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Abstract
While super-resolution (SR) methods based on
diffusion models (DM) have demonstrated inspir-
ing performance, their deployment is impeded
due to the heavy request of memory and com-
putation. Recent researchers apply two kinds of
methods to compress or fasten the DM. One is
to compress the DM into 1-bit, aka binarization,
alleviating the storage and computation pressure.
The other distills the multi-step DM into only
one step, significantly speeding up the inference
process. Nonetheless, it remains impossible to
deploy DM to resource-limited edge devices. To
address this problem, we propose BiMaCoSR,
which combines binarization and one-step distil-
lation to obtain extreme compression and accel-
eration. To prevent the catastrophic collapse of
the model caused by binarization, we propose
sparse matrix branch (SMB) and low rank matrix
branch (LRMB). Both auxiliary branches pass
the full-precision (FP) information but in differ-
ent ways. SMB absorbs the extreme values and
its output is high rank, carrying abundant FP in-
formation. Whereas, the design of LRMB is in-
spired by LoRA and is initialized with the top
r SVD components, outputting low rank repre-
sentation. The computation and storage overhead
of our proposed branches can be safely ignored.
Comprehensive comparison experiments are con-
ducted to exhibit BiMaCoSR outperforms current
state-of-the-art binarization methods and gains
competitive performance compared with FP one-
step model. Moreover, we achieve excellent com-
pression and acceleration. BiMaCoSR achieves
a 23.8× compression ratio and a 27.4× speedup
ratio compared to the FP counterpart. Our code
and model are available at https://github.com/Kai-
Liu001/BiMaCoSR.
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Figure 1: Performance comparison between binarization
methods on the RealSR dataset. BiMaCoSR achieves con-
sistently leading scores on all evaluation metrics.

1. Introduction
Single image super-resolution (SR) (Keys, 1981; Zibetti &
Mayer, 2007; Lu et al., 2013; Dong et al., 2014; Yang et al.,
2014; Dong et al., 2016) is a traditional yet challenging low-
level vision problem. Serving as a fundamental research
task, it has attracted long-standing and considerable atten-
tion in the computer vision community. The final object
of SR is to restore a high-quality (HQ) image from its low-
quality (LQ) observation, which suffers from various image
quality degradations. The difficulty of SR mainly lies in two
parts: (1) the unknown degradations (e.g., blur, downsam-
pling, noise, compression, and their combinations) of LQ.
(2) the multiple solutions for a given LQ input image.

In recent years, numerous studies have been made to
tackle this challenge, utilizing convolution neural networks
(CNNs) (Dong et al., 2014; 2016; Ledig et al., 2017; Zhang
et al., 2018c), vision transformers (ViTs) (Zhang et al.,
2018b; Liang et al., 2021; Wang et al., 2022; Chen et al.,
2022; 2023), and their combinations. Though achieving
inspiring results, these methods mostly fail in real-world
scenarios. This failure is attributed to assuming degradation
as an ideal bicubic downsampling kernel, way too different
from the unknown and complex degradation in real world.
Therefore, it draws researchers’ increasing attention to re-
construct perceptually realistic HQ images in real-world
scenarios. Thereafter, this challenging and meaningful task
is called real-world super-resolution (Real-SR) (Gu et al.,
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2019; Zhang et al., 2021; Wang et al., 2021; Cai et al., 2019;
Yu et al., 2024; Wu et al., 2024b; Sun et al., 2024).

Recently, diffusion models (DMs) demonstrate remarkable
performance in image-generating tasks, particularly in per-
ceptual quality. The excellence of DM comes from its vast
prior knowledge in modeling real-world objects, especially
generating clear textures and mitigating artifacts and distor-
tions. The powerful realistic texture generation ability is
inherently the same as the object of Real-SR problem, lead-
ing to plentiful breakthroughs (Yang et al., 2025; Yu et al.,
2024; Rombach et al., 2022). However, the inference cost is
still too high to run on edge devices. Therefore, it’s essential
to further compress DMs to accelerate the inference, reduce
storage cost, and minimize degradation.

Popular model compression techniques include pruning, dis-
tillation, and quantization, among which, 1-bit quantization
(i.e., binarization) gains significant effectiveness. As an
extreme quantization method, binarization compresses mod-
els’ weights from 32-bit to only 1-bit, significantly reducing
memory and computational cost. However, applying naive
binarization will lead to catastrophic model collapse. Hence,
additional structures are required to be designed.

