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ABSTRACT

Diffusion models achieve the state-of-the-art samples in image generation but
often suffer from semantic inconsistencies or hallucinations. While various
inference-time guidance methods can enhance generation, they often operate in-
directly by relying on external signals or architectural modifications, which intro-
duces additional computational overhead. In this paper, we propose Tangential
Amplifying Guidance (TAG), a more efficient and direct guidance method that
operates solely on trajectory signals without modifying the underlying diffusion
model. TAG leverages an intermediate sample as a projection basis and ampli-
fies the tangential components of the estimated scores with respect to this basis to
correct the sampling trajectory. We formalize this guidance process by leveraging
a first-order Taylor expansion, which demonstrates that amplifying the tangential
component steers the state toward higher-probability regions, thereby reducing in-
consistencies and enhancing sample quality. TAG is a plug-and-play, architecture-
agnostic module that improves diffusion sampling fidelity with minimal computa-
tional addition, offering a new perspective on diffusion guidance.
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Figure 1: Conceptual visualization of Tangential Amplifying Guidance (TAG) from a mode-
interpolation perspective (Aithal et al., 2024). Unlike (a) no guidance case, (b) TAG decomposes
the base increment Ay on the latent sphere into parallel Py11Ay41 and orthogonal PkJ-HAk_H
components (Eq. 6). It preserves the parallel component and amplifies only the tangential component
by adding a tangential component with the scaling factor to the base step. This tends fo guide
trajectories toward higher-model density regions while mitigating off-manifold drift (§ 4, Eq. 15).

Low-probability Region
=> hallucinations

1 INTRODUCTION

Hallucination in diffusion models refers to the phenomenon of generating samples that violate the
data distribution or contradict conditioning, thus failing to provide meaningful outputs. For example,
it often manifests as mixed-up objects (Okawa et al., 2023) or anatomically implausible structures.
Recent evidence suggests that the primary source of such errors lies in a failure mode known as
mode interpolation. During sampling, trajectories may traverse low-density valleys between distinct
modes of the data distribution, causing attribute mismatches and structural inconsistencies (Aithal
etal., 2024).

A widely adopted remedy involves inference-time guidance strategies, such as classifier-free guid-
ance (CFG) (Ho & Salimans, 2021) and their variants (Hong et al., 2023; Ahn et al., 2024; Karras
et al., 2024; Rajabi et al., 2025; Kwon et al., 2025; Sadat et al., 2025; Dinh et al., 2025; Hong, 2024).
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Under the assumption that deviating from low-probability regions enhances sample quality, most of
these methods employ residual scaling, using the difference between the conditional and uncondi-
tional branches to guide the generation process away from the unconditional model’s outputs. While
effective, these mechanisms are fundamentally indirect: instead of navigating along the underlying
geometry of the data distribution, they proceed by repeatedly moving away from an unconditional
estimate at each step of the process.

In contrast, we propose a more efficient direct solution based on Tweedie’s identity (Tweedie et al.,
1984), which relates the score to the posterior mean of the clean data under Gaussian corruption.
It motivates a decomposition of the model update based on its intrinsic geometry; a split into a
drift component that changes the noise level and a tangent component to the iso-noise manifold that
refines structure and semantics. We observe that the tangential component carries rich structural
information (Figure 2), and amplifying it reduces out-of-distribution generations (Figure 3).

Drawing upon the principle of amplifying the tangential component during inference, we derive
Tangential Amplifying Guidance (TAG), a plug-and-play method that emphasizes the tangential
component of the score update. TAG steers the sampling trajectory to follow the underlying data
manifold closely. TAG integrates seamlessly with standard diffusion backbones—whether condi-
tioned or not—without requiring additional denoising evaluations or retraining.

‘We can summarize our contributions as follows:

* We establish a concrete link between the score’s intrinsic geometry and sample quality,
proving that amplifying tangential components of the scores steer sampling trajectories
toward in-distribution manifold.

* We introduce TAG, a computationally efficient and architecture-agnostic algorithm that
realizes this geometric principle into practice.

2 PRELIMINARIES

Score-based Diffusion Model. Score-based generative models learn a time-indexed score function
that approximates the gradient of the log-density of noise-perturbed data,

so(x,tx) = Vg logp(x|ts),

to reverse a gradual noising process for sample generation. This approach provides a continuous-
time framework that unifies earlier discrete-time Denoising Diffusion Probabilistic Models
(DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) through the lens of stochastic differential
equations (SDEs) (Song et al., 2020b). The core idea involves a forward-time SDE that transforms
complex data into a simple prior distribution, given by

dxy, = f(a:k,tk)dtk + g(tk)thk.

