

000 001 ROSE: ENHANCING SE(3)-BASED PROTEIN BACKBONE 002 GENERATION VIA ROBUST SCORE ESTIMATION 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 This work presents improvements to Riemannian diffusion models for protein struc-
012 ture generation by developing robust heat kernel computation methods on $SE(3)$
013 space. While existing approaches suffer from approximation errors in score-based
014 diffusion, our method enables stable and accurate denoising score matching on
015 the high-dimensional $SE(3)^N$ manifold through theoretically-grounded numerical
016 techniques. The proposed framework achieves competitive performance in protein
017 generation benchmarks, demonstrating superior scores and successfully generating
018 diverse, physically-plausible protein structures. Notably, our model solves 23 out
019 of 24 motif scaffolding problems and designs refoldable nanobodies, significantly
020 advancing the capability to generate functional protein geometries while
021 maintaining mathematical consistency with the underlying manifold structure.

022 1 INTRODUCTION 023

024 While diffusion models have achieved remarkable success in modeling data distributions within
025 Euclidean space (Ho et al., 2020; Song et al., 2021; Saharia et al., 2022), their direct application to sci-
026 entific domains like high-energy physics (Brehmer & Cranmer, 2020), geological science (Karpatne
027 et al., 2019), and computational biology (Wu et al., 2022b) often yields suboptimal performance (Bor-
028 toli et al., 2022). This limitation stems from a fundamental geometric mismatch: such scientific
029 data is normally best represented on complex manifolds, since directly applying Euclidean diffusion
030 models does not properly incorporate the data prior, and training such model often suffers from
031 singularities on these complex manifolds (Lou et al., 2023).

032 In particular, *de novo* protein design – the task of generating novel proteins satisfying specified
033 structural or functional properties – faces the same challenge due to the inherent complexity of the
034 data distribution (Levinthal, 1969), which resides on a highly intricate high-dimensional manifold: a
035 protein backbone consists of N residues, each with four heavy atoms rigidly connected via covalent
036 bonds. Since each residue can be described as an element of the Lie group $SE(3)$ (Jumper et al., 2021;
037 Yim et al., 2023c), the structure space of protein backbones forms a high-dimensional Riemannian
038 manifold, formally modeled as $SE(3)^N$. To model such data faithfully, generative methods like
039 diffusion processes must operate directly on this manifold rather than in Euclidean space. Thus, a
040 significant challenge lies in formulating diffusion processes that rigorously adhere to the $SE(3)^N$
041 manifold’s geometric priors.

042 Among various attempts to model protein structures on their manifolds, the $SE(3)$ score-based
043 diffusion model (Huang et al., 2022; Yim et al., 2023c; Bortoli et al., 2022) has emerged as a
044 promising solution. Several protein generation methods (Watson et al., 2022; Trippé et al., 2023) have
045 adopted this framework, learning to reverse $SE(3)^N$ diffusion process – in particular, the $SO(3)$ and
046 \mathbb{R}^3 heat equation for each residue respectively. Although such methods have generated experimentally
047 verified and novel protein binders (Watson et al., 2022), their training process encounters instabilities
048 arising from score approximation errors on $SE(3)^N$. Thus, such works resort to noise schedule
049 truncation, which restricts training noise level $\sigma \geq \sigma_{truncated}$. This results in undesignable samples
050 including chain breaks or steric clashes (See Fig. 2). Recent methods like RFDiffusion (Watson et al.,
051 2022) and FrameDiff (Yim et al., 2023c) either introduce heuristic loss or rely on pretraining on
052 protein structure prediction to alleviate physical violations in generated samples. However, such
053 practical improvements not only introduce additional hyperparameter tuning but also fundamentally
introduce biases to the generative distributions (Liu et al., 2024).

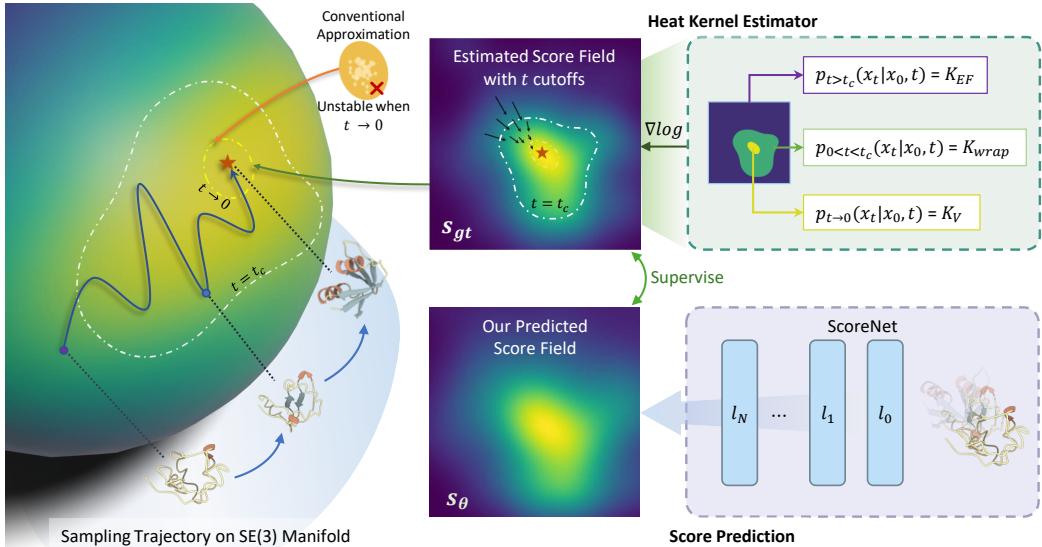


Figure 1: **High-quality protein backbone generation via multi-stage score estimation.** Conventional approximations break down when noise levels are low, making accurate score-function simulation challenging. Our method, RoSE, leverages a multi-stage heat kernel estimator to construct a precise score field, enabling the network to more faithfully learn the true data distribution. As a result, RoSE generates protein backbones of substantially higher quality.

In this work, we introduce a strategy to stabilize Riemannian Diffusion Models (RDMs) by re-examining the computational foundations of denoising score matching. Central to this framework is the heat kernel (Grigor'yan, 1999), which governs the diffusion process and enables gradient estimation for training. By exploiting the unique algebraic and leverage symmetry of $\text{SO}(3)$ space, we derive efficient numerical methods for both sampling from the heat kernel and computing the gradient of its logarithm, which are critical for stable denoising score matching. This strategy enables robust training of diffusion models on a complex $\text{SE}(3)^N$ manifold, a canonical space for protein structure representation.

Our contributions are threefold. First, we propose RoSE, a **Robust SE(3)** diffusion model that leverages Varadhan's asymptotic formula for the heat kernel tailored for protein design task. By combining a geodesic distance-based approximation with a wrapped summation over periodic copies, our method preserves numerical stability when the diffusion timestamp is small. Second, our architectural improvements substantially enhance model performance. Furthermore, the carefully curated dataset provides additional gains. Together, these advances enable the generation of biologically designable protein monomers with greater structural diversity and novel folding patterns. Third, we extend these capabilities to address a critical challenge in computational biology by solving motif scaffolding problems: our approach successfully scaffolds 23 out of 24 structural motifs in standard benchmarks and produces refoldable VHH nanobody designs for 4 out of 25 difficult cases, matching the current state-of-the-art RFDiffusion's success rate of 5 out of 25, thereby advancing the field of conditional protein design.