A popular solution is adding full-precision information,
i.e., skip connection branch. However, due to UNet’s fre-
quent changes in resolution and dimension, skip connection
faces the mismatch challenge. To address this problem, we
propose two auxiliary branches, namely low rank matrix
branch (LRMB) and sparse matrix branch (SMB). Inspired
by LoRA, the proposed LRMB leverages low rank decom-
position to achieve dimension shift. We select the top r
singular values in SVD and utilize its corresponding compo-
nents to initialize the LRMB. As for SMB, we employ sparse
matrix to absorb the top k absolute values in a full-precision
matrix. The weights of LRMB and SMB are subtracted
from the binarized matrix branch (BMB) and it concentrates
on restoring textures. Three branches form the BiMaCoSR
and provide excellent performance shown in Fig. 1.

To sum up, the contributions of our work are as follows:
1. We design BiMaCoSR, a new binarized one-step dif-

fusion model for image super-resolution. To the best
of our knowledge, BiMaCoSR is the first binarized
one-step diffusion model.

2. We propose LRMB, which leverages low rank decom-
position and SVD initialization to carry low frequency
information and decouple the effect of BMB.

3. We propose SMB, which utilizes sparse matrix com-
pression and extreme value absorption to deliver high
rank features and achieve further decoupling.

4. We conduct comprehensive comparison experiments to
show the state-of-the-art performance of the proposed
BiMaCoSR. Besides, extensive ablation studies are
conducted to prove the robustness and efficacy.

2. Related Work
Image Super-Resolution. Deep learning based ap-
proaches have demonstrated striking power in the realm
of SR (Dong et al., 2014; Luo et al., 2022; Wang et al.,
2021; Lim et al., 2017; Chen et al., 2023). As a ground-
breaking work, SRCNN (Dong et al., 2014) initiates the
track of solving SR problem via deep learning based ap-
proach. Thereafter, substantial contributions have been
made to explore the best SR network architecture. For exam-
ple, RCAN (Zhang et al., 2018b) leverages the residual in
residual structure and deepens the network to more than 400
layers. SwinIR (Liang et al., 2021) is based on vision trans-
former structure and utilizes spatial window self-attention
to capture the overall structure information. CAT (Chen
et al., 2022) combines the attention mechanism and the
CNN structure to make the most of the local and the global
information. However, most of these conventional image
super-resolution methods can not handle the Real-SR task
because of the complex degradation in the real world.

Diffusion Model. In recent years, the diffusion-based
methods have gained remarkable performance in many
computer vision tasks and SR is no exception. For in-
stance, SR3 (Saharia et al., 2022) restores the LQ by trans-
forming the standard normal distribution into the empiri-
cal data distribution by learning a series of iterative refine-
ment steps. DiffBIR (Lin et al., 2024) capitalizes on two
restoration stages to seek the tradeoff of fidelity and quality.
SinSR (Wang et al., 2024) effectively reduces the inference
step to only one step via distillation and regularization. Fol-
lowing SinSR, OSEDiff (Wu et al., 2024a) modifies the
distillation paradigm, and novel losses are introduced to im-
prove face restoration ability. Despite the greatly improved
inference speed, the model size remains the sam,e and there
is still room for further acceleration.

Binarization. As the most extreme form of quantization,
binarization typically compresses the weight into only 1 bit.
In binarization, all the weights are seen as ±1 and the multi-
plications between weights and activations are converted to
bit operations on sign bit of activation, allowing maximum
compression and acceleration. Binarization is mainly about
classification tasks initially (Rastegari et al., 2016; Liu et al.,
2020; Qin et al., 2020; 2022; Huang et al., 2024). Recently,
researchers have begun to perform binarization on image
restoration tasks. Binary Latent Diffusion (Wang et al.,
2023b) trains an auto-encoder with a binary latent space
and mainly focuses on the Bernoulli distribution instead of
acceleration. BiDM (Zheng et al., 2024) leverages timestep-
friendly binary structure and space-patched distillation to
compress the diffusion model to 1 bit. BI-DiffSR (Chen
et al., 2024) designs several binary friendly modules and re-
distributes the activation of different time step. However, the
inference step remains the same. Therefore, it is necessary
to further compress the model to one step.
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Figure 2: Overview of our proposed BiMaCoSR which employs three different compressed matrix branches. (a) The
structure of a convolution layer in BiMaCoSR after binarization. Two auxiliary branches, i.e., LRMB and SMB, support
BiMaCoSR’s excellent performance. The linear layer can be regarded as a 1×1 convolution layer and is processed with the
same pipeline. (b) Illustration of the initialization and how the three branches solve the weakness of the other branches.