Generation is then performed by a corresponding reverse-time SDE, which becomes tractable by
substituting the unknown true score with the learned model sy (Anderson, 1982). This score net-
work, typically a noise-conditional U-Net, is trained efficiently via denoising score matching across
various noise levels (Vincent, 2011; Song & Ermon, 2019). For sampling, one can use numeri-
cal methods like predictor-corrector schemes to simulate the stochastic reverse SDE, or solve an
associated deterministic ordinary differential equation (ODE) known as the probability-flow ODE.
This continuous-time framework not only provides a theoretical basis for widely used deterministic
samplers like DDIM (Song et al., 2020a) but has also inspired modern refinements, such as the pre-
conditioning and parameterization in EDM (Karras et al., 2022), which further enhance the trade-off
between sample quality and efficiency.

Inference-Time Guidance. Numerous methods modify the update field during sampling to improve
fidelity, typically without requiring retraining. Early approaches (Ho & Salimans, 2021) often rely
on residual signals, which scale the update residual to better align samples with a desired condition.
However, such isotropic manipulations can reduce sample diversity or disrupt the scheduler’s cal-
ibration (Dhariwal & Nichol, 2021; Kynkddnniemi et al., 2024). These drawbacks have motivated
alternatives that consider the geometry of the diffusion trajectory. A complementary line of work
replaces external cues with model-internal signals (Hong et al., 2023; Ahn et al., 2024; Hong, 2024).
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Figure 2: Amplifying the tangential component enhances semantic content by isolating it from
noise. This figure illustrates the decomposition of the update step Ay, into normal and tangential
components. Subtracting the unstructured, noisy normal component Pj; A, from the original update
acts as a denoising operation, revealing the tangential component Pi- Ay, which preserves the prin-
cipal semantic structure. Images decoded from intermediate timesteps (t=981, 501) indicate that
semantic information is most salient in the tangential component. Motivated by this observation,
our method AEAG amplifies this semantically rich component, yielding a clearer and more coher-
ent final sample (far right) than that obtained from the unmodified Ay, (Please zoom-in for details).
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Figure 3: Sampling on a 2D branching distribution (Karras et al., 2024) under different guid-
ance methods. (a) No guidance: probability mass drifts off the data manifold, yielding fragmented
branches and OOD (Out of Distribution) points. (b) Naive truncation: suppresses some OOD but
oversimplifies the geometry, dropping fine branches. (c) CFG: reduces boundary violations but also
reduces diversity and can still leave OOD strays in our run. (d) TAG (Ours): trajectories are steered
toward high-density regions along the branches, suppressing off-manifold outliers while retaining
detail. (e) Ground truth. Overall, TAG achieves the highest similarity to the GT distribution without
additional #NFE, concentrating mass on the correct branches while substantially reducing residual
OOD outliers.

The common aim of these strategies is to steer the inference-time update to suppress directions as-
sociated with off-manifold drift while preserving the learned prior. More recent formulations make
this objective explicit by distinguishing motion along iso-noise level sets from motion normal to
them (Sadat et al., 2025; Kwon et al., 2025). Such geometry-aware perspectives offer a principled
basis for guidance design and integrate cleanly with modern solvers.

3  MOTIVATION AND INTUITION

Under Gaussian corruption, Tweedie’s formula (Tweedie et al., 1984) links the posterior mean of
the clean signal to the noisy observation via the score (i.e., the gradient of the log marginal density):

Elzoler] = (@, + 02V logp(x | t4)],_,. YWaR W
:= drift term

:= Tweedie increment AV, (a.k.a. data term)

Geometrically, the score field V4 log p(x|t1) |w:wk points in the direction of steepest increase of the
marginal density. Tweedie’s formula therefore adjusts xj, in this ascent direction, nudging the state
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toward higher-probability regions. Therefore, the aim of modeling is to bias this movement toward
data-driven directions.

However, naively guiding the states to chase higher-probability regions can disturb the scheduler’s
prescribed radius/SNR trajectory and may degrade sample quality(Figure 4). Accordingly, to avoid
altering the radial term, we isolate x; and reweight only the increment by decomposing it into
normal and tangential parts with respect to Zy, := xy/||zk|l2: Pr = ZxZ, and Pt = I — P
Guided by this separation, we form the amplified state =™, where the normal component is fixed
and only the tangential component is amplified, via

" = (zp + P ALY) +n PrALY, with n> 1 )
By doing so, we can preserve the radial first-order term (Eq. equation 17) while biasing the step
toward higher-probability regions, V 5 log p(x|ty) |m:mk (Empirical evidence is provided in Figure

2 and 3). In the following section (§4.1), we formalize this bias as a constrained MLE update that
allocates first-order gain to the tangential subspace.

4 TAG: TANGENTIAL AMPLIFYING GUIDANCE

We introduce Tangential Amplifying Guidance (TAG), which reweights base increments along nor-
mal/tangential directions on the latent space.

