
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEFT SCHEDULING OF DYNAMIC CLOUD
WORKFLOWS WITH VARYING DEADLINES
VIA MIXTURE-OF-EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Workflow scheduling in cloud computing demands the intelligent allocation of
dynamically arriving, graph-structured workflows with varying deadlines onto
ever-changing virtual machine resources. However, existing deep reinforcement
learning (DRL) schedulers remain limited by rigid, single-path inference archi-
tectures that struggle to handle diverse scheduling scenarios. We introduce DEFT
(Deadline-pErceptive Mixture-oF-Experts), an innovative DRL policy architec-
ture that leverages a specialized mixture of experts, each trained to manage dif-
ferent levels of deadline tightness. To our knowledge, DEFT is the first to intro-
duce and validate a Mixture-of-Experts architecture for dynamic cloud workflow
scheduling. By adaptively routing decisions through the most appropriate experts,
DEFT is capable of meeting a broad spectrum of deadline requirements that no
single expert can achieve. Central to DEFT is a graph-adaptive gating mech-
anism that encodes workflow deadlines and DAGs, task states, and VM condi-
tions, using cross-attention to guide expert activation in a fine-grained, deadline-
sensitive manner. Experiments on dynamic cloud workflow benchmarks demon-
strate that DEFT significantly reduces execution cost and deadline violations, out-
performing multiple state-of-the-art DRL baselines.

1 INTRODUCTION

As cloud computing provides elastic and on-demand computation resources, it has become a funda-
mental platform for running large-scale applications efficiently (Buyya et al., 2011a). Many of these
applications take the form of workflows consisting of interdependent tasks, naturally modeled as di-
rected acyclic graphs (DAGs) where nodes represent tasks and edges define precedence constraints.
Each workflow is associated with a service-level agreement (SLA) deadline, missing which incurs
financial penalties (Buyya et al., 2011b; Shen et al., 2024). In practice, workflows arrive unpre-
dictably, exhibit diverse structures, and have deadlines with varying levels of tightness, reflecting a
broad range of user expectations. This work tackles the Cost-Aware Dynamic Workflow Scheduling
(CADWS) problem, aiming to minimize total execution cost by jointly minimizing virtual machine
(VM) rental fees and deadline violation penalties under dynamic and uncertain conditions. The
diagram of CADWS is shown in Figure 1 (a) and (b).

Tackling the CADWS problem requires more than reactive scheduling. It demands intelligent poli-
cies that can reason under uncertainty and make fine-grained, deadline-aware decisions in real time.
The core challenge lies in navigating a highly dynamic environment marked by fluctuating VM
availability, diverse workflow structures, and, most critically, the wide spectrum of deadline tight-
ness that governs workflow urgency. Schedulers must reason over complex task graphs, interpret
shifting system states, and allocate resources in real time. These requirements quickly exceed the
capabilities of traditional heuristics, which struggle to adapt to such temporal and structural changes.

Deep reinforcement learning (DRL) has shown growing promise for dynamic workflow scheduling
in cloud environments (Zhou et al., 2024a; Ngwu et al., 2025). By modeling the scheduler as an
agent that interacts with a changing environment, DRL learns policies that optimize long-term cost
and performance. In the CADWS setting, the agent observes system states and selects execution
targets from a dynamically evolving VM pool. DRL schedulers have demonstrated clear advantages

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

over heuristic methods in cloud workflow orchestration tasks (Shen et al., 2024; Yang et al., 2025),
offering improved adaptability to structural variation and timing uncertainty.

Despite recent progress, a key issue remains in DRL-based CADWS approaches: the inflexibility of
their policy network architectures. Most existing methods adopt a monolithic design, typically based
on a single feedforward pathway (Huang et al., 2022; Shen et al., 2024). Once trained, these policies
encode a static set of decision rules that are applied uniformly across different scheduling scenarios.
While this can be effective in stable settings, such rigid architectures struggle to accommodate the
wide variability in workflow deadline requirements, ranging from lenient to extremely tight. This
lack of deadline awareness severely limits the scheduler’s ability to allocate tasks appropriately
under time pressure.

To overcome the limitations of rigid policy architectures, we propose DEFT (Deadline-pErceptive
Mixture-oF-Experts), a novel policy network tailored for dynamic workflow scheduling. Instead of
relying on a single fixed inference pathway, DEFT dynamically selects from a pool of specialized
subnetworks (experts), each trained to handle different levels of deadline tightness. Inspired by the
Mixture-of-Experts (MoE) architecture in large language models (Shazeer et al., 2017), DEFT rein-
terprets expert activation as adaptive policy modulation, enabling fine-grained scheduling strategies
as workflow urgency varies. It enhances the flexibility and responsiveness of DRL schedulers by
diversifying action-priority mapping through three key innovations:

• First MoE method for dynamic workflow scheduling. DEFT is the first approach to bring
MoE architectures into dynamic workflow scheduling, introducing a new level of adaptiv-
ity in deadline-aware policy design. Instead of relying on a single, rigid inference pathway,
DEFT dynamically activates specialized experts based on the tightness of workflow dead-
lines. This design enables scalable, deadline-sensitive scheduling that conventional DRL
schedulers fail to achieve.

• Enhancing Policy Diversity and Generalization. DEFT employs a novel two-phase train-
ing strategy: in the first phase, each expert is trained independently to specialize in a spe-
cific level of deadline tightness, learning tailored scheduling behaviors across the deadline
spectrum. In the second phase, a graph-adaptive gating network is trained to dynamically
route decisions through the most appropriate experts based on real-time workflow states,
DAG structure, and VM conditions. During this phase, all experts are further fine-tuned
alongside the gating network to ensure consistent and generalizable performance across a
wide range of scheduling contexts.

• Graph-adaptive Gating. DEFT is powered by a novel graph-adaptive gating network that
uses cross attention to integrate structured workflow representations with real-time schedul-
ing context. This mechanism enables fine-grained, deadline-aware expert activation at each
decision step, allowing the policy to fluidly adapt to changing deadlines and resource con-
ditions. To the best of our knowledge, our gating design is the first to combine graph neural
representations with MoE routing in a DRL scheduler, offering a principled and scalable
approach to structured, deadline-driven scheduling in dynamic cloud environments.