3. Methodology
In this section, we describe our proposed BiMaCoSR, shown
in Fig. 2. First, we analyze three issues that have potential
for further improvement when binarizing diffusion models.
Thereafter, we describe our proposed branches, i.e., low rank
matrix branch (LRMB) and sparse matrix branch (SMB),
which could serve as the auxiliary branch to binarized ma-
trix branch (BMB). Finally, we illustrate the initialization
methods, shown in Fig. 3, and why our designs work.

3.1. Analysis
Binarized blocks inevitably suffer from representation degra-
dation due to the extreme 1-bit compression. Previous re-
search made remarkable progress (Chen et al., 2024; Zheng
et al., 2024) on binarization, yet there still remains room for
improvement. We conclude three issues that deserve special
attention in most diffusion models.

Issue I: The specially severe degradation of linear layer.
Experimentally, we observe that with same size of param-
eters, linear layer suffers from more severe degradation in
comparison to convolution layer. This observation in SR is
consistent with previous research (Le & Li, 2023). With the
advancement of DiT and binarization, this issue is gradually
becoming significant and an additional process to quantize
or binarize the linear layer is in urgent need.

Issue II: The frequent dimension changes. It’s necessary to
leverage skip connection as an auxiliary branch in binarized
network. Skip connection could carry abundant feature
information and bring negligible computation and storage
overhead. However, in UNet, frequent changes in dimension

and resolution make two forms of skip connection (i.e.,
addition and concatenation) not applicable. In addition, the
distributions before and after binarized block are greatly
different. Therefore, efficient module is critical to overcome
the frequent changes and carry rich information.

Issue III: The inadequate usage of pre-trained FP model.
The pre-trained FP model is vital to quantization methods
from any perspective. However, current QAT research does
not make the most of the pre-trained model, simply loading
the FP parameters and directly beginning the training. It is a
popular way to leverage additional modules to enhance the
binarized network. The impact of the modules could vary
when different initialization methods are applied.

We conclude that the above issues are attributed to the insuf-
ficient ability of binarization. To be specific, binarization
is just one of the matrix compression methods, inher-
ently unsuitable for multifaceted challenges. Therefore,
we propose following branches to compress matrix in dif-
ferent ways. With the combination of various compressed
matrices, the issues above can be appropriately addressed.

3.2. Low Rank Matrix Branch
To address Issue I, i.e., the specially severe degradation of
linear layer, we identify that the quantized linear layer is
strongly limited by the bit-width. An FP linear layer usually
serves two purposes, delivering the complete information
of input and performing appropriate linear transformation.
With limited bit-width, the quantized linear layer cannot
play two roles at the same time. Therefore, we decouple the
roles apart. Though binarized, the weight matrix is usually
high rank and contributes more to high frequency, i.e., the
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detailed structure and texture in image. Hence, we design
low rank matrix branch (LRMB) to serve as a complemen-
tary branch, transmitting low frequency information.

The idea of LRMB is inspired by low rank approximation
in matrix theory, which is a common strategy for matrix
compression. To transmit low frequency information, matri-
ces with low rank are enough and efficient. Mathematically,
given an m × n matrix W, it can be approximated with
two low rank matrices, i.e., W ≈ Ŵ := BA, where B
and A are m × r and r × n matrices respectively, and
r ≪ min(m,n) is a hyper-parameters denoting the rank of
Ŵ. Therefore, the formula of LRMB is:

xLRMB = LRMB(xin) := xinBA, (1)
where xin ∈ RN×m and xLRMB ∈ RN×n are the input and
output of LRMB(·) respectively, and N is the number of
tokens. Usually, W is a square matrix and m = n.

As for complexity, the storage overhead is:
Os = (m× r + r × n)B = rB(m+ n) ≪ mnB′, (2)

where B = 32 or 16 and B′ = 1 are the number of bits
required by one element in LRMB branch and binarized
branch, respectively. Meanwhile, the computation overhead
is:

Oc = N ×m× r +N × r × n = Nr(m+ n). (3)
This means that even saved with 32 bits, the storage and
computation overhead of LRMB is acceptable. In conclu-
sion, with LRMB, Issue I and Issue II are partly solved.