Definitions & Algorithm. We work per sample on RC*#*W =~ Rd ith Euclidean inner product
(-,-) and norm || - ||2. Let {t;})_j be descending timesteps with tjc > - -+ > to, and let €y denote
the denoiser. Given x4 at time ¢, the denoiser predicts

€kt1 = €0(Tpt1,tht1)-
A base solver (e.g., DDIM) then produces a provisional state (Karras et al., 2022)
Ty = Q41 Tk+1 + Oky1€kt+1, Where apy1,bpy1  are base solver coefficients.  (3)

Corresponding base increment at €1 as

Apt1 1= T — Tht1- )
For any x € RY, we define the unit vector and orthogonal projectors
z=x/ ||z, P(x)=22", Pi(x)=1- P(x). (5)

Given positive scales n > 1, TAG reweights the base increment at . 1:
T = Tpr1 + Per1 Dip1 + 1P Apia (6)

where Py = P(x441) and P, = P (z441).

Algorithm 1 Tangential Amplifying Guidance (TAG)

Require: Denoiser ¢y(+), timesteps {tk}gz K- base solver coefficients aj1, br41, TAG scalen > 1
1: Sample xx ~ N(0,1)
2. fork=K—-1,...,0do

3: €kt1 «— €9(Thy1,tht1) B> noise prediction
4: Tk ¢ Qp+1Tk+1 + Dpt1 €k11 >e.g., scheduler.step
5: App1 ¢ T — Tl > base increment
6: ZTpg1 < Try1/||Trg1ll2

7: Po1 « Tpa®) . P« - Py B> projectors at T 41
8: T < Trr1 + Pey1Aki1 +1 (PleAkH) > TAG amplification

4.1 WHY DOES TAG IMPROVE IMAGE QUALITY?

Log-likelihood maximization. A foundational goal of training generative models is to maximize the
log-likelihood of the data, as formalized by the Maximum Likelihood Estimation (MLE) principle:

mgmxz log po(;). @)



Under review as a conference paper at ICLR 2026

This principle suggests that high-quality samples should concentrate in regions of high probability.
To connect this idea to an update rule, we relate likelihood increase to movement along the score
via a local linearization:

log po(a) = log ps(0) + (x — @) ' Vg logps(a)|,_, + O - [*). ®)
Diffusion models (Song et al., 2020b; Ho et al., 2020) are designed to predict a score function,
Velogp(x | tx) |m:mk ~ —egp(xk,tr)/ok, which operates on noisy versions of the data. Because

diffusion models learn this score field, optimizing the global likelihood (Eq. 7) for a sample x
during inference is not directly tractable. Therefore, we propose to apply the spirit of MLE at each
local step of the sampling trajectory.

=T

logp(y, | try1) ~log p(xiiy | ter1)+ (e —xpi1) ' Ve logp(e | tk+1>‘m:mk+1+0<”'”2)' 9)

The idea of enhancing a pre-trained score function with inference-time guidance has proven ef-
fective. For instance, when the score function is well trained on given training sets and this leads
to well-trained maximum log-likelihood, we observe that the pre-trained score function could be
improved by CFG (Ho & Salimans, 2021) which linearly biases the score toward the conditional
target. Inspired by this, our approach provides inference-time guidance on the score function by
maximizing the following local log-likelihood term, thereby guiding the sampling trajectory towards

high-likelihood regions of the data distribution and reducing off-manifold artifacts (hallucination):
L=TLL41

max (z — Tpt1) ' Vo logp(e | tk-i-l)‘ (10)

Single-step increment decomposition. For deterministic DDIM/ODE samplers, the single-step
score state decomposition can be written as

Apg1 =T — Tpg1 = €g(Thp1, tior1) + Be®rt, (11)
with coefficients
Qy = 0o — \/%Zilo’k"'l’ By = \/j';]:il —1, with a, <0, B >0,

where & is standard diffusion cumulative product term. Using the projection operators, which satisfy
P,jH:ckH = 0and Py 1Tk+1 = Tk41, yields the projection-wise identities

1L ~ pl
P Apyr = akPk+169(aZk+1, thy1),

Ppi1Api1 = apPrrr€o(Thst, trerr) + BeTria (12)
Substituting equation 12 into the equation 6 gives
2’ = @py1 + Gk [Pegy + P eo(@rr, i) + Brisr,  with > 1 (13)

Therefore, the TAG update Agﬁ? can be expressed in terms of the decomposed components of the
original update Agyq:

AR = (Pis1 + 1 Piy) Apsr. (14)
Finally, assuming that the log-density is smooth (assume log p(-|tx1) is C? in a neighborhood of
@y41), the first order Taylor expansion gain for a small TAG update AT2§ € R is
T
G(n) = (ARRY) Valogp(a | i),y (15)

Next, we prove that increasing 7 provide monotonic increase this first-order gain.