2 RELATED WORK

We begin by reviewing recent advances in DRL for CADWS, followed by an overview of MoE
architectures and their integration into DRL policy networks.

2.1 DEEP REINFORCEMENT LEARNING FOR CADWS

DRL has shown strong potential in learning effective scheduling policies by leveraging the rep-
resentation power of neural networks. Early DRL-based schedulers were developed for Job-Shop
Scheduling (JSS) (Zhang et al., 2020; Song et al., 2022) and Vehicle Routing Problems (VRP) (Wu
et al., 2021; Xin et al., 2021), and have since been extended to the more complex CADWS set-
ting (Huang et al., 2022; Jayanetti et al., 2024). These early CADWS studies demonstrated DRL’s
superiority over heuristic methods, though they relied on a simple FFN as the policy network, lim-
iting policy expressiveness. Subsequent CADWS works improved policy network design by intro-
ducing self-attention (Shen et al., 2024) and GNNs (Shen et al., 2025; Yang et al., 2025) to capture
task dependencies in workflows.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

As shown in Figure 1 (c), the policy networks in these studies often comprise of two key modules:
a State Embedding Module (SEM) that encodes raw environment states into informative state
embeddings, and a Priority Mapping Module (PMM) that further maps these embeddings to the
action priorities for VM selection. Current CADWS studies mainly focus on SEM design, while
PMMs are typically implemented as a single FFN with a fixed inference pathway, which limits
their ability to adapt to varying deadline tightness. This raises two key questions: (1) Can a fixed-
pathway PMM fully leverage rich state embeddings to capture the diverse scheduling needs imposed
by varying deadline tightness? (2) Would a set of specialized inference pathways provide stronger
adaptability to dynamic workflow deadlines and resource conditions? To answer these questions, we
propose DEFT, a novel policy network that replaces the monolithic PMM with a MoE architecture.
DEFT dynamically selects expert pathways based on workflow urgency, enhancing flexibility and
generalization for deadline-sensitive cloud scheduling.

2.2 EVOLUTION OF MIXTURE-OF-EXPERTS (MOE)

The MoE paradigm was first introduced by Jacobs et al. (1991), where a gating network assigns
inputs to specialized expert networks. More recently, MoE architectures have been widely adopted in
large-scale learning tasks, demonstrating their ability to improve model expressiveness and context
sensitivity through dynamic expert selection (Shazeer et al., 2017; Fedus et al., 2022; Du et al.,
2022).

Applying MoE to DRL for combinatorial optimization remains relatively underexplored. Prior work
by Kidambi et al. (2020) showed that MoE can enhance sample efficiency and generalization ca-
pability of DRL agents. For example, recent studies have adopted MoE, such as MVMoE (Zhou
et al., 2024b) and SHIELD (Goh et al., 2025), to solve multiple vehicle routing variants. Nev-
ertheless, these early efforts are not well suited for CADWS. First, they focus on static settings,
whereas CADWS involves continuously arriving workflows with varying deadline urgency. Second,
their gating mechanisms are implemented by simple linear layers, unable to leverage the rich DAG
structures and dynamic contexts needed for effective expert selection. We address these gaps with
a novel MoE-based policy network tailored for CADWS, featuring a graph-adaptive gating module
that adaptively routes decisions based on workflow topology, task states, and deadline tightness.

3 PRELIMINARIES

This section defines the CADWS problem, presents its Markov Decision Process (MDP) formula-
tion, and specifies the optimization objectives.

3.1 COST-AWARE DYNAMIC WORKFLOW SCHEDULING

The CADWS problem aims to schedule a set of dynamically arriving workflowsW for execution on
VMs in a cloud environment. Each workflow Wi ∈ W is represented by a DAG Wi = (OWi

, CWi
),

where OWi
is the set of computational tasks and CWi

encodes precedence constraints as directed
edges. Any directed edge (Oni, Onj) ∈ CWi

indicates that task Oni must be completed before task
Onj can begin. A task with all its predecessor tasks completed is considered the ready task, denoted
as On∗ , and is eligible for immediate execution.

Tasks exhibit heterogeneous workloads. Each task Oni ∈ OWi
has a computational demand cdOni

∈
R+. Workflows arrive dynamically across time, each with an arrival time ai and a deadline di
derived from a user-specified SLA. To model the varied urgency levels across workflows, we define
each workflow’s deadline as:

di = ai + γ ·minMakespan(Wi), (1)
where ai is the arrival time of workflow Wi, γ ≥ 1 is a deadline relaxation coefficient that controls
the tightness of the deadline, and minMakespan(Wi) denotes the minimum execution time achiev-
able by allocating the fastest available VM to each task of Wi without any delay. Smaller γ values
lead to tighter deadlines, posing greater challenges for the scheduler to meet timing constraints under
dynamic resource availability.

The cloud infrastructure offers a pool of VMsM = {m1,m2, . . . ,m|M|}, whose availability may
change over time. Each VM mj ∈ M has a processing speed vj and an hourly rental cost cj .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Under a pay-as-you-go model (Ibrahim et al., 2011), VMs can be provisioned on demand without
predefined capacity constraints, enabling flexible but cost-sensitive resource allocation. A more
detailed description of the problem definition can be found in Appendix A.

3.2 MARKOV DECISION PROCESS FORMULATION

We model the CADWS problem as a undiscounted Markov Decision Process (MDP) defined by the
tuple (S,A,Pr,R). Each of its elements is introduced below.

State Space S: At any time step t, the state st ∈ S captures the full system status, including:
(1) Workflow information: workflow DAGs, arrival times, deadlines, task completion status, and
workloads; and (2) VM information: current VM instances, their types, processing speeds, queue
lengths, and existing lease time.

Action Space A: At each time step t, the action at ∈ A specifies the assignment of the current
ready task n∗ to a VM instance for execution. The action space is dynamic and consists of two types
of options: (1) assignment to an active (already leased) VM, and (2) provisioning and assignment to
a new VM of any available type. This flexible formulation allows the DRL scheduler to dynamically
lease new VMs on demand, enabling adaptive resource scaling throughout the scheduling process.