3.3. Sparse Matrix Branch
LRMB is still not enough to replace the skip connection.
This is because skip connection can be represented as a full
rank identity matrix while LRMB is low rank. To com-
pensate the missed ranks, we propose sparse matrix branch
(SMB), which leverages sparse matrix compression and
could efficiently deliver high rank information.

Sparse matrix is a matrix in which most of the elements
are zero (Yan et al., 2017). A common criterion of a sparse
matrix is that the number of non-zero elements is approxi-
mated to the number of rows or columns. One way to save a
sparse matrix is via the coordinate format (COO), where the
non-zero elements are represented by a list of triples and it
component is (row, col, value).

Specifically, to form a sparse matrix, we select k critical
values from the weight matrix and the selection method will
be described in Sec. 3.4. In the forward process, the SMB
process could be equivalently expressed as

xSMB = SMB(xin) := xinWsparse, (4)
where Wsparse is a matrix with k non-zero elements. During
training, the coordinates will be fixed while their values will
be updated by gradient descent. With SMB, the high rank
information could be delivered and the remaining parts of
Issue I and Issue II could be solved.
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Figure 3: Initialization of different branch.Wres represents
the initial quantization error. In our method, ∥Wres∥2F =
0.1855, while ∥Wres∥2F = 1.1275 in direct binarization.

3.4. Pretrained-Friendly Initialization
We propose the following initialization method to guarantee
better use of the pre-trained model, allowing better restora-
tion performance and faster convergence.

The purpose of LRMB is to carry the low frequency informa-
tion. Usually, compared with high frequency information,
the magnitude of low frequency information is much greater.
Therefore, we leverage SVD and select the top r compo-
nents to initialize LRMB. To be specific, we perform SVD
on W:

W = UΣVT = Udiag{σ1, σ2, . . . , σn}VT . (5)
Then, we truncate the top r singular values and absorb the
remaining singular value into U, forming matrices A and
B. The process can be written as:
W ≈ Udiag{σ1, σ2, . . . , σr, 0, . . . , 0}︸ ︷︷ ︸

B

VT︸︷︷︸
A

= BA. (6)

Thereafter, to guarantee that the binarized matrix only serves
to add high frequency information, the low frequency coun-
terpart will be subtracted. The formula is:

W′
BMB := W −BA, (7)

where W′
BMB is the matrix to be binarized after the initial-

ization of LRMB. Hence, the ability of weight matrix is
decoupled into two components, the low frequency part
(BA) and the high frequency part (W′

BMB).
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Thereafter, the initialization of SMB also matters. As de-
scribed in Sec. 3.3, we select k values from the weight
matrix to generate the sparse matrix. Due to the fixed coor-
dinates of non-zero elements, random selection is apparently
a good candidate. Besides, binarization often ignores the
outlier values in weight matrix, which are often huge but
rare (less than 0.1%). Though rare, these outliers play a
crucial role in most models. Considering their rarity and
significance, we select k elements with the greatest absolute
value in W′

BMB. Subsequently, we subtract these values
in W′

BMB to decouple the overlapping effect of BMB and
SMB. The process can be formulated as:

w̃ij =

{
wij , if |w′

ij | ≥ t

0, otherwise
,WBMB := W′

BMB −Wsparse,

(8)
where w̃ij and wij are the elements of Wsparse and W′

BMB
respectively, t is the k-th largest absolute value in W′

BMB,
WBMB is the final matrix to be binarized.

3.5. Overall Structure
After adding LRMB and SMB and their initialization, the
binarized matrix branch (BMB) is formed with xBMB. To
be specific, the input feature and weight matrix will be
binarized with Sign(·), which can be written as:{

xb = Sign(xin),

Wb = Sign(WBMB),
Sign(x) =

{
+1, x ≥ 0,

−1, x < 0,
(9)

where Sign(·) is performed element-wise. Thereafter, the
full-precision convolution and linear transform are replaced
with efficient logical XNOR and bit-counting operations.
The process can be formulated as:

x′
BMB = bit-count(XNOR(xb,Wb)), (10)

Finally, we follow the design of XNOR-Net (Rastegari et al.,
2016) to compensate the precision loss, which is:

xBMB = x′
BMB ⊙ (A⊗ k), (11)

where AH×W is the channel-wise absolute average of input
activation, k is a vector whose element is the absolute av-
erage of correspond channel, ⊙ is Hadamard product, and
(A⊗ k)c,i,j := Ai,jkc should be calculated first.

