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ABSTRACT

Diffusion models achieve the state-of-the-art samples in image generation but
often suffer from semantic inconsistencies or hallucinations. While various
inference-time guidance methods can enhance generation, they often operate in-
directly by relying on external signals or architectural modifications, which intro-
duces additional computational overhead. In this paper, we propose Tangential
Amplifying Guidance (TAG), a more efficient and direct guidance method that
operates solely on trajectory signals without modifying the underlying diffusion
model. TAG leverages an intermediate sample as a projection basis and ampli-
fies the tangential components of the estimated scores with respect to this basis to
correct the sampling trajectory. We formalize this guidance process by leveraging
a first-order Taylor expansion, which demonstrates that amplifying the tangential
component steers the state toward higher-probability regions, thereby reducing in-
consistencies and enhancing sample quality. TAG is a plug-and-play, architecture-
agnostic module that improves diffusion sampling fidelity with minimal computa-
tional addition, offering a new perspective on diffusion guidance.

(a) No Guidance (b) TAG Update

Figure 1: Conceptual visualization of Tangential Amplifying Guidance (TAG) from a mode-
interpolation perspective (Aithal et al., 2024). Unlike (a) no guidance case, (b) TAG decomposes
the base increment ∆k+1 on the latent sphere into parallel Pk+1∆k+1 and orthogonal P⊥

k+1∆k+1

components (Eq. 6). It preserves the parallel component and amplifies only the tangential component
by adding a tangential component with the scaling factor to the base step. This tends to guide
trajectories toward higher-model density regions while mitigating off-manifold drift (§ 4, Eq. 15).

1 INTRODUCTION

Hallucination in diffusion models refers to the phenomenon of generating samples that violate the
data distribution or contradict conditioning, thus failing to provide meaningful outputs. For example,
it often manifests as mixed-up objects (Okawa et al., 2023) or anatomically implausible structures.
Recent evidence suggests that the primary source of such errors lies in a failure mode known as
mode interpolation. During sampling, trajectories may traverse low-density valleys between distinct
modes of the data distribution, causing attribute mismatches and structural inconsistencies (Aithal
et al., 2024).

A widely adopted remedy involves inference-time guidance strategies, such as classifier-free guid-
ance (CFG) (Ho & Salimans, 2021) and their variants (Hong et al., 2023; Ahn et al., 2024; Karras
et al., 2024; Rajabi et al., 2025; Kwon et al., 2025; Sadat et al., 2025; Dinh et al., 2025; Hong, 2024).

1
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Under the assumption that deviating from low-probability regions enhances sample quality, most of
these methods employ residual scaling, using the difference between the conditional and uncondi-
tional branches to guide the generation process away from the unconditional model’s outputs. While
effective, these mechanisms are fundamentally indirect: instead of navigating along the underlying
geometry of the data distribution, they proceed by repeatedly moving away from an unconditional
estimate at each step of the process.

In contrast, we propose a more efficient direct solution based on Tweedie’s identity (Tweedie et al.,
1984), which relates the score to the posterior mean of the clean data under Gaussian corruption.
It motivates a decomposition of the model update based on its intrinsic geometry; a split into a
drift component that changes the noise level and a tangent component to the iso-noise manifold that
refines structure and semantics. We observe that the tangential component carries rich structural
information (Figure 2), and amplifying it reduces out-of-distribution generations (Figure 3).

Drawing upon the principle of amplifying the tangential component during inference, we derive
Tangential Amplifying Guidance (TAG), a plug-and-play method that emphasizes the tangential
component of the score update. TAG steers the sampling trajectory to follow the underlying data
manifold closely. TAG integrates seamlessly with standard diffusion backbones—whether condi-
tioned or not—without requiring additional denoising evaluations or retraining.

We can summarize our contributions as follows:

• We establish a concrete link between the score’s intrinsic geometry and sample quality,
proving that amplifying tangential components of the scores steer sampling trajectories
toward in-distribution manifold.

• We introduce TAG, a computationally efficient and architecture-agnostic algorithm that
realizes this geometric principle into practice.

2 PRELIMINARIES

Score-based Diffusion Model. Score-based generative models learn a time-indexed score function
that approximates the gradient of the log-density of noise-perturbed data,

sθ(x, tk) ≈ ∇x log p(x|tk),
to reverse a gradual noising process for sample generation. This approach provides a continuous-
time framework that unifies earlier discrete-time Denoising Diffusion Probabilistic Models
(DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) through the lens of stochastic differential
equations (SDEs) (Song et al., 2020b). The core idea involves a forward-time SDE that transforms
complex data into a simple prior distribution, given by

dxk = f(xk, tk)dtk + g(tk)dWtk.

Generation is then performed by a corresponding reverse-time SDE, which becomes tractable by
substituting the unknown true score with the learned model sθ (Anderson, 1982). This score net-
work, typically a noise-conditional U-Net, is trained efficiently via denoising score matching across
various noise levels (Vincent, 2011; Song & Ermon, 2019). For sampling, one can use numeri-
cal methods like predictor-corrector schemes to simulate the stochastic reverse SDE, or solve an
associated deterministic ordinary differential equation (ODE) known as the probability-flow ODE.
This continuous-time framework not only provides a theoretical basis for widely used deterministic
samplers like DDIM (Song et al., 2020a) but has also inspired modern refinements, such as the pre-
conditioning and parameterization in EDM (Karras et al., 2022), which further enhance the trade-off
between sample quality and efficiency.

