Existing question list: {query_log}

Provide your new question,you MUST reply with the new question on the last line, starting with "###
New Question".

Prompt of the Chunk-Level Filter
Instruction:
You are an advanced AI model specialized in understanding the Natural Language Inference (NLI) tasks.
Your task is to do the NLI problem. The premise is [External Knowledge]. The hypothesis is "There exist
clear and unambiguous answer in the [External Knowledge] that can convincingly and soundly answer the
Question." Your response should be in one of (useful,useless).

External Knowledge: {External_Knowledge}
Question: {Question}

Now give me the NLI result, which 1. should be one of (useful,useless). 2.Please strictly following this
json format and fill xxx with your answer. 3. Please notice the Escape Character and keep correct format.
4. Please just give me the concise Json response and no ther redundant words. 5. The output should not
appear Here is the NLI result, Just strictly follow the format below:
{"NLI result":"xxx"}

Prompt of the Sentence-Level Filter
Instruction:
You are an AI model specialized in extracting helpful sentences from a given context. Your task is to
extract helpful sentences while removing irrelevant or unhelpful ones based on the provided question and
context.

Question: {query}
context: {context}

Now provide the extracted helpful sentences, which should include only valid and relevant sentences from
the context.

Table 5: All prompts of Memory initialize, query rewritten and Multi-granular Content Filter.
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Prompt of the reviewer in Agent-based memory
Instruction:
Task: Analyze the relationship between the query, retrieved documents, and notes. Identify the strengths
and weaknesses of how well the notes align with the query and incorporate the information from the
retrieved documents. Highlight areas where the notes effectively cover the query and the references, as
well as areas where they could be improved to better address the query or utilize the information from the
references.
Question: {query}
retrieved documents: {refs}
note: {note}
Provide an analysis of the notes with a focus on the strengths and weakness:

Prompt of the challenger in Agent-based memory
Instruction:
Based on the provided reviewer information, provide specific and actionable suggestions to improve the
notes. The goal is to ensure the notes comprehensively and accurately address the query while fully
utilizing relevant information from the retrieved documents.
Question: {query}
retrieved documents: {refs}
Notes: {note}
reviewer information: {review_info}
Provide detailed suggestions to revise and enhance the notes:

Prompt of the refiner in Agent-based memory
Instruction:
Refine the provided notes based on the reviewer information and suggestions. The goal is to ensure the
notes are improved to better address the query and fully utilize the relevant information from the retrieved
documents.
Question: {query}
retrieved documents: {refs}
Notes: {note}
reviewer information: {review_info}
suggestions: suggestions
Provide the refined notes that incorporate the feedback from the reviewer information and suggestions:

Prompt of the memory updating

Instruction:
Task: Please help me determine which note is better based on the following evaluation criteria:
1. Contains key information directly related to the question.
2. Completeness of Information: Does it cover all relevant aspects and details?
3. Level of Detail: Does it provide enough detail to understand the issue in depth?
4. Practicality: Does the note offer practical help and solutions?
Please make your judgment adhering strictly to the following rules:
- If Note 2 has significant improvements over Note 1 based on the above criteria, return {“status": “True"}
directly; otherwise, return {“status": “False"} .
Question: {query}
Provided Note 1: {best_note}
Provided Note 2: {new_note}
Based on the above information, make your judgment without explanation and return the result directly.

Table 6: All prompts of Agent-based Memory Update
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