
Published as a conference paper at ICLR 2021

DOES ENHANCED SHAPE BIAS IMPROVE NEURAL
NETWORK ROBUSTNESS TO COMMON CORRUPTIONS?

Chaithanya Kumar Mummadi ∗

University of Freiburg
Bosch Center for Artificial Intelligence
ChaithanyaKumar.Mummadi@bosch.com

Ranjitha Subramaniam ∗

Department of Computer Science
TU Chemnitz
ranjivishnu08@gmail.com

Robin Hutmacher
Bosch Center for Artificial Intelligence
Robin.Hutmacher@de.bosch.com

Julien Vitay
Department of Computer Science
TU Chemnitz
julien.vitay@informatik.tu-chemnitz.de

Volker Fischer
Bosch Center for Artificial Intelligence
Volker.Fischer@de.bosch.com

Jan Hendrik Metzen
Bosch Center for Artificial Intelligence
JanHendrik.Metzen@de.bosch.com

ABSTRACT

Convolutional neural networks (CNNs) learn to extract representations of complex
features, such as object shapes and textures to solve image recognition tasks. Re-
cent work indicates that CNNs trained on ImageNet are biased towards features
that encode textures and that these alone are sufficient to generalize to unseen
test data from the same distribution as the training data but often fail to gener-
alize to out-of-distribution data. It has been shown that augmenting the training
data with different image styles decreases this texture bias in favor of increased
shape bias while at the same time improving robustness to common corruptions,
such as noise and blur. Commonly, this is interpreted as shape bias increasing
corruption robustness. However, this relationship is only hypothesized. We per-
form a systematic study of different ways of composing inputs based on natural
images, explicit edge information, and stylization. While stylization is essential
for achieving high corruption robustness, we do not find a clear correlation be-
tween shape bias and robustness. We conclude that the data augmentation caused
by style-variation accounts for the improved corruption robustness and increased
shape bias is only a byproduct.

1 INTRODUCTION

As deep learning is increasingly applied to open-world perception problems in safety-critical do-
mains such as robotics and autonomous driving, its robustness properties become of paramount im-
portance. Generally, a lack of robustness against adversarial examples has been observed (Szegedy
et al., 2014; Goodfellow et al., 2015), making physical-world adversarial attacks on perception sys-
tems feasible (Kurakin et al., 2017; Eykholt et al., 2018; Lee & Kolter, 2019). In this work, we
focus on a different kind of robustness: namely, robustness against naturally occurring common im-
age corruptions. Robustness of image classifiers against such corruptions can be evaluated using the
ImageNet-C benchmark (Hendrycks & Dietterich, 2019), in which corruptions such as noise, blur,
weather effects, and digital image transformations are simulated. Hendrycks & Dietterich (2019)
observed that recent advances in neural architectures increased performance on undistorted data
without significant increase in relative corruption robustness.

One hypothesis for the lack of robustness is an over-reliance on non-robust features that generalize
well within the distribution used for training but fail to generalize to out-of-distribution data. Ilyas
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Figure 1: Illustration of the effect of different training augmentations. While both style-based
(Geirhos et al., 2019) and edge-based augmentation (this paper) reach the same validation accuracy,
edge-based augmentation shows a stronger increase in shape bias as evidenced by lower accuracy
on patch-shuffled images and higher rate of classifying according to the shape category for texture-
shape cue conflicts. Nevertheless, only style-based augmentation shows a considerable improvement
against common corruptions such as Gaussian blur. This challenges the hypothesis that increased
shape bias causes improved robustness to corruption.

et al. (2019) provide evidence for this hypothesis on adversarial examples. Similarly, it has been
hypothesized that models which rely strongly on texture information are more vulnerable to com-
mon corruptions than models based on features encoding shape information (Geirhos et al., 2019;
Hendrycks & Dietterich, 2019). Alternative methods for increasing corruption robustness not mo-
tivated by enhancing shape bias use more (potentially unlabeled) training data (Xie et al., 2019) or
use stronger data augmentation (Lopes et al., 2019; Hendrycks* et al., 2020). Note that our meaning
of “shape” & “texture” is built on the definitions by Geirhos et al. (2019).