2 BACKGROUND AND PRELIMINARIES

2.1 PROTEIN BACKBONE PARAMETERIZATION

Diffusion models have been applied to various protein representations, including torsion angles (Wu et al., 2022a), C_α -only coordinates (Geffner et al., 2025), and $\text{SE}(3)$ backbone frame representations (Watson et al., 2022). Among these, the frame representation achieves remarkable results

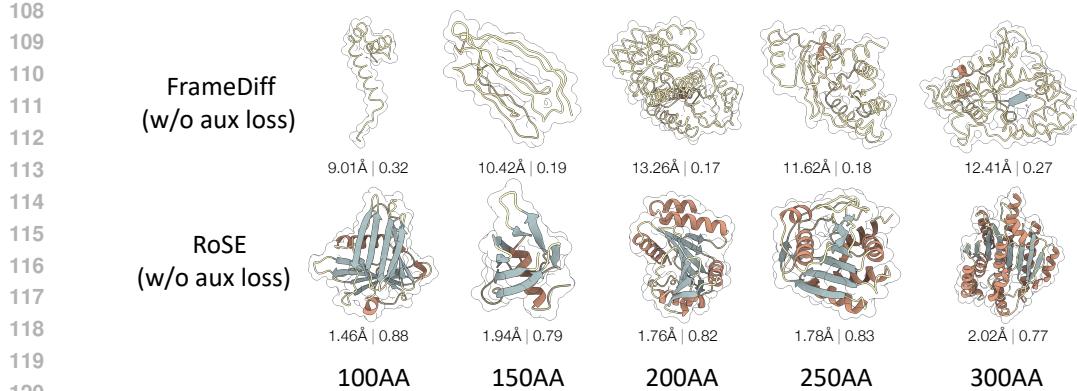


Figure 2: **Sampled backbones** from $\mathcal{IG}_{SO(3)}$ based diffusion model like FrameDiff and RoSE solely trained by score matching loss. First row shows the sampled backbones from $\mathcal{IG}_{SO(3)}$ based diffusion model, and the second row shows the sampled backbones from RoSE. When trained solely with the score-matching loss, RoSE produces backbones with fewer chain breaks and steric clashes than those generated by the $\mathcal{IG}_{SO(3)}$ based diffusion model. Below each sampled structure, we report scRMSD(\downarrow) and scTM(\uparrow).

in protein design tasks (Watson et al., 2022). Our protein backbone representation follows this frame-based approach. The 3D backbone structure of a protein with N residues is represented by rigid transformations in $SE(3)$, where each residue i is associated with a transformation $T_i = (R_i, \mathbf{t}_i)$ consisting of a rotation matrix $R_i \in SO(3)$ and a translation vector $\mathbf{t}_i \in \mathbb{R}^3$. Applying T_i to canonical coordinates $\{\mathbf{N}^\circ, \mathbf{C}_\alpha^\circ, \mathbf{C}^\circ\}$ (with $\mathbf{C}_\alpha^\circ = \mathbf{0}$) via

$$T_i \circ \mathbf{p} = R_i \mathbf{p} + \mathbf{t}_i \quad \forall \mathbf{p} \in \{\mathbf{N}^\circ, \mathbf{C}_\alpha^\circ, \mathbf{C}^\circ\} \quad (1)$$

generates observed atomic positions. The \mathbf{O} atom positions are determined following AlphaFold2 (Lin et al., 2022) using an additional torsion angle per residue.

$SE(3)$ is a special Euclidean space containing rotation and translation, which can be formally written as $SE(3) \cong SO(3) \ltimes \mathbb{R}^3$, where \ltimes is the semi-direct product operator. It means the rotation and translation components of $SE(3)$ are independent of each other. Therefore, one can implement $SE(3)$ diffusion models by learning the reverse diffuse process of $SO(3)$ and \mathbb{R}^3 respectively under a chosen diffusion framework like Variance-Preserving score-based diffusion (VP-SDM) (Song et al., 2021). In particular, the forwarding stochastic process on $SE(3)^N$ is given by (Yim et al., 2023c):

$$d\mathbf{X}_{SE(3)^N}^{(t)} = \left[0, -\frac{1}{2} \mathbf{X}_{\mathbb{R}^{3N}}^{(t)} \right] dt + \left[dB_{SO(3)^N}^{(t)}, dB_{\mathbb{R}^{3N}}^{(t)} \right] \quad (2)$$

where $dB_{\mathcal{M}}^t$ is the natural analog of Brownian motion for the compact, differentiable manifold \mathcal{M} .

This stochastic differential equation (SDE) (Song et al., 2021) has a corresponding decomposed reversed SDE,

$$d\overleftarrow{\mathbf{X}}_{SO(3)^N}^{(t)} = \nabla_{\mathbf{X}} \log p_t \left(\overleftarrow{\mathbf{X}}_{SO(3)^N}^{(t)} \right) dt + dB_{SO(3)^N}^{(t)}, \quad (3)$$

$$d\overleftarrow{\mathbf{X}}_{\mathbb{R}^{3N}}^{(t)} = \left\{ \frac{1}{2} \overleftarrow{\mathbf{X}}_{\mathbb{R}^{3N}}^{(t)} + \nabla_{\mathbf{X}} \log p_t \left(\overleftarrow{\mathbf{X}}_{SO(3)^N}^{(t)} \right) \right\} dt + dB_{\mathbb{R}^{3N}}^{(t)}. \quad (4)$$

Since the translation component lies in \mathbb{R}^{3N} space, $\nabla_{\mathbf{X}} \log p_t(\overleftarrow{\mathbf{X}}_{\mathbb{R}^{3N}}^{(t)})$ can be thereby easy to derived (see Appendix. A) since the transition kernel (known as heat kernel), $dB_{\mathbb{R}^{3N}}^{(t)}$, corresponds to Gaussian. However, the complexity of Riemannian $SO(3)$ manifold renders deriving $\nabla_{\mathbf{X}} \log p_t(\overleftarrow{\mathbf{X}}_{SO(3)^N}^{(t)})$ not easy as the $SO(3)$ heat kernel, $p_{SO(3)}(x_t|x_0, t)$, has no closed form. To work with it, the current

162 SE(3)-based protein diffusion models have to rely on explicit expression of eigenfunctions f_i on
 163 $\text{SO}(3)$, which satisfy $\Delta f_i = -\lambda_i f_i$, to approximate heat kernel function with an infinite sum:
 164

$$165 \quad p_{\text{SO}(3)}(x_t|x_0, t) = \sum_i e^{-\lambda_i t} f_i(x_t, x_0) = \frac{1}{8\pi^2} \sum_{i=0}^{\infty} e^{-2i(i+1)t} \frac{\sin((2i+1)\theta/2)}{\sin(\theta/2)} \quad (5)$$

167 where θ is the angle between x and x_0 . This is also known as Isotropic Gaussian $\text{SO}(3)$, $\mathcal{IG}_{\text{SO}(3)}$,
 168 whose axis-angle representation of rotation naturally aligns with.
 169

170 However, this formulation introduces several critical limitations that impede the training of protein
 171 generation models. First, transforming clean rotations into noisy samples requires either simulating a
 172 computationally intensive geodesic random walk using the $\text{SO}(3)$ exponential map or performing
 173 time-consuming kernel and score precomputations, as implemented in FrameDiff. Furthermore, when
 174 $t \rightarrow 0$, the heat kernel scaling terms $e^{-\lambda_i t}$ decay slowly despite $\lambda_i \rightarrow \infty$, necessitating the evaluation
 175 of thousands of terms. This not only increases computational overhead but also faces numerical
 176 instability. And therefore, results in undesignable samples if no auxiliary loss is introduced, as shown
 177 in Fig. 2.

