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Abstract

Large language models (LLMs) excel at numerical estima-
tion but struggle to correctly quantify uncertainty. We study
how well LLMs construct confidence intervals around their
own answers and find that they are systematically overcon-
fident. To evaluate this behavior, we introduce FermiEval, a
benchmark of Fermi-style estimation questions with a rigorous
scoring rule for confidence interval coverage and sharpness.
Across several modern models, nominal 99% intervals cover
the true answer only 65% of the time on average. With a con-
formal prediction based approach that adjusts the intervals,
we obtain accurate 99% observed coverage, and the Winkler
interval score decreases by 54%. We also propose direct log-
probability elicitation and quantile adjustment methods, which
further reduce overconfidence at high confidence levels. Fi-
nally, we develop a perception-tunnel theory explaining why
LLMs exhibit overconfidence: when reasoning under uncer-
tainty, they act as if sampling from a truncated region of their
inferred distribution, neglecting its tails.

Introduction

Large language models (LLMs) have shown remarkable suc-
cess in several areas of mathematics. One important challenge
that has been less explored is how well LLMs can construct
confidence intervals around their own answer estimates. Be-
ing able to do this accurately is challenging as it necessitates
the model to understand the limitations of its knowledge. Con-
fidence intervals (CIs) provide a clear test: a nominal 95% CI
should achieve close to 95% coverage under repeated evalua-
tion. We study this question on a large suite of Fermi-style
problems (estimation tasks with order-of-magnitude ground
truths) precisely because they couple accessible prompts with
unambiguous, scalar answers.

We introduce FermiEval, a benchmark and protocol for
eliciting point estimates and target-level CIs from modern
LLMs and for scoring them by both coverage and efficiency
(informativeness for a given width). Across multiple models
and confidence targets, our experiments reveal systematic de-
partures from nominal guarantees: observed coverage often
plateaus well below target levels even as the stated confi-
dence increases. To explain this pattern, we propose a simple
mathematical account—the perception-tunnel hypothesis—in
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which the model behaves as if reasoning over a truncated slice
of its inferred distribution. The theory predicts the kind of
stagnant coverage we measure and motivates proper scoring
rules tailored to interval quality.

Contributions. (1) An evaluation protocol for CI calibra-
tion on Fermi problems; (2) empirical evidence that state-
of-the-art LLMs do not, in general, achieve their stated CI
coverage on this task, with coverage saturating below nom-
inal levels; (3) A method based on conformal prediction to
adjust the confidence intervals of LLMs to reach their nom-
inal level; (4) a formal framework showing how truncated
(“tunneled”) beliefs can yield the observed behavior and how
to evaluate intervals via a proper interval score. Taken to-
gether, these results position CI calibration as a concrete,
testable facet of mathematical reasoning in LLMs.

Method

This section presents several proposed methods to improve
the calibration of LLMs. One additional method is presented
in Appendix F.

Conformal Confidence Interval Adjustment

Conformal prediction provides finite-sample coverage guar-
antees without assumptions on model calibration or distribu-
tional form.

Base intervals. Assume that for each input z, the model
outputs a base (1 — «) prediction interval [L(x), U(x)]. This
interval may be obtained in one of two ways: (i) by sampling
the model M times at a fixed decoding temperature 7" and
taking empirical quantiles

L(z) = Q) (a/2),

or (ii) by directly prompting the model to output L(x)
and U(z). In both cases, the construction below treats
[L(z), U(x)] as an initial, possibly miscalibrated interval.

Uz) =Q (1 - a/2),

Split-conformal calibration. On a held-out calibration set
C = {(zi,y:)}~,, we compute nonconformity scores that
measure how far each true label y; lies outside its predicted
interval:

s; = max{ L(z;) — yi, yi — U(wi) }.



Let s(1) < s2) < -+ < 8(p) denote the sorted scores, and
let
k=1(1-a)(n+1)],

We then form the conformalized prediction interval for any
new input x as

CI™ () = [L(2) — @1 U(@) + q1_a].