In this paper, we re-examine the question of whether increasing the shape bias of a model actually
helps in terms of corruption robustness. While prior work has found that there are training methods
that increase both shape bias and corruption robustness (Geirhos et al., 2019; Hendrycks & Diet-
terich, 2019), this only establishes a correlation and not a causal relationship. To increase the shape
bias, Geirhos et al. (2019) “stylize” images by imposing the style of a painting onto the image,
leaving the shape-related structure of the image mostly unchanged while modifying texture cues so
that they get largely uninformative of the class. Note that image stylization can be interpreted as
a specific form of data augmentation, providing an alternative hypothesis for increased corruption
robustness which would leave the enhanced shape bias as a mostly unrelated byproduct.

In this work, we investigate the role of the shape bias for corruption robustness in more detail. We
propose two novel methods for increasing the shape bias:

• Similar to Geirhos et al. (2019), we pre-train the CNN on an auxiliary dataset which encourages
learning shape features. In contrast to Geirhos et al. (2019) that use stylized images, this dataset
consists of the edge maps for the training images that are generated using the pre-trained neural
network of Liu et al. (2017) for edge detection. This method maintains global object shapes but
removes texture-related information, thereby encouraging learning shape-based representations.

• In addition to pre-training on edge maps, we also propose style randomization to further enhance
the shape bias. Style randomization is based upon sampling parameters of the affine transforma-
tions of normalization layers for each input from a uniform distribution.

Our key finding is summarized in Figure 1. While pre-training on stylized images increases both
shape bias and corruption robustness, these two quantities are not necessarily correlated: pre-training
on edge maps increases the shape bias without consistently helping in terms of corruption robustness.
In order to explain this finding, we conduct a systematic study in which we create inputs based
on natural images, explicit edge information, and different ways of stylization (see Figure 2 for
an illustration). We find that the shape bias gets maximized when combining edge information
with stylization without including any texture information (Stylized Edges). However, for maximal
corruption robustness, superimposing the image (and thus its textures) on these stylized edges is
required. This, however, strongly reduces shape bias. In summary, corruption robustness seems to
benefit most from style variation in the vicinity of the image manifold, while shape bias is mostly
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Figure 2: Overview of content and stylization variants used in this paper: Content is a natural image
(IN) or an edge map (E). Content is stylized in three different ways: No stylization, style transfer
with Painter by Numbers as style source as proposed in Geirhos et al. (2019) (SIN and SE),
style transfer with a different in-distribution image as style source (I-SIN and I-SE). Additionally,
we show a superposition (SE+IN) between natural (IN) and stylized edge image (SE).

unrelated. Thus, image stylization is best interpreted as a strong data augmentation technique that
encourages robust representations, regardless whether these representations are shape-based or not.

Moreover, we present results for a setting where we fine-tune only parameters of the affine transfor-
mation of a normalization layer on the target distribution (stylized or corrupted images, respectively)
for a CNN trained on regular images. Surprisingly, this is already sufficient for increasing the shape
bias/corruption robustness considerably. We conclude that CNNs trained on normal images do learn
shape-based features and features robust to corruptions but assign little weight to them. It may thus
be sufficient to perform augmentation in feature space (extending Nam et al. (2019); Li et al. (2020))
so that higher weights are assigned to features that are robust to relevant domain shifts.

2 RELATED WORK

Texture-vs-Shape Bias Geirhos et al. (2019) and Baker et al. (2018) hypothesized that CNNs tend
to be biased towards textural cues rather than shape cues. This line of research is further supported
by Brendel & Bethge (2019), where the authors show that BagNets, Deep Neural Networks (DNN)
trained and evaluated only on small restricted local image patches, already perform reasonably well
on ImageNet. Similarly, Yin et al. (2019) and Jo & Bengio (2017) showed using a Fourier space
analysis that DNNs rely on surface statistical regularities and high-frequency components. The
texture-vs-shape bias can be quantified by evaluating a network either on images with texture-shape
cue conflict (Geirhos et al., 2019) or on images which were patch-wise shuffled (Luo et al., 2019).

Robustness Against Common Corruptions Common corruptions are potentially stochastic image
transformations motivated by real-world effects that can be used for evaluating model robustness.
Hendrycks & Dietterich (2019) proposed the ImageNet-C dataset that contains simulated corrup-
tions such as noise, blur, weather effects and digital image transformations. Geirhos et al. (2018)
showed that humans are more robust to image corruptions than CNNs.