Theorem 4.1 (Monotonicity of the First-order Taylor Gain). Assume a deterministic base step with
Agi1 = ageg(Xpa1,ter1) + Brxir1 and &y, < 0. Let Py = 0 and PkL+1 = 0 be the projectors
defined above. For the TAG step Agﬁf = Pry1Apy1+m P;gl+1Ak+1: the first-order Taylor gain

T ,
G(n) = (AFLY) Valogp(x | tk+1)|m:wk+1 satisfies
0G(n)  —an

—_— =

an orot HPijL169<wk+1atk+l)H§ 2 0,

and, in particular,
B ~ 2
GG -G = —gi L) - (ar(n— 1)) || Pisreo(@rrs tr)]]; > 0,

>0 as a, <0

Equality holds iff n = 1. The proof'is provided in Appendix A.
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Table 1: Quantitative results across previous guidance methods and +TAG sampling settings
for unconditional generation. Evaluated on the ImageNet val with 30K samples. All images are
sampled with Stable Diffusion (SD) v1.5 using the DDIM sampler.

Methods Guidance Scale  TAG Amp. () #NFE  #Steps FID | ISt
DDIM (Song et al., 2020a) - - 50 50 76942  14.792
DDIM + TAG - 1.05 50 50 67.971 16.620
DDIM + TAG - 1.15 50 50 67.805 16.487
DDIM + TAG - 1.25 50 50 71.801 15.815
SAG (Hong et al., 2023) 0.2 - 50 25 71.984  15.803
SAG + TAG 0.2 1.15 50 25 65.340 17.014
PAG (Ahn et al., 2024) 3 - 50 25 64.595 19.30
PAG + TAG 3 1.15 50 25 63.619 19.90
SEG (Hong, 2024) 3 - 50 25 65.099  17.266
SEG + TAG 3 1.15 50 25 60.064  18.606

Table 2: Quantitative results of TAG on various Stable Diffusion baselines. The table presents
a comparison for Stable Diffusion (SD) v2.1 and SDXL, evaluated on 10K ImageNet validation
images using the DDIM sampler with 50 NFEs.

Methods TAG Amp. () #NFE #Steps FID | ISt
SD v2.1 (Rombach et al., 2022) - 50 50 100.977 11.553
SD v2.1 + TAG 1.15 50 50 88.788 13.311
SDXL (Podell et al., 2024) - 50 50 124.407 9.034
SDXL + TAG 1.20 50 50 113.798 9.716

Table 3: Quantitative results for unconditional image generation on the ImageNet dataset. We
leverage a Stable Diffusion (SD) v1.5. All metrics are calculated using 30K samples. We further
demonstrate that strong performance is achievable even with fewer #NFE. We measure the inference
time using torch.cuda.Event and report the average over 100 runs.

DDIM (Song et al., 2020a) DPM++ (Lu et al., 2025)
SD vl.5 + TAG + TAG SDvl.5 + TAG

#NFE 50 25 50 10 10
Inference Time (s) 1.9507 1.0191 1.9674 0.4433 0.4522
FID | 76.942 72.535 67.805 85.983 74.238
IS 1 14.794 15.528 16.487 13.037 14.930

Log-likelihood improvements via TAG. We cast inference-time guidance as maximizing a log-
likelihood gain (equation 10). TAG simply reweights the update step by amplifying the component
that is orthogonal to the current state while leaving the parallel component unchanged. By Theo-
rem 4.1, increasing the orthogonal weight monotonically raises the first-order Taylor gain, so TAG
steers the sampler toward higher-density regions of the data manifold, improving image quality.

Avoidance of normal amplification.
Amplifying the tangential component
monotonically increases the first-order
term of a Taylor gain of logp(:|tx+1)

(Theorem 4.1), which produces sam- Tone el oo
ples with less hallucination. However, Uncond. Uncond. +TAG + TAG + Normal
amplifying the normal component in- #NFE=50 #NFE=250 #NFE=50 #NFE=50

creases radial contraction and leads to Figure 4: Effectiveness of TAG. At 50 NFES, TAG sur-
over-smoothing (Figure 4). This radial passes the sample quality at 250 NFEs from baseline. In
component of the single-step is aligned ~contrast, +Normal causes severe over-smoothing.

with the radial part of Tweedie’s correction, which links @, to the posterior mean E[xq|x] via the
score function (Tweedie et al., 1984; Song et al., 2020b). Formally, rescaling the normal part by a
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Table 4: Quantitative results across guidance-only (i.e. CFG, PAG, SEG) and guidance w/
TAG sampling settings. Evaluated on the MS-COCO 2014 val split with 10k random text prompts.
All images are sampled with Stable Diffusion v1.5 using the DDIM sampler. c¢fg_scale=2.5,
pag_scale=2.5 and seg_scale=2.5 is applied for each experiments.