178 As such, some protein generation methods resort to a truncated noise schedule to control errors
 179 when the noise level is relatively small. However, the diffusion training is thus incomplete and must
 180 introduce additional heuristic loss to help the model learn the accurate structure, which introduces
 181 biases to the distribution. Other works (Yim et al., 2023a; Bose et al., 2024) turn to Riemannian Flow
 182 Matching Models, since they do not require heat-kernel simulations. But more recent work (Lou
 183 et al., 2023) demonstrates that RFMs break the vector field’s smoothness assumption, which leads to
 184 truncated precision when sampling.

185 3 METHOD

186 We present RoSE, a **Robust SE(3)-based Diffusion Model** for protein backbone generation via stable
 187 score estimation, to achieve stable protein backbone generation. First, we describe the improved
 188 score approximation strategy to handle extremely unstable score approximations when t is small
 189 (Sec. 3.1). Then, we present our neural network architecture to directly learn the score function
 190 using ScoreUpdate trunk (Sec. 3.2). Moreover, we introduce our training objective loss involving
 191 score matching and structure auxiliary loss (Sec. 3.3). Lastly, we introduce our sampling procedure.
 192 (Sec. 3.4)

193 3.1 ROBUST HEAT KERNEL ESTIMATION ON $\text{SO}(3)$

194 In this section, we highlight how to control errors when t is small. To efficiently capture small-time
 195 diffusion behavior, we leverage **Varadhan’s formula** (Varadhan, 1967), which directly relates the
 196 heat kernel’s asymptotic decay to the manifold’s geometry through geodesic distance:
 197

$$198 \quad \lim_{t \rightarrow 0} t \log p_t(x, y) = -\frac{d(x, y)^2}{4}. \quad (6)$$

200 This establishes a direct link between probability density and geodesic distance, bypassing the infinite
 201 sum of eigenfunctions and therefore providing a theoretical foundation for stable approximations.
 202 Building upon Varadhan’s asymptotic analysis of the heat kernel at small time scales, we adopt an
 203 approximation based on geodesic distance. For two points x, y on the $\text{SO}(3)$ space, the heat kernel
 204 takes the form:

$$205 \quad p(x_t|x_0, t) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{d(x_t, x_0)^2}{2\sigma^2}\right), \quad (7)$$

207 where $d(\cdot, \cdot)$ denotes the geodesic distance on the manifold (the rotation angle on $\text{SO}(3)$) and σ
 208 controls the diffusion scale, satisfying $\sigma = \sqrt{2}t$. And $1/(2\pi\sigma^2)^{3/2}$ is the normalizing factor that
 209 ensures the density accumulation is 1. This formulation directly stems from the dominant term in
 210 Varadhan’s formula when $t \rightarrow 0$.

211 However, when t gets larger, Varadhan’s formula quickly becomes inaccurate. Therefore, we
 212 generalize Varadhan’s formula to the **Wrapped Heat Kernel** by explicitly summing over all periodic
 213 geodesic replicas:

$$215 \quad p(x_t|x_0, t) \propto \sum_{k \in \mathbb{Z}^d} \exp\left(-\frac{\|d(x_t, x_0)^2 + 2\pi k\|^2}{2\sigma^2}\right) \quad (8)$$

216 Truncating the summation to $|n| \leq N$ (typically $N = 3$) achieves a practical balance between
 217 computational efficiency and accuracy. When t approaches 0, the wrapped heat kernel degenerates to
 218 a main component Gaussian which exactly agrees with Varadhan’s formula.

219 Therefore, we integrate these approximations into a single estimator. Our method partitions the
 220 estimation based on the value of t , dynamically switching between an eigenfunction summation (for
 221 large t) and a wrapped heat kernel (for small t), and especially Varadhan’s formula (for $t \rightarrow 0$). This
 222 strategy ensures both computational efficiency and controlled approximation errors across various
 223 scales t . Our algorithm goes as follows:

Algorithm 1: Integrated Heat Kernel Computation

```

1 Hyperparameters: time cutoff  $t_c$ , truncated parameter  $k$ 
2 Input: clean sample  $x_0$ , time  $t$ , noised sample  $x_t$ 
3 Compute
4 if  $t < t_c$  then
5   return  $p(x_t|x_0, t) = 1/C \sum_{k \in \mathbb{Z}^d} \exp\left(-\frac{\|d(x_t, x_0)^2 + 2\pi k\|^2}{2\sigma^2}\right)$ , truncated to  $|k| < 3$ 
6 else
7   return  $p(x_t|x_0, t) = \frac{1}{8\pi^2} \sum_{i=0}^{\infty} e^{-2i(i+1)t} \frac{\sin((2i+1)d(x_t, x_0)^2/2)}{\sin(d(x_t, x_0)^2/2)}$ , truncated to  $|i| < 10$ .
8 end
9 remark  $\nabla_x \log p$  can be computed with autodifferentiation.

```

237 As shown in Fig. 3, our estimation ex-
 238 hibits more stable results than the eigen-
 239 function’s computation used in Framed-
 240 diff (Yim et al., 2023c) at small t , result-
 241 ing in a more numerically stable and pre-
 242 cise score approximation for the diffu-
 243 sion model.

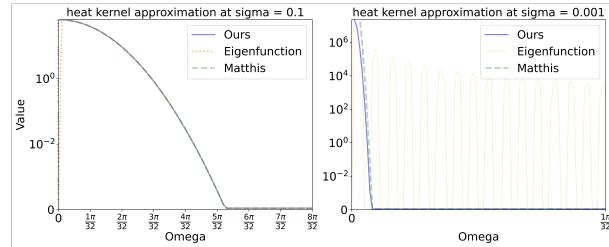
3.2 MODEL ARCHITECTURE

244 Here, we outline our score prediction
 245 module, which utilizes cutting-edge
 246 SE(3)-equivariant neural networks. The
 247 architecture incorporates Invariant Point
 248 Attention (IPA) (Jumper et al., 2021)
 249 blocks to iteratively refine SE(3) trans-
 250 formations across L layers through a com-
 251 bination of spatial and sequential attention
 252 mechanisms. At the ℓ -th layer, the node fea-
 253 tures are represented as $h_\ell = [h_\ell^1, \dots, h_\ell^N] \in \mathbb{R}^{N \times D_h}$, where h_ℓ^n denotes the embedding for the n -th residue.
 254 Simultaneously, the edge features $z_\ell \in \mathbb{R}^{N \times N \times D_z}$ store pairwise interactions, with z_ℓ^{nm} encoding
 255 the edge between residues n and m .

256 Fig. 4 illustrates a single layer of RoSE, a score-driven geometric graph network that jointly models
 257 node relationships and SE(3) scores via dedicated update mechanisms. The input consists of initial
 258 node features h_0 , encoding protein residue indices (sequential positional information), which are
 259 first projected linearly and then processed by Invariant Point Attention (IPA) to maintain geometric
 260 equivariance. Node features are refined through a NodeUpdate module integrating IPA with Trans-
 261 former layers, while edge features (z_ℓ) are updated via a separate EdgeUpdate. Unlike FrameDiff,
 262 which relies on simulation to derive scores from predicted rigid transformations, introducing error
 263 propagation, our architecture directly predicts and iteratively optimizes scores through an MLP
 264 branch. Additionally, akin to FrameDiff, our model predicts torsion angles for each residue’s oxygen
 265 atom relative to the predicted local frame.

3.3 OBJECTIVE FUNCTIONS

266 In Eq. 3 and Eq. 4, the reverse process of a Stochastic Differential Equation (SDE), where the score
 267 term $\nabla_X \log p_t(X_0|X_t, t)$ is intractable. To address this, we train our score network $s_\theta(X_t, t)$ as a
 268 direct score estimator by minimizing the Denoising Score Matching (DSM) loss (Song et al., 2021):



269 **Figure 3: Heat kernel value comparison between different method.** Blue: Our proposed method. Yellow: Eigenfunction method used in Framediff. Green: Matthis’s approximation, used as a reference (see Appendix B in details).