Approaches to improve corruption robustness include data augmentation (Lopes et al., 2019; Yun
et al., 2019; Hendrycks* et al., 2020; Cubuk et al., 2019), self-training with more training data (Xie
et al., 2019), novel architectures and building blocks (Zhang, 2019; Hu et al., 2018), and changes in
the training procedure (Hendrycks et al., 2019; Rusak et al., 2020; Wang et al., 2019). Motivated by
the texture-vs-shape hypothesis, Geirhos et al. (2019) and Michaelis et al. (2019) train their network
on a stylized version of ImageNet. The idea is that style transfer removes textural cues and models
trained on stylized data thus have to rely more on shape information. The observed increase in
corruption robustness on this stylized data was attributed to the shape bias. In this work, we provide
evidence that contradicts this claim.

Similar to training on stylized images, Style Blending (Nam et al., 2019) employs style transfer in
latent space by interpolating between feature statistics of different samples in a batch. Li et al. (2020)
extend this idea and use feature space blending along with label interpolation. Hendrycks et al.
(2019) considers self-supervised training with the prediction of image rotations as an auxiliary task.
The authors argue that predicting rotation requires shape information and thus improves robustness.
Similarly, Shi et al. (2020) proposes Dropout-like algorithm to reduce the texture bias and thereby
increase the shape bias to improve model robustness. However, the authors also discuss that a “sweet

3



Published as a conference paper at ICLR 2021

spot” between shape and texture is needed for the model to be robust for domain generalization.
With Patch-wise Adversarial Regularization, Wang et al. (2019) try to penalize reliance on local
predictive representations in early layers and encourage the network to learn global concepts. Other
augmentation techniques that aim to improve common corruption robustness are PatchGaussian
(Lopes et al., 2019), CutMix (Yun et al., 2019), AugMix (Hendrycks* et al., 2020), and RandAugment
(Cubuk et al., 2019). At this point, it remains unclear whether the increase in robustness caused by
these augmentations is due to learning fundamentally different representations such as more shape-
biased ones or to more incremental improvements in feature quality.

Edge-based Representations A classical method for extracting edge maps is the Canny edge ex-
tractor Canny (1986). More recent approaches use DNNs (Xie & Tu, 2015; Liu et al., 2017) (see
Figure A1). Geirhos et al. (2019) evaluate their shape-biased models on edge maps obtained with a
Canny edge detector. ImageNet-Sketch (Wang et al., 2019) is a newly collected sketch-like dataset
matching the ImageNet validation dataset in shape and size. It is used to evaluate generalization to
domain shifts. In contrast to these works, we generate the edge-based representations with an edge
detector using Richer Convolutional Features (RCF) (Liu et al., 2017) (see Figure A1) and use them
explicitly for training. We provide evidence that edge-based representations enhance the shape bias,
through an evaluation on images with induced texture-shape cue conflict and patch-shuffled images.

3 LEARNING SHAPE-BASED REPRESENTATIONS

Similar to Geirhos et al. (2019), we aim to enhance the shape bias of a network so that it bases its
decision more on shape details than on the style of objects encoded in textures. While Geirhos et al.
(2019) augment training data with different styles (stylization), thereby making texture cues less
predictive, we extract edge information (edge maps) from the training images to maintain explicit
shape details and remove texture-related information completely. Here, we consider grayscale in-
tensity edge maps rather than separate edge maps for each color channel. We propose to train CNNs
using the edge maps in addition to the standard training data to learn shape-based representations
for more effective shape-based decision-making.

Besides training on the dataset with explicit shape cues, high capacity networks learn different fea-
ture representations when trained jointly on datasets from different distributions. Despite edge maps
encouraging CNNs to learn shape-based representations, we observe that the network learns to en-
code features with texture details when introduced to the standard image data during training. We
propose here to further restrain the network from learning texture details on standard image data. We
discuss below the extraction of edge details from images to create the edge map dataset and explain
the technique to reduce the texture bias of the CNN.