We binarized every convolution layer and linear layer except
the first and last convolution layers due to extremely severe
degradation of quantization on head and tail. Specifically,
linear layer can be seen as the 1× 1 convolution layer and
therefore processed in the same way as convolution layer.

For one binarized layer, the output can be written as:
xout = xBMB + xLRMB + xSMB. (12)

In conclusion, we propose LRMB, SMB, and their corre-
sponding initialization methods. With these designs, our
BiMaCoSR can significantly reduce the information loss
caused by binarization and improve the restoration ability.
Besides, the storage and computation overhead caused by
LRMB and SMB can be safely ignored.

4. Experiments
4.1. Experimental Settings
Data. We take the models on the training set of Ima-
geNet (Russakovsky et al., 2015) and the LR images are
generated by the same pipeline of RealESRGAN (Wang
et al., 2021). We evaluate the models with three bench-
mark datasets: RealSR (Cai et al., 2019), DRealSR (Wei
et al., 2020), and DIV2K-Val (Agustsson & Timofte, 2017).
RealSR and DRealSR are real world benchmarks while
DIV2K-Val employs Bicubic interpolation to generate LR
images. The upscale ratio of training set and test set is ×4.

Evaluation Metrics. The evaluation metrics are imple-
mented with IQA-Pytorch (Chen & Mo, 2022) and are
twofold to assess the restoration and compression ability.
Firstly, to thoroughly evaluate the restoration ability of our
proposed BiMaCoSR, we employ the following quantitative
metrics: full-reference metrics PSNR, SSIM (Wang et al.,
2004), and LPIPS (Zhang et al., 2018a) and non-reference
metrics DISTS (Ding et al., 2020), FID (Heusel et al., 2017),
NIQE (Zhang et al., 2015), MANIQA-pipal (Yang et al.,
2022), MUSIQ (Ke et al., 2021), and CLIPIQA+ (Wang
et al., 2023a). PSNR and SSIM are distortion-based metrics
and are calculated on the Y channel (i.e., luminance) of the
YCbCr space. The rest metrics are all perceptual metrics
and it is widely known that perceptual metrics are more
aligned with human when rating the image quality.

Secondly, to demonstrate binarization’s extreme compres-
sion and acceleration ability, we use the total parame-
ters and overall operations as key metrics. Following
previous work (Xia et al., 2022; Qin et al., 2023), the
total parameters (Params) of the model are calculated
as Params=Paramsb+Paramsf , and the overall operations
(OPs) as OPs=OPsb+OPsf , where Paramsb=Paramsf/32
and OPsb=OPsf/64; the superscripts f and b denote full-
precision and binarized modules, respectively. The compu-
tational complexity is tested with the input size 3×64×64.

Implementation Details. We take SinSR (Wang et al.,
2024), a one-step diffusion model, as the backbone. We
initialize with SinSR’s weights and use ResShift (Yue et al.,
2024) as the teacher model. All the rest convolution and lin-
ear layers, except the head and tail layers, are binarized into
BMB to guarantee the best compression ratio and LRMB
and SMB are attached with BMB. We set the rank of LRMB
as r = 8 and the number of non-zero elements in SMB as
k = 2max(C1, C2), where C1 and C2 are the numbers of
input and output channels, respectively.

Training Settings. We utilize Adam optimizer (Kingma
& Ba, 2015) with β1 = 0.9 and β2 = 0.99, and set the
learning rate as 2×10−5. The batch size is set to 8, with
100K iterations. The input LR images are center-cropped
to size 64×64. All the training and testing experiments are
conducted on one NVIDIA RTX A6000.
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Table 1: Quantitative comparison with SOTA methods. We compare BiMaCoSR with full-precision models and current
binarization methods. We employ 9 metrics commonly used in SR and test on three benchmarks. The best and second best
value are marked with red and blue respectively. In conclusion, our proposed BiMaCoSR achieves SOTA performance.