Coverage guarantee. Under exchangeability of the cali-
bration and test samples, the conformalized interval satisfies

Qi—a = S(k)-

Pr{y e CI*(2)} > 1 - a,

providing finite-sample, distribution-free marginal cover-
age. (Romano, Patterson, and Candes 2019) This guarantee
holds regardless of how the base intervals were constructed
(via multi-sampling, parametric prediction, or direct out-
puts), and is unaffected by model miscalibration, temperature
choice, or distributional shape. In practice, well-calibrated
base intervals yield smaller conformal corrections ¢; _, and
thus sharper final intervals, while the conformal procedure
itself ensures correctness even when the base intervals are
mis-specified.

Direct model elicitation via Log Probabilities

Log-probability extraction. For each question, we query
the model for first-token top-K log probabilities under an
integer-only response format. These probabilities are normal-
ized into a discrete distribution over integers p(v), which
represents the model’s direct belief over possible magnitudes
of the answer.

Confidence set construction. Given a coverage target
¢ € (0,1), we form the smallest-mass discrete confidence set
S C Z by sorting integers by p(v) (descending, tie-breaking
by value) and including values until the cumulative proba-
bility exceeds c. For scoring the confidence set we use its
interval hull [L., U.] with L, = min S, and U. = max S..

Temperature calibration. In generation mode, coverage
is computed via membership 1y € S.]. In post-process anal-
ysis, we apply temperature scaling pr(v) oc p(v)'/7, rebuild
Sc(T), and evaluate coverage via 1[y € [L.(T), U.(T)]] to-
gether with the Winkler interval score. A single temperature
T~ is selected on the training split to minimize the average
interval score across targets, and this calibrated 7™ is then
applied to the test split.

Literature Review

While (Kalyan et al. 2021) examined reasoning processes in
Fermi problem solving, their work primarily focused on the
reasoning in arriving at an answer rather than the evaluation
of uncertainty quantification through confidence intervals.
On the other hand, the calibration of LLMs has emerged as
a critical area of study, with recent work examining various
aspects of model confidence and reliability (Kapoor et al.
2024; Chen et al. 2023; Geng et al. 2024; Liu et al. 2025). Our
work extends this line of research by explicitly addressing the
calibration of uncertainty bounds in approximate estimation
tasks.

Recent efforts have established principled quantitative met-
rics for automatic LLM evaluation (Epstein et al. 2024), pro-
viding rigorous frameworks for assessing model capabilities.
Concurrently, the mathematical reasoning abilities of LLMs
have been extensively benchmarked through various datasets,
revealing both strengths and limitations in numerical reason-
ing tasks (Liu et al. 2024; SeBler et al. 2024; Xu et al. 2025;
Hong et al. 2025). However, these benchmarks primarily
focus on exact computation rather than order-of-magnitude
estimation with calibrated uncertainty.

Dataset Construction

We construct our benchmark from publicly available Sci-
ence Olympiad Fermi questions, sourced from the reposi-
tory at https://github.com/landy8697/open-scioly-fermi/tree/
master. Each item consists of a natural language question and
an approximate “order of magnitude” answer. Answers are
provided as integers in base-10 exponents: for example, an
answer of —1 corresponds to 10~! = 0.1, an answer of 3
corresponds to 103 = 1000, and so forth. Thus, each ground-
truth label represents the power of ten that best approximates
the true solution. The dataset is split into a training set with
500 questions and a test set with 500 questions, where we
filter to include questions where the true answer is between
107190 and 10'%9. The questions spans a diverse set of do-
mains, including physics, biology, chemistry, earth sciences,
and everyday reasoning. The questions also include a ground
truth answer. We note that the Fermi style is well-suited for
probing calibration, since exact values are less important than
correctly identifying the correct order of magnitude. Table 1
shows several representative examples from the dataset.