Transition Probability Pr: The environment transition Pr(st+1|st, at) captures the stochastic evo-
lution of workflow arrivals, VM availability, and task execution. The transition model is unknown
to the DRL scheduler.

Reward FunctionR: The reward in CADWS is derived from two sources of costs over the schedul-
ing horizon T . At each time step t, the scheduler incurs an immediate VM rental cost Cvm

t ≥ 0 for
leasing all active VM instances. In addition, an episodic SLA penalty Csla

T (W) ≥ 0 is computed at
the final time step to quantify the total penalty incurred by workflows that fail to meet their dead-
lines. In line with these cost components, we define the total return (i.e., negative total cost) for a
trajectory τ as:

R(τ) = −
T−1∑
t=0

Cvm
t − Csla

T (W). (2)

with the VM rental cost calculated as:

Cvm
t = cj ·

⌈
cdOn∗

vj · 3600

⌉
, (3)

where cj is the hourly cost of VM mj assigned to task On∗ , and vj is its processing speed. Mean-
while, the total SLA penalty is computed as the sum over all workflows:

Csla
T (W) =

∑
Wi∈W

Csla
T (Wi), (4)

Csla
T (Wi) = β ·max {0,CT(Wi)− di} , (5)

where β is the penalty coefficient. CT(Wi) is the actual completion time of workflow Wi ∈ W ,
and di is the workflow’s SLA deadline. Let J(π) = Eτ∼π[R(τ)] be the expected total return under
policy π. The goal of the DRL scheduler is to learn an optimal policy π∗ that minimizes the total
scheduling cost, or equivalently, maximizes the overall return:

π∗ = argmax
π

J(π). (6)

4 METHODOLOGY

This section introduces our DEFT approach in detail. Figure 1 sketches the overall framework of
DEFT. Figure 2 elaborates on the internal modules of DEFT. Algorithms in Appendixes C and D
present a two-phase strategy for training the DEFT policy.

4.1 THE PROPOSED DEFT POLICY

As illustrated in Figure 1 (c), DEFT enhances policy expressiveness by replacing the fixed policy
mapping module (PMM) with an MoE architecture (Jacobs et al., 1991). Instead of relying on a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

single inference pathway, DEFT trains a set of sparse sub-networks or experts, each specialized for a
different level of deadline tightness. At inference time, a graph-adaptive gating network dynamically
selects the most suitable expert based on the current scheduling context.

Figure 2 provides a detailed view: panel (A) shows how MoE diversifies the inference pathway to
support varied policy behaviors, while panel (B) illustrates our novel gating design that leverages
workflow DAG structure, task states, and deadline urgency to guide expert activation. This integra-
tion empowers DEFT to flexibly align its scheduling strategy with a broad spectrum of dynamic,
deadline-driven scenarios.

O11

O12

O14

O13

O21
O23

O22

O24

On1 On2

On3

On4

W1

W2

Wn

Workflows
arrived

and
scheduled

Workflow
just

arrived

W
orkflow

s arrive dynam
ically

(a) The Dynamic Environment of CADWS

O11 O12 O14

Completed
 tasks

Ready
 tasks

Unscheduled
 tasks

O21 O23 O24

Null On1 On3On2 On4

W1

W2

Wn

O13

The scheduling state of CADWS is changing over time

(b) All available VMs in the cloud environment

(c) DRL Agent in CADWS

VMs state:
Agent receives

VMs status

Actions:
Assign VMs to

ready tasks

Workflow with varying deadlines are arriving dynamically

Workflows state:
Agent receives the
current scheduling
state of workflows

State Transition:
Updated the

information of
completed tasks

State Embedding
Module (SEM)

Priority Mapping
Module (PMM)

Standard DRL policy in CADWS

Raw states Learned state embeddings Priority of VM actions

Replace

Expert 1

Expert 2

Expert N

Deadline Perceptive Mixture-of-Experts (DEFT)

Mixture-of-Experts
(MoE)

G
raph-A

daptive
G

ating N
etw

ork

State Embedding
Module (SEM)

Raw states Learned state embeddings Priority of VM actionsMoERewards:
VM rental fees

and SLA penalties

Executing tasksQueueing tasks

VM1

VM2

VMn

Figure 1: The scheduling of dynamic workflows via DRL. (a) Workflows arrive over time, each
associated with a distinct deadline; (b) The set of available VMs in the cloud fluctuates over time;
and (c) The DRL agent selects appropriate VM resources for task execution by observing workflow
and VM states. In this work, our main contribution is to enhance the DRL policy network by
incorporating a Mixture-of-Experts (MoE) architecture, enabling more intelligent decision-making.

4.2 DEADLINE-AWARE EXPERT DESIGN

MoE architectures are often used to partition the dense layers in neural networks into multiple
lightweight MLP-based experts, each trained to handle different sub-tasks. In DEFT, we tailor
this paradigm for CADWS by assigning each expert to a particular deadline tightness regime.

Let γ ∈ Γ denote a discrete set of deadline relaxation coefficients (e.g., Γ = {1.25, 1.75, 2.25, 3.0}),
which control the slackness of workflow deadlines. For each γi ∈ Γ, we instantiate a corresponding
expert EXPi and independently pre-train it using only workflows whose deadlines are generated
with that specific γi. This enables each expert to learn scheduling behaviors optimal for its respective
urgency level, ranging from aggressive early scheduling under tight deadlines to cost-efficient delay-
tolerant strategies under relaxed ones.

After expert pretraining, we freeze the expert structure and jointly fine-tune all experts along with
a dedicated graph-adaptive gating network. This gating network takes as input: (1) the global
workflow embedding produced by the SEM module, (2) the current task node embedding and its
topological context (e.g., predecessors, successors), (3) system-level features such as VM availabil-
ity, and (4) a normalized deadline tightness score. These inputs are fused via cross-attention layers

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to compute a sparse routing vector over the expert set, enabling the selection of the most appropriate
expert at each decision step.

As illustrated in Figure 2 (A), this design allows DEFT to dynamically adapt its inference pathway
based on the urgency of each incoming workflow and the evolving system context. Crucially, expert
activation is not static per workflow but evolves over time, facilitating fine-grained, deadline-aware
scheduling across numerous workflows.