Inference-Time Guidance. Numerous methods modify the update field during sampling to improve
fidelity, typically without requiring retraining. Early approaches (Ho & Salimans, 2021) often rely
on residual signals, which scale the update residual to better align samples with a desired condition.
However, such isotropic manipulations can reduce sample diversity or disrupt the scheduler’s cal-
ibration (Dhariwal & Nichol, 2021; Kynkäänniemi et al., 2024). These drawbacks have motivated
alternatives that consider the geometry of the diffusion trajectory. A complementary line of work
replaces external cues with model-internal signals (Hong et al., 2023; Ahn et al., 2024; Hong, 2024).

2
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Figure 2: Amplifying the tangential component enhances semantic content by isolating it from
noise. This figure illustrates the decomposition of the update step ∆k into normal and tangential
components. Subtracting the unstructured, noisy normal component Pk∆k from the original update
acts as a denoising operation, revealing the tangential component P⊥

k ∆k, which preserves the prin-
cipal semantic structure. Images decoded from intermediate timesteps (t=981, 501) indicate that
semantic information is most salient in the tangential component. Motivated by this observation,
our method ∆

TAG

k
amplifies this semantically rich component, yielding a clearer and more coher-

ent final sample (far right) than that obtained from the unmodified ∆k (Please zoom-in for details).

(a) No Guidance (b) Naive Truncation (c) CFG (d) TAG (Ours) (e) Ground Truth

Figure 3: Sampling on a 2D branching distribution (Karras et al., 2024) under different guid-
ance methods. (a) No guidance: probability mass drifts off the data manifold, yielding fragmented
branches and OOD (Out of Distribution) points. (b) Naive truncation: suppresses some OOD but
oversimplifies the geometry, dropping fine branches. (c) CFG: reduces boundary violations but also
reduces diversity and can still leave OOD strays in our run. (d) TAG (Ours): trajectories are steered
toward high-density regions along the branches, suppressing off-manifold outliers while retaining
detail. (e) Ground truth. Overall, TAG achieves the highest similarity to the GT distribution without
additional #NFE, concentrating mass on the correct branches while substantially reducing residual
OOD outliers.

The common aim of these strategies is to steer the inference-time update to suppress directions as-
sociated with off-manifold drift while preserving the learned prior. More recent formulations make
this objective explicit by distinguishing motion along iso-noise level sets from motion normal to
them (Sadat et al., 2025; Kwon et al., 2025). Such geometry-aware perspectives offer a principled
basis for guidance design and integrate cleanly with modern solvers.

3 MOTIVATION AND INTUITION

Under Gaussian corruption, Tweedie’s formula (Tweedie et al., 1984) links the posterior mean of
the clean signal to the noisy observation via the score (i.e., the gradient of the log marginal density):

E[x0|xk] =
(

xk︸︷︷︸
:= drift term

+ σ2
k∇x log p(x | tk)

∣∣
x=xk︸ ︷︷ ︸

:= Tweedie increment ∆Tw
k

, (a.k.a. data term)

)
/
√
ᾱk. (1)

Geometrically, the score field∇x log p(x|tk)
∣∣
x=xk

points in the direction of steepest increase of the

marginal density. Tweedie’s formula therefore adjusts xk in this ascent direction, nudging the state

3
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toward higher-probability regions. Therefore, the aim of modeling is to bias this movement toward
data-driven directions.

However, naively guiding the states to chase higher-probability regions can disturb the scheduler’s
prescribed radius/SNR trajectory and may degrade sample quality(Figure 4). Accordingly, to avoid
altering the radial term, we isolate xk and reweight only the increment by decomposing it into
normal and tangential parts with respect to x̂k := xk/∥xk∥2: Pk = x̂kx̂

⊤
k and P⊥

k = I − Pk.
Guided by this separation, we form the amplified state x+, where the normal component is fixed
and only the tangential component is amplified, via

x+ =
(
xk + Pk∆

Tw
k

)
+ η P⊥

k ∆Tw
k , with η ≥ 1. (2)

By doing so, we can preserve the radial first-order term (Eq. equation 17) while biasing the step
toward higher-probability regions, ∇x log p(x|tk)

∣∣
x=xk

(Empirical evidence is provided in Figure

2 and 3). In the following section (§4.1), we formalize this bias as a constrained MLE update that
allocates first-order gain to the tangential subspace.

4 TAG: TANGENTIAL AMPLIFYING GUIDANCE

We introduce Tangential Amplifying Guidance (TAG), which reweights base increments along nor-
mal/tangential directions on the latent space.

Definitions & Algorithm. We work per sample on R
C×H×W ∼= R

d with Euclidean inner product
⟨·, ·⟩ and norm ∥ · ∥2. Let {tk}0k=K be descending timesteps with tK > · · · > t0, and let ϵθ denote
the denoiser. Given xk+1 at time tk+1, the denoiser predicts

εk+1 = ϵθ(xk+1, tk+1).

