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ABSTRACT

This work presents improvements to Riemannian diffusion models for protein struc-
ture generation by developing robust heat kernel computation methods on SE(3)
space. While existing approaches suffer from approximation errors in score-based
diffusion, our method enables stable and accurate denoising score matching on
the high-dimensional SE(3)N manifold through theoretically-grounded numerical
techniques. The proposed framework achieves competitive performance in protein
generation benchmarks, demonstrating superior scores and successfully generating
diverse, physically-plausible protein structures. Notably, our model solves 23 out
of 24 motif scaffolding problems and designs refoldable nanobodies, significantly
advancing the capability to generate functional protein geometries while
maintaining mathematical consistency with the underlying manifold structure.

1 INTRODUCTION

While diffusion models have achieved remarkable success in modeling data distributions within
Euclidean space (Ho et al., 2020; Song et al., 2021; Saharia et al., 2022), their direct application to sci-
entific domains like high-energy physics (Brehmer & Cranmer, 2020), geological science (Karpatne
et al., 2019), and computational biology (Wu et al., 2022b) often yields suboptimal performance (Bor-
toli et al., 2022). This limitation stems from a fundamental geometric mismatch: such scientific
data is normally best represented on complex manifolds, since directly applying Euclidean diffusion
models does not properly incorporate the data prior, and training such model often suffers from
singularities on these complex manifolds (Lou et al., 2023).

In particular, de novo protein design – the task of generating novel proteins satisfying specified
structural or functional properties – faces the same challenge due to the inherent complexity of the
data distribution (Levinthal, 1969), which resides on a highly intricate high-dimensional manifold: a
protein backbone consists of N residues, each with four heavy atoms rigidly connected via covalent
bonds. Since each residue can be described as an element of the Lie group SE(3) (Jumper et al., 2021;
Yim et al., 2023c), the structure space of protein backbones forms a high-dimensional Riemannian
manifold, formally modeled as SE(3)

N . To model such data faithfully, generative methods like
diffusion processes must operate directly on this manifold rather than in Euclidean space. Thus, a
significant challenge lies in formulating diffusion processes that rigorously adhere to the SE(3)

N

manifold’s geometric priors.

Among various attempts to model protein structures on their manifolds, the SE(3) score-based
diffusion model (Huang et al., 2022; Yim et al., 2023c; Bortoli et al., 2022) has emerged as a
promising solution. Several protein generation methods(Watson et al., 2022; Trippe et al., 2023) have
adopted this framework, learning to reverse SE(3)

N diffusion process – in particular, the SO(3) and
R3 heat equation for each residue respectively. Although such methods have generated experimentally
verified and novel protein binders (Watson et al., 2022), their training process encounters instabilities
arising from score approximation errors on SE(3)

N . Thus, such works resort to noise schedule
truncation, which restricts training noise level σ ≥ σtruncated. This results in undesignable samples
including chain breaks or steric clashes(See Fig. 2). Recent methods like RFDiffusion (Watson et al.,
2022) and FrameDiff (Yim et al., 2023c) either introduce heuristic loss or rely on pretraining on
protein structure prediction to alleviate physical violations in generated samples. However, such
practical improvements not only introduce additional hyperparameter tuning but also fundamentally
introduce biases to the generative distributions (Liu et al., 2024).
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Figure 1: High-quality protein backbone generation via multi-stage score estimation. Con-
ventional approximations break down when noise levels are low, making accurate score-function
simulation challenging. Our method, RoSE, leverages a multi-stage heat kernel estimator to construct
a precise score field, enabling the network to more faithfully learn the true data distribution. As a
result, RoSE generates protein backbones of substantially higher quality.

Table 1: Overview of various SE(3)-based protein
backbone generation models applying strategies to
mitigate score approximation errors.

Method Framework Noise Schedule Additional Loss

RFDiffusion (Watson et al., 2022) RDM truncated required
FrameDiff (Yim et al., 2023c) RDM truncated required
FOLDFLOW (Bose et al., 2024) RFM – optional
FrameFlow (Yim et al., 2023a) RFM – optional
Ours RDM full optional

In this work, we introduce a strategy to stabilize
Riemannian Diffusion Models (RDMs) by
re-examining the computational foundations
of denoising score matching. Central to this
framework is the heat kernel (Grigor’yan, 1999),
which governs the diffusion process and enables
gradient estimation for training. By exploiting the unique algebraic and leverage symmetry of SO(3)
space, we derive efficient numerical methods for both sampling from the heat kernel and computing
the gradient of its logarithm, which are critical for stable denoising score matching. This strategy
enables robust training of diffusion models on a complex SE(3)

N manifold, a canonical space for
protein structure representation.