Datasets Methods Bits (W/A) PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ MANIQA ↑ DISTS ↓ FID ↓ NIQE ↓ CLIP-IQA+ ↑

RealSR

SinSR 32/32 26.51 0.7380 0.3635 57.87 0.5139 0.2193 56.36 5.826 0.5736
ResShift 32/32 25.45 0.7243 0.3731 56.23 0.5005 0.2344 58.14 7.353 0.5708
XNOR 1/1 26.48 0.7434 0.3968 43.56 0.3732 0.2609 105.72 6.014 0.4380

ReActNet 1/1 26.60 0.7530 0.3834 44.18 0.3829 0.2551 109.36 6.306 0.4361
BBCU 1/1 26.43 0.7488 0.3902 43.70 0.3792 0.2575 108.32 6.058 0.4298
ReSTE 1/1 26.26 0.7408 0.4184 41.04 0.3677 0.2719 113.86 6.174 0.4083
BiDM 1/1 25.07 0.7036 0.5042 35.60 0.3517 0.3226 115.23 6.759 0.3935

BiMaCoSR 1/1 26.84 0.7698 0.3375 49.01 0.4034 0.2183 86.09 5.856 0.4800

DRealSR

SinSR 32/32 27.89 0.7332 0.4499 30.81 0.4519 0.2209 16.56 5.789 0.6052
ResShift 32/32 26.64 0.7298 0.4478 31.09 0.4345 0.2337 18.12 6.959 0.5795
XNOR 1/1 29.03 0.8319 0.3712 26.19 0.3560 0.2447 29.88 6.229 0.4449

ReActNet 1/1 29.34 0.8431 0.3571 26.83 0.3618 0.2411 30.18 6.561 0.4380
BBCU 1/1 29.00 0.8385 0.3643 26.37 0.3594 0.2433 30.94 6.337 0.4383
ReSTE 1/1 28.91 0.8353 0.3899 25.12 0.3509 0.2641 33.64 6.459 0.4131
BiDM 1/1 27.40 0.7942 0.4849 23.38 0.3529 0.3118 37.83 6.753 0.4307

BiMaCoSR 1/1 29.33 0.8393 0.3400 29.38 0.3802 0.2278 22.31 6.150 0.4867

DIV2K-Val

SinSR 32/32 27.75 0.7694 0.1903 64.62 0.5336 0.1029 6.27 4.308 0.6147
ResShift 32/32 27.18 0.7667 0.1775 65.04 0.5548 0.1016 7.54 5.121 0.6280
XNOR 1/1 26.44 0.7185 0.3727 49.10 0.3972 0.2204 55.77 5.320 0.4584

ReActNet 1/1 26.49 0.7260 0.3602 50.29 0.4078 0.2111 52.32 5.366 0.4726
BBCU 1/1 26.39 0.7221 0.3660 50.09 0.4035 0.2148 53.22 5.263 0.4653
ReSTE 1/1 26.07 0.7125 0.3916 46.95 0.3907 0.2295 61.52 5.399 0.4328
BiDM 1/1 24.29 0.6725 0.4370 40.15 0.3747 0.2916 62.28 6.090 0.4112

BiMaCoSR 1/1 27.35 0.7547 0.2999 53.38 0.4337 0.1806 27.99 4.987 0.5176

4.2. Comparison with State-of-the-Art Methods
We compare our proposed BiMaCoSR with recent binariza-
tion methods, including XNOR (Rastegari et al., 2016),
ReActNet (Liu et al., 2020), BBCU (Xia et al., 2022),
ReSTE (Wu et al., 2023), and BiDM (Zheng et al., 2024).
All binarization methods are implemented on SinSR (Wang
et al., 2024) and trained with the same settings. As LRMB
and SMB slightly increase the parameters, we addition-
ally keep the first two and last two convolution layers as
full-precision. We also compare BiMaCoSR with the full-
precision model SinSR and ResShift (Yue et al., 2024).
SinSR is the distilled version of ResShift. The comparison
results are exhibited in quantitative and qualitative aspects.

Restoration Results. The quantitative comparison results
are shown in Table 1. We can obtain the following observa-
tions. (1) The results in Table 1 demonstrate clear advantage
over competing methods in both full-reference and non-
reference metrics on three benchmark datasets. (2) In some
situations, such as PSNR and LPIPS on RealSR, BiMa-
CoSR can even surpass SinSR and ResShift. We attribute
the excellence to the LRMB and SMB, which transmit the
full-precision information in a parameter-efficient way. (3)
Most binarization methods outperform the baseline model
and ReActNet presents competing performance, especially
on DRealSR. (4) The full-precision models, i.e., SinSR
and ResShift, are excellent on perceptual metrics, such as
DISTS and CLIP-IQA+. Whereas, the multi-step models’

performance on PSNR and SSIM is on the lower side. This
phenomenon means that compression on DM leads to disap-
pearance of texture and details. However, their performance
on PSNR and SSIM is only slightly affected.