Models

We use the following frontier models for evaluation: GPT-
40-mini from OpenAl, Claude-3.5-Haiku from Anthropic,
and Grok-3-mini from xAI. We chose these, as they repre-
sent small cost-effective frontier models. The models are
queried with the default temperature setting unless noted oth-
erwise. We also run experiments on a set on high-performing
open-source models: Qwen2.5-32B-Instruct, OpenHermes-
2.5-Mistral07B, and TinyLlama-1.1B-Chat-v1.0.

Details about the system prompt given to the models are
in Appendix E.

Results

Metrics Assume we have N questions with numeric
ground truth answers y; and model-produced intervals
[L;,U;] (U; > L;). We define our main scoring metric as
the WinklerScore:

N
. 1
WinklerScore = N ; [(UZ - L)

2 .
+ 5 |yi - PTOJ[Li,Ui](Z/z‘) H

projiz, v,)(y) = min{max{y, L;}, U;}.



Table 1: Example Fermi questions and their ground-truth order-of-magnitude answers (as base-10 exponents).

Question Answer (Exponent)
How many pennies would it take to cover the state of Pennsylvania? 13
Suppose we had enough soup cans (2 inch radius, 6 inches tall) to fill up 6

an Olympic sized pool. How many feet of wrapping would we need to

label all of them?

If the weight of all humans on Earth is approximately one trillion pounds, 11

how many pounds of ants are there on Earth?

Suppose a tennis player serves a ball at 120 mph. How much force, in 3

newtons, is exerted on the ball?

where the first term penalizes excessively wide intervals and
the second term measures coverage (whether the interval
contains the true answer). The trade-off parameter o > 0
balances accuracy and sharpness. Lower scores are better.
We define the coverage as the fraction of the model answers
that are within the specified confidence level.

Calibration To evaluate whether models’ stated confidence
levels align with empirical coverage, we prompt each system
to produce confidence intervals at target levels (90%, 95%,
99%, 99.8%). Figure 1 plots the nominal coverage on the -
axis against the observed coverage on the y-axis for the base
setup along with the confidence intervals where conformal
prediction is applied. A perfectly calibrated model would
lie on the dashed identity line, labeled “Perfect calibration.”
Deviations below this line indicate overconfidence (inter-
vals too narrow), while deviations above the line indicate
underconfidence (intervals too wide). We find that all evalu-
ated models display substantial miscalibration: the observed
coverage falls short, suggesting that models systematically
underestimate uncertainty. It’s also interesting to note that the
observed coverage remains broadly constant with increased
nominal coverage, suggesting that LLMs find it challenging
to distinguish between rare events of different magnitudes.
When conformal calibration is applied according to the theory
in Section , all the models achieve near perfect calibration,
showing the efficacy of the proposed conformal calibration
method.

In Appendix C we show that several popular open source
models also exhibit overconfidence in their confidence inter-
vals.

Scoring all of the Models

In table 2, we evaluate various models and methods. Across
all targets, conformal uniformly lowers the score relative to
the base method for every model. Averaged over models,
the reductions are = 25.2% at p=0.90, ~27.8% at p=0.95,
and ~59.4% at p=0.99 (absolute drops of 7.38, 16.56, and
173.84 respectively). Improvements grow with stricter cov-
erage, suggesting that raw intervals are increasingly miscal-
ibrated at high p and benefit most from calibration. Model
ranking is stable: gpt—4o-mini typically yields the low-
est scores; the only exception is p=0.95 under conformal
where grok—-4 fast-nonreasoning is marginally bet-
ter (42.57 vs. 42.68, a 0.11 gap). The logprob analysis (avail-

Nominal p  Baseline obs. cov.  Logprob obs. cov.