Our contributions are threefold. First, we propose RoSE, a Robust SE(3) diffusion model that
leverages Varadhan’s asymptotic formula for the heat kernel tailored for protein design task. By
combining a geodesic distance-based approximation with a wrapped summation over periodic copies,
our method preserves numerical stability when the diffusion timestamp is small. Second, our archi-
tectural improvements substantially enhance model performance. Furthermore, the carefully curated
dataset provides additional gains. Together, these advances enable the generation of biologically
designable protein monomers with greater structural diversity and novel folding patterns. Third, we
extend these capabilities to address a critical challenge in computational biology by solving motif
scaffolding problems: our approach successfully scaffolds 23 out of 24 structural motifs in standard
benchmarks and produces refoldable VHH nanobody designs for 4 out of 25 difficult cases, matching
the current state-of-the-art RFDiffusion’s success rate of 5 out of 25, thereby advancing the field of
conditional protein design.

2 BACKGROUND AND PRELIMINARIES

2.1 PROTEIN BACKBONE PARAMETERIZATION

Diffusion models have been applied to various protein representations, including torsion angles (Wu
et al., 2022a), Cα-only coordinates (Geffner et al., 2025), and SE(3) backbone frame representa-
tions (Watson et al., 2022). Among these, the frame representation achieves remarkable results

2
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Figure 2: Sampled backbones from IGSO(3) based diffusion model like FrameDiff and RoSE solely
trained by score matching loss. First row shows the sampled backbones from IGSO(3) based diffusion
model, and the second row shows the sampled backbones from RoSE. When trained solely with
the score-matching loss, RoSE produces backbones with fewer chain breaks and steric clashes than
those generated by the IGSO(3) based diffusion model. Below each sampled structure, we report
scRMSD(↓) and scTM(↑).

in protein design tasks (Watson et al., 2022). Our protein backbone representation follows this
frame-based approach. The 3D backbone structure of a protein with N residues is represented by
rigid transformations in SE(3), where each residue i is associated with a transformation Ti = (Ri, ti)
consisting of a rotation matrix Ri ∈ SO(3) and a translation vector ti ∈ R3. Applying Ti to canonical
coordinates {N◦,C◦

α,C
◦} (with C◦

α = 0) via

Ti ◦ p = Rip+ ti ∀p ∈ {N◦,C◦
α,C

◦} (1)

generates observed atomic positions. The O atom positions are determined following AlphaFold2 (Lin
et al., 2022) using an additional torsion angle per residue.

SE(3) is a special Euclidean space containing rotation and translation, which can be formally written
as SE(3) ∼= SO(3) ⋉ R3, where ⋉ is the semi-direct product operator. It means the rotation and
translation components of SE(3) are independent of each other. Therefore, one can implement SE(3)
diffusion models by learning the reverse diffuse process of SO(3) and R3 respectively under a chosen
diffusion framework like Variance-Preserving score-based diffusion (VP-SDM) (Song et al., 2021).
In particular, the forwarding stochastic process on SE(3)

N is given by (Yim et al., 2023c):

dX
(t)

SE(3)N
=

[
0, −1

2
XR3N

(t)

]
dt+

[
dB

(t)

SO(3)N
, dB

(t)

R3N

]
(2)

where dBt
M is the natural analog of Brownian motion for the compact, differentiable manifoldM.

This stochastic differential equation (SDE) (Song et al., 2021) has a corresponding decomposed
reversed SDE,

d
←−
X

(t)

SO(3)N
= ∇X log pt

(←−
X

(t)

SO(3)N

)
dt+ dB

(t)

SO(3)N
, (3)

d
←−
X

(t)

R3N =

{
1

2

←−
X

(t)

R3N +∇X log pt

(←−
X

(t)

SO(3)N

)}
dt+ dB

(t)

R3N . (4)

Since the translation component lies in R3N space, ∇X log pt(
←−
X

(t)

R3N ) can be thereby easy to derived
(see Appendix. A) since the transition kernel (known as heat kernel), dB(t)

R3N , corresponds to Gaussian.

However, the complexity of Riemannian SO(3) manifold renders deriving∇X log pt(
←−
X

(t)

SO(3)N
) not

easy as the SO(3) heat kernel, pSO(3)(xt|x0, t), has no closed form. To work with it, the current
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SE(3)-based protein diffusion models have to rely on explicit expression of eigenfunctions fi on
SO(3), which satisfy ∆fi = −λifi, to approximate heat kernel function with an infinite sum:

pSO(3)(xt|x0, t) =
∑
i

e−λitfi(xt, x0) =
1

8π2

∞∑
i=0

e−2i(i+1)t sin
(
(2i+ 1)θ/2

)
sin(θ/2)

(5)

where θ is the angle between x and x0. This is also known as Isotropic Gaussian SO(3), IGSO(3),
whose axis-angle representation of rotation naturally aligns with.

However, this formulation introduces several critical limitations that impede the training of protein
generation models. First, transforming clean rotations into noisy samples requires either simulating a
computationally intensive geodesic random walk using the SO(3) exponential map or performing
time-consuming kernel and score precomputations, as implemented in FrameDiff. Furthermore, when
t→ 0, the heat kernel scaling terms e−λit decay slowly despite λi →∞, necessitating the evaluation
of thousands of terms. This not only increases computational overhead but also faces numerical
instability. And therefore, results in undesignable samples if no auxiliary loss is introduced, as shown
in Fig. 2.