M
O

E in D
E

FT

G
raph-adaptive gating

Expert 1

Expert 2

Expert N

Learned state
embeddings from SEM

Weights of selected
 Expert 1 or N

Priority output

A dense FFN

sub-FFN Nsub-FFN 2sub-FFN 1

N
otations

O11

O12

O14
O13

VM1 VM2 VMN

DAG of the current ready task

State embeddings from SEM

O13

The current ready task

Learned DAG
 embeddings

GAT
layers
GAT
layers
GAT
layers

K

Q

V

Expert selection
probabilites

(b)

(c)

(A): Experts activation in DEFT (B): Graph-Adaptive gating

Expert
representations

Linear C
ross-attention

Workflow
 Deadline

Expert W
eights

Softm
ax

(a)

Figure 2: The MoE and graph-adaptive gating network in DEFT. (a) The SEM-generated VM em-
bedding is routed to the top-K experts selected by the gating network, and their weighted outputs
are aggregated to produce the scheduling priority. (b) The gating network encodes workflow DAG
structure along with VM states, ready task features, and deadline tightness to form the query vector
Q, while expert representations act as keys K and values V . (c) Cross-attention computes expert
weights that guide expert selections.

4.3 GRAPH-ADAPTIVE GATING NETWORK

The effectiveness of DEFT in CADWS comes from its ability to activate the most suitable experts at
each decision step, especially under dynamic workflows with heterogeneous deadlines. Since work-
flows are naturally represented as DAGs with complex task dependencies, effective expert routing
must account for this structure. Conventional MoE gating networks, based on simple linear projec-
tions or shallow MLPs, cannot fully capture such topological and contextual information (Cai et al.,
2025), making them inadequate for deadline-sensitive scheduling.

To address this challenge, we design a graph-adaptive gating network for fine-grained, context-
sensitive expert selection. At each scheduling step, the workflow DAG is encoded using a graph
attention network (GAT) (Veličković et al., 2017) to capture structural patterns and global depen-
dencies. The resulting DAG embedding is then fused with workflow deadline features. Then a
cross-attention mechanism processes this context to weight and activate the most relevant experts.
This design allows DEFT to dynamically route inference through the expert pathway best suited to
the current scheduling scenario, as illustrated in Figure 2 (B).

DAG Embedding Learning. As shown in Figure 2 (B), we employ a GAT to capture global corre-
lations and task dependencies within the workflow, producing informative DAG embeddings. GAT’s
attention mechanism dynamically weights neighboring task nodes, enabling the model to focus on
the most critical inter-node dependencies. The DAG embeddings produced by the GAT modules are
then used in a cross-attention module to select the specific experts to activate. The detailed DAG
embedding learning process is described in Appendix B.1.

Cross-Attention for Expert Selection. As shown in Figure 2 (B), the gating network leverages
a cross-attention mechanism to perform fine-grained, deadline-aware expert selection. Specifically,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the Query (Q) is formed by concatenating four components: the learned DAG embedding, the feature
representation of the current ready task, the VM state embeddings from the SEM, and the workflow’s
dynamic deadline information. The feature embeddings of all experts are set as both the Key (K)
and Value (V) in the attention operation. The resulting attention scores are normalized to form a
probability distribution over experts to guide expert selection.

This cross-attention design allows the gating network to make deeply contextualized expert selec-
tions. At each decision step, it integrates the workflow DAG, the current ready task, and most
importantly deadline urgency to choose the suitable expert for VM action prioritization. In doing
so, the gating network learns an expert-routing policy that leverages structural and temporal signals
to deliver accurate, deadline-aware scheduling decisions. The cross-attention procedure is detailed
in Appendix B.2.

4.4 TRAINING METHOD

Our proposed DEFT method adopts a two-phase pipeline to effectively train the MoE policy net-
work. In the Expert Pre-training phase, multiple experts are individually pre-trained to tackle spe-
cialized scheduling scenarios with varied deadline tightness. In the subsequent Gating Network
Training phase, these experts are integrated into DEFT and further improved together with the gat-
ing module and the SEM module to make adaptive end-to-end scheduling decisions in dynamic
cloud environments.

4.4.1 EXPERT PRE-TRAINING

To ensure that each expert in DEFT acquires diversified expertise for varied deadline settings, we
pre-train the policy network with multiple different γ, e.g., γ ∈ {1.25, 1.75, 2.25, 5.0}. For each
setting of γ, the policy network is trained via conventional RL methods till convergence. Afterwards,
the trained policy parameters are extracted and stored. These pre-trained parameters enable us to
establish multiple experts. Each expert is initialized with knowledge specific to a class of deadline
tightness before being integrated into the full DEFT architecture. Appendix C gives the detailed
training steps of each expert.

4.4.2 GATING NETWORK TRAINING

After the above phase, all pre-trained experts are loaded into the DEFT policy to form the expert
pool. Subsequently, both the gating network and the SEM module are trained simultaneously to-
gether with all the experts. The gating network routes tasks to the most suitable expert in line with
the workflow DAG and deadline, while the SEM refines the representation of context-aware schedul-
ing states. In this phase, we continue to fine-tune experts for enhanced adaptability. Meanwhile, the
gating network is trained to accurately identify and select the most suitable experts to handle the
respective workflow deadlines. This hybrid training strategy enables DEFT to combine specialized
expertise with adaptive gating, delivering robust scheduling across diverse and dynamic deadline
scenarios. The detailed algorithm for training the gating network can be found in Appendix D.

5 EXPERIMENTS

This section evaluates DEFT’s performance, starting with the experimental setup and baseline
methods, followed by comprehensive comparisons under dynamic workflow scenarios to examine
DEFT’s key components.