0.90 0.63 0.85
0.95 0.59 0.89
0.99 0.64 0.90

Table 2: Observed coverage for openai/gpt—4o-mini
evaluating the baseline’s observed coverage versus the log
probability technique’s observed coverage.

able for gpt-4o0-mini only as the other APIs do not ex-
pose a sufficient (top 20) log probabilities) helps at higher tar-
gets (55.58 = 52.70 at p=0.95; 237.57 —191.03 at p=0.99)
but degrades at p=0.90 (27.92 — 33.32). Overall, confor-
mal calibration is the dominant post-hoc adjustment in this
setting, with the largest gains in the high-coverage regime.

Evaluating the Log-Probability Analysis

Discussion. Table 2 shows that the baseline under-covers at
all targets (e.g., 0.63 at p=0.90), whereas the log-probability
heuristic brings observed coverage noticeably closer to the
nominal levels across all three settings. The method is in-
expensive and fast: it requires no held-out calibration split,
reuses token log-likelihoods produced during generation, and
applies as a single-pass, vectorizable post-process. By con-
trast, conformal calibration needs a calibration set and per-«
quantile estimation, both of which entail significant compu-
tational overhead. Drawbacks of this technique include the
absence of finite-sample guarantees, as well as sensitivity to
decoding temperature and prompt length. Given its negligible
overhead, it is a practical choice when calibration data are
unavailable and a solid baseline to compare against heavier
calibration methods.

Theory of LLM Perception

For a distribution F' € A((—o0, 0)), we denote the restric-
tion of F' to the region of mass from i to ¢ + 3 as F; ;4 for
any i, 8 > 0,748 < 1. In the case when F’ is continuous, we
will have that F; ; 5 is simply the distribution /' conditioned
on that the value is in [F~1(2), F~1(i + 8)].

We posit the following theory, which can be considered
mathematically as an assumption.

Theory 1. (LLM Perception Tunnel) Let a probability distri-
bution of the ground truth inferred by LLM from the possible
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Figure 1: Calibration curves for representative models. The
dashed line indicates perfect calibration (y = x). Observed
coverage is consistently below nominal coverage, revealing
systematic overconfidence in the intervals produced by cur-
rent LLMs.

evidence and computation is F' € A((—o0, 00)).

For each LLM, for each question, there exists a constant
mass B € (0,1] such that, in each query, the LLM only
perceive Fy 14 g where I ~ Unif([0,1 — (]), and use Fr 113
in the inference as if it is F'.

This theory suggests that LLM has a narrower perception
on what the inferred probability distribution should be, re-
sulting in the use of tail-trimmed distribution in F; ;; g form
instead.

Therefore, the 5 and 1 — 5 quantiles given from LLM is
essentially the § and 1 — § quantiles of F7 ;s instead of
those of F'.

Note that our theory also supports the empirical findings
that the observed coverage tends to stagnate at a certain
value when the prompt asks for a coverage of almost 1. The
stagnation value can be a good estimate of the perception
size (3.

However, we will see that under a mild regularity condition
on the distribution F', we do not need the knowledge of 3 to
create a consistent estimate of the quantiles.

Theorem 1. (Consistent Estimator for Tails) Consider a
continuous distribution F € A((—o00,00)) with a support
being a closed interval.

Assume that the theory 1 is true, meaning that, in each
query i € N, the perceived distribution is I, 1,4, where
1; % Unif([0,1 ~ B)).

We further assume that the LLM has a perfect computation
with respect to Fr, 1,4, and output the lower bound L; =
FI,_i,lf,-+/3 (%) and the upperbound U; = FI_Z-}L:-&-B (1 - %)

By defining

L,, = empirical quantile ([LZ-]?:D g) )

Figure 2: Base vs. Conformal vs. Logprob scores on test data
(lower is better). Conformal calibration consistently improves
over the base across models and p. The logprob heuristic helps
at stricter targets (p > 0.95) but can underperform at p = 0.90.

and

U,, = empirical quantile ([Ui]?zl, 1-— g) ,

we will have that

(1) 5 (571 (3).574 (1-5)).