Edge dataset Given a standard image dataset, we construct a new dataset with edge maps (named
the Edge dataset) by extracting the edge details of each image. The edge details are extracted by the
CNN-based edge detector using richer convolutional features (RCF) proposed in Liu et al. (2017).
RCF network produces a single-channel edge map that contains the pixel values between [0, 255].
We convert the non-binary edge map into a binary map with values in {0, 255} using a threshold of
128 and transform it into a 3-channel RGB edge map by duplicating the channels, so we can use the
edge maps as a direct input to train the CNNs. The edge maps from the Edge dataset are used as
input and can be independently used to train or evaluate CNNs without necessarily being combined
with the standard image data. Please refer to Section A.1 for the details of RCF network.

Style Randomization (SR) While using a dataset with explicit shape cues enhances shape-based
representations, we propose to further reduce the texture bias of the network when training on stan-
dard images. It is shown in the literature of style transfer (Dumoulin et al., 2016; Huang & Belongie,
2017) that the statistics of feature maps (e.g., mean and standard deviation) of a CNN effectively
capture the style of an image and changing these statistics would correspond to a change in the style
of an image. SIN dataset is generated using such style transfer technique and shown to reduce the
texture bias of the networks. Inspired by this observation, we propose a simple technique to effec-
tively reduce the texture bias using the feature statistics when being trained on standard training data.
We modify the style of an image in the feature space so that the network becomes style-invariant.
In particular, we randomize the style details, i.e. feature statistics, of an image during training such
that the network can not rely on the texture cues. A similar approach named Style Blending (SB) is
proposed in Nam et al. (2019) which randomizes the style information by interpolating the feature
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statistics between different samples in a mini-batch. We propose here a slightly different approach
to make the network invariant to style information. Instead of interpolating the statistics of similar
distribution of data i.e, training samples, we completely randomize the feature statistics (mean and
standard deviation) by randomly sampling them from an uniform distribution. Considering Xi as
the ith feature map of an intermediate layer in CNN, and µi & σi as the feature statistics of Xi, the
style randomized feature map X̂i is defined as:

X̂i := σ̂i ∗
(
Xi − µi

σi

)
+ µ̂i (1)

where σ̂i ∼ Uniform(0.1, 1) and µ̂i ∼ Uniform(−1, 1). These specific choices of sampling for
σ̂i and µ̂i were found to perform best on our evaluations. The style transfer technique described
in Huang & Belongie (2017) replaces the feature statistics of content image with the statistics of
a desired style image to change the style. Similarly, we replace the statistics of content image
with random statistics to change the style information. Training the network with SR reduces the
texture bias and improves shape-based decision making. An advantage of SR over SB is that the
feature statistics are sampled from a different distribution than the training data, that encourages
learning representations to generalize better to out-of-distribution data. We show in Section 5 that
SR outperforms SB and aids the network to induce stronger shape-based representations.

4 EXPERIMENTAL SETTINGS

Dataset We use a subset of 20 classes from ImageNet dataset (ImageNet20, or IN) that are chosen
randomly, to study the role of shape bias towards corruption robustness; the main reason being
that extensive experiments on this dataset are feasible with limited computation. Details about this
dataset can be found in Section A.2. The Edge dataset of IN (referred to as E) is generated as
described in Section 3.

Stylization variants In addition to enhancing the shape bias using the edge maps, we further study
the contribution of different factors of Stylized ImageNet (SIN) (Geirhos et al., 2019) to gain insights
on its improved performance on corruptions. We break down SIN into different factors to understand
their influence on corruption robustness. We segregate the factors that jointly generate the stylized
images and the factors that are hypothesized to improve corruption robustness. These include i)
shape bias of the network, ii) styles that are transferred from paintings and iii) statistics of natural
images from IN. The role of shape bias is studied using the Edge dataset (E) proposed in Section 3.
Other variants study the role of the remaining factors and are explained below:

Role of stylization We create Stylized Edges (SE, see Figure 2) for which the styles from the paint-
ings are transferred to the edge maps of Edge ImageNet20 (E). Here, we study the significance of
stylization without the presence of the statistics (texture details) of natural images.

Role of out-of-distribution styles SIN is generated by transferring the styles from out-of-distribution
images, namely paintings. We create its variant called Intra-Stylized IN (I-SIN, see Figure 2) for
which in-distribution images from IN are chosen randomly to transfer the styles. We also generate
Intra-Stylized Edges (I-SE) where the image styles of IN are transferred to the Edge dataset E.