A base solver (e.g., DDIM) then produces a provisional state (Karras et al., 2022)

x̃k = ak+1 xk+1 + bk+1 εk+1, where ak+1, bk+1 are base solver coefficients. (3)

Corresponding base increment at xk+1 as

∆k+1 := x̃k − xk+1. (4)

For any x∈Rd, we define the unit vector and orthogonal projectors

x̂ = x / ∥x∥2, P (x) = x̂x̂⊤, P⊥(x) = I − P (x). (5)

Given positive scales η ≥ 1, TAG reweights the base increment at xk+1:

xk = xk+1 + Pk+1 ∆k+1 + ηP⊥
k+1 ∆k+1 (6)

where Pk+1 = P (xk+1) and P⊥
k+1 = P⊥(xk+1).

Algorithm 1 Tangential Amplifying Guidance (TAG)

Require: Denoiser ϵθ(·), timesteps {tk}0k=K , base solver coefficients ak+1, bk+1, TAG scale η ≥ 1
1: Sample xK ∼ N (0, I)
2: for k = K − 1, . . . , 0 do
3: εk+1 ← ϵθ(xk+1, tk+1) ▷ noise prediction
4: x̃k ← ak+1xk+1 + bk+1 εk+1 ▷ e.g., scheduler.step
5: ∆k+1 ← x̃k − xk+1 ▷ base increment
6: x̂k+1 ← xk+1/∥xk+1∥2
7: Pk+1 ← x̂k+1x̂

⊤
k+1, P⊥

k+1 ← I − Pk+1 ▷ projectors at xk+1

8: xk ← xk+1 + Pk+1∆k+1 + η (P⊥
k+1∆k+1) ▷ TAG amplification

4.1 WHY DOES TAG IMPROVE IMAGE QUALITY?

Log-likelihood maximization. A foundational goal of training generative models is to maximize the
log-likelihood of the data, as formalized by the Maximum Likelihood Estimation (MLE) principle:

max
θ

∑

i

log pθ(xi). (7)
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This principle suggests that high-quality samples should concentrate in regions of high probability.
To connect this idea to an update rule, we relate likelihood increase to movement along the score
via a local linearization:

log pθ(x) = log pθ(x0) + (x− x0)
⊤∇x log pθ(x)

∣∣
x=x0

+O(∥ · ∥2). (8)

Diffusion models (Song et al., 2020b; Ho et al., 2020) are designed to predict a score function,
∇x log p(x | tk)

∣∣
x=xk

≈ −ϵθ(xk, tk)/σk, which operates on noisy versions of the data. Because

diffusion models learn this score field, optimizing the global likelihood (Eq. 7) for a sample x0

during inference is not directly tractable. Therefore, we propose to apply the spirit of MLE at each
local step of the sampling trajectory.

log p(xk | tk+1) ≈ log p(xk+1 | tk+1)+(xk−xk+1)
⊤∇x log p(x | tk+1)

∣∣
x=xk+1

+O(∥·∥2). (9)

The idea of enhancing a pre-trained score function with inference-time guidance has proven ef-
fective. For instance, when the score function is well trained on given training sets and this leads
to well-trained maximum log-likelihood, we observe that the pre-trained score function could be
improved by CFG (Ho & Salimans, 2021) which linearly biases the score toward the conditional
target. Inspired by this, our approach provides inference-time guidance on the score function by
maximizing the following local log-likelihood term, thereby guiding the sampling trajectory towards
high-likelihood regions of the data distribution and reducing off-manifold artifacts (hallucination):

max
xk

(xk − xk+1)
⊤∇x log p(x | tk+1)

∣∣
x=xk+1

(10)

Single-step increment decomposition. For deterministic DDIM/ODE samplers, the single-step
score state decomposition can be written as

∆k+1 := x̃k − xk+1 = α̃kϵθ(xk+1, tk+1) + βkxk+1, (11)

with coefficients

α̃k := σk −
√
ᾱk√

ᾱk+1
σk+1, βk :=

√
ᾱk√

ᾱk+1
− 1, with α̃k < 0, βk > 0,

where ᾱ is standard diffusion cumulative product term. Using the projection operators, which satisfy
P⊥

k+1xk+1 = 0 and Pk+1xk+1 = xk+1, yields the projection-wise identities

P⊥
k+1∆k+1 = α̃kP

⊥
k+1ϵθ(xk+1, tk+1),

Pk+1∆k+1 = α̃kPk+1ϵθ(xk+1, tk+1) + βkxk+1. (12)

Substituting equation 12 into the equation 6 gives

xTAG
k = xk+1 + α̃k

[
Pk+1 + ηP⊥

k+1

]
ϵθ(xk+1, tk+1) + βkxk+1, with η ≥ 1. (13)

Therefore, the TAG update ∆TAG
k+1 can be expressed in terms of the decomposed components of the

original update ∆k+1:

∆TAG
k+1 =

(
Pk+1 + ηP⊥

k+1

)
∆k+1. (14)

Finally, assuming that the log-density is smooth (assume log p(·|tk+1) is C2 in a neighborhood of
xk+1), the first order Taylor expansion gain for a small TAG update ∆TAG

k+1 ∈ R
d is

G(η) :=
(
∆TAG

k+1

)⊤∇x log p(x | tk+1)
∣∣
x=xk+1

(15)

Next, we prove that increasing η provide monotonic increase this first-order gain.