The theorem 1 suggests that we can find a consistent esti-
mate of § and 1 — 5 quantiles of the underlying distribution
F from the empirical quantiles of the observed § and 1 — &
quantiles output by the LLM. Moreover, the consistency is
independent from the value of 3, meaning that the difficulty
in perceiving a more complete distribution does not change
asymptotic convergence though it can affect the rate.

Note that when the perception of the LLM is perfect in the
sense that 8 = 1, L; is a degenerate distribution at the value
of F1 ( %), so our method also works. In another limit case
when [ is approaching 0, we can think of L, as a sample
independently drawn from F', so our method also works in
such scenario.

Under the theory of LLM perception tunnel, we do also
have the rate of convergence in addition to the consistency
for the estimators, as shown in Appendix A.

Conclusion

We introduced FermiEval, a benchmark for evaluating how
well large language models calibrate confidence intervals
on numerical estimation tasks. Across modern models, we
find systematic overconfidence, with nominal 99% intervals
covering the truth only about 65% of the time. We propose
a conformal calibration method that restores accurate cover-
age and halves the Winkler score, and establish a theoretical
framework as an hypothesis on why LLMs show overconfi-
dence.
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A Proofs and additional theory
Proof of Theorem 1
Proof. Note that F(Li) = F (Fi} 5 (3)) = L+ %

This makes F'(L;) Ly Unif([%, 1-8+ %D, whose §

quantile is

0-5%+5(-+%)-%

Therefore, from strict monotonicity of F' in the interior of the

closed interval support of F', we will have that F' (f/n) RS 5.

From continuous mapping theorem, L, % F1 (%) The
proof can also be applied to the convergence of U,. O

Convergence Rate of Estimator

Proposition 1. (Rate of Convergence of the Estimators) Un-
der the same condition in theorem 1, we will have that
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Proof. Since F(L;) ™ Unif ( [aﬁ 1- B+ %BD we will
have that

e (1) - 5] 4 (00~ 95 (1-5))

2 2
We have the F(U;) = F(L;) + %, SO
NG F(Ln) —{ Za] A
F(Un) 1- 2

Mo, 1= 8)5(1- %)

Apply delta method and the existence of pdf (probability
distribution function) f being positive in the interior of the
support interval yields the result. O



This proposition suggests that the perception size /5 will
affect the constant in the asymptotic normality of the estima-
tor, but will not change the rate of convergence unless 3 is
exactly 1.

B Scoring Rule
Although we frame it as a confidence interval, we are actually
looking at credible interval using a subjective belief of the
model. Assume that the model, with the evidence it can gather
and recall, formulate a subjective belief that the answer is a
random variable X ~ F'. Note that we want the distribution
F € A((0,00)) to be “consistent” in the sense that different
recall or instantiation of the LLM will still give the same F'.
Otherwise, if I itself is stochastic, we wish that the LLM will
use the average (over the randomness of F) F' as a subjective
probability distribution instead. In other words, we want the
subjective belief to include the belief in other instantiation.'

(5,1~ §] Interval

We will use Winkler interval score, which is a proper scoring
rule. (Winkler 1972) If the random variable X is realized to
be x, we calculate the loss to be

I(L,U,x) :=[logU — log L]
2 .
+ o log & — Projjjq, 1, 105 v](l0g 7) | -

A class of Winkler interval score is broader and proprierty
has been proven for general distribution in (Gneiting and
Raftery 2007). Here, we provide the proof specific to our
scoring rule for intuition.

Proposition 2. For a distribution F € A((0,00)), there
exists a unique (L*,U*) € (0,00)% with L* < U* solving

inf ]EXNF [l(L,U,X)]
L,U>0:L<U

Moreover,

(L*,U") = (inf{y >0: F(y) > a/2},
inf{y>0: F(y)>1—«/2})

Proof. Note that Ex.p[l(L,U,X)] is convex in
(log L,log U). The subderivative

alog LEXNF [Z(Lv Ua X)]

={-1} + Oog 1 (iEX~F [(log L — 10gX)1X<L]>

- 2r(o.0) -

- 1, %F((O,L]) - 1} .