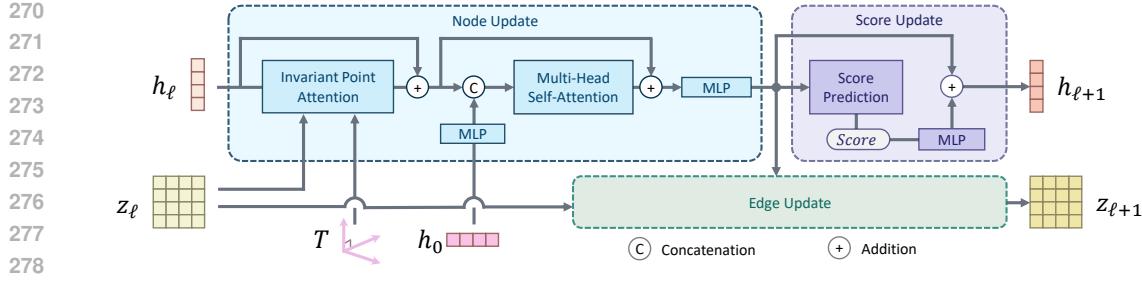


Figure 4: **Single layer of RoSE.** The layer receives the current node features h_ℓ , the current edge features z_ℓ , the initial node features h_0 , and the initial frame representations T . Rectangles denote trainable neural networks; italic labels denote layer inputs and outputs. Within the layer, node features are first updated via IPA and multi-head self-attention, producing $h_{\ell+1}$. Updated node features are then used to update the edge features to $z_{\ell+1}$, and in parallel, a small prediction head directly computes the layer’s score output.

$$\mathcal{L}(\theta) = \mathbb{E} [\lambda_t \|\nabla_{\mathbf{X}} \log p(\mathbf{X}_t | \mathbf{X}_0, t) - s_\theta(\mathbf{X}_t, t)\|^2]. \quad (9)$$

Given the independence between $\text{SO}(3)$ and \mathbb{R}^3 , we decompose the DSM loss into separate terms for rotation and translation:

$$\mathcal{L}_{dsm} = \alpha_1 \mathcal{L}_{dsm}^{\text{SO}(3)} + \alpha_2 \mathcal{L}_{dsm}^{\mathbb{R}^3}, \quad (10)$$

where α_1 and α_2 are weighting coefficients for the respective components.

While the DSM loss alone is sufficient for training our protein model, we incorporate an auxiliary loss for ablation analysis. Computing this loss requires reconstructing predicted frames from the estimated scores, which introduces a technical complication: as detailed in Algo. 1, our score computation involves autodifferentiation via torch and disrupts gradient flow during backpropagation. (See Appendix D.)

Here, we alternatively relate score prediction to backbone prediction via Varadhan’s formula for small t , given Eq. 6,

$$\nabla_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{x}_0, t) \approx \frac{1}{2t} \log_x(x_0) \Rightarrow x_0 \approx \exp_x(2t \cdot \nabla_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{x}_0, t)) \quad (11)$$

For small t , we incorporate auxiliary losses, including the backbone position loss (\mathcal{L}_{bb}) and the pairwise atomic distance loss (\mathcal{L}_{2D}), in addition to the main diffusion loss (\mathcal{L}_{dsm}), as implemented in FrameDiff. See details in Appendix D.

3.4 SAMPLING

We present our sampling procedure on the $\text{SE}(3)$ manifold. Using an Euler-Maruyama solver with geodesic random walk, we initialize frames from an invariant density at time T : for translations, we sample from a standard Gaussian in \mathbb{R}^3 , while rotations are drawn from a wrapped Gaussian distribution on $\text{SO}(3)$. The reverse-time sampling progresses from $t = T$ to $t = 0$ in discrete steps of size η . At each step, our model directly predicts the score function $\nabla_{\mathbf{X}} \log p(\mathbf{X}_0 | \mathbf{X}_t, t)$, and we update the rigid frames through exponential mapping of $\{\mathbf{X}_t, dt\}$.

Unlike FrameDiff – which suffers from numerical instability as $t \rightarrow 0$ due to score prediction errors and must resort to early truncation ($\epsilon > 0$) and noise downscaling – our method maintains stable generation throughout the complete diffusion process. We achieve this via RoSE score prediction network, trained with our robust score estimator to prevent instability at small t .

Table 2: **Quantitative Comparison.** RoSE consistently achieves best or second-best performance in terms of quality, diversity, and novelty. (\downarrow) indicates lower is better, (\uparrow) indicates higher is better.

Method	Quality		Diversity		Novelty pdbTM(↓)	SS Ratio (α/β /coil)
	scRMSD (↓)	scTM (↑)	inter-TM(↓)	max-cluster(↑)		
RFDiffusion	1.84	0.95	0.44	0.60	0.53	82.1/11.6/6.3
FrameDiff	2.72	0.87	0.57	0.29	0.47	71.5/24.5/3.9
FrameDiff w/o aux	12.42	0.16	—	—	—	—
FrameFlow	2.25	0.76	0.62	0.74	0.62	67.4/26.4/6.1
CarbonNovo	1.94	0.86	0.61	0.73	0.81	65.8/20.3/13.9
FoldFlow	2.87	0.63	0.74	0.41	0.65	75.2/16.8/8.0
FoldFlow2	1.74	0.99	0.66	0.68	0.47	77.5/14.1/8.4
Protina	1.79	0.98	0.62	0.76	0.52	71.4/15.6/12.9
RoSE w/o aux	1.91	0.89	0.62	0.54	0.31	67.7/18.2/14.1
RoSE	1.83	<u>0.93</u>	<u>0.53</u>	0.78	<u>0.43</u>	63.6/22.9/13.5

Table 3: Motif-scaffolding comparison.

Benchmark	RFDiffusion benchmark		VHH benchmark		
Model	Solved /24↑	Diversity ↑	Motif ↓	Scaffold ↓	Solved /25↑
RFDiffusion	24	0.427	3.10	2.58	5
FrameDiff	18	0.311	–	–	–
FrameFlow	22	0.335	–	–	–
FoldFFlow2	24	0.395	2.91	1.94	7
Ours	23	0.412	3.52	2.45	4

4 EXPERIMENTS

Customized Dataset. Our model was trained on structural data curated from PDB (wwPDB consortium, 2019). We selected monomer proteins with lengths ranging from 60 to 384 residues and applied a radius of gyration filter based on the empirical scaling law observed for globular proteins. Specifically, we retained proteins with a radius of gyration less than $2.24 \times N^{0.392} \text{ \AA}$, where N represents the number of residues in the protein. Additionally, we performed other rigorous quality filtering steps, resulting in a final dataset of 87,426 monomer protein entries. Please see Appendix C for more details.

Baselines. We establish comparative baselines across two protein design paradigms: (1) For unconditional generation, we leverage pre-trained implementations of **FrameDiff** (Yim et al., 2023c), **FrameFlow** (Yim et al., 2023a), **CarbonNovo** (Ren et al., 2024), **FoldFlow** (Bose et al., 2024), and **RFDiffusion** (Watson et al., 2022) which serves as the state-of-the-art reference. (2) For motif-scaffolding, we benchmark against conditional implementations of **FrameFlow**, **FrameDiff**, **Protina** (Geffner et al., 2025), **FoldFlow2** (Huguet et al., 2024) and **RFDiffusion**.