As such, some protein generation methods resort to a truncated noise schedule to control errors
when the noise level is relatively small. However, the diffusion training is thus incomplete and must
introduce additional heuristic loss to help the model learn the accurate structure, which introduces
biases to the distribution. Other works (Yim et al., 2023a; Bose et al., 2024) turn to Riemannian Flow
Matching Models, since they do not require heat-kernel simulations. But more recent work (Lou
et al., 2023) demonstrates that RFMs break the vector field’s smoothness assumption, which leads to
truncated precision when sampling.

3 METHOD

We present RoSE, a Robust SE(3)-based Diffusion Model for protein backbone generation via stable
score estimation, to achieve stable protein backbone generation. First, we describe the improved
score approximation strategy to handle extremely unstable score approximations when t is small
(Sec. 3.1). Then, we present our neural network architecture to directly learn the score function
using ScoreUpdate trunk (Sec. 3.2). Moreover, we introduce our training objective loss involving
score matching and structure auxiliary loss (Sec. 3.3). Lastly, we introduce our sampling procedure.
(Sec. 3.4)

3.1 ROBUST HEAT KERNEL ESTIMATION ON SO(3)

In this section, we highlight how to control errors when t is small. To efficiently capture small-time
diffusion behavior, we leverage Varadhan’s formula (Varadhan, 1967), which directly relates the
heat kernel’s asymptotic decay to the manifold’s geometry through geodesic distance:

lim
t→0

t log pt(x, y) = −
d(x, y)2

4
. (6)

This establishes a direct link between probability density and geodesic distance, bypassing the infinite
sum of eigenfunctions and therefore providing a theoretical foundation for stable approximations.
Building upon Varadhan’s asymptotic analysis of the heat kernel at small time scales, we adopt an
approximation based on geodesic distance. For two points x, y on the SO(3) space, the heat kernel
takes the form:

p(xt|x0, t) =
1

(2πσ2)3/2
exp

(
−d(xt, x0)

2

2σ2

)
, (7)

where d(·, ·) denotes the geodesic distance on the manifold (the rotation angle on SO(3))and σ

controls the diffusion scale, satisfying σ =
√
2t. And 1/(2πσ2)3/2 is the normalizing factor that

ensures the density accumulation is 1. This formulation directly stems from the dominant term in
Varadhan’s formula when t→ 0.

However, when t gets larger, Varadhan’s formula quickly becomes inaccurate. Therefore, we
generalize Varadhan’s formula to the Wrapped Heat Kernel by explicitly summing over all periodic
geodesic replicas:

p(xt|x0, t) ∝
∑
k∈Zd

exp

(
−∥d(xt, x0)

2 + 2πk∥2

2σ2

)
(8)
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Truncating the summation to |n| ≤ N (typically N = 3) achieves a practical balance between
computational efficiency and accuracy. When t approaches 0, the wrapped heat kernel degenerates to
a main component Gaussian which exactly agrees with Varadhan’s formula.

Therefore, we integrate these approximations into a single estimator. Our method partitions the
estimation based on the value of t, dynamically switching between an eigenfunction summation (for
large t) and a wrapped heat kernel (for small t), and especially Varadhan’s formula (for t→ 0). This
strategy ensures both computational efficiency and controlled approximation errors across various
scales t. Our algorithm goes as follows:

Algorithm 1: Integrated Heat Kernel Computation
1 Hyperparameters: time cutoff tc, truncated parameter k
2 Input: clean sample x0, time t, noised sample xt

3 Compute
4 if t < tc then
5 return p(xt|x0, t) = 1/C

∑
k∈Zd exp

(
−∥d(xt,x0)

2+2πk∥2

2σ2

)
, truncated to |k| < 3

6 else

7 return p(xt|x0, t) =
1

8π2

∑∞
i=0 e

−2i(i+1)t sin
(
(2i+1)d(xt,x0)

2/2
)

sin(d(xt,x0)2/2)
, truncated to |i| < 10.

8 end
9 remark ∇x log p can be computed with autodifferentiation.

Figure 3: Heat kernel value comparison between differ-
ent method. Blue: Our proposed method. Yellow: Eigen-
function method used in Framediff. Green: Matthis’s
approximation, used as a reference (see Appendix B in
details).

As shown in Fig. 3, our estimation ex-
hibits more stable results than the eigen-
function’s computation used in Framed-
iff (Yim et al., 2023c) at small t, result-
ing in a more numerically stable and pre-
cise score approximation for the diffu-
sion model.

3.2 MODEL ARCHITECTURE

Here, we outline our score prediction
module, which utilizes cutting-edge
SE(3)-equivariant neural networks. The
architecture incorporates Invariant Point
Attention (IPA) (Jumper et al., 2021)
blocks to iteratively refine SE(3) transfor-
mations across L layers through a com-
bination of spatial and sequential attention mechanisms. At the ℓ-th layer, the node features are
represented as hℓ = [h1

ℓ , . . . , h
N
ℓ ] ∈ RN×Dh , where hn

ℓ denotes the embedding for the n-th residue.
Simultaneously, the edge features zℓ ∈ RN×N×Dz store pairwise interactions, with znmℓ encoding
the edge between residues n and m.