Role of natural images statistics The above variants of E or SE test the role of shape and stylization
without retaining texture cues of natural images. We create another variant called Superposition
(SE+IN, see Figure 2) that interpolates images ISE from SE with images IIN from IN to embed the
statistics (texture details) from natural images: ISE+IN := (1− α) · ISE + α · IIN. We set α = 0.5.

These different stylized variants including E allow insights into the interplay between shape bias
and corruption robustness. For simplicity, we term the networks that are trained on a certain dataset
using the name of that dataset. For example, network trained on Stylized Edge (SE) is referred to as
SE. The evaluation of SIN and I-SIN reveals the significance of the choice of styles and evaluation of
Edge (E) indicates the role of the shape bias for corruption robustness. SE explains the importance
of stylization and finally SE+IN allows to understand the importance of natural image statistics that
are preserved in SIN and I-SIN but are missing from SE. Table 3 provides an overview of the input
image compositions of different variants that are described above.
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shuffled image patches 4× 4 acc(%) shape based cue conflict #400

Network
No

styling
style

blending
style

randomization
No

styling
style

blending
style

randomization

IN 67.22 51.34 41.97 63 82 86

SIN 38.46 36.96 34.95 144 155 156

E 34.11 33.95 28.43 155 166 193

Table 1: Comparison of different feature space style augmentation methods on 4× 4 shuffled image
patches and number of shape based predictions in texture-shape cue conflict images. Evaluation of
shuffled patches is conducted on 598 correctly classified validation images by all the networks.

Network details We employ a ResNet18 architecture with group normalization (Wu & He, 2018)
and weight standardization (Qiao et al., 2019). We include SR described in Section 3 in the architec-
ture. ResNet18 contains 4 stages of series of residual blocks and SR is inserted before every stage.
We train ResNet18 on different datasets and their variants described above. IN and SIN are consid-
ered as baselines. We show that E possesses more global shape details of the objects whereas SIN
demonstrates little or no texture bias for decision making. Both these datasets are complementary
to each other and further enhance shape-based predictions when combined (termed as E-SIN). Note
that SR is used to reduce texture bias and IN contains by far the strongest texture cues. Hence, SR
is applied only on the training samples of IN but not on other dataset variants. Nevertheless, SR
applied on other dataset variants found no differences in the results.

Training details Network on differnt dataset variants except IN are trained in two stages. The first
stage begins with training the network on the respective dataset variant (e.g: E) for a total of 75
epochs starting with a learning rate of 0.1, which is dropped at the 60th epoch by a factor 10. In
the second stage, the networks are then fine-tuned on the respective dataset along with IN (e.g: E &
IN) for another round of 75 epochs starting with a learning rate of 0.01, later reduced to 0.001 at the
60th epoch. On the other hand, the network on IN is trained for 100 epochs with a learning rate of
0.1, reduced to 0.01 and 0.001 at the 60th and 90th epochs, respectively. We use a batch size of 128
samples with the SGD optimizer and weight decay 10−4.

During the fine-tuning stage, we freeze the first convolutional layer and the first normalization layer’s
affine parameters. We observed that freezing these two layers demonstrate more global shape bias
than fine-tuning all the layers in the network. During fine-tuning, the networks receive an equal
number of training samples from both datasets (e.g: 128 samples from E and 128 samples from IN
in a mini-batch). Note that the data distribution of edge maps from the datasets E, SE and I-SE
are different than the distribution of images from other datasets. Fine-tuning the network on inputs
with different distributions results in degradation of the performance. In other words, the datasets E,
SE and I-SE do not preserve natural image statistics and degrade task performance when finetuning
along with clean images. Hence, we weigh the loss of training samples of edge maps from E, SE
and I-SE when fine-tuning along with IN. The loss between training samples is weighted as follows:
Loss L = LIN + λLedgemaps, with λ = 0.01. Finetuning on style variants SIN, I-SIN that better
preserve natural image statistics does not affect classification performance significantly, hence λ is
not used. Larger λ preserves the shape bias but affects the clean accuracy while smaller λ reduces
shape bias of the network. In case of E-SIN, We fine-tune the network that is pre-trained on E in the
first stage of training with SIN and IN in the second stage and show that such setup further improves
shape-based predictions. All ResNet18 models have validation accuracy of about 87% on IN.