Thus, L* = inf ({y > 0: F(y) > $}), and we can find U*
in a similar manner. O
From the proposition 2, we will have that
(LU 21—«

where the equality case is ensured when the distribution F’ is
continuous.

Ly U U,
Ly
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Figure 3: LLM Vision Tunnel: The inferred distribution has
its pdf shown the bold curve. However, in each query, LLM
only perceives a section of the distribution. For example, in
the first query, LLM may only perceive the orange distribu-
tion, while it can perceive the green distribution in the second
query. The answer for the lower bound and upper bound are
then different.

A

-2 0 2 4 6

Figure 4: The distribution of lower bound L as a random
variable where the randomness stemmed from the random
vision tunnel of LLM is shown as a red distribution, while
that of the random upper bound U is shown as a blue distri-
bution. We will see that there is an overlap between the two
distributions. The original distribution F' is displayed by its
pdf as a bold curve. By denoting L to be the S quantile of

the distribution of L and U to be the 1 — S quantile of the
distribution of U, we will have that both of them will also
serve as 5 and 1 — & quantiles of the original distribution F'.
Note that this result is independent of the perception size 5.

Theory Visualization Figure 3 and Figure 4 visualizes the
theory.

C Additional Results

Calibration results for open source models Figure 5
shows the calibration curves for several open-source models.
Here, we note that in the same way as for the frontier models,
the local models exhibit significant overconfidence.

D Additional Dataset Details

Figure 6 shows the empirical distribution of answer expo-
nents restricted to the range [—20, 40] for a superset of the
FermiEval train and test set; while this plot excludes the long
tails for readability, the vast majority of questions fall within
this range.

'Why do we need this consistency? Without this consistency,
LLM can defend that, in such instantiation, its subjective distribution
F is very narrow.
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Figure 5: Calibration curves for open-source models. The
dashed line indicates perfect calibration (y = x). Observed
coverage is consistently below nominal coverage, revealing
systematic overconfidence in the intervals produced by cur-
rent LLMs.

Empirical Distribution of Fermi Answer Exponents (-20 to 40)
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Figure 6: Empirical distribution of ground-truth order-of-
magnitude answers (base-10 exponents) restricted to the in-
terval [—20, 40]. This zoomed view omits extreme tails for
readability; nevertheless, most questions in the corpus lie
within this range.

E LLM Prompt

Model Prompt For the experiments in Section , we use the
following prompt:
1 System Instruction:

2 "You are a careful quantitative
estimator for Fermi-style
questions.

3 Provide brief reasoning if useful,

but you MUST END with a single
JSON\n object of the form {{"L":
<int>, "U": <int>}} where L and U
are INTEGERS (can be negative),
representing a {pct} percentage
confidence interval [10°L, 10°U].
If >={pct} percentage of the mass
is on exactly 107x,

4 use L=U=x. \nDo not include units in
the JSON. Ensure L <= U. Keep the
response less than 256 tokens."

5

6 User prompt: (f"Question:

{question}\n\n"

7 f"Give a {pct:.2f}% confidence
interval in the form\n
[10°L, 10°U] with INTEGER L
and U.\n"

8 f"Finish with JSON ONLY: {"L":
<int>, "U": <int>}.")

F Temperature Calibration via
Multi-Sampling
This section presents an additional way to improve model
confidence interval estimation, that was ultimately not pur-
sued for empirical experiments due to the high sampling cost
associated with the method.

To improve the reliability of model confidence intervals,
we tune the decoding temperature 7" so that empirical cover-
age on a validation set matches the target level while keeping
intervals as sharp as possible. The procedure consists of two
stages: (i) fitting 7" on a training set, and (ii) applying the
calibrated temperature to produce confidence intervals on the
test set.