Fig. 4 illustrates a single layer of RoSE, a score-driven geometric graph network that jointly models
node relationships and SE(3) scores via dedicated update mechanisms. The input consists of initial
node features h0, encoding protein residue indices(sequential positional information), which are
first projected linearly and then processed by Invariant Point Attention (IPA) to maintain geometric
equivariance. Node features are refined through a NodeUpdate module integrating IPA with Trans-
former layers, while edge features (zl) are updated via a separate EdgeUpdate. Unlike FrameDiff,
which relies on simulation to derive scores from predicted rigid transformations, introducing error
propagation, our architecture directly predicts and iteratively optimizes scores through an MLP
branch. Additionally, akin to FrameDiff, our model predicts torsion angles for each residue’s oxygen
atom relative to the predicted local frame.

3.3 OBJECTIVE FUNCTIONS

In Eq. 3 and Eq. 4, the reverse process of a Stochastic Differential Equation (SDE), where the score
term ∇X log pt(X0|Xt, t) is intractable. To address this, we train our score network sθ(Xt, t) as a
direct score estimator by minimizing the Denoising Score Matching (DSM) loss (Song et al., 2021):

5
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Figure 4: Single layer of RoSE. The layer receives the current node features hℓ, the current edge
features zℓ, the initial node features h0, and the initial frame representations T . Rectangles denote
trainable neural networks; italic labels denote layer inputs and outputs. Within the layer, node features
are first updated via IPA and multi-head self-attention, producing hℓ+1. Updated node features
are then used to update the edge features to zℓ+1, and in parallel, a small prediction head directly
computes the layer’s score output.

L(θ) = E
[
λt∥∇X log p(Xt|X0, t)− sθ(Xt, t)∥2

]
. (9)

Given the independence between SO(3) and R3, we decompose the DSM loss into separate terms for
rotation and translation:

Ldsm = α1LSO(3)
dsm + α2LR3

dsm, (10)

where α1 and α2 are weighting coefficients for the respective components.

While the DSM loss alone is sufficient for training our protein model, we incorporate an auxiliary
loss for ablation analysis. Computing this loss requires reconstructing predicted frames from the
estimated scores, which introduces a technical complication: as detailed in Algo. 1, our score
computation involves autodifferentiation via torch and disrupts gradient flow during backpropagation.
(See Appendix D.)

Here, we alternatively relate score prediction to backbone prediction via Varadhan’s formula for small
t, given Eq. 6,

∇x log p(x|x0, t) ≈
1

2t
logx(x0)⇒ x0 ≈ expx(2t · ∇x log p(x|x0, t)) (11)

For small t, we incorporate auxiliary losses, including the backbone position loss (Lbb) and the
pairwise atomic distance loss (L2D), in addition to the main diffusion loss (Ldsm), as implemented in
FrameDiff. See details in Appendix D.

3.4 SAMPLING

We present our sampling procedure on the SE(3) manifold. Using an Euler-Maruyama solver with
geodesic random walk, we initialize frames from an invariant density at time T : for translations,
we sample from a standard Gaussian in R3, while rotations are drawn from a wrapped Gaussian
distribution on SO(3). The reverse-time sampling progresses from t = T to t = 0 in discrete steps
of size η. At each step, our model directly predicts the score function ∇X log p(X0|Xt, t), and we
update the rigid frames through exponential mapping of {Xt, dt}.

Unlike FrameDiff – which suffers from numerical instability as t→ 0 due to score prediction errors
and must resort to early truncation (ϵ > 0) and noise downscaling – our method maintains stable
generation throughout the complete diffusion process. We achieve this via RoSE score prediction
network, trained with our robust score estimator to prevent instability at small t.

6
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Table 2: Quantitative Comparison. RoSE consistently achieves best or second-best performance in
terms of quality, diversity, and novelty. (↓) indicates lower is better, (↑) indicates higher is better.

Method Quality Diversity Novelty SS Ratio
scRMSD (↓) scTM (↑) inter-TM(↓) max-cluster(↑) pdbTM(↓) (α/β/coil)

RFDiffusion 1.84 0.95 0.44 0.60 0.53 82.1/11.6/6.3
FrameDiff 2.72 0.87 0.57 0.29 0.47 71.5/24.5/3.9
FrameDiff w/o aux 12.42 0.16 – – – –
FrameFlow 2.25 0.76 0.62 0.74 0.62 67.4/26.4/6.1
CarbonNovo 1.94 0.86 0.61 0.73 0.81 65.8/20.3/13.9
FoldFlow 2.87 0.63 0.74 0.41 0.65 75.2/16.8/8.0
FoldFlow2 1.74 0.99 0.66 0.68 0.47 77.5/14.1/8.4
Protina 1.79 0.98 0.62 0.76 0.52 71.4/15.6/12.9
RoSE w/o aux 1.91 0.89 0.62 0.54 0.31 67.7/18.2/14.1
RoSE 1.83 0.93 0.53 0.78 0.43 63.6/22.9/13.5