5 EVALUATION OF SHAPE BIAS

In this section, we evaluate different methods in terms of their shape bias using two different evalu-
ation criteria - Shuffled image patches and Texture-shape cue conflict that are described below.

Shuffled image patches: Following Luo et al. (2019), we manipulate images by perturbing the
shape details while preserving the local texture of the objects. We divide an image into different
patches of size n × n with n ∈ {2, 4, 8} and randomly shuffle the patches as shown in Figure
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shuffled image patches acc(%) texture-shape cue conflict results

Network 2× 2 4× 4 8× 8 shape #400 shape #100 texture #100

IN 78.57 41.93 31.21 86 18 20

SIN 75.78 35.56 18.48 156 32 2

E 73.29 28.42 11.18 193 46 15

SE 66.77 28.73 12.89 224 55 6

E-SIN 71.12 23.76 10.25 234 58 6

Table 2: Comparison of models trained on different datasets on shuffled image patches and number
of texture-shape cue conflict predictions based on shape and texture labels. Evaluation of shuffled
image patches is conducted on 644 validation images that are correctly classified by all the networks.

A2a. Larger n corresponds to more distorted shapes. The performance of networks that rely more
on shape is expected to deteriorate more strongly as the number of patches increases. We conduct
this evaluation only on the ImageNet20 validation images that were correctly classified by all the
networks that are selected for comparison.

Texture-shape cue conflict: The cue conflict image dataset proposed by Geirhos et al. (2019) con-
sists of images where the shape of an object carries the texture of a different object. For example,
the object cat holds the texture of elephant as shown in Figure A2b. Each image in the dataset
contains two class labels: labels with respect to shape and texture. The evaluation is carried out to
test the network’s bias towards shape or texture. Networks with strong shape bias will exhibit higher
accuracy according to the shape label while networks with texture bias will have higher accuracy
for texture-based label. The original dataset contains a total of 1280 cue conflict images designed
for the evaluation of the networks trained on the entire ImageNet dataset. 400 of these images have
classes (shape labels) present in ImageNet20. A subset of 100 instances (20 instances from 5 dif-
ferent categories) from the selected images also has a texture label that belongs to ImageNet20 (see
Figure A2b bottom). The remaining 300 images with texture labels that do not belong to the classes
of ImageNet20 are not considered for texture-based classification.

Results The results in Table 1 compare style blending (SB) (Nam et al., 2019), style randomization
(SR) (Section 3), and no styling in feature space for networks trained on IN, SIN and E. In terms of
performance on 4 × 4 shuffled patches, SB performs worse than no styling, and SR performs even
worse than SB. This indicates increasing shape bias from no styling over SB to SR. This finding is re-
inforced by an increasing number of images classified according to the shape label for texture-shape
cue conflict images from no styling over SB to SR. Similarly, when comparing different training
datasets, SIN results in stronger shape bias than IN, and E exhibits stronger shape bias than SIN.

In Table 2, we compare additional networks, all with SR enabled. Here, we again see a consistent
trend of increasing shape bias from IN over SIN to E. Moreover, stylized edges (SE) further increase
shape bias than E. Lastly, E-SIN improves shape bias even slightly beyond SE. In summary, we can
see a clear increase in shape bias for the methods proposed in this paper over IN or SIN. Next, we
investigate to which extent this also results in an increased corruption robustness.

6 INFLUENCE OF SHAPE BIAS ON COMMON CORRUPTIONS

We compare different networks in terms of their corruption robustness. Figure 3 shows the accuracy
of different networks for two types of corruptions: Gaussian noise and frost (refer Figure A5 for all
corruptions). Table 3 presents the corruption accuracy averaged over 15 ImageNet-C corruptions
along with shape and texture results on the texture-shape cue conflict dataset. Generally, a CNN
trained on IN performs poorly in terms of corruption robustness while SIN is relatively robust. On
the other hand, E performs considerably worse than SIN and is not consistently better than IN despite
having an even stronger shape bias than SIN. Networks SE and E-SIN further increase shape bias but
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Figure 3: Classification accuracy of different networks on two corruptions across 5 severity levels.
Severity 0 represents accuracy on clean validation data of IN. Severity levels 1 - 5 follow the corrup-
tion parameters from Hendrycks & Dietterich (2019) and represent increasingly strong corruptions.