Methods TAG Amp. (1) #NFE #Steps FID | CLIPScore 1
Condition-Only - 30 30 85.145 19.77 £3.43
Condition-Only + TAG 1.2 30 30 58.438 21.88 +£2.99
CFG (Ho & Salimans, 2021) - 100 50 26.266 22.60 + 3.28
CFG + C-TAG 2.5 30 15 23.414 22.82 +£3.21
PAG (Ahn et al., 2024) - 50 25 24.280 22.72 + 3.25
PAG + C-TAG 1.25 50 25 22.109 22.07 + 3.49
SEG (Hong, 2024) - 50 25 29.215 18.17 + 3.55
SEG + C-TAG 1.25 50 25 23.446 16.94 £+ 3.96

Baseline

Unconditional Gen. with SD3 (Podell et al., 2024) “Conditional Gen. wi Conditional Ge

Figure 5: Qualitative comparison of TAG across unconditional and conditional generation set-
tings. The left four columns demonstrate that for unconditional generation, TAG enhances the detail
and coherence of samples from the SD3 (Podell et al., 2024). The right four columns show that for
conditional generation, TAG can be applied on top of existing guidance methods (e.g., PAG (Ahn
et al., 2024), SEG (Hong, 2024)) to further improve their outputs.

k (> 1), the radial first-order change is multiplied by «:

(Bra1, A = K By, Apga).- (16)

Therefore, a value of x (> 1) excessively strengthens this contraction under the VP/DDIM schedule,
leading to over-smoothing. In contrast, tangential scaling by 7 (> 1) preserves the radial first—order
term:

(@hy1, ATRT) = (Brgr, Apgr)- a7
To summarize, normal amplification breaks one-step calibration and induces over-smoothing,
whereas tangential boosting improves alignment without disturbing the radial schedule.

4.2 TANGENTIAL AMPLIFYING GUIDANCE FOR CONDITIONAL GENERATION

Cond. + TAG

Our analysis (§3, §4) shows that the tangential component Cond. only
of the score field encodes manifold-consistent, content-
selective directions whose amplification improves image
quality. In CFG (Ho & Salimans, 2021), the guided score

combines conditional and unconditional branches:
€ = eg(xg, €) + w(eg(xk, c) — eg(xg, D). (18)

Because these two scores follow distinct trajectories, an in-
coherence between them can arise, and such an effect can Figure 6: Conditional generation
degrade generation quality, an issue recently highlighted by ~without CFG. Compared to the
Kwon et al. (2025). Motivated by this established score condition-only baseline, adding TAG
mismatch, and informed by our core intuition that the tan- produces more faithful semantics for
gential field encodes data geometry (equation 1), we posit the prompt at matched NFE.

that this incoherence is fundamentally tangential in nature; that is, a persistent mismatch exists pri-
marily between the conditional and unconditional tangential components.

prompt = “... man brushing ...”
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Algorithm 2 Conditional TAG (C-TAG)

Require: Denoiser €y(-), timesteps {tx}_ -, CFG scale w, TAG scale n>0

1: Sample xx ~ N(0,1)

2: fork=K—-1,...,0do

3: (Eus€c) + €o(Tpy1stryrs-)
gk < Ec— &y

Zir1 ¢ Tpp1 /T2
PchJrl — I - C/C\k+1fc\k+1

gi < Py gr

Nk

1
~ 6 b
8 &y eutwgr+n (“fkjgﬁ)
||9k 15
9: Ty < STEP(ék,tk+1, mk+1)

> initialize from prior

> uncond / cond noise
> CFG direction in e-space

> projector at Ty
> tangential component

> TAG-augmented CFG

> scheduler step

Conditional-unconditional tangent reconciliation. Let gi, := €y (xy, ¢) — €g(xy, 0) be the score
from a CFG guidance where € (-, ¢), €g(+, #) denote the conditional and unconditional scores. We
form a conditional-relative tangent by removing the unconditional tangent from the conditional one,

gir = P () (eo(znic) — eo(xr, 0)) = P (zk)gr, 19)

and project the conditional score €y (xy, ¢) onto this tangent subspace. We then amplify this condi-
tion relative tangent:

& = ep(xp, ) + wgk +1 (0, "Pgy )eo(zh. €)), (20)

where w is the usual CFG scale and 1 controls the extra tangential emphasis.

5 EXPERIMENTS

Backbones and inference setup. We apply TAG at inference on pretrained backbones, using Stable
Diffusion v1.5 (Rombach et al., 2022) for major experiments and SD3 (Esser et al., 2024) for flow
matching. Unconditional results are reported on ImageNet-1K val (Deng et al., 2009) with 30K
samples per setting. Text-conditional results use MS-COCO 2014 val (Lin et al., 2015) with 10K
prompts. The number of function evaluations (#NFE) follows each table. TAG is inserted after
every solver update with amplification 1. Metrics include FID (Heusel et al., 2017), IS (Salimans
et al., 2016), CLIPScore (Hessel et al., 2021), and NFE. FID is computed with pytorch-fid (Seitzer,
2020), IS with Inception-V3 (Szegedy et al., 2016), and CLIPScore is computed with OpenAl CLIP
ViT-L/14. All runs use fixed seeds and identical preprocessing to the corresponding baselines.