Table 3: Motif-scaffolding comparison.
Benchmark RFDiffusion benchmark VHH benchmark
Model Solved /24 ↑ Diversity ↑ Motif ↓ Scaffold ↓ Solved /25 ↑
RFDiffusion 24 0.427 3.10 2.58 5
FrameDiff 18 0.311 – – –
FrameFlow 22 0.335 – – –
FoldFLow2 24 0.395 2.91 1.94 7
Ours 23 0.412 3.52 2.45 4

4 EXPERIMENTS

Customized Dataset. Our model was trained on structural data curated from PDB (wwPDB con-
sortium, 2019). We selected monomer proteins with lengths ranging from 60 to 384 residues and
applied a radius of gyration filter based on the empirical scaling law observed for globular proteins.
Specifically, we retained proteins with a radius of gyration less than 2.24 × N0.392Å, where N
represents the number of residues in the protein. Additionally, we performed other rigorous quality
filtering steps, resulting in a final dataset of 87,426 monomer protein entries. Please see Appendix C
for more details.

Baselines. We establish comparative baselines across two protein design paradigms: (1) For un-
conditional generation, we leverage pre-trained implementations of FrameDiff (Yim et al., 2023c),
FrameFlow (Yim et al., 2023a), CarbonNovo (Ren et al., 2024), FoldFlow (Bose et al., 2024),
and RFDiffusion (Watson et al., 2022) which serves as the state-of-the-art reference. (2) For
motif-scaffolding, we benchmark against conditional implementations of FrameFlow, FrameDiff,
Protina(Geffner et al., 2025), FoldFlow2 (Huguet et al., 2024) and RFDiffusion.

4.1 UNCONDITIONAL PROTEIN BACKBONE GENERATION

The goal of unconditional protein backbone generation is to produce 3D structures aligning with
curated data distribution. We evaluate the generated proteins in terms of quality, novelty and diversity,
we kindly refer to Appendix E for detailed definitions

We evaluate two model variants: one without auxiliary losses (RoSE w/o aux) and one incorporating
Varadhan-based auxiliary losses (RoSE). Both are compared against leading SE(3)-based generative
models, including RFDiffusion, FrameDiff, FrameFlow, CarbonNovo, FoldFlow, FoldFlow2, and
Protina.

As shown in Table 2, our full model achieves competitive or state-of-the-art performance across
nearly all metrics. It attains the best scRMSD (1.83↓) and second-best scTM (0.93↑), while also
leading in diversity (max-cluster: 0.78↑) and showing strong novelty (pdbTM: 0.43↓). Even without
auxiliary losses, our model remains competitive in quality (scRMSD 1.91↓, scTM 0.89↑), confirming
the robustness of the core architecture. Notably, RFDiffusion’s marginally higher scTM (0.95↑) may
be attributed to the higher proportion of alpha-helical structures in its training dataset, as indicated by

7
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Table 4: Ablation study on score update and heat kernel estimation. Comparison of RoSE with
FrameDiff variants under identical training settings and dataset.

Method Quality Diversity Novelty SS Ratio
Designability (↑) scRMSD (↓) scTM (↑) inter-TM (↓) pdbTM (↓) (α/β/coil)

Vanilla FrameDiff 0.45 2.44 0.84 0.71 0.49 71.5/24.5/3.9
FrameDiff + Score Update 0.32 3.61 0.83 0.78 0.61 66.5/17.1/16.4
RoSE (FrameDiff dataset) 0.96 1.86 0.91 0.55 0.47 67.5/18.8/13.7

Table 5: Ablation study on dataset composition.
Method Designability (↑) scRMSD (↓) scTM (↑) inter-TM (↓) Novelty (↓)

Vanilla FrameDiff 0.48 2.44 0.84 0.61 0.49
FrameDiff + Our data 0.51 2.31 0.86 0.68 0.47
RoSE + FrameDiff data 0.96 1.86 0.91 0.55 0.47
RoSE + Our data 0.98 1.81 0.96 0.51 0.44

its secondary structure composition (82.1% α-helix). Detailed per-length sample results and extended
baselines are provided in the Appendix F.

These improvements stem from our stabilized SE(3) score approximation via Varadhan’s formula,
which ensures training stability and provides geometrically faithful manifold guidance, enabling
high-quality, diverse backbone generation.