Input image composition

Network
Natural
image

Edge
map

Style
transfer

Shape
#100

Texture
#100

Mean corruption
acc(%)

IN 3 7 7 11 39 64.69

SIN 3 7 3 34 2 77.64

E 7 3 7 46 15 62.01

SE 7 3 3 55 6 71.81

E-SIN 3 3 3 62 5 71.55

SE+IN 3 3 3 22 13 78.96

Table 3: Mean corruption accuracy (mCA) and texture/shape results on texture-shape cue conflict
dataset of different networks. mCA is the mean accuracy over 15 ImageNet-C corruption and sever-
ities ranging from 1 to 5. Networks trained with style transfer augmentation perform better than
those without and network trained on superpositioned images (SE+IN) yield best mCA.

still perform considerably worse than SIN in terms of corruption robustness. These results contradict
the hypothesis that stronger shape bias results in increased corruption robustness.

The only method that slightly surpasses SIN in terms of corruption robustness is the superposition of
SE with natural images (SE+IN). However, this method has a relatively small shape bias. A common
theme of SIN and SE+IN is that both exhibit properties of a natural image but are strongly distorted
by stylization (see Figure 2). We hypothesize that these methods correspond to strong augmentation
methods that stay close enough to the data manifold while inducing high diversity in appearance
and thereby encourage learning robust representations, which need not necessarily be shape-based.
We extend these findings to larger datasets with 200 classes of ImageNet, deeper architectures like
ResNet50, DenseNet121, MobileNetV2 and different normalization layers like BatchNorm in Sec-
tion A.5. Lastly, as can be seen from Figure 3, intra-stylization is nearly as effective as stylization
based on paintings, implying that style need not necessarily be out-of-distribution for being useful.

7 ON THE ADAPTABILITY OF LEARNED REPRESENTATIONS

As seen in the previous section, style augmentation on natural images is important for the network
to be able to generalize to different domains such as common corruptions. We now study how easily
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Corruptions acc(%) Cue Conflict

Network
Speckle

noise
Gaussian

blur Frost Pixelate
SIN

val acc(%)
shape
#400

texture
#100

IN 61.28 42.96 66.62 78.54 42.0 63 39

IN (fine-tuned) 82.7 77.3 81.02 87.02 68.0 130 13

E 67.76 44.48 61.04 70.94 62.3 193 15

E (fine-tuned) 80.18 71.74 73.7 74.78 72.4 222 9

Table 4: Mean corruption accuracy, SIN and cue conflict results of networks with & without ad-
ditional fine-tuning of the affine parameters of normalization layers on the respective corruptions.
Fine-tuned networks perform significantly better, despite only the normalization layers are updated.

a pre-trained network can be adapted to a different distribution such as corruptions. Importantly, this
uses the “unknown” distortion during training; this experiment is not meant as a practical procedure
for the ImageNet-C benchmark but rather for understanding internal representations of a network.

Chang et al. (2019) showed that domain-specific affine parameters in normalization layers are es-
sential when training a network on different input data distributions jointly. We conduct a similar
experiment with the key difference that our network is already pre-trained on IN/E and only the
affine parameters of normalization layers are fine-tuned to fit the distribution of the respective target
domain. First, we fine-tune affine parameters of the network on several ImageNet-C corruptions
separately and evaluate the mean corruption accuracy on the same corruption across different sever-
ity levels. As shown in Table 4 (left), performance on the corruptions can be greatly improved even
with fixed convolutional parameters trained on IN/E by just tuning the affine parameters. Similarly,
we also fine-tune the affine parameters of pre-trained CNN on SIN. Results in Table 4 (right) show
not only an improvement on SIN validation accuracy but also improved shape-based classification
results on texture-shape cue conflict images. These results suggest that the standard CNN encodes
robust representations that can be leveraged when adapting affine parameters on a target domain.