4.1 UNCONDITIONAL PROTEIN BACKBONE GENERATION

The goal of unconditional protein backbone generation is to produce 3D structures aligning with curated data distribution. We evaluate the generated proteins in terms of *quality*, *novelty* and *diversity*, we kindly refer to Appendix E for detailed definitions

We evaluate two model variants: one without auxiliary losses (**RoSE w/o aux**) and one incorporating Varadhan-based auxiliary losses (**RoSE**). Both are compared against leading SE(3)-based generative models, including RFDiffusion, FrameDiff, FrameFlow, CarbonNovo, FoldFlow, FoldFlow2, and Protina.

As shown in Table 2, our full model achieves competitive or state-of-the-art performance across nearly all metrics. It attains the best scRMSD (1.83 \downarrow) and second-best scTM (0.93 \uparrow), while also leading in diversity (max-cluster: 0.78 \uparrow) and showing strong novelty (pdbTM: 0.43 \downarrow). Even without auxiliary losses, our model remains competitive in quality (scRMSD 1.91 \downarrow , scTM 0.89 \uparrow), confirming the robustness of the core architecture. Notably, RFDiffusion's marginally higher scTM (0.95 \uparrow) may be attributed to the higher proportion of alpha-helical structures in its training dataset, as indicated by

378 **Table 4: Ablation study on score update and heat kernel estimation.** Comparison of RoSE with
 379 FrameDiff variants under identical training settings and dataset.

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Quality		Diversity		Novelty	SS Ratio
	Designability (\uparrow)	scRMSD (\downarrow)	scTM (\uparrow)	inter-TM (\downarrow)	pdbTM (\downarrow)	(α/β /coil)
Vanilla FrameDiff	0.45	2.44	0.84	0.71	0.49	71.5/24.5/3.9
FrameDiff + Score Update	0.32	3.61	0.83	0.78	0.61	66.5/17.1/16.4
RoSE (FrameDiff dataset)	0.96	1.86	0.91	0.55	0.47	67.5/18.8/13.7

Table 5: Ablation study on dataset composition.

Method	Designability (\uparrow)	scRMSD (\downarrow)	scTM (\uparrow)	inter-TM (\downarrow)	Novelty (\downarrow)
Vanilla FrameDiff	0.48	2.44	0.84	0.61	0.49
FrameDiff + Our data	0.51	2.31	0.86	0.68	0.47
RoSE + FrameDiff data	0.96	1.86	0.91	0.55	0.47
RoSE + Our data	0.98	1.81	0.96	0.51	0.44

its secondary structure composition (82.1% α -helix). Detailed per-length sample results and extended baselines are provided in the Appendix F.

These improvements stem from our stabilized SE(3) score approximation via Varadhan’s formula, which ensures training stability and provides geometrically faithful manifold guidance, enabling high-quality, diverse backbone generation.

4.2 MOTIF SCAFFOLDING

In protein design, motif scaffolding addresses the challenge of constructing structural frameworks ("scaffolds") around predefined functional segments ("motifs") while preserving their biological activity. This approach allows for the creation of proteins with predetermined functional sites through conditional generation. The motifs, often small and geometrically diverse, require models to incorporate both structural and chemical information for effective scaffolding. Following established evaluation protocols, we employ two distinct benchmarks: (1) the established 24 single-chain motif dataset (Watson et al., 2022), and (2) a newly developed benchmark based on Complementarity Determining Regions (CDRs) in VHH nanobodies, curated from structural antibody databases (Huguet et al., 2024). This evaluation shown in Tab. 3 demonstrates our model’s adaptability for conditional generation tasks in protein design.

Benchmark Results. Our method demonstrates competitive performance across both benchmarks. In the single-chain motif benchmark, we achieve a 23/24 success rate, matching the state-of-the-art, while maintaining high structural diversity (0.412). On the VHH nanobody benchmark, our approach achieves a 4/25 success rate, which, while lower than FoldFlow2’s 7/25, still demonstrates strong scaffolding capabilities.

4.3 ABLATION STUDY

4.3.1 SCORE UPDATE AND HEAT KERNEL ESTIMATION

We conducted an ablation study to evaluate the individual contributions of our proposed components. As shown in Table 4, we compare three configurations under identical training settings: (1) **Vanilla FrameDiff**—the original implementation; (2) **FrameDiff + Score Update**—augmented with our score prediction module; and (3) **RoSE**—our complete model incorporating both score update and heat kernel estimation.

The results demonstrate that while directly applying the score update module alone degrades performance (Designability: 0.32 vs. 0.45), the combination with our heat kernel estimation in RoSE significantly improves all metrics, achieving near-perfect designability (0.96) and superior structural quality. This confirms that accurate score estimation via Varadhan’s formula is essential for stable training and effective generation.

4.3.2 DATASET EVALUATION

Table 5 evaluates the impact of dataset composition. Our customized dataset provides moderate improvements to FrameDiff (Designability: 0.51 vs. 0.48), but when combined with RoSE, it

432
433 **Table 6: Ablation study on sampling steps.**
434
435
436

Sampling Steps	50	100	200	300	400	500	600
scRMSD (↓)	18.42	7.52	3.25	2.01	1.89	1.91	1.86
scTM (↑)	0.14	0.31	0.64	0.87	0.98	0.97	0.98

437
438 achieves the best overall performance across all metrics. This demonstrates that while our architectural
439 innovations drive the majority of performance gains, the curated dataset provides additional refinement.
440 To promote reproducibility, we will release both the dataset and processing scripts.
441

442 4.3.3 SAMPLING STEP ANALYSIS

443 We further analyze the effect of sampling steps on generation quality. As shown in Table 6, performance
444 improves steadily with increased sampling steps, with optimal results achieved around 400-600
445 steps. While our method maintains stable performance across a wide range of step configurations, we
446 set the sampling step to 400 in our experiments to achieve the best trade-off between computational
447 cost and generation quality.
448

5 RELATED WORK

449 **Protein Generative Models.** Diffusion models have achieved remarkable success in image and
450 video generation (Ho et al., 2020; Song et al., 2021; Ho et al., 2022; Saharia et al., 2022; Zhang
451 et al., 2023; Karras et al., 2024; Brooks et al., 2024), and are increasingly applied to protein structure
452 generation (Watson et al., 2022; Yim et al., 2023c). Early approaches represented proteins via
453 pairwise features and trained Euclidean diffusion models in this feature space (Wu et al., 2022a; Lee
454 et al., 2023), but lacked end-to-end structure generation. Recent methods model protein backbones
455 as rigid frames in $SE(3)$ space (Watson et al., 2022; Yim et al., 2023c;b), incorporating structural
456 priors while facing numerical instability. Alternatively, some apply diffusion directly in \mathbb{R}^N at the
457 atomic level (Trippe et al., 2023; Ingraham et al., 2023; Geffner et al., 2025), but often sacrifice
458 structural priors or restrict modeling scope. Our method preserves $SE(3)$ -based structural modeling
459 while enabling accurate and stable score estimation directly in $SE(3)$ space
460

461 **Riemannian Diffusion Models.** With the rise of diffusion models enabling efficient, simulation-
462 free training in Euclidean space (Ho et al., 2020; Song et al., 2021), recent works have extended
463 these approaches to non-Euclidean manifolds. Riemannian diffusion models (RDMs) (Huang et al.,
464 2022) generalize continuous-time diffusion to arbitrary Riemannian manifolds, but face limitations
465 including the lack of closed-form solutions for manifold Ornstein–Uhlenbeck analogs and costly
466 score matching procedures (Chen & Lipman, 2023), hindering scalability to high-dimensional settings
467 such as protein modeling. Scaling Riemannian Diffusion Models (Lou et al., 2023) improve efficiency
468 via a differential-equation-based framework, yet are only validated on low-complexity synthetic data.
469 Building on this line, we extend Riemannian diffusion to $SE(3)^N$, delivering a numerically stable and
470 scalable model capable of learning complex protein manifolds.
471