Improvements on conditional generation. Table
4 presents quantitative results on the MS-COCO,
demonstrating that augmenting existing guidance
samplers with TAG consistently yields substantial
improvements in sample fidelity while largely pre-
serving text-image alignment. Notably, TAG enables
a 30-step sampling process to outperform the 100-

w=25n=00 w=50,n=00 w=25n=1.0
Figure 7: Qualitative Results with CFG.

step CFG baseline. Even in a condition only setting,
TAG dramatically reduces FID and increases CLIP-
Score, confirming its foundational benefits indepen-
dent of a guidance signal. Furthermore, this trend

TAG produces higher-fidelity samples with
fewer hallucinations, outperforming even
baselines with a higher CFG scale w.

extends to other guidance techniques such as PAG and SEG, where TAG again reduces FID at the
same computational cost. The qualitative improvements are visualized in Figure 7, which demon-
strates TAG’s ability to produce higher-fidelity images with fewer artifacts.

Improvements on unconditional generation. For unconditional generation, TAG consistently
improves sample quality across a range of models and samplers. As shown in Table 1, it reduces
FID and increases IS at a matched NFEs. Notably, TAG acts as a ‘plug-and-play’ module for ex-
isting guidance methods (e.g., SAG, PAG, SEG), enhancing their performance without architectural
changes or additional model evaluations. Moreover, TAG significantly pushes the compute—quality
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FID / IS per TAG Amplification 7

ception Score

n=1.0 n=11 n=12 n=13

TAG Amplification (1) e (b) Qualitative comparison across amplification levels n for SD3
(a) Impact of TAG amplification 7 on FID  unconditional generation: moderate tangential amplification en-
(J) and IS (1) for unconditional SD v1.5  hances detail and coherence, while excessive amplification de-
generation. grades fidelity.

Figure 8: Ablation on TAG amplification 7). Figure 8a and Table 1 show gains at moderate 7 and
degradation when amplification is excessive. Figure 8b confirms the same trend for Flow-matching,
underscoring the need to select an appropriate 7).

1.00 1.05

frontier by enabling both faster inference and higher quality. With samplers like DDIM and DPM++,
TAG can achieve superior results with as few as half the NFEs (Table 3). Concurrently, it substan-
tially boosts performance on foundational models like SD v2.1 and SDXL at a fixed computational
cost (Table 2). This dual benefit provides a practical path to faster inference and extends to SOTA
models like SD3 (Table 5), with qualitative improvements visualized in Figures 5 and 9.

Improvements on Flow Matching. Fig-
ure 5 and Table 5 demonstrate that TAG Table 5: Quantitative results for flow match-

transfers seamlessly to flow-matching back- 1ng-based generator. TAG is directly applicable to
bones (Esser et al., 2024). Inserted as a flow matching. Evaluations are conducted on Ima-
lightweight tangential reweighting after each geNet val with 1K random seeds. FID is computed
solver step, without architectural changes or Ol five independently sampled ImageNet-1K sub-
additional function evaluations. TAG yields Sets and reported as the mean.

a modest but consistent FID improvement at
matched compute and visibly reduces arti- Methods w/ SD3 Esser et al. (2024) + TAG

facts in unconditional samples. These results 4G Amp. (1) _ 1.1
show TAG’s potential to be model-agnostic #NFE 50 50
across diverse architectures, including mod- FIp| 153.35 150.97

ern large-scale models such as SD3.

6 LIMITATION & FUTURE WORK

An ablation of 7 reveals that moderate tangential amplification improves quality, whereas perfor-
mance degrades for larger values (Fig. 8a, Tab. 1; see also Fig. 8b for flow matching). Analytically,
the post-step state norm under TAG satisfies

k1 + ARETIE = lekss + Aeral3 + (07 = 1) [ Py A |13 2D

additive term

Therefore, for n ~ 1, the increase is small, thus the first-order radial (Tweedie) term is unchanged.
As n grows, however, the additive term increasingly perturbs the scheduler’s radial calibration,
which explains the observed degradation. A promising direction is to model these higher-order
effects and design adaptive gains 1y, potentially yielding a hyperparameter-free variant.

7 CONCLUSION

This paper introduces a new perspective for addressing the problem of hallucinations in diffusion
models, demonstrating that the tangential component of the sampling update encodes critical seman-
tic structure. Based on this geometric insight, we propose Tangential Amplifying Guidance (TAG),
a practical, architecture-agnostic method that amplifies the tangential component. By doing so, TAG
effectively steers the sampling trajectory toward higher-density regions of the data manifold, gener-
ating samples with fewer hallucinations and improved fidelity. Our method achieved good samples
without requiring retraining or incurring any additional heavy computational overhead, offering a
practical, plug-and-play solution for enhancing existing diffusion model backbones.



Under review as a conference paper at ICLR 2026

REFERENCES

Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim,
Hyun Hee Park, Kyong Hwan Jin, and Seungryong Kim. Self-rectifying diffusion sampling with
perturbed-attention guidance. In European Conference on Computer Vision, pp. 1-17. Springer,
2024.