Efficiency Comparison. Efficiency comparison results are
provided in Table 2. After the distillation from multi-step to
one-step, the FLOPs are significantly reduced. Furthermore,
compressing the model to 1 bit makes the model tiny and
fast. In comparison with SinSR, the compression ratio is
27.45× and the speedup ratio is 23.81×. Compared with
current SOTA binarization methods, we keep almost the
same parameters but take much less FLOPs on one-step
DM, due to the calculation efficient design. To conclude, our
proposed BiMaCoSR gains remarkable compression ratio
and speedup ratio and achieves outstanding performance.

Visual Results. We present visual comparison on challeng-
ing cases in Fig. 4. One typical challenging case is the tiny
and dense structures, such as hairs, grass, tiles, and faces. It
is struggling with previous binarization methods to restore
image details, especially in challenging cases. On the con-
trary, our BiMaCoSR is able to recover results with sharper
edges and richer textures. For example, in 0809, BiMaCoSR
reconstructs the hairs on the nose while other methods just
output rough color blocks. And in 0831, BiMaCoSR re-
stores the woman’s facial structures and expression while
other methods smooth the organs to the same color. In 0834,
BiMaCoSR could successfully recover the tiles’ texture and
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ResShift SinSR ReActNet BBCU ReSTE BiDM XNOR Ours

Inference Step 15 1 1 1 1 1 1 1
FLOPs (G) 753.45 50.23 5.83 5.83 5.83 11.60 5.83 1.83
# Total Param (M) 118.59 118.59 4.95 4.95 4.95 18.69 4.95 4.98
PSNR/LPIPS 25.45/0.3731 26.51/0.3635 26.60/0.3834 26.43/0.3902 26.26/0.4184 25.07/0.5042 26.48/0.3968 26.84/0.3375

Table 2: Efficiency comparison on RealSR. BiMaCoSR takes least FLOPs while gains the best performance.

DIV2K-Val: 0809

HR SinSR (FP) ReSTE BiDM

BBCU XNOR ReactNet BiMaCoSR (ours)

DIV2K-Val: 0831

HR SinSR (FP) ReSTE BiDM

BBCU XNOR ReactNet BiMaCoSR (ours)

DIV2K-Val: 0834

HR SinSR (FP) ReSTE BiDM

BBCU XNOR ReactNet BiMaCoSR (ours)
Figure 4: Visual comparison for image SR. We compare our proposed BiMaCoSR with current competitive binarization methods and the
full-precision (FP) model. The visual results illustrate that BiMaCoSR gains rich details and reasonable textures.

most binarization methods fail. What’s more, the difference
between BiMaCoSR and the FP model (SinSR) exists but is
minimal. To conclude, our proposed BiMaCoSR surpasses
other methods according to visual comparison. Additionally,
we provide more visual results and corresponding analysis
in the supplementary material for further comparison.

4.3. Ablation Study
In this section, we adopt RealSR as the test set and other
training settings are the same as Sec. 4.1. To test the ef-
fectiveness and robustness, we conduct five key ablation
experiments, including the break down ablation, loss func-
tion, rank of low rank branch, initialization of LRMB, and
initialization of SMB. What’s more, detailed analysis is also
provided in the following sections. These ablation studies
demonstrate the robustness and efficiency of our LRMB,
SMB, and their corresponding initialization methods.

Break Down Ablation. Table 3a shows results of the break
down ablation. With only BMB, the model could be ex-
tremely compressed but the performance is somewhat on
the low side. With LRMB, though the number of parame-
ters increases to 1.83G, the performance also improves on
all metrics and the FLOPs only increase to 4.98M. After
adding SMB, the overhead of parameters and storage can
be neglected. The performance on all perceptual metrics
improves while both PSNR and SSIM drop slightly.

Loss Function. The loss functions of SinSR play a critical
role in FP model. However, these loss functions are not
suitable in the binarized situation. After removing unneces-
sary parts from the SinSR loss, we leave only the distillation
loss and the results are shown in Table 3b. With only the
distillation loss, BiMaCoSR gains improvement on both
distortion metrics and perceptual metrics.
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Branch PSNR ↑ SSIM ↑ LPIPS ↓ MANIQA ↑ FID ↓ CLIP-IQA+ ↑ FLOPs (G) Param (M)

BMB 26.41 0.7408 0.4141 0.3704 110.15 0.4325 0.78 3.69
+LRMB 26.95 0.7718 0.3400 0.3937 88.72 0.4663 1.83 4.98
+LRMB+SMB 26.84 0.7698 0.3375 0.4034 86.09 0.4800 1.83 4.98

(a) Break down ablation.