Theorem 4.1 (Monotonicity of the First-order Taylor Gain). Assume a deterministic base step with
∆k+1 = α̃kϵθ(xk+1, tk+1) + βkxk+1 and α̃k ≤ 0. Let Pk+1 ⪰ 0 and P⊥

k+1 ⪰ 0 be the projectors

defined above. For the TAG step ∆TAG
k+1 = Pk+1∆k+1 + ηP⊥

k+1∆k+1, the first-order Taylor gain

G(η) :=
(
∆TAG

k+1

)⊤∇x log p(x | tk+1)
∣∣
x=xk+1

satisfies

∂G(η)

∂η
≈ −α̃k

σk+1

∥∥P⊥
k+1ϵθ(xk+1, tk+1)

∥∥2
2
≥ 0,

and, in particular,

GTAG −Gbase = −σ−1
k+1 ·

(
α̃k(η − 1)

)
︸ ︷︷ ︸

≥ 0 as α̃k ≤ 0

·
∥∥P⊥

k+1ϵθ(xk+1, tk+1)
∥∥2
2
≥ 0,

Equality holds iff η = 1. The proof is provided in Appendix A.

5
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Table 1: Quantitative results across previous guidance methods and +TAG sampling settings
for unconditional generation. Evaluated on the ImageNet val with 30K samples. All images are
sampled with Stable Diffusion (SD) v1.5 using the DDIM sampler.

Methods Guidance Scale TAG Amp. (η) #NFE #Steps FID ↓ IS ↑

DDIM (Song et al., 2020a) – – 50 50 76.942 14.792

DDIM + TAG – 1.05 50 50 67.971 16.620
DDIM + TAG – 1.15 50 50 67.805 16.487
DDIM + TAG – 1.25 50 50 71.801 15.815

SAG (Hong et al., 2023) 0.2 – 50 25 71.984 15.803
SAG + TAG 0.2 1.15 50 25 65.340 17.014

PAG (Ahn et al., 2024) 3 – 50 25 64.595 19.30
PAG + TAG 3 1.15 50 25 63.619 19.90

SEG (Hong, 2024) 3 – 50 25 65.099 17.266
SEG + TAG 3 1.15 50 25 60.064 18.606

Table 2: Quantitative results of TAG on various Stable Diffusion baselines. The table presents
a comparison for Stable Diffusion (SD) v2.1 and SDXL, evaluated on 10K ImageNet validation
images using the DDIM sampler with 50 NFEs.

Methods TAG Amp. (η) #NFE #Steps FID ↓ IS ↑

SD v2.1 (Rombach et al., 2022) – 50 50 100.977 11.553
SD v2.1 + TAG 1.15 50 50 88.788 13.311

SDXL (Podell et al., 2024) – 50 50 124.407 9.034
SDXL + TAG 1.20 50 50 113.798 9.716

Table 3: Quantitative results for unconditional image generation on the ImageNet dataset. We
leverage a Stable Diffusion (SD) v1.5. All metrics are calculated using 30K samples. We further
demonstrate that strong performance is achievable even with fewer #NFE. We measure the inference
time using torch.cuda.Event and report the average over 100 runs.

DDIM (Song et al., 2020a) DPM++ (Lu et al., 2025)

SD v1.5 + TAG + TAG SD v1.5 + TAG

#NFE 50 25 50 10 10
Inference Time (s) 1.9507 1.0191 1.9674 0.4433 0.4522

FID ↓ 76.942 72.535 67.805 85.983 74.238
IS ↑ 14.794 15.528 16.487 13.037 14.930

Log-likelihood improvements via TAG. We cast inference-time guidance as maximizing a log-
likelihood gain (equation 10). TAG simply reweights the update step by amplifying the component
that is orthogonal to the current state while leaving the parallel component unchanged. By Theo-
rem 4.1, increasing the orthogonal weight monotonically raises the first-order Taylor gain, so TAG
steers the sampler toward higher-density regions of the data manifold, improving image quality.

Uncond.

#NFE=50

Uncond.

#NFE=250

+ TAG

#NFE=50

+ TAG + Normal

#NFE=50

Figure 4: Effectiveness of TAG. At 50 NFEs, TAG sur-
passes the sample quality at 250 NFEs from baseline. In
contrast, +Normal causes severe over-smoothing.