5.1 PROBLEM SETTINGS AND EXPERIMENT CONFIGURATION

Workflow in CADWS. We evaluate the proposed DEFT method on the CADWS problem using
a widely adopted simulator (Shen et al., 2025; 2024; Huang et al., 2022). The simulator models
heterogeneous VM instances (detailed in Appendix E) and four representative workflow patterns:
CyberShake, Montage, Inspiral, and SIPHT (Deelman et al., 2015). Workflows are categorized
into small (S), medium (M), and large (L) scales according to the number of tasks per workflow,
thereby reflecting a wide range of scheduling complexities. Workflow arrivals are generated using

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

a Poisson process with rate λ = 0.01, which captures the dynamic and stochastic nature of real-
world cloud environments (Huang et al., 2022; Shen et al., 2024). The SLA deadline of workflows
is governed by two coefficients: γ for deadline tolerance and β = 0.24/hour (Shen et al., 2024)
for penalty severity. Larger γ values relax deadlines, while larger β amplify penalty costs. They
together demand scheduling policies to strike a balance between renting cheaper VMs and avoiding
deadline violations.

Baselines. We experimentally compare DEFT with five baselines, including ProLis (Wu et al.,
2017) and GRP-HEFT (Faragardi et al., 2019) as popular priority-based heuristic approaches, as
well as ES-RL (Huang et al., 2022), SPN-CWS (Shen et al., 2024), and, GATES (Shen et al., 2025)
as state-of-the-art DRL techniques for CADWS. Particularly, SPN-CWS adopts a Transformer-based
policy network. GATES uses GNNs to model its trained policy networks. Since GATES has shown
cutting-edge performance on CADWS, DEFT builds on its neural network architecture and directly
inherits its GNN-based policy network as its SEM module, as illustrated in Figure 1 (c).

Parameters of DEFT. To demonstrate the reliability of DEFT, we adopt directly the hyperparameter
settings recommended in GATES (Shen et al., 2025) without additional fine-tuning. We construct the
graph-adaptive gating network in DEFT with two GAT layers. OpenAI-ES (Salimans et al., 2017)
is utilized to train the DEFT policy. This algorithm uses a population size of 40, 3000 generations,
an initial learning rate of 0.01, and Gaussian noise with a standard deviation of 0.05.

Two-phase training. (Phase-1: Expert pre-training) We train four experts on S-scale instances
under fixed deadlines γ ∈ {1.25, 1.75, 2.25, 5.0}, each expert specializing in a single deadline
regime. Every training instance contains 10 workflows with identical γ. OpenAI-ES evaluates
one instance per generation with Poisson arrivals (λ = 0.01). (Phase-2: Gating network training
with expert fine-tuning) Starting from the pre-trained experts, we jointly optimize the SEM, gating
network, and experts on S-scale instances. For each training instance, the deadline is sampled from
γ ∈ {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}, ensuring that the gating network learns to adapt expert
selection to varying deadline tightness. Additionally, all baselines are trained on the same mixed-
deadline dataset as DEFT’s stage-2 training. This ensures that all methods learn under the same data
distribution.

Testing. We test on S/M/L scales with 30 instances per scale; each instance contains 10 workflows
with their γ sampled from the same set as above. This setting evaluates DEFT under instances with
varying deadline regimes and its generalization from small-scale workflows to larger-scale work-
flows. All testing is based on 10 independent runs. Additional details are provided in Appendix F.

5.2 MAIN RESULTS UNDER DYNAMIC DEADLINES

Total cost. Table 1 reports results where each test instance is assigned a different deadline, aim-
ing to evaluate the algorithm’s scheduling performance under highly varying deadline conditions.
DEFT has the lowest total cost at all sizes (S/M/L: 52.46 / 86.60 / 137.69). The margin over the
strongest baseline (GATES) grows with scale: S improves by 0.49 (52.95→52.46; 0.9%), M by
11.16 (97.76→86.60; 11.4%), and L by 57.96 (195.65→137.69; 29.6%). ES-RL degrades sharply
with scale (65.39→225.46). While SPN-CWS beats ES-RL at M (87.69 vs. 109.23), it still trails
GATES and DEFT. In short: DEFT achieves strong scalability since its total cost rises more slowly
as workflows grow and deadlines tighten. In contrast, heuristic schedulers such as ProLis and GRP-
HEFT perform much worse across all scales, showing costs three to ten times higher than DRL-based
approaches, indicating their inability to cope with dynamic deadlines.

VM/SLA balance. By observing Table 1, ProLis suffers high penalties despite moderate VM fees,
while GRP-HEFT avoids violations by overusing costly VMs, making both inferior to DRL methods.
In S, GATES excels at minimizing VM fees (20.65) and DEFT focuses more on minimizing SLA
(31.45); DEFT’s slightly higher VM (21.01) is offset by its lower SLA, yielding superior total cost
(52.46 vs. 52.95). In M and L, DEFT shifts to cutting VM most (41.06, 70.88), while GATES aims
to reduce SLA penalty (42.42, 50.45). Even though DEFT’s SLA is not minimal in M/L (45.54,
66.81), the VM savings dominate, so its total cost still leads the competition (86.60 vs. 97.76; 137.69
vs. 195.65). The takeaway is prominent: minimizing one component (VM or SLA) is insufficient;
DEFT adapts the trade-off with scale and wins on the overall cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Generalization: Since all DRL methods are trained on the same S-scale data with identical mixed-
deadline settings, their performance on the S-scale test set is naturally similar. DEFT still achieves
a consistent improvement in this in-distribution setting, but its primary advantage appears when
evaluated on M and L scales. The markedly larger gains on these unseen scales highlight DEFT’s
stronger generalization ability, which is the intended benefit of its expert specialization and graph-
adaptive gating design.

Table 1: Total cost (mean) with VM fees / SLA penalties under dynamic deadlines.

Scenario ProLis GRP-HEFT ES-RL SPN-CWS GATES DEFT

Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA

⟨S⟩ 183.74 79.01 / 104.73 297.58 297.58 / 0.00 65.39 29.12 / 36.27 54.99 23.31 / 31.68 52.95 20.65 / 32.30 52.46 21.01 / 31.45
⟨M⟩ 304.03 176.34 / 127.69 495.64 495.64 / 0.00 109.23 63.75 / 45.48 87.69 44.05 / 43.64 97.76 55.34 / 42.42 86.60 41.06 / 45.54
⟨L⟩ 755.21 279.43 / 475.78 1064.34 1064.34 / 0.00 225.46 170.45 / 55.01 149.26 90.64 / 58.62 195.65 145.20 / 50.45 137.69 70.88 / 66.81

5.3 TEST PERFORMANCE ON SCENARIOS WITH DIFFERENT DEADLINES

Total cost comparison. Table 2 fixes the deadline across all test instances to evaluate scalability with
workflow size. DEFT consistently achieves the lowest total cost, while heuristic schedulers (ProLis,
GRP-HEFT) either overspend on VMs or incur large penalties. ES-RL and SPN-CWS perform less
stably, confirming DEFT’s superiority. In contrast, DEFT handles both tight and relaxed deadlines
well, yielding robust cost reduction beyond single-expert methods. This advantage comes directly
from DEFT’s MoE design: the graph-adaptive gating network can select the most suitable expert in
line with the current deadline levels, allowing DEFT to minimize total cost across diverse scenarios.