Sumukh K Aithal, Pratyush Maini, Zachary C. Lipton, and J. Zico Kolter. Understanding hal-
lucinations in diffusion models through mode interpolation. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 134614-134644. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
£file/£29369d192b13184b65c6d2515474d78-Paper—Conference.pdf.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313-326, 1982.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Anh-Dung Dinh, Daochang Liu, and Chang Xu. Representative guidance: Diffusion model sam-
pling with coherence. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=gWgaypDBsS8.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurlPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021. URL https://openreview.
net/forum?id=qw8AKxfYbT.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Susung Hong. Smoothed energy guidance: Guiding diffusion models with reduced energy curvature
of attention. Advances in Neural Information Processing Systems, 37:66743—66772, 2024.

Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving sample quality of
diffusion models using self-attention guidance. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7462-7471, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Tero Karras, Miika Aittala, Tuomas Kynkddnniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. Advances in Neural Information Processing
Systems, 37:52996-53021, 2024.

Mingi Kwon, Jaeseok Jeong, Yi Ting Hsiao, Youngjung Uh, et al. Tcfg: Tangential damping
classifier-free guidance. In Proceedings of the Computer Vision and Pattern Recognition Con-
ference, pp. 2620-2629, 2025.

10


https://proceedings.neurips.cc/paper_files/paper/2024/file/f29369d192b13184b65c6d2515474d78-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f29369d192b13184b65c6d2515474d78-Paper-Conference.pdf
https://openreview.net/forum?id=gWgaypDBs8
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI

Under review as a conference paper at ICLR 2026

Tuomas Kynkidnniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
Applying guidance in a limited interval improves sample and distribution quality in diffusion
models. Advances in Neural Information Processing Systems, 37:122458-122483, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. Machine Intelligence Research, pp.
1-22, 2025.

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural Information
Processing Systems, 36:50173-50195, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Javad Rajabi, Soroush Mehraban, Seyedmorteza Sadat, and Babak Taati. Token perturbation guid-
ance for diffusion models. arXiv preprint arXiv:2506.10036, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Seyedmorteza Sadat, Otmar Hilliges, and Romann M. Weber. Eliminating oversaturation and arti-
facts of high guidance scales in diffusion models, 2025. URL https://arxiv.org/abs/
2410.02416.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818-2826, 2016.

Maurice CK Tweedie et al. An index which distinguishes between some important exponential
families. In Statistics: Applications and new directions: Proc. Indian statistical institute golden
Jubilee International conference, volume 579, pp. 579-604, 1984.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Compu-
tation, 23(7):1661-1674, 2011. doi: 10.1162/NECO_a_00142.

11


https://arxiv.org/abs/1405.0312
https://openreview.net/forum?id=di52zR8xgf
https://arxiv.org/abs/2410.02416
https://arxiv.org/abs/2410.02416
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

Under review as a conference paper at ICLR 2026

APPENDIX
Symbol Meaning
x, € RY latent at step k (time tg).

z:=z/|z2
Pk = ikfl?\,;r

Unit vector in the direction of x.

Projector onto span(xy) (‘normal’ to the iso-noise surface at x).

P,j =] — P,  Tangential projector orthogonal to xy.

(u,v), ||ull2 Euclidean inner product and norm.

so(x,t) Model score.

eg(z,t) Model noise prediction; so(x,t) = —€p(x,t) /0.
gk Guidance residual direction.

Ag Base solver increment without TAG at step k.
ATAG TAG-modified increment at step k.

n>1 TAG tangential amplification factor (scales P,CJ- A).
NFE Number of function evaluations.

A PROOF & DERIVATION

Proof for Theorem 4.1

Proof. Assume the deterministic base step Ag11 = &g €9(Trr1, thr1) + Bk Tiy1, With dg
and let Py, Pkﬁl be the orthogonal projectors with Py 21 = ®r4+1 and Pk%dfck—&-l

Applying the projectors to the base decomposition gives
Py Apyr = i Py o, tiy),

Therefore, the TAG update rule step is

AR = (Poy1 + 1 Pgy) At = [ Prsr + 0Py €0(@pr1, tir1) + Brrgr-

The first-order Taylor gain with respect to TAG update at ¢ is defined as:

G(n) = (ATA9) 'V, log p(x | thin)]

T=Tk+1

-
= ((Pk-H +T]P;¢J;_1)Ak+1) Vz log p(x | tk+1)|

We analyze this gain by approximating the true score with the model’s score function

L=k 41

89(Tpt1,thsr) = —UklllEe(inJrh th1),
thus:

.
G(n) = ((Pk+1 + nPiji»l)AkJrl) Valogp(e | tri)|

T=x) )1
~ ((Pk+1 +n P]i;,_l)Ak—&-l) T80($k+17 tht1)
= ok (Pt + 1 PE )AL ) o(@rnti)
Substitute equation 23 into equation 26, then:
G(n) ~ —Ukjl (dkPk:JrlEG + Brep1 + ndkpé169>T€9
— —ak__il (dk(Pk+1€9)T€9 + Bka};_lee + ndk(Pkﬁ_lee)Tee).
Since P and P~ are symmetric and idempotent, thus

v Py = HP'U||§

12

<

O,
0.