Avoidance of normal amplification.
Amplifying the tangential component
monotonically increases the first-order
term of a Taylor gain of log p(·|tk+1)
(Theorem 4.1), which produces sam-
ples with less hallucination. However,
amplifying the normal component in-
creases radial contraction and leads to
over-smoothing (Figure 4). This radial
component of the single-step is aligned
with the radial part of Tweedie’s correction, which links xk to the posterior mean E[x0|xk] via the
score function (Tweedie et al., 1984; Song et al., 2020b). Formally, rescaling the normal part by a

6
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Table 4: Quantitative results across guidance-only (i.e. CFG, PAG, SEG) and guidance w/
TAG sampling settings. Evaluated on the MS-COCO 2014 val split with 10k random text prompts.
All images are sampled with Stable Diffusion v1.5 using the DDIM sampler. cfg_scale=2.5,
pag_scale=2.5 and seg_scale=2.5 is applied for each experiments.

Methods TAG Amp. (η) #NFE #Steps FID ↓ CLIPScore ↑

Condition-Only – 30 30 85.145 19.77 ±3.43
Condition-Only + TAG 1.2 30 30 58.438 21.88 ±2.99

CFG (Ho & Salimans, 2021) – 100 50 26.266 22.60 ± 3.28
CFG + C-TAG 2.5 30 15 23.414 22.82 ± 3.21

PAG (Ahn et al., 2024) – 50 25 24.280 22.72 ± 3.25
PAG + C-TAG 1.25 50 25 22.109 22.07 ± 3.49

SEG (Hong, 2024) – 50 25 29.215 18.17 ± 3.55
SEG + C-TAG 1.25 50 25 23.446 16.94 ± 3.96

B
as

el
in

e
+

T
A

G

Unconditional Gen. with SD3 (Podell et al., 2024) Conditional Gen. with PAG Conditional Gen. with SEG

Figure 5: Qualitative comparison of TAG across unconditional and conditional generation set-
tings. The left four columns demonstrate that for unconditional generation, TAG enhances the detail
and coherence of samples from the SD3 (Podell et al., 2024). The right four columns show that for
conditional generation, TAG can be applied on top of existing guidance methods (e.g., PAG (Ahn
et al., 2024), SEG (Hong, 2024)) to further improve their outputs.

κ (> 1), the radial first–order change is multiplied by κ:

⟨x̂k+1,∆
(κ)
k+1⟩ = κ ⟨x̂k+1,∆k+1⟩. (16)

Therefore, a value of κ (> 1) excessively strengthens this contraction under the VP/DDIM schedule,
leading to over-smoothing. In contrast, tangential scaling by η (> 1) preserves the radial first–order
term:

⟨x̂k+1,∆
TAG
k+1 ⟩ = ⟨x̂k+1,∆k+1⟩. (17)

To summarize, normal amplification breaks one–step calibration and induces over-smoothing,
whereas tangential boosting improves alignment without disturbing the radial schedule.

4.2 TANGENTIAL AMPLIFYING GUIDANCE FOR CONDITIONAL GENERATION

Cond. only Cond. + TAG

prompt = “... man brushing ...”

Figure 6: Conditional generation
without CFG. Compared to the
condition-only baseline, adding TAG
produces more faithful semantics for
the prompt at matched NFE.

Our analysis (§3, §4) shows that the tangential component
of the score field encodes manifold-consistent, content-
selective directions whose amplification improves image
quality. In CFG (Ho & Salimans, 2021), the guided score
combines conditional and unconditional branches:

ε̃k = ϵθ(xk, c) + ω(ϵθ(xk, c)− ϵθ(xk, ∅)). (18)

Because these two scores follow distinct trajectories, an in-
coherence between them can arise, and such an effect can
degrade generation quality, an issue recently highlighted by
Kwon et al. (2025). Motivated by this established score
mismatch, and informed by our core intuition that the tan-
gential field encodes data geometry (equation 1), we posit
that this incoherence is fundamentally tangential in nature; that is, a persistent mismatch exists pri-
marily between the conditional and unconditional tangential components.
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Algorithm 2 Conditional TAG (C-TAG)

Require: Denoiser ϵθ(·), timesteps {tk}0k=K , CFG scale ω, TAG scale η≥0
1: Sample xK ∼ N (0, I) ▷ initialize from prior
2: for k = K − 1, . . . , 0 do
3: (εu, εc)← ϵθ(xk+1, tk+1, ·) ▷ uncond / cond noise
4: gk ← εc − εu ▷ CFG direction in ε-space
5: x̂k+1 ← xk+1/∥xk+1∥2
6: P⊥

k+1← I − x̂k+1x̂
⊤
k+1 ▷ projector at xk+1

7: g⊥
k ← P⊥

k+1 gk ▷ tangential component

8: ε̃k ← εu + ωgk + η

( ⟨εc, g⊥
k ⟩

∥g⊥
k ∥22

g⊥
k

)
▷ TAG-augmented CFG

9: xk ← STEP(ε̃k, tk+1,xk+1) ▷ scheduler step

Conditional–unconditional tangent reconciliation. Let gk := ϵθ(xk, c) − ϵθ(xk, ∅) be the score
from a CFG guidance where ϵθ(·, c), ϵθ(·, ∅) denote the conditional and unconditional scores. We
form a conditional-relative tangent by removing the unconditional tangent from the conditional one,

g⊥
k = P⊥(xk)

(
ϵθ(xk, c) − ϵθ(xk, ∅)

)
= P⊥(xk)gk, (19)

and project the conditional score ϵθ(xk, c) onto this tangent subspace. We then amplify this condi-
tion relative tangent:

ε̃k = ϵθ(xk, c) + ωgk + η
(
σ−1
k P (g⊥

k )ϵθ(xk, c)
)
, (20)

where ω is the usual CFG scale and η controls the extra tangential emphasis.