VM/SLA balance. As shown in Table 2, the VM and SLA results reveal distinct biases among exist-
ing algorithms: GRP-HEFT meets deadlines at very high VM cost; ProLis incurs large SLA penal-
ties; and SPN-CWS cuts VM usage aggressively but suffers frequent deadline violations. GATES
achieves a more balanced trade-off, but DEFT surpasses it by delivering consistently lower costs.
DEFT’s MoE with graph-adaptive gating dynamically routes tasks to experts based on deadline
tightness, simultaneously avoiding excessive VM usage and large SLA penalties. Its adaptive expert
selection capabilities keep both VM cost and SLA penalties at a low level, resulting in the lowest
total cost. More results regarding convergence and stability can be found in Appendix G.

Table 2: Total cost (mean) and VM rental fees / SLA penalties across every single deadline scenario.

Scenario ProLis GRP-HEFT ES-RL SPN-CWS GATES DEFT

Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA Cost VM/SLA

⟨1.0, S⟩ 133.74 83.25/50.49 222.90 222.90/0.00 54.31 30.91/23.40 45.37 18.45/26.92 44.58 18.80/25.78 41.58 17.74/23.84
⟨1.0,M⟩ 203.79 90.05/113.74 339.65 339.65/0.00 86.37 58.72/27.65 72.86 36.14/36.72 67.93 35.43/32.50 66.48 33.89/32.59
⟨1.0, L⟩ 311.70 179.90/131.80 519.50 519.50/0.00 131.12 103.65/27.47 112.78 64.70/48.08 103.90 65.76/38.14 100.47 57.21/43.26
⟨1.25, S⟩ 118.17 50.59/67.58 196.95 196.95/0.00 47.33 30.52/16.81 40.58 17.74/22.84 39.39 17.79/21.60 37.43 17.34/20.09
⟨1.25,M⟩ 190.62 108.34/82.28 317.70 317.70/0.00 77.07 55.76/21.31 68.40 34.97/33.43 63.54 33.83/29.71 61.53 32.47/29.06
⟨1.25, L⟩ 421.32 225.31/196.01 526.65 526.65/0.00 122.89 98.00/24.89 112.37 65.98/46.39 105.33 68.72/36.61 99.16 57.43/41.73
⟨1.5, S⟩ 152.44 95.68/56.76 190.55 190.55/0.00 48.38 27.72/20.66 39.53 17.86/21.67 38.11 17.99/20.12 36.87 17.74/19.13
⟨1.5,M⟩ 187.65 94.21/93.44 375.30 375.30/0.00 80.33 52.42/27.91 65.68 34.18/31.50 62.56 34.05/28.51 61.37 32.95/28.42
⟨1.5, L⟩ 306.09 210.33/95.76 510.15 510.15/0.00 138.61 104.76/33.85 114.46 68.57/45.89 102.03 65.88/36.15 98.31 58.02/40.29
⟨1.75, S⟩ 149.24 63.85/85.39 186.55 186.55/0.00 52.68 30.34/22.34 39.14 18.42/20.72 37.31 18.61/18.70 36.75 18.46/18.29
⟨1.75,M⟩ 187.17 122.46/64.71 374.34 374.34/0.00 96.93 65.84/31.09 64.52 34.55/29.97 62.39 34.71/27.68 60.57 33.04/27.53
⟨1.75, L⟩ 419.36 259.55/159.81 524.20 524.20/0.00 212.38 171.14/41.24 109.96 66.40/43.56 104.85 69.41/35.44 98.20 59.46/38.74
⟨2.0, S⟩ 96.12 40.72/55.40 192.24 192.24/0.00 47.91 26.80/21.11 37.04 18.19/18.85 35.48 18.11/17.37 34.63 18.06/16.57
⟨2.0,M⟩ 222.36 127.46/94.90 333.54 333.54/0.00 91.11 61.82/29.29 59.37 32.12/27.25 57.69 32.37/25.32 56.94 31.88/25.06
⟨2.0, L⟩ 265.92 159.12/106.80 443.20 443.20/0.00 201.62 161.33/40.29 102.00 61.59/40.41 97.09 63.63/33.46 93.80 56.71/37.09
⟨2.25, S⟩ 125.92 82.68/43.24 157.40 157.40/0.00 44.50 25.16/19.34 35.31 17.95/17.36 34.79 18.36/16.43 33.01 17.75/15.26
⟨2.25,M⟩ 165.45 79.98/85.47 330.90 330.90/0.00 82.73 56.04/26.69 58.59 32.51/26.08 56.80 32.13/24.67 55.45 31.56/23.89
⟨2.25, L⟩ 352.08 179.93/172.15 440.10 440.10/0.00 201.48 162.72/38.76 103.54 63.74/39.80 95.95 63.32/32.63 92.55 56.25/36.30
⟨3.0, S⟩ 97.44 59.49/37.95 194.88 194.88/0.00 41.86 23.21/18.65 32.76 17.60/15.16 32.48 18.17/14.31 30.74 17.53/13.21
⟨3.0,M⟩ 166.65 93.36/73.29 277.75 277.75/0.00 76.03 50.10/25.93 55.57 32.23/23.34 55.54 33.34/22.20 52.32 31.44/20.88
⟨3.0, L⟩ 293.10 157.89/135.21 488.50 488.50/0.00 163.45 128.03/35.42 100.52 65.42/35.10 97.70 67.29/30.41 93.69 58.06/35.63

5.4 ABLATION STUDIES

We evaluate DEFT on the same testing scenarios by analyzing its gating design, the effect of replac-
ing the PMM of GATES with a deeper MLP, and its average per-step inference overhead. The results
show that DEFT delivers the best overall performance while keeping inference overhead modest.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Comparing Gating Mechanisms. We first isolate the effect of the gating network inside DEFT.
All gating networks receive the same input embedding; they differ only in how they score experts.
As summarized in Table 3, the linear gating performs the worst, the MLP gating improves but still
falls behind, and the graph-adaptive gating used by DEFT consistently achieves the lowest total cost
on all S/M/L scales. This confirms that CADWS benefits from the proposed graph-adaptive gating
that is aware of workflow structure and deadline pressure, and that simple linear or MLP gating
cannot fully exploit expert specialization.