6 DISCUSSION

472 **Limitations.** Despite the promising results, our current protein generation pipeline has several
473 limitations. First, we restrict training to high-quality PDB entries to ensure data reliability and stable
474 convergence; in contrast, recent works (Lin et al., 2024; Geffner et al., 2025) have incorporated large-
475 scale resources such as AFDB, which could increase dataset size by over an order of magnitude and
476 potentially improve performance, making integration of such data an important direction for future
477 work. Second, our current evaluation lacks experimental (wet-lab) validation, and the biological
478 viability of generated proteins remains to be confirmed, with bridging this gap between in silico
479 modeling and real-world application being a key avenue for future research.
480

481 **Conclusion.** In this work, we introduce a novel method that accurately models the distribution of
482 protein backbones and generates high-quality protein structures. Our enhanced $SE(3)$ diffusion frame-
483 work enables stable training directly in the protein $SE(3)$ space, optimized via score matching loss
484 without requiring auxiliary terms. We empirically validate the accuracy of our likelihood estimation
485 and demonstrate the model’s capability to generate both diverse and designable protein samples.
486 Furthermore, our method exhibits probabilistic scaffolding capabilities, successfully addressing
487 several challenging scaffolding tasks.
488

486 REFERENCES
487488 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
489 Arnaud Doucet. Riemannian Score-Based Generative Modelling, November 2022.490 Avishek Joey Bose, Tara Akhoud-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks,
491 Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander
492 Tong. SE(3)-Stochastic Flow Matching for Protein Backbone Generation, April 2024.493 Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation,
494 November 2020.495 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
496 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
497 generation models as world simulators. 2024. URL [https://openai.com/research/
498 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).500 Ricky T. Q. Chen and Yaron Lipman. Riemannian flow matching on general geometries. *ArXiv*,
501 abs/2302.03660, 2023.502 J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
503 A. Courbet, R. J. De Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
504 B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
505 deep learning-based protein sequence design using ProteinMPNN. *Science*, 378(6615):49–56,
506 October 2022. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.add2187.507 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
508 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, and Karsten Kreis. Proteina: Scal-
509 ing flow-based protein structure generative models. In *International Conference on Learning
510 Representations (ICLR)*, 2025.511 Alexander Grigor'yan. Spectral theory and geometry: Estimates of heat kernels on riemannian
512 manifolds. 1999.513 Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. *ArXiv*,
514 abs/2006.11239, 2020.515 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
516 Fleet. Video Diffusion Models, June 2022.517 Chin-Wei Huang, Milad Aghajohari, A. Bose, P. Panangaden, and Aaron C. Courville. Riemannian
518 diffusion models. *ArXiv*, abs/2208.07949, 2022.519 Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
520 Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhoud-Sadegh, Michael Bronstein, Alexander
521 Tong, and Avishek Joey Bose. Sequence-augmented se(3)-flow matching for conditional protein
522 backbone generation, 2024. URL <https://arxiv.org/abs/2405.20313>.523 John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent
524 Frappier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue,
525 Sarah C. Cowles, Alan Leung, João V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub,
526 Robin Green, Katherine Puentes, Frank Oplinger, Nishant V. Panwar, Fritz Obermeyer, Adam R.
527 Root, Andrew L. Beam, Frank J. Poelwijk, and Gevorg Grigoryan. Illuminating protein space with
528 a programmable generative model. *Nature*, 2023. doi: 10.1038/s41586-023-06728-8.529 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
530 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
531 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.532 Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recognition
533 of hydrogen-bonded and geometrical features. *Biopolymers: Original Research on Biomolecules*,
534 22(12):2577–2637, 1983.

540 Anuj Karpatne, Imme Ebert-Uphoff, Sai Ravela, Hassan Ali Babaie, and Vipin Kumar. Machine
 541 learning for the geosciences: Challenges and opportunities. *IEEE Transactions on Knowledge and*
 542 *Data Engineering*, 31(8):1544–1554, 2019. doi: 10.1109/TKDE.2018.2861006.

543

544 Tero Karras, Miika Aittala, Tuomas Kynkääniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 545 Guiding a Diffusion Model with a Bad Version of Itself, December 2024.

546

547 Jin Sub Lee, Jisun Kim, and Philip M. Kim. Proteinsgm: Score-based generative modeling for de
 548 novo protein design. *bioRxiv*, 2023. doi: 10.1101/2022.07.13.499967. URL <https://www.biorxiv.org/content/early/2023/02/04/2022.07.13.499967>.

549

550 Cyrus Levinthal. How to fold graciously. *Mossbauer spectroscopy in biological systems*, 67:22–24,
 551 1969.

552

553 Yeqing Lin, Minji Lee, Zhao Zhang, and Mohammed AlQuraishi. Out of many, one: Designing
 554 and scaffolding proteins at the scale of the structural universe with genie 2, 2024. URL <https://arxiv.org/abs/2405.15489>.

555

556 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
 557 Maryam Fazel-Zarandi, Tom Serdu, Sal Candido, and Alexander Rives. Language models of
 558 protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv : the*
 559 *preprint server for biology*, 2022. doi: 10.1101/2022.07.20.500902.

560

561 Yufeng Liu, Sheng Wang, Jixin Dong, Linghui Chen, Xinyu Wang, Lei Wang, Fudong Li, Chenchen
 562 Wang, Jiahai Zhang, Yuzhu Wang, Si Wei, Quan Chen, and Haiyan Liu. De novo protein design with
 563 a denoising diffusion network independent of pretrained structure prediction models. *Nature Methods*,
 564 21(11):2107–2116, November 2024. ISSN 1548-7105. doi: 10.1038/s41592-024-02437-w.
 565 URL <https://doi.org/10.1038/s41592-024-02437-w>.

566

567 Aaron Lou, Minkai Xu, and Stefano Ermon. Scaling riemannian diffusion models, 2023. URL
 568 <https://arxiv.org/abs/2310.20030>.

569

570 Milong Ren, Tian Zhu, and Haicang Zhang. CarbonNovo: Joint design of protein structure and
 571 sequence using a unified energy-based model. In Ruslan Salakhutdinov, Zico Kolter, Katherine
 572 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings*
 573 *of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine*
 574 *Learning Research*, pp. 42462–42483. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/ren24e.html>.

575

576 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 577 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 578 Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
 579 Diffusion Models with Deep Language Understanding, May 2022.

580

581 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 582 Poole. Score-based generative modeling through stochastic differential equations. In *International*
 583 *Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

584

585 Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
 586 Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
 587 scaffolding problem, 2023. URL <https://arxiv.org/abs/2206.04119>.

588

589 Michel Van Kempen, Stephanie S. Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
 590 L. M. Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure
 591 search with Foldseek. *Nature Biotechnology*, 42(2):243–246, February 2024. ISSN 1087-0156,
 592 1546-1696. doi: 10.1038/s41587-023-01773-0.

593

S. R. S. Varadhan. Diffusion processes in a small time interval. *Communications on Pure and Applied*
 594 *Mathematics*, 20(4):659–685, 1967. ISSN 1097-0312. doi: 10.1002/cpa.3160200404.