5 EXPERIMENTS

Backbones and inference setup. We apply TAG at inference on pretrained backbones, using Stable
Diffusion v1.5 (Rombach et al., 2022) for major experiments and SD3 (Esser et al., 2024) for flow
matching. Unconditional results are reported on ImageNet-1K val (Deng et al., 2009) with 30K
samples per setting. Text-conditional results use MS-COCO 2014 val (Lin et al., 2015) with 10K
prompts. The number of function evaluations (#NFE) follows each table. TAG is inserted after
every solver update with amplification η. Metrics include FID (Heusel et al., 2017), IS (Salimans
et al., 2016), CLIPScore (Hessel et al., 2021), and NFE. FID is computed with pytorch-fid (Seitzer,
2020), IS with Inception-V3 (Szegedy et al., 2016), and CLIPScore is computed with OpenAI CLIP
ViT-L/14. All runs use fixed seeds and identical preprocessing to the corresponding baselines.

ω = 2.5, η = 0.0 ω = 5.0, η = 0.0 ω = 2.5, η = 1.0

Figure 7: Qualitative Results with CFG.
TAG produces higher-fidelity samples with
fewer hallucinations, outperforming even
baselines with a higher CFG scale ω.

Improvements on conditional generation. Table
4 presents quantitative results on the MS-COCO,
demonstrating that augmenting existing guidance
samplers with TAG consistently yields substantial
improvements in sample fidelity while largely pre-
serving text-image alignment. Notably, TAG enables
a 30-step sampling process to outperform the 100-
step CFG baseline. Even in a condition only setting,
TAG dramatically reduces FID and increases CLIP-
Score, confirming its foundational benefits indepen-
dent of a guidance signal. Furthermore, this trend
extends to other guidance techniques such as PAG and SEG, where TAG again reduces FID at the
same computational cost. The qualitative improvements are visualized in Figure 7, which demon-
strates TAG’s ability to produce higher-fidelity images with fewer artifacts.

Improvements on unconditional generation. For unconditional generation, TAG consistently
improves sample quality across a range of models and samplers. As shown in Table 1, it reduces
FID and increases IS at a matched NFEs. Notably, TAG acts as a ‘plug-and-play’ module for ex-
isting guidance methods (e.g., SAG, PAG, SEG), enhancing their performance without architectural
changes or additional model evaluations. Moreover, TAG significantly pushes the compute–quality

8



432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2026

(a) Impact of TAG amplification η on FID
(↓) and IS (↑) for unconditional SD v1.5
generation.

η = 1.0 η = 1.1 η = 1.2 η = 1.3

(b) Qualitative comparison across amplification levels η for SD3
unconditional generation: moderate tangential amplification en-
hances detail and coherence, while excessive amplification de-
grades fidelity.

Figure 8: Ablation on TAG amplification η. Figure 8a and Table 1 show gains at moderate η and
degradation when amplification is excessive. Figure 8b confirms the same trend for Flow-matching,
underscoring the need to select an appropriate η.

frontier by enabling both faster inference and higher quality. With samplers like DDIM and DPM++,
TAG can achieve superior results with as few as half the NFEs (Table 3). Concurrently, it substan-
tially boosts performance on foundational models like SD v2.1 and SDXL at a fixed computational
cost (Table 2). This dual benefit provides a practical path to faster inference and extends to SOTA
models like SD3 (Table 5), with qualitative improvements visualized in Figures 5 and 9.

Table 5: Quantitative results for flow match-
ing–based generator. TAG is directly applicable to
flow matching. Evaluations are conducted on Ima-
geNet val with 1K random seeds. FID is computed
on five independently sampled ImageNet-1K sub-
sets and reported as the mean.

Methods w/ SD3 Esser et al. (2024) + TAG

TAG Amp. (η) – 1.1
#NFE 50 50
FID↓ 153.35 150.97

Improvements on Flow Matching. Fig-
ure 5 and Table 5 demonstrate that TAG
transfers seamlessly to flow-matching back-
bones (Esser et al., 2024). Inserted as a
lightweight tangential reweighting after each
solver step, without architectural changes or
additional function evaluations. TAG yields
a modest but consistent FID improvement at
matched compute and visibly reduces arti-
facts in unconditional samples. These results
show TAG’s potential to be model-agnostic
across diverse architectures, including mod-
ern large-scale models such as SD3.

6 LIMITATION & FUTURE WORK

An ablation of η reveals that moderate tangential amplification improves quality, whereas perfor-
mance degrades for larger values (Fig. 8a, Tab. 1; see also Fig. 8b for flow matching). Analytically,
the post-step state norm under TAG satisfies

∥xk+1 +∆TAG
k+1 ∥22 = ∥xk+1 +∆k+1∥22 + (η2 − 1) ∥P⊥

k+1∆k+1∥22︸ ︷︷ ︸
additive term

. (21)

Therefore, for η ≈ 1, the increase is small, thus the first-order radial (Tweedie) term is unchanged.
As η grows, however, the additive term increasingly perturbs the scheduler’s radial calibration,
which explains the observed degradation. A promising direction is to model these higher-order
effects and design adaptive gains ηk, potentially yielding a hyperparameter-free variant.