Table 3: Performance and average per-step inference overhead on different testing scales.

Method Total Cost Average Inference Overhead (second/step)

S M L S M L Overall (S+M+L)

GATES (original PMM) 52.95 97.76 195.65 0.0616 0.1610 0.4250 0.2159
GATES + deep MLP-PMM 52.91 98.41 194.77 0.0674 0.1267 0.6979 0.2973

DEFT + Linear gating 52.85 88.41 142.27 0.0608 0.1453 0.4467 0.2176
DEFT + Graph-adaptive gating (ours) 52.46 86.60 137.69 0.0648 0.1482 0.4525 0.2218
DEFT + MLP gating 52.70 87.34 141.62 0.0777 0.1586 0.5206 0.2523

MoE-PMM vs. MLP-PMM. To check whether DEFT’s gain over GATES comes merely from
using more MLP experts in MoE, we compare our DEFT with the original GATES and a stronger
GATES with a deeper MLP-PMM. Table 3 shows that GATES and GATES+deep-MLP PMM
achieve nearly identical performance, whereas DEFT clearly outperforms both across all scenar-
ios. This indicates that the improvement stems from MoE’s ability to select specialized policies per
decision step, rather than from simply increasing network capacity.

Inference Overhead. Table 3 also reports the per-step inference overhead on all testing scales.
As expected, the original GATES model is the fastest overall, because it does not include any MoE
component and therefore avoids extra routing computation. Adding an MoE on top of GATES
(all DEFT variants) inevitably introduces some overhead, but the increase is small. DEFT with
linear gating and DEFT with our graph-adaptive gating are only slightly slower than GATES, while
achieving much lower total cost. Among the DEFT variants, linear gating is the cheapest to run; our
graph-adaptive gating adds only a small overhead because it only computes attention weights for
expert selection (see Appendix B.2); MLP gating is the most expensive because it must learn new
embeddings through multiple fully connected layers at every decision step. Finally, GATES + deep
MLP-PMM is the slowest method overall, because it infers through a deeper MLP at each decision
step.

Overall, these ablations show that adding an MoE-PMM to GATES reliably improves scheduling
performance. Our proposed DEFT offers the best performance and moderate latency, benefiting
from its lightweight cross-attention design. Additional ablation studies, including sensitivity to the
number of experts and Top-k routing and pre-training γ, are provided in Appendix H.

6 CONCLUSION

This paper presented DEFT, the first Mixture-of-Experts architecture for dynamic cloud workflow
scheduling. DEFT trains multiple experts specialized for different levels of deadline tightness and
employs a graph-adaptive gating network that utilizes workflow DAGs, VM states, and more im-
portantly deadline urgency to activate the most appropriate experts. This combination enables DEFT
to adapt its scheduling strategy across diverse scenarios with both flexibility and precision. Extensive
experiments demonstrated that DEFT can consistently achieve the lowest overall cost, outperform-
ing heuristic and state-of-the-art DRL baselines by delivering a superior balance between VM rental
fees and deadline penalties.

Looking ahead, future research may extend DEFT to multi-tenant cloud environments, integrate
explainability into expert routing, and explore broader applications of graph-adaptive MoE models
for large-scale resource management.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research focuses on dynamic workflow scheduling in cloud computing environments. The work
does not involve human subjects, personally identifiable information, or sensitive data. The exper-
iments are conducted entirely on synthetic and publicly available benchmark datasets. Potential
societal impacts are positive, as the proposed methods improve energy and cost efficiency in cloud
systems. We do not foresee any negative ethical implications from this research.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide: (1) a full description of the problem formulation and al-
gorithm design in Sections 3; (2) detailed experimental settings, including datasets, baselines, and
hyperparameters, in Section 5 and Appendix F; and (3) complete pseudo-code for the training algo-
rithm in Appendices C and D. The source code and scripts for reproducing all experiments will also
be released publicly upon acceptance.

LLM USAGE STATEMENT

During manuscript preparation, we used a large language model to assist with language polishing,
grammar correction, and rephrasing. We carefully reviewed and edited the LLM-generated text to
ensure accuracy and originality. LLM was never used to generate experimental results, algorithm
designs, neural network architectures and other core technical contributions.

REFERENCES

Rajkumar Buyya, James Broberg, Rajkumar Buyya, Andrzej Goscinski, Andrz GoÃ, Andrzej GoÃ,
Andrzej Goâsciânski, and Andrzej M Goscinski. Cloud computing. Wiley Online Library, 2011a.

Rajkumar Buyya, Saurabh Kumar Garg, and Rodrigo N Calheiros. Sla-oriented resource provision-
ing for cloud computing: Challenges, architecture, and solutions. In 2011 international confer-
ence on cloud and service computing, pp. 1–10. IEEE, 2011b.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi Huang. A survey on
mixture of experts in large language models. IEEE Transactions on Knowledge and Data Engi-
neering, 2025.

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maechling, Ra-
jiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny, et al. Pegasus, a workflow
management system for science automation. Future Generation Computer Systems, 46:17–35,
2015.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International conference on machine learning, pp. 5547–
5569. PMLR, 2022.