4.2 MOTIF SCAFFOLDING

In protein design, motif scaffolding addresses the challenge of constructing structural frameworks
("scaffolds") around predefined functional segments ("motifs") while preserving their biological
activity. This approach allows for the creation of proteins with predetermined functional sites through
conditional generation. The motifs, often small and geometrically diverse, require models to in-
corporate both structural and chemical information for effective scaffolding. Following established
evaluation protocols, we employ two distinct benchmarks: (1) the established 24 single-chain motif
dataset (Watson et al., 2022), and (2) a newly developed benchmark based on Complementarity De-
termining Regions (CDRs) in VHH nanobodies, curated from structural antibody databases (Huguet
et al., 2024). This evaluation shown in Tab. 3 demonstrates our model’s adaptability for conditional
generation tasks in protein design.

Benchmark Results. Our method demonstrates competitive performance across both benchmarks.
In the single-chain motif benchmark, we achieve a 23/24 success rate, matching the state-of-the-art,
while maintaining high structural diversity (0.412). On the VHH nanobody benchmark, our approach
achieves a 4/25 success rate, which, while lower than FoldFlow2’s 7/25, still demonstrates strong
scaffolding capabilities.

4.3 ABLATION STUDY

4.3.1 SCORE UPDATE AND HEAT KERNEL ESTIMATION

We conducted an ablation study to evaluate the individual contributions of our proposed components.
As shown in Table 4, we compare three configurations under identical training settings: (1) Vanilla
FrameDiff—the original implementation; (2) FrameDiff + Score Update—augmented with our
score prediction module; and (3) RoSE—our complete model incorporating both score update and
heat kernel estimation.

The results demonstrate that while directly applying the score update module alone degrades per-
formance (Designability: 0.32 vs. 0.45), the combination with our heat kernel estimation in RoSE
significantly improves all metrics, achieving near-perfect designability (0.96) and superior structural
quality. This confirms that accurate score estimation via Varadhan’s formula is essential for stable
training and effective generation.

4.3.2 DATASET EVALUATION

Table 5 evaluates the impact of dataset composition. Our customized dataset provides moderate
improvements to FrameDiff (Designability: 0.51 vs. 0.48), but when combined with RoSE, it

8
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Table 6: Ablation study on sampling steps.
Sampling Steps 50 100 200 300 400 500 600

scRMSD (↓) 18.42 7.52 3.25 2.01 1.89 1.91 1.86
scTM (↑) 0.14 0.31 0.64 0.87 0.98 0.97 0.98

achieves the best overall performance across all metrics. This demonstrates that while our architectural
innovations drive the majority of performance gains, the curated dataset provides additional refinement.
To promote reproducibility, we will release both the dataset and processing scripts.

4.3.3 SAMPLING STEP ANALYSIS

We further analyze the effect of sampling steps on generation quality. As shown in Table 6, perfor-
mance improves steadily with increased sampling steps, with optimal results achieved around 400-600
steps. While our method maintains stable performance across a wide range of step configurations, we
set the sampling step to 400 in our experiments to achieve the best trade-off between computational
cost and generation quality.

5 RELATED WORK

Protein Generative Models. Diffusion models have achieved remarkable success in image and
video generation (Ho et al., 2020; Song et al., 2021; Ho et al., 2022; Saharia et al., 2022; Zhang
et al., 2023; Karras et al., 2024; Brooks et al., 2024), and are increasingly applied to protein structure
generation (Watson et al., 2022; Yim et al., 2023c). Early approaches represented proteins via
pairwise features and trained Euclidean diffusion models in this feature space (Wu et al., 2022a; Lee
et al., 2023), but lacked end-to-end structure generation. Recent methods model protein backbones
as rigid frames in SE(3) space (Watson et al., 2022; Yim et al., 2023c;b), incorporating structural
priors while facing numerical instability. Alternatively, some apply diffusion directly in RN at the
atomic level (Trippe et al., 2023; Ingraham et al., 2023; Geffner et al., 2025), but often sacrifice
structural priors or restrict modeling scope. Our method preserves SE(3)-based structural modeling
while enabling accurate and stable score estimation directly in SE(3) space

Riemannian Diffusion Models. With the rise of diffusion models enabling efficient, simulation-
free training in Euclidean space (Ho et al., 2020; Song et al., 2021), recent works have extended
these approaches to non-Euclidean manifolds. Riemannian diffusion models (RDMs) (Huang et al.,
2022) generalize continuous-time diffusion to arbitrary Riemannian manifolds, but face limitations
including the lack of closed-form solutions for manifold Ornstein–Uhlenbeck analogs and costly
score matching procedures (Chen & Lipman, 2023), hindering scalability to high-dimensional settings
such as protein modeling. Scaling Riemannian Diffusion Models (Lou et al., 2023) improve efficiency
via a differential-equation-based framework, yet are only validated on low-complexity synthetic data.
Building on this line, we extend Riemannian diffusion to SE(3)N , delivering a numerically stable and
scalable model capable of learning complex protein manifolds.

6 DISCUSSION

Limitations. Despite the promising results, our current protein generation pipeline has several
limitations. First, we restrict training to high-quality PDB entries to ensure data reliability and stable
convergence; in contrast, recent works (Lin et al., 2024; Geffner et al., 2025) have incorporated large-
scale resources such as AFDB, which could increase dataset size by over an order of magnitude and
potentially improve performance, making integration of such data an important direction for future
work. Second, our current evaluation lacks experimental (wet-lab) validation, and the biological
viability of generated proteins remains to be confirmed, with bridging this gap between in silico
modeling and real-world application being a key avenue for future research.