7 CONCLUSION

This paper introduces a new perspective for addressing the problem of hallucinations in diffusion
models, demonstrating that the tangential component of the sampling update encodes critical seman-
tic structure. Based on this geometric insight, we propose Tangential Amplifying Guidance (TAG),
a practical, architecture-agnostic method that amplifies the tangential component. By doing so, TAG
effectively steers the sampling trajectory toward higher-density regions of the data manifold, gener-
ating samples with fewer hallucinations and improved fidelity. Our method achieved good samples
without requiring retraining or incurring any additional heavy computational overhead, offering a
practical, plug-and-play solution for enhancing existing diffusion model backbones.

9
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APPENDIX

Symbol Meaning

xk ∈ R
d latent at step k (time tk).

x̂ := x/∥x∥2 Unit vector in the direction of x.

Pk := x̂kx̂
⊤
k Projector onto span(xk) (‘normal’ to the iso-noise surface at x).

P⊥
k := I − Pk Tangential projector orthogonal to xk.

⟨u,v⟩, ∥u∥2 Euclidean inner product and norm.

sθ(x, t) Model score.

ϵθ(x, t) Model noise prediction; sθ(x, t) = − ϵθ(x, t)/σt.

gk Guidance residual direction.

∆k Base solver increment without TAG at step k.

∆TAG
k TAG-modified increment at step k.

η ≥ 1 TAG tangential amplification factor (scales P⊥
k ∆).

NFE Number of function evaluations.

A PROOF & DERIVATION

Proof for Theorem 4.1

Proof. Assume the deterministic base step ∆k+1 = α̃k ϵθ(xk+1, tk+1) + βk xk+1, with α̃k ≤ 0,
and let Pk+1,P

⊥
k+1 be the orthogonal projectors with Pk+1xk+1 = xk+1 and P⊥

k+1xk+1 = 0.
Applying the projectors to the base decomposition gives

P⊥
k+1∆k+1 = α̃k P

⊥
k+1ϵθ(xk+1, tk+1), Pk+1∆k+1 = α̃k Pk+1ϵθ(xk+1, tk+1) + βk xk+1.

(22)
Therefore, the TAG update rule step is

∆TAG
k+1 =

(
Pk+1 + ηP⊥

k+1

)
∆k+1 = α̃k

[
Pk+1 + ηP⊥

k+1

]
ϵθ(xk+1, tk+1) + βkxk+1. (23)

The first-order Taylor gain with respect to TAG update at tk+1 is defined as:

G(η) :=
(
∆TAG

k+1

)⊤∇x log p(x | tk+1)
∣∣
x=xk+1

=
((

Pk+1 + ηP⊥
k+1

)
∆k+1

)⊤
∇x log p(x | tk+1)

∣∣
x=xk+1

(24)

We analyze this gain by approximating the true score with the model’s score function

sθ(xk+1, tk+1) = −σ−1
k+1ϵθ(xk+1, tk+1), (25)

thus:

G(η) =
((

Pk+1 + ηP⊥
k+1

)
∆k+1

)⊤
∇x log p(x | tk+1)

∣∣
x=xk+1

≈
((

Pk+1 + ηP⊥
k+1

)
∆k+1

)⊤
sθ(xk+1, tk+1)

= −σ−1
k+1 ·

((
Pk+1 + ηP⊥

k+1

)
∆k+1

)⊤
ϵθ
(
xk+1, tk+1

)
(26)

Substitute equation 23 into equation 26, then:

G(η) ≈ −σ−1
k+1

(
α̃kPk+1ϵθ + βkxk+1 + ηα̃kP

⊥
k+1ϵθ

)⊤
ϵθ

= −σ−1
k+1

(
α̃k(Pk+1ϵθ)

⊤ϵθ + βkx
⊤
k+1ϵθ + ηα̃k(P

⊥
k+1ϵθ)

⊤ϵθ

)
. (27)

Since P and P⊥ are symmetric and idempotent, thus

v⊤Pv = ∥Pv∥22 (28)
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is established. Therefore,

G(η) ≈ −σ−1
k+1

(
α̃k

∥∥Pk+1ϵθ
∥∥2
2
+ βkx

⊤
k+1ϵθ + ηα̃k

∥∥P⊥
k+1ϵθ

∥∥2
2

)
. (29)

Differentiating the gain G(η) in equation 29 with respect to η yields:

∂G(η)

∂η
≈ −α̃k

σk+1

∣∣P⊥
k+1ϵθ(xk+1, tk+1)

∣∣2
2
≥ 0. (30)

This derivative is guaranteed to be non-negative, since the DDIM sampler coefficient α̃k ≤ 0 by
definition, while σk+1 and the squared L2-norm are strictly non-negative. This proves that the
first-order gain G(η) is a monotonically non-decreasing function of η. Consequently, amplifying
the tangential component of the update step via TAG is guaranteed to improve the first-order log-
likelihood gain compared to the base update step.