Hamid Reza Faragardi, Mohammad Reza Saleh Sedghpour, Saber Fazliahmadi, Thomas Fahringer,
and Nayereh Rasouli. Grp-heft: A budget-constrained resource provisioning scheme for workflow
scheduling in iaas clouds. IEEE Transactions on Parallel and Distributed Systems, 31(6):1239–
1254, 2019.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Yong Liang Goh, Zhiguang Cao, Yining Ma, Jianan Zhou, Mohammad Haroon Dupty, and Wee Sun
Lee. Shield: Multi-task multi-distribution vehicle routing solver with sparsity and hierarchy.
arXiv preprint arXiv:2506.08424, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Victoria Huang, Chen Wang, Hui Ma, Gang Chen, and Kameron Christopher. Cost-aware dynamic
multi-workflow scheduling in cloud data center using evolutionary reinforcement learning. In
International Conference on Service-Oriented Computing, pp. 449–464. Springer, 2022.

Shadi Ibrahim, Bingsheng He, and Hai Jin. Towards pay-as-you-consume cloud computing. In 2011
IEEE International Conference on Services Computing, pp. 370–377. IEEE, 2011.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Amanda Jayanetti, Saman Halgamuge, and Rajkumar Buyya. Multi-agent deep reinforcement learn-
ing framework for renewable energy-aware workflow scheduling on distributed cloud data centers.
IEEE Transactions on Parallel and Distributed Systems, 35(4):604–615, 2024.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in reinforcement learning.
Advances in Neural Information Processing Systems, 31, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Chinyere Ngwu, Ying Liu, and Rui Wu. Reinforcement learning in dynamic job shop scheduling:
a comprehensive review of ai-driven approaches in modern manufacturing. Journal of Intelligent
Manufacturing, pp. 1–16, 2025.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Ya Shen, Gang Chen, Hui Ma, and Mengjie Zhang. Cost-aware dynamic cloud workflow scheduling
using self-attention and evolutionary reinforcement learning. In International Conference on
Service-Oriented Computing, pp. 3–18. Springer, 2024.

Ya Shen, Gang Chen, Hui Ma, and Mengjie Zhang. Gates: Cost-aware dynamic workflow schedul-
ing via graph attention networks and evolution strategy. In Proceedings of the Thirty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI-25, pp. 8635–8643, 2025.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19(2):1600–1610, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Quanwang Wu, Fuyuki Ishikawa, Qingsheng Zhu, Yunni Xia, and Junhao Wen. Deadline-
constrained cost optimization approaches for workflow scheduling in clouds. IEEE Transactions
on Parallel and Distributed Systems, 28(12):3401–3412, 2017.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Yifan Yang, Gang Chen, Hui Ma, Cong Zhang, Zhiguang Cao, and Mengjie Zhang. Graph assisted
offline-online deep reinforcement learning for dynamic workflow scheduling. In The Thirteenth
International Conference on Learning Representations, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. Advances in neural information
processing systems, 33:1621–1632, 2020.

Guangyao Zhou, Wenhong Tian, Rajkumar Buyya, Ruini Xue, and Liang Song. Deep reinforce-
ment learning-based methods for resource scheduling in cloud computing: A review and future
directions. Artificial Intelligence Review, 57(5):124, 2024a.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mv-
moe: Multi-task vehicle routing solver with mixture-of-experts. arXiv preprint arXiv:2405.01029,
2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED PROBLEM FORMULATION

This section provides a more detailed description of the Cost-Aware Dynamic Workflow Scheduling
(CADWS) problem, complementing the concise formulation presented in Section 3.

A.1 WORKFLOW MODEL

A workflow Wi ∈ W is represented by a directed acyclic graph (DAG) Wi = (OWi , CWi), where
OWi is the set of tasks and CWi is the set of precedence edges. Each directed edge (Oni, Onj) ∈ CWi

indicates that task Oni must finish before task Onj can begin. A task becomes a ready task, denoted
by On∗ , once all its predecessors have completed. Each task Oni ∈ OWi has a computational
demand cdOni

∈ R+, which measures the amount of work required. Workflows arrive dynamically
with an arrival time ai and a deadline

di = ai + γ ·minMakespan(Wi), (7)

where γ ≥ 1 is the deadline relaxation coefficient, and minMakespan(Wi) is the minimum execution
time achievable if all tasks are processed on the fastest VM without waiting.

The proposed DEFT operates in a concurrent multi-workflow setting where all workflows share the
same VM pool. At each decision step, it observes a global state that includes all ready tasks across
workflows, VM statuses, and workflow deadlines, so inter-workflow resource contention is treated
as part of the scheduling problem itself. The state embedding module and graph-adaptive gating
network are both defined on this global state, enabling DEFT to learn how workflows interact and
to coordinate their execution without any extra cross-workflow coordination module.

A.2 CLOUD ENVIRONMENT

The cloud provides a pool of VMsM = {m1,m2, . . . ,m|M|}, each characterized by a processing
speed vj and an hourly rental cost cj . VMs can be provisioned on demand without fixed capacity
limits, but the cost grows with the number of leased instances. If task Oni is assigned to VM mj , its
execution time is:

T exec
Oni,mj

=
cdOni

vj
, (8)

Let T start
Oni

be its start time, then the completion time of Oni is:

T comp
Oni

= T start
Oni

+ T exec
Oni,mj

, (9)

The completion time of a workflow Wi is the finish time of its last task:

CT(Wi) = max
Onk∈OWi

T comp
Onk

, (10)

A.3 VM RENTAL COST AND SLA PENALTY

At each time step t, executing the ready task On∗ on VM mj incurs a cost:

Cvm
t = cj ·

⌈
cdOn∗

vj · 3600

⌉
, (11)

and the cumulative VM rental cost across the scheduling horizon T is:

Cvm
[0,T] =

T−1∑
t=0

Cvm
t , (12)

Each workflow Wi is associated with a penalty if it misses its deadline. The penalty is defined as:

Csla
T (Wi) = β ·max{0,CT(Wi)− di}, (13)

where β is the penalty coefficient. The total SLA penalty over all workflows is:

Csla
T (W) =

∑
Wi∈W

Csla
T (Wi). (14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B THE DETAILS OF GRAPH-ADAPTIVE GATING NETWORKS

B.1 DAG-EMBEDDING LEARNING

Each workflow Wi is represented by a directed acyclic graph (DAG), denoted as Wi = (OWi , CWi),
where