Loss PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA+ ↑

Distill loss 26.83 0.7698 0.3375 0.4800
SinSR loss 26.37 0.7466 0.4029 0.4273

(b) Ablation study on losses.

Initialization PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA+ ↑

Zero + Random 26.88 0.7660 0.3497 0.4674
SVD 26.84 0.7698 0.3375 0.4800

(c) Ablation study on LRMB initialization.

Rank PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA+ ↑ FLOPs (G) Param (M)

4 26.29 0.7383 0.4197 0.4411 1.31 4.37
8 26.84 0.7698 0.3375 0.4800 1.83 4.98
12 26.97 0.7695 0.3400 0.4766 2.32 5.60
16 26.72 0.7625 0.3442 0.4971 2.83 6.21

(d) Ablation study on the rank of LRMB.

Initialization PSNR ↑ SSIM ↑ LPIPS ↓ CLIP-IQA+ ↑

Zero initial 26.72 0.7628 0.3561 0.4639
Uni-shortcut 25.69 0.7113 0.5105 0.4008
Sparse skip 26.84 0.7698 0.3375 0.4800

(e) Ablation study on SMB initialization.
Table 3: Ablation studies on branches, loss, rank of LRMB and initialization of LRMB and SMB. The experiments is tested on RealSR.
The comprehensive results demonstrate the robustness and efficient performance of our proposed BiMaCoSR.

Rank of LRMB. The rank of LRMB significantly influences
the complexity, while the performance is not consistent with
the increase in complexity. As shown in Table 3d, the model
with rank of 16 performs best only on CLIP-IQA+, while
the model with rank of 8 performs best and takes acceptable
parameters. This is because the LRMB with high rank may
influence high frequency generated by BMB, making the
training unstable and leading to worse results. Therefore,
we ultimately set the rank of LRMB to 8.

Initialization of LRMB. Conventional LoRA’s initializa-
tion method is set the first matrix with random values and
the second matrix with zero values. We compare this initial-
ization method with our proposed SVD initialization and the
result is shown in Table 3c. To conclude, our method out-
performs conventional methods on SSIM, LPIPS, and CLIP-
IQA+. We attribute it to the decoupling of transmitting low
frequency information and generating high frequency. To
conclude, our proposed SVD allows better performance.

Initialization of SMB. We search three popular ways to
initialize SMB, including (1) random position and zero ini-
tialization, (2) Uni-shortcut (Xu et al., 2022), and (3) our
proposed sparse skip. The experiment results in Table 3e
show that our sparse skip initialization consistently enjoys
the best performance on all four metrics. This improvement
compared with other two initialization methods strongly
supports the effectiveness of decoupling and absorption.

4.4. Visualization Analysis.
In Sec. 3, we assume that LRMB and SMB are in charge
of transmitting low frequency information while BMB gen-
erates high frequency after decoupling. To validate this
assumption, we visualize the proportion of high frequency
generated by three branches in first 50 Conv layers and the
result is shown in Fig. 5. On average, high frequency infor-
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Branch Contribution
BMB
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Figure 5: The proportion of high frequency information gen-
erated by three branches. The high frequency information
mainly comes from BMB, which obeys our assumption.
mation is mainly generated by BMB, accounting for around
70%. With more parameters, LRMB also provides high
frequency information in some layers but overall proportion
is relative low. SMB only absorbs the extreme values and in-
deed carries little high frequency information. Fig. 5 shows
that division of work is clear and our designs in LRMB,
SMB and BMB obey our assumption.

5. Conclusion
In this paper, we propose the BiMaCoSR, a binarized SR
diffusion model with only one inference step. Detailedly,
we first propose LRMB and SVD initialization to decouple
the effect of binarized branch and deliver low frequency in-
formation. Furthermore, we propose SMB and sparse initial-
ization to absorb the extreme values and provide high rank
representations. Comprehensive comparison experiments
demonstrate the SOTA restoration ability of the proposed
BiMaCoSR. Extensive ablation studies exhibit the efficiency
and robustness of both LRMB and SMB. In the future, we
will focus on the combination of pruning and binarization
on one-step diffusion models for further compression.
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