Analysis on pure TAG gain. Subtracting each gain Gbase ≜ G(η = 1) and GTAG ≜ G(η > 1),

TAG update gain, GTAG

︷ ︸︸ ︷(
− σ−1

k+1 ·
(
∆TAG

k+1

)⊤
ϵθ
(
xk+1, tk+1

))
−

base update gain, Gbase

︷ ︸︸ ︷(
− σ−1

k+1 ·
(
∆k+1

)⊤
ϵθ
(
xk+1, tk+1

))

= −σ−1
k+1 ·

(
∆TAG

k+1 −∆k+1

)⊤
ϵθ
(
xk+1, tk+1

)

= −σ−1
k+1 ·

(
(η − 1)P⊥

k+1∆k+1

)⊤
ϵθ
(
xk+1, tk+1

)
.

(31)

Using ∆k+1 = α̃k ϵθ(xk+1, tk+1) + βk xk+1, P⊥
k+1 be:

P⊥
k+1∆k+1 = P⊥

k+1α̃k ϵθ(xk+1, tk+1). (32)

Thus, substitute equation 32 into equation 31 then:

GTAG −Gbase = −σ−1
k+1 ·

(
α̃k(η − 1)

)
︸ ︷︷ ︸

scalar

·
(
P⊥

k+1 ϵθ(xk+1, tk+1)
)⊤

ϵθ
(
xk+1, tk+1

)
. (33)

This simplifies to the final quadratic form:

GTAG −Gbase = −σ−1
k+1 ·

(
α̃k(η − 1)

)
︸ ︷︷ ︸

≥ 0 as α̃k ≤ 0

·
∥∥P⊥

k+1ϵθ(xk+1, tk+1)
∥∥2
2
, (34)

This proves that the difference in gain is non-negative for any η ≥ 1. Therefore, the first-order
log-likelihood gain of the TAG update is always greater than or equal to that of the base update, with
equality holding if and only if η = 1 or the tangential component of the score is zero.
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B IMPLEMENTATION OF THE TANGENTIAL AMPLIFYING GUIDANCE

Code: Tangential Amplifying Guidance (TAG)

1 output = scheduler.step(noise_pred, t, latents, return_dict=False)

2

3 if apply_tag:

4 post = latents

5 eta_v, eta_n = t_guidance_scale, 1

6

7 v_t = post / (post.norm(p=2, dim=(1,2,3), keepdim=True) + 1e-8)

8

9 latents = output

10 delta = latents - post

11 a = (delta * v_t).sum(dim=(1,2,3), keepdim=True)

12

13 u_n = a * v_t

14 u_t = delta - u_n

15 latents = post + eta_v * u_t + eta_n * u_n

16 else:

17 latents = output

Code: Conditional Tangential Amplifying Guidance (C-TAG)

1 def proj_par(z, n):

2 return (z * n).sum(dim=(1,2,3), keepdim=True) * n

3

4 def proj(z, v):

5 v = v / (v.norm(p=2, dim=(1,2,3), keepdim=True) + 1e-8)

6 return (z * v).sum(dim=(1,2,3), keepdim=True) * v

7

8 eps_u, eps_c = HeadToEps(noise_pred, latents, t, scheduler, do_cfg)

9

10 s_u = -eps_u / (sigma + 1e-12)

11 s_c = -eps_c / (sigma + 1e-12)

12

13 n = latents / (latents.norm(p=2, dim=(1,2,3), keepdim=True) + 1e-8)

14

15 g = s_c - s_u

16 t_c = s_c - proj_par(s_c, n)

17 t_u = s_u - proj_par(s_u, n)

18 g_aligned = proj(s_c, t_c - t_u)

19 g = g + t_guidance_scale * g_aligned

20

21 s_star = s_u + guidance_scale * g

22 eps = -sigma * s_star

23

24 model_out = EpsToHead(eps, latents, t, scheduler)

25 latents = scheduler.step(model_out, t, latents, return_dict=False)
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C ADDITIONAL QUALITATIVE RESULTS

Stable Diffusion 1.5

Stable Diffusion 2.1

Stable Diffusion XL

Stable Diffusion 3

Figure 9: Qualitative results for unconditional generation across backbones. For each model
(SD1.5/2.1 (Rombach et al., 2022), SDXL (Podell et al., 2024), SD3 (Esser et al., 2024)), the top
row shows baseline sampling and the bottom row shows +TAG at matched NFE. TAG yields sharper,
more coherent structure with fewer artifacts while preserving diversity.
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D LLM USAGE DISCLOSURE

During the preparation of this paper, the authors made limited use of large language models (LLMs)
for polishing the writing, grammar refinement and LaTeX formatting. LLMs were not used for
generating research ideas, designing or conducting experiments, analyzing results, or formulating
conclusions. All scientific content and contributions are entirely the responsibility of the authors,
and any LLM-assisted text was carefully reviewed and revised before inclusion.
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