594 Simon Wagner, Leif Seute, Vsevolod Viliuga, Nicolas Wolf, Frauke Gräter, and Jan Stühmer.
 595 Generating highly designable proteins with geometric algebra flow matching. In A. Globerson,
 596 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Ad-*
 597 *vances in Neural Information Processing Systems*, volume 37, pp. 77987–78026. Curran Asso-
 598 ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/8e906a69bcd9c3b9be15995b525ddda7-Paper-Conference.pdf.

600 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
 601 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
 602 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
 603 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
 604 Mathieu, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker.
 605 Broadly applicable and accurate protein design by integrating structure prediction networks and
 606 diffusion generative models. *bioRxiv*, 2022.

607 Kevin E. Wu, Kevin K. Yang, Rianne van den Berg, James Y. Zou, Alex X. Lu, and Ava P. Amini.
 608 Protein structure generation via folding diffusion, 2022a. URL <https://arxiv.org/abs/2209.15611>.

611 Kevin E. Wu, Kevin K. Yang, Rianne van den Berg, James Y. Zou, Alex X. Lu, and Ava P. Amini.
 612 Protein structure generation via folding diffusion, November 2022b.

613 wwPDB consortium. Protein Data Bank: The single global archive for 3D macromolecular structure
 614 data. *Nucleic Acids Research*, 47(D1):D520–D528, January 2019. ISSN 1362-4962. doi: 10.1093/nar/gky949.

617 Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah
 618 Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank
 619 Noé. Fast protein backbone generation with SE(3) flow matching, October 2023a.

620 Jason Yim, Andrew Campbell, Andrew Y. K. Foong, Michael Gastegger, José Jiménez-Luna, Sarah
 621 Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay, Tommi Jaakkola, and Frank
 622 Noé. Fast protein backbone generation with se(3) flow matching, 2023b. URL <https://arxiv.org/abs/2310.05297>.

625 Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
 626 and Tommi Jaakkola. Se(3) diffusion model with application to protein backbone generation,
 627 2023c. URL <https://arxiv.org/abs/2302.02277>.

628 Angxiao Yue, Zichong Wang, and Hongteng Xu. Reqflow: rectified quaternion flow for efficient and
 629 high-quality protein backbone generation. *arXiv preprint arXiv:2502.14637*, 2025.

631 Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein structure
 632 template quality. *Proteins*, 57(4):702–710, December 2004. ISSN 1097-0134. doi: 10.1002/prot.
 633 20264.

634 Zicheng Zhang, Bonan Li, Xuecheng Nie, Congying Han, Tiande Guo, and Luoqi Liu. Towards
 635 Consistent Video Editing with Text-to-Image Diffusion Models, May 2023.

636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A FROM EUCLIDEAN SPACE TO RIEMANNIAN SPACE: A SHORT REVIEW OF**
 649 **SCORE-BASED DIFFUSION MODELS**
 650

651 **A.1 EUCLIDEAN DIFFUSION MODELS**

652 Diffusion models construct generative processes through the interplay of forward noising and reverse
 653 denoising dynamics. Consider a data distribution $p_{\text{data}}(\mathbf{y}_0)$ on \mathbb{R}^D that evolves through a continuous-
 654 time stochastic process $\{\mathbf{y}_t\}_{t \in [0, T]}$ governed by:
 655

$$656 \quad d\mathbf{y}_t = \boldsymbol{\alpha}(t)\mathbf{y}_t dt + \boldsymbol{\beta}(t)d\mathbf{W}_t, \quad \mathbf{y}_0 \sim p_{\text{data}} \quad (12)$$

658 where $\boldsymbol{\alpha}(t) : [0, T] \rightarrow \mathbb{R}^{D \times D}$ is a time-dependent drift matrix, $\boldsymbol{\beta}(t) : [0, T] \rightarrow \mathbb{R}_+$ is a diffusion
 659 coefficient, and $\{\mathbf{W}_t\}$ is D -dimensional Brownian motion. The transition density $p_{t|s}(\mathbf{y}_t | \mathbf{y}_s)$ for
 660 $0 \leq s < t \leq T$ admits the closed-form solution:
 661

$$662 \quad p_{t|0}(\mathbf{y}_t | \mathbf{y}_0) = \mathcal{N}(\mathbf{y}_t; \mathbf{A}(t)\mathbf{y}_0, \boldsymbol{\Sigma}(t)) \quad (13)$$

664 where $\mathbf{A}(t) = \exp\left(\int_0^t \boldsymbol{\alpha}(s)ds\right)$ and $\boldsymbol{\Sigma}(t) = \int_0^t \exp\left(2\int_s^t \boldsymbol{\alpha}(r)dr\right) \boldsymbol{\beta}(s)^2 ds \cdot \mathbf{I}_D$.
 665

666 The reverse-time process $\{\mathbf{y}_{T-t}\}_{t \in [0, T]}$ follows the stochastic differential equation:
 667

$$668 \quad d\mathbf{y}_t = [\boldsymbol{\alpha}(T-t)\mathbf{y}_t - \boldsymbol{\beta}(T-t)^2 \nabla_{\mathbf{y}_t} \log p_{T-t}(\mathbf{y}_t)] dt + \boldsymbol{\beta}(T-t)d\tilde{\mathbf{W}}_t \quad (14)$$

670 We approximate the score function $\nabla_{\mathbf{y}} \log p_t(\mathbf{y})$ using a neural network $\mathbf{u}_\theta(\mathbf{y}, t)$ trained via:
 671

$$672 \quad \mathcal{L}_{\text{DSM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0, T)} \mathbb{E}_{\mathbf{y}_0} \mathbb{E}_{\mathbf{y}_t | \mathbf{y}_0} [\omega(t) \|\mathbf{u}_\theta(\mathbf{y}_t, t) - \nabla_{\mathbf{y}_t} \log p_{t|0}(\mathbf{y}_t | \mathbf{y}_0)\|^2] \quad (15)$$

675 where $\omega(t)$ is a weighting function typically chosen as $\omega(t) = \boldsymbol{\beta}(t)^2$.
 676

677 **A.2 REMANNIAN DIFFUSION MODELS**

678 Diffusion models on Riemannian manifolds \mathcal{M} extend Euclidean score-based generative modeling to
 679 curved spaces. The framework consists of three fundamental components:
 680

681 [Riemannian Diffusion Process] For a d -dimensional compact connected Riemannian manifold \mathcal{M}
 682 isometrically embedded in \mathbb{R}^n , we have:
 683

1. A forward noising process $(\mathbf{X}_t)_{t \in [0, T]}$ governed by:

$$684 \quad d\mathbf{X}_t = b(\mathbf{X}_t, t)dt + g(t)d\mathbf{B}_t^{\mathcal{M}} \quad (16)$$

2. A time-reversed denoising process $(\mathbf{Y}_t)_{t \in [0, T]} = (\mathbf{X}_{T-t})_{t \in [0, T]}$ satisfying:

$$687 \quad d\mathbf{Y}_t = [b(\mathbf{Y}_t, T-t) - g(T-t)^2 \nabla \log p_{T-t}(\mathbf{Y}_t)] dt + g(T-t)d\tilde{\mathbf{B}}_t^{\mathcal{M}} \quad (17)$$

3. A probability flow ODE enabling deterministic sampling:

$$691 \quad \frac{d\mathbf{Y}_t}{dt} = b(\mathbf{Y}_t, T-t) - \frac{1}{2}g(T-t)^2 \nabla \log p_{T-t}(\mathbf{Y}_t) \quad (18)$$