Py 1 Api1 = @y Poyi€g(Trg1, thog) + Bk Tit-

(22)

(23)

(24)

(25)

(26)

27)

(28)
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is established. Therefore,

1 (- 2 ~ 2
G(n) = —o4 iy (OékHPk+1€9H2 + By 160 + nak||P/f+159||2>' (29)
Differentiating the gain G(7) in equation 29 with respect to 7 yields:
9G(n) . =Gk |1 2
o~ o | Piiico(@hsns tegr)], > 0. (30)

This derivative is guaranteed to be non-negative, since the DDIM sampler coefficient a;, < 0 by
definition, while o1 and the squared L2-norm are strictly non-negative. This proves that the
first-order gain G(7) is a monotonically non-decreasing function of 7. Consequently, amplifying
the tangential component of the update step via TAG is guaranteed to improve the first-order log-
likelihood gain compared to the base update step.

Analysis on pure TAG gain. Subtracting each gain G***° £ G(n = 1) and GTA% 2 G(n > 1),

TAG update gain, GTA¢ base update gain, GP*°
T T
-1 TAG -1
( T Okt (Ak.;.l ) €0 ($k+1, tk+1)) - ( —Op4 (Ak+1> €9 (-’Bk+17 tk+1)>

= —akjl (AT - Ak+1)T€9 (Trt1,thsn)

=~ ((n— 1)PkL+1Ak+1>T€0 (Ths1s o).
(31

Using Ag41 = &g €9(Tpt1, tht1) + Bk Tht1, P]CJ:H be:
Ph Api = Pl eo(Tisn, trgr)- (32)
Thus, substitute equation 32 into equation 31 then:

GG —GPe = —g L - (an(n—1)) - (Pi 60(33k+1,tk+1))T69 (@ht1s tirr)- (33)

scalar

This simplifies to the final quadratic form:

GG — g = —g L - (ar(n—1)) - |\P,j+169(wk+17tk+1)uj, (34)

>0 as ap <0

This proves that the difference in gain is non-negative for any > 1. Therefore, the first-order
log-likelihood gain of the TAG update is always greater than or equal to that of the base update, with
equality holding if and only if 7 = 1 or the tangential component of the score is zero. O
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B IMPLEMENTATION OF THE TANGENTIAL AMPLIFYING GUIDANCE

Code: Tangential Amplifying Guidance (TAG)

I output = scheduler.step(noise_pred, t, latents, return_dict=False)
3 if apply_tag:

| post = latents

5 eta_v, eta_n = t_guidance_scale, 1

7 v_t = post / (post.norm(p=2, dim=(1,2,3), keepdim=True) + le-8)

9 latents = output

10 delta = latents - post

11 a = (delta * v_t).sum(dim=(1,2,3), keepdim=True)
12

13 un =a *x v_t

14 u_t = delta - u_n

15 latents = post + eta_v * u_t + eta_n % u_n

16 else:
17 latents = output

Code: Conditional Tangential Amplifying Guidance (C-TAG)

I def proj_par(z, n):
2 return (z * n).sum(dim=(1,2,3), keepdim=True) * n

. def proj(z, v):
5 v =v / (v.norm(p=2, dim=(1,2,3), keepdim=True) + le-8)
6 return (z * v).sum(dim=(1,2,3), keepdim=True) * v

8§ eps_u, eps_c = HeadToEps (noise_pred, latents, t, scheduler, do_cfqg)

0 s_u = —eps_u / (sigma + le-12)
11 s_c = —eps_c / (sigma + le-12)

13 n = latents / (latents.norm(p=2, dim=(1,2,3), keepdim=True) + le-8)

5 g = s_C - s_u
16 t_c = s_c - proj_par(s_c, n)

17 t_u = s_u - proj_par(s_u, n)

18 g_aligned = proj(s_c, t_c - t_u)

19 g = g + t_guidance_scale * g_aligned
20

21 s_star = s_u + guidance_scale * g

22 eps = -sigma * s_star

b4 model_out = EpsToHead (eps, latents, t, scheduler)
25 latents = scheduler.step (model_out, t, latents, return_dict=False)
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C ADDITIONAL QUALITATIVE RESULTS

Stable Diffusion 3

Figure 9: Qualitative results for unconditional generation across backbones. For each model
(SD1.5/2.1 (Rombach et al., 2022), SDXL (Podell et al., 2024), SD3 (Esser et al., 2024)), the top
row shows baseline sampling and the bottom row shows +TAG at matched NFE. TAG yields sharper,
more coherent structure with fewer artifacts while preserving diversity.
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D LLM USAGE DISCLOSURE

During the preparation of this paper, the authors made limited use of large language models (LLMs)
for polishing the writing, grammar refinement and LaTeX formatting. LLMs were not used for
generating research ideas, designing or conducting experiments, analyzing results, or formulating
conclusions. All scientific content and contributions are entirely the responsibility of the authors,
and any LLM-assisted text was carefully reviewed and revised before inclusion.
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