Step 1: Fitting the decoding temperature. We seek a
temperature 7™ that achieves the desired empirical cov-
erage (e.g., 95%) with the tightest possible intervals. We
evaluate a grid of candidate temperatures, e.g. 7' €
{0.2,0.4,0.6,0.8,1.0,1.2,1.5}. For each T and each valida-
tion item ¢ with ground truth 3™, we draw M independent
samples yf?M using decoding temperature 7', and compute
the empirical quantiles
L =0 /2. U =" -a/2)

which define a (1 — «) confidence interval for that item.

For each temperature, we compute (i) the empirical cover-
age

% Z I[LET) < yirue < Uz‘(T)]7

and (ii) the mean Winkler interval score

51 = 5 3 [0 - 147)

coverage(T) =

+2(L{" - y;:rue)lylirue<LET)

+ g<y§rue _ U(T))]_

y[ime>Ui(T)i| .
We then select the temperature that minimizes
J(T) = S(T) + A[max (0, (1 — ) — coverage(T))]”,

where A penalizes under-coverage. The resulting 7 is used
as the calibrated decoding temperature.

Step 2: Generating and evaluating confidence intervals.
We fix all decoding parameters at the tuned values and apply
the fitted temperature 7 to unseen test data. For each test

item j, we sample M outputs y(-Tl: J)W and compute

J
Li=Q (a/2), U;=0(1-a/2),

yielding the confidence interval CI; = [L;,U;]. We then
compute empirical coverage and interval scores on the test set

to verify that the calibration generalizes beyond the validation
data.



G Tunnel Vision Effect

During inference, a language model pg generates a thinking
trace R under a decoding policy ¢(R | X). The resulting
predictive distribution over answers is

pe(Y | X) =Ep~q[pe(Y | X, R)]. )

Define the Tunnel Index for decoding method ¢ as the
reduction in predictive entropy induced by conditioning on
the internal reasoning trace:

TI, = Ho(Y | X) — Epey[Ho(Y | X, R)].  (2)

Tunnel Vision Effect. Conditioning on a self-generated
thinking trace reduces predictive uncertainty and increases
the model’s apparent confidence. The strength of this confi-
dence inflation, measured by T1,, grows as the entropy of
the decoding policy decreases:

dTI,
0H (q)

T1, > 0, < 0. 3)

Low-entropy decoding policies (e.g., greedy or beam
search) produce narrow ¢(R | X) and large TI,. High-
entropy or multi-sample decoding spreads probability mass
over diverse reasoning traces, reducing TI, and restoring
calibration.

Self-Consistency through the Tunnel Vision Hypothesis
The self-consistency decoding method (Wang et al. 2023) can
be viewed as an empirical remedy to the Tunnel Vision Effect.
In practice, the predictive distribution under a decoding policy
q is approximated via Monte Carlo sampling:

X 1\
bV [ X) = —> po(Y | X, Ri),  Ri~q(R|X).

i=1
)

Theorem 2 (Self-Consistency Reduces Tunnel Vision). De-
fine the empirical Tunnel Index

Ly, = Ho(Y | X) = H(p(Y | X).
Then, for any decoding policy q(R | X) and any m > 1,
E[TI,,] > Tl,, lim E[TI,] = TI,. (5)
m—r o0

Proof. By Jensen’s inequality, E[H (p,,,)] < H(p,), which
implies E[TI,,] > TI,; and equality as m — oco. O

Interpretation. Greedy decoding (m = 1) corresponds
to a single low-entropy reasoning path, yielding a biased,
overconfident estimate of p,(Y | X) and a large TI;. As
m increases, self-consistency expands the entropy of the
decoding policy and improves the Monte Carlo estimate of
the latent marginal, thereby reducing the Tunnel Index and
mitigating confidence inflation.