694 **B EIGENFUNCTIONS AND MATTHIS'S HEAT KERNEL ESTIMATION ON $\text{SO}(3)$**
 695 **GROUP**
 696

698 The heat kernel on $\text{SO}(3)$ admits two conventional mathematical representations:
 699

$$700 \quad f_\epsilon(\omega) = \sum_{\ell=0}^{\infty} (2\ell+1) \exp(-\ell(\ell+1)\epsilon^2) \frac{\sin((\ell+1/2)\|\omega\|)}{\sin(\|\omega\|/2)} \quad (19)$$

702 For concentrated distributions ($\epsilon < 1$), the Matthies approximation offers a closed-form solution:
 703

$$704 f_\epsilon(\omega) \approx \sqrt{\pi} \epsilon^{-3/2} e^{\frac{\pi}{4} - \frac{\|\omega\|^2}{4\epsilon}} \left(\frac{\|\omega\| - e^{-\frac{\pi^2}{\epsilon}} [(\|\omega\| - 2\pi)e^{\pi\|\omega\|/\epsilon} + (\|\omega\| + 2\pi)e^{-\pi\|\omega\|/\epsilon}]}{2 \sin(\|\omega\|/2)} \right) \quad (20)$$

707 **Implementation Note:** The Matthies approximation (Eq. 20), while analytically exact, suffers from
 708 numerical instability in finite-precision tensor arithmetic. The competing exponential terms $e^{-\pi^2/\epsilon}$
 709 (underflow) and $e^{\pi\|\omega\|/\epsilon}$ (overflow) produce NaN values when $\epsilon < 0.1$ in standard floating-point
 710 implementations. Therefore, high-precision ground truth computation using Python’s decimal
 711 module (153-bit precision).

713 C DATASET CONSTRUCTION

714 Our training data is curated from PDB (wwPDB consortium, 2019). We selected monomer proteins.
 715 To obtain high quality structures, we perform following filters:

- 717 • structure determination method is X-ray crystallography or 3D electron microscopy,
- 718 • resolution less than 4Å,
- 719 • radius of gyration (R_g) less than $2.24 \times N^{0.392}$ Å, where N represents the number of residues
 720 in the protein,

722 resulting in a final dataset of 87,426 monomer protein entries.

724 D OBJECTIVE FUNCTION DETAILS

725 D.1 DENOISING SCORE MATCHING LOSS

726 We train our score network $s_\theta(X_t, t)$ as a direct score estimator by minimizing the Denoising Score
 727 Matching (DSM) loss

$$728 \mathcal{L}_{dsm} = \alpha_1 \mathcal{L}_{dsm}^{\text{SO}(3)} + \alpha_2 \mathcal{L}_{dsm}^{\mathbb{R}^3}, \quad (21)$$

729 where

$$730 \begin{cases} \mathcal{L}_{dsm}^{\text{SO}(3)} = \frac{1}{N} \sum_{n=1}^N \|\nabla_R \log p(R_t^i | R_0^i, t) - s_\theta(R_t^i, t)\|^2 \\ \mathcal{L}_{dsm}^{\mathbb{R}^3} = \frac{1}{N} \sum_{n=1}^N \|\nabla_T \log p(T_t^i | T_0^i, t) - s_\theta(T_t^i, t)\|^2 \end{cases} \quad (22)$$

731 where $X = [X^1, \dots, X^N] \in \text{SE}(3)^N$, $X^i = [R^i, T^i]$ represents i ’th residue’s rotation $R \in \text{SO}(3)$
 732 and translation $T \in \mathbb{R}^3$, Groud truth rotation score $\nabla_R \log p(R_t^i | R_0^i, t)$ are calculated by Algorithm1
 733 and translation score $\nabla_T \log p(T_t^i | T_0^i, t) = \frac{T_t^i - \sqrt{\alpha} T_0^i}{\sqrt{1-\alpha_t}}$ Song et al. (2021).

734 D.2 AUXILIARY FAPE LOSS

735 While the DSM loss alone is sufficient for training our protein model, we incorporate an auxiliary
 736 frame aligned point error (FAPE) loss Jumper et al. (2021) for ablation analysis.

$$737 \mathcal{L}_{\text{FAPE}} = \frac{1}{N} \sum_{i=1}^N \sum_{j=1}^M \min \left(d_{\text{cut}}, \left\| X_i^{-1}(\mathbf{x}_j) - \hat{X}_i^{-1}(\hat{\mathbf{x}}_j) \right\|_2 \right) \quad (23)$$

738 where X_i^{-1} represents inverse rigid transformation for i ’th residue. \mathbf{x}_j represents j ’th atom coordinate.

740 E METRICS

741 **Quality.** The quality evaluation focuses on the *designability* of protein structures, determined
 742 by whether viable amino acid sequences can fold into the generated structures. We employ a
 743 computational pipeline where ProteinMPNN (Dauparas et al., 2022) first samples potential amino
 744 acid sequences, which are then folded into structures using ESMFold (Lin et al., 2022). The structural
 745 similarity between RoSE-generated structures and ESMFold-predicted structures is quantified using
 746 TMscore (Zhang & Skolnick, 2004) (sc-TMscore) and RMSD (sc-RMSD), where higher sc-TMscore
 747 or lower sc-RMSD values indicate better designability. Additionally, we assess foldability using
 748 ESMFold’s predicted local distance difference test (pLDDT) score, considering structures with
 749 pLDDT > 70 as physically plausible.

Novelty. Structural novelty is evaluated by comparing each generated protein against all known structures in the Protein Data Bank (PDB) (wwPDB consortium, 2019). For each generated structure, we compute the TMscore against every PDB entry and record the highest value (pdb-TM). A lower pdb-TM score indicates that the generated structure is more distinct from known natural proteins, representing greater novelty.

Diversity. We quantify the diversity of generated protein structures through two complementary approaches. First, we calculate pairwise TMscore similarities between all generated structures, where the maximum pairwise similarity (inner-TM) serves as a diversity metric - lower inner-TM values indicate more diverse structure sets. Second, we perform clustering analysis using FoldSeek (Van Kempen et al., 2024) to determine the number of distinct structural clusters, with diversity measured as the ratio of unique clusters to total structures generated.

SS Ratio. The secondary structure (SS) ratio quantifies the proportion of residues in the generated protein structures that adopt regular secondary structure elements, specifically alpha-helices and beta-sheets. We employ DSSP (Kabsch & Sander, 1983) to assign secondary structure annotations and calculate the ratio of residues classified as helical or strand conformations to the total number of residues.

F UNCONDITIONAL GENERATION

Comparison on sequence length range. Our evaluation range for sequence length is consistent with state-of-the-art methods such as FoldFlow (Bose et al., 2024), GAFL (Wagner et al., 2024), and ReQFlow (Yue et al., 2025), all of which, including RoSE, evaluate protein sequences within the length range of 70 to 350 in their main results. However, as requested, we have conducted additional experiments to evaluate baseline performance on longer sequences. We report scRMSD across varied protein lengths as follows:

Table 7: scRMSD across varied protein lengths

Method	100	200	300	400	500	600
FrameDiff	1.13	1.97	2.56	3.62	8.89	11.43
RFDiffusion	0.99	2.11	2.31	3.41	8.14	9.41
Frameflow	1.17	2.10	2.43	4.23	9.88	12.47
Ours	1.14	1.84	1.95	2.41	4.36	7.14

Comparison on model inference. As shown in Table 8, we present a comparison of model parameters and inference time among different methods.

Table 8: Comparison on model inference

Method	Model parameters	Inference steps	Inference time (s)				
			100AA	150AA	200AA	250AA	300AA
FrameDiff	17M	500	8	10	11	12	14
FrameFlow	150M	200	3	5	7	7	9
FoldFlow2	20M	200	5	6	8	9	10
RoSE	23M	400	8	9	12	13	14