8 CONCLUSION

We performed a systematic empirical evaluation of the hypothesis that enhanced shape bias of a neu-
ral network is predictive for increased corruption robustness. Our evidence suggests that this is not
the case and increased shape bias is mostly an unrelated byproduct. Increased corruption robustness
by image stylization is better explained as a strong form of augmentation which encourages robust
representations regardless whether those are shape-based or based on other cues. We conclude that if
corruption robustness is the main objective, one should not primarily focus on increasing the shape
bias of learned representations. Potential future research directions will focus on understanding
whether shape-biased representations offer advantages in other domains than corruption robustness
(Hendrycks et al., 2020). Moreover, one could try devising stronger augmentation procedures in
image or feature space based on our findings. Lastly, gaining a better understanding of which kind
of features (if not shape-based ones) are essential for corruption robustness is an important direction.
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Wichmann. Generalisation in humans and deep neural networks. In Advances in Neural Informa-
tion Processing Systems, pp. 7538–7550, 2018.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=Bygh9j09KX.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. In International Conference on Learning Representations (ICLR), 2015.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. International Conference on Learning Representations (ICLR),
2019. URL http://arxiv.org/abs/1903.12261.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learning
can improve model robustness and uncertainty. In Advances in Neural Information Processing
Systems, pp. 15637–15648, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

Dan Hendrycks*, Norman Mu*, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple method to improve robustness and uncertainty under
data shift. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1gmrxHFvB.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance nor-
malization. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–
1510, 2017.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In Advances in Neural Information
Processing Systems, pp. 125–136, 2019.

Jason Jo and Yoshua Bengio. Measuring the tendency of cnns to learn surface statistical regularities.
arXiv preprint arXiv:1711.11561, 2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
International Conference on Learning Representations (Workshop), April 2017.

10

http://arxiv.org/abs/1807.07769
http://arxiv.org/abs/1807.07769
https://openreview.net/forum?id=Bygh9j09KX
http://arxiv.org/abs/1903.12261
https://openreview.net/forum?id=S1gmrxHFvB
https://openreview.net/forum?id=S1gmrxHFvB


Published as a conference paper at ICLR 2021

Mark Lee and J. Zico Kolter. On physical adversarial patches for object detection. Interna-
tional Conference on Machine Learning (Workshop), 2019. URL http://arxiv.org/abs/
1906.11897.

Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kilian Q. Weinberger. On feature normal-
ization and data augmentation, 2020.

Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and Xiang Bai. Richer convolutional fea-
tures for edge detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3000–3009, 2017.

Raphael Gontijo Lopes, Dong Yin, Ben Poole, Justin Gilmer, and Ekin D Cubuk. Improv-
ing robustness without sacrificing accuracy with patch gaussian augmentation. arXiv preprint
arXiv:1906.02611, 2019.

Tiange Luo, Tianle Cai, Mengxiao Zhang, Siyu Chen, Di He, and Liwei Wang. Defective convolu-
tional layers learn robust cnns. arXiv preprint arXiv:1911.08432, 2019.

Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexan-
der S Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detec-
tion: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484, 2019.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
main gap via style-agnostic networks. arXiv preprint arXiv:1910.11645, 2019.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv
preprint arXiv:1903.10520, 2019.

E. Rusak, L. Schott, R. Zimmermann, J. Bitterwolf, O. Bringmann, M. Bethge, and W. Brendel.
Increasing the robustness of dnns against image corruptions by playing the game of noise. arXiv,
Jan 2020. URL https://arxiv.org/abs/2001.06057.

Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, and Jingdong Wang. Informative
dropout for robust representation learning: A shape-bias perspective. In International Conference
on Machine Learning, pp. 8828–8839. PMLR, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Sys-
tems, pp. 10506–10518, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Self-training with noisy student
improves imagenet classification. arXiv preprint arXiv:1911.04252, 2019.

Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Proceedings of the IEEE
international conference on computer vision, pp. 1395–1403, 2015.

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier per-
spective on model robustness in computer vision. In Advances in Neural Information Processing
Systems, pp. 13255–13265, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 6023–6032, 2019.

Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

11

http://arxiv.org/abs/1906.11897
http://arxiv.org/abs/1906.11897
https://arxiv.org/abs/2001.06057

	Introduction
	Related work
	Learning shape-based representations
	Experimental settings
	Evaluation of shape bias
	Influence of shape bias on common corruptions
	On the adaptability of learned representations
	Conclusion