Conclusion. In this work, we introduce a novel method that accurately models the distribution of
protein backbones and generates high-quality protein structures. Our enhanced SE(3)diffusion frame-
work enables stable training directly in the protein SE(3) space, optimized via score matching loss
without requiring auxiliary terms. We empirically validate the accuracy of our likelihood estimation
and demonstrate the model’s capability to generate both diverse and designable protein samples.
Furthermore, our method exhibits probabilistic scaffolding capabilities, successfully addressing
several challenging scaffolding tasks.

9
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A FROM EUCLIDEAN SPACE TO RIEMANNIAN SPACE: A SHORT REVIEW OF
SCORE-BASED DIFFUSION MODELS

A.1 EUCLIDEAN DIFFUSION MODELS

Diffusion models construct generative processes through the interplay of forward noising and reverse
denoising dynamics. Consider a data distribution pdata(y0) on RD that evolves through a continuous-
time stochastic process {yt}t∈[0,T ] governed by:

dyt = α(t)ytdt+ β(t)dWt, y0 ∼ pdata (12)

where α(t) : [0, T ] → RD×D is a time-dependent drift matrix, β(t) : [0, T ] → R+ is a diffusion
coefficient, and {Wt} is D-dimensional Brownian motion. The transition density pt|s(yt|ys) for
0 ≤ s < t ≤ T admits the closed-form solution:

pt|0(yt|y0) = N (yt;A(t)y0,Σ(t)) (13)

where A(t) = exp
(∫ t

0
α(s)ds

)
and Σ(t) =

∫ t

0
exp

(
2
∫ t

s
α(r)dr

)
β(s)2ds · ID.

The reverse-time process {yT−t}t∈[0,T ] follows the stochastic differential equation:

dyt =
[
α(T − t)yt − β(T − t)2∇yt log pT−t(yt)

]
dt+ β(T − t)dW̃t (14)

We approximate the score function ∇y log pt(y) using a neural network uθ(y, t) trained via:

LDSM(θ) = Et∼U(0,T )Ey0
Eyt|y0

[
ω(t)∥uθ(yt, t)−∇yt

log pt|0(yt|y0)∥2
]

(15)

where ω(t) is a weighting function typically chosen as ω(t) = β(t)2.

A.2 REMANNIAN DIFFUSION MODELS

Diffusion models on Riemannian manifoldsM extend Euclidean score-based generative modeling to
curved spaces. The framework consists of three fundamental components:

[Riemannian Diffusion Process] For a d-dimensional compact connected Riemannian manifoldM
isometrically embedded in Rn, we have:

1. A forward noising process (Xt)t∈[0,T ] governed by:

dXt = b(Xt, t)dt+ g(t)dBM
t (16)

2. A time-reversed denoising process (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] satisfying:

dYt = [b(Yt, T − t)− g(T − t)2∇ log pT−t(Yt)]dt+ g(T − t)dB̃M
t (17)

3. A probability flow ODE enabling deterministic sampling:

dYt

dt
= b(Yt, T − t)− 1

2
g(T − t)2∇ log pT−t(Yt) (18)

B EIGENFUNCTIONS AND MATTHIS’S HEAT KERNEL ESTIMATION ON SO(3)
GROUP

The heat kernel on SO(3) admits two conventional mathematical representations:

fϵ(ω) =

∞∑
ℓ=0

(2ℓ+ 1) exp(−ℓ(ℓ+ 1)ϵ2)
sin((ℓ+ 1/2)∥ω∥)

sin(∥ω∥/2)
(19)
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For concentrated distributions (ϵ < 1), the Matthies approximation offers a closed-form solution:

fϵ(ω) ≈
√
πϵ−3/2e

π
4 − ∥ω∥2

4ϵ

(
∥ω∥ − e−

π2

ϵ [(∥ω∥ − 2π)eπ∥ω∥/ϵ + (∥ω∥+ 2π)e−π∥ω∥/ϵ]

2 sin(∥ω∥/2)

)
(20)

Implementation Note: The Matthies approximation (Eq. 20), while analytically exact, suffers from
numerical instability in finite-precision tensor arithmetic. The competing exponential terms e−π2/ϵ

(underflow) and eπ∥ω∥/ϵ (overflow) produce NaN values when ϵ < 0.1 in standard floating-point
implementations. Therefore, high-precision ground truth computation using Python’s decimal
module (153-bit precision).

C DATASET CONSTRUCTION

Our training data is curated from PDB (wwPDB consortium, 2019). We selected monomer proteins.
To obtain high quality structures, we perform following filters:

• structure determination method is X-ray crystallography or 3D electron microscopy,

• resolution less than 4Å,

• radius of gyration (Rg) less than 2.24×N0.392Å, where N represents the number of residues
in the protein,

resulting in a final dataset of 87,426 monomer protein entries.

D OBJECTIVE FUNCTION DETAILS

D.1 DENOISING SCORE MATCHING LOSS

We train our score network sθ(Xt, t) as a direct score estimator by minimizing the Denoising Score
Matching (DSM) loss

Ldsm = α1LSO(3)
dsm + α2LR3

dsm, (21)
where {

LSO(3)
dsm = 1

N

∑N
n=1 ∥∇R log p(Ri

t|Ri
0, t)− sθ(R

i
t, t)∥2

LR3

dsm = 1
N

∑N
n=1 ∥∇T log p(Ti

t|Ti
0, t)− sθ(T

i
t, t)∥2

(22)

where X = [X1, · · · , XN ] ∈ SE(3)
N , Xi = [Ri,Ti] represents i’th residue’s rotation R ∈ SO(3)

and translation T ∈ R3, Groud truth rotation score ∇R log p(Ri
t|Ri

0, t) are calculated by Algorithm1
and translation score ∇T log p(Ti

t|Ti
0, t) =

Tt−
√
ᾱT0√

1−ᾱt
Song et al. (2021).

D.2 AUXILIARY FAPE LOSS

While the DSM loss alone is sufficient for training our protein model, we incorporate an auxiliary
frame aligned point error (FAPE) loss Jumper et al. (2021) for ablation analysis.

LFAPE =
1

N

N∑
i=1

M∑
j=1

min
(
dcut,

∥∥∥X−1
i (xj)− X̂−1

i (x̂j)
∥∥∥
2

)
(23)

where X−1
i represents inverse rigid transformation for i’th residue. xj represents j’th atom coordi-

nate.

E METRICS

Quality. The quality evaluation focuses on the designability of protein structures, determined
by whether viable amino acid sequences can fold into the generated structures. We employ a
computational pipeline where ProteinMPNN (Dauparas et al., 2022) first samples potential amino
acid sequences, which are then folded into structures using ESMFold (Lin et al., 2022). The structural
similarity between RoSE-generated structures and ESMFold-predicted structures is quantified using
TMscore (Zhang & Skolnick, 2004) (sc-TMscore) and RMSD (sc-RMSD), where higher sc-TMscore
or lower sc-RMSD values indicate better designability. Additionally, we assess foldability using
ESMFold’s predicted local distance difference test (pLDDT) score, considering structures with
pLDDT > 70 as physically plausible.
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Novelty. Structural novelty is evaluated by comparing each generated protein against all known
structures in the Protein Data Bank (PDB) (wwPDB consortium, 2019). For each generated structure,
we compute the TMscore against every PDB entry and record the highest value (pdb-TM). A lower
pdb-TM score indicates that the generated structure is more distinct from known natural proteins,
representing greater novelty.

Diversity. We quantify the diversity of generated protein structures through two complementary
approaches. First, we calculate pairwise TMscore similarities between all generated structures,
where the maximum pairwise similarity (inner-TM) serves as a diversity metric - lower inner-
TM values indicate more diverse structure sets. Second, we perform clustering analysis using
FoldSeek (Van Kempen et al., 2024) to determine the number of distinct structural clusters, with
diversity measured as the ratio of unique clusters to total structures generated.

SS Ratio. The secondary structure (SS) ratio quantifies the proportion of residues in the generated
protein structures that adopt regular secondary structure elements, specifically alpha-helices and
beta-sheets. We employ DSSP (Kabsch & Sander, 1983) to assign secondary structure annotations
and calculate the ratio of residues classified as helical or strand conformations to the total number of
residues.

F UNCONDITIONAL GENERATION

Comparison on sequence length range. Our evaluation range for sequence length is consistent
with state-of-the-art methods such as FoldFlow (Bose et al., 2024), GAFL (Wagner et al., 2024), and
ReQFlow (Yue et al., 2025), all of which, including RoSE, evaluate protein sequences within the
length range of 70 to 350 in their main results. However, as requested, we have conducted additional
experiments to evaluate baseline performance on longer sequences. We report scRMSD across varied
protein lengths as follows:

Table 7: scRMSD across varied protein lengths
Method 100 200 300 400 500 600

FrameDiff 1.13 1.97 2.56 3.62 8.89 11.43
RFDiffusion 0.99 2.11 2.31 3.41 8.14 9.41
Frameflow 1.17 2.10 2.43 4.23 9.88 12.47
Ours 1.14 1.84 1.95 2.41 4.36 7.14

Comparison on model inference. As shown in Table 8, we present a comparison of model
parameters and inference time among different methods.

Table 8: Comparison on model inference

Method Model
parameters

Inference
steps Inference time (s)

100AA 150AA 200AA 250AA 300AA

FrameDiff 17M 500 8 10 11 12 14
FrameFlow 150M 200 3 5 7 7 9
FoldFlow2 20M 200 5 6 8 9 10
RoSE 23M 400 8 9 12 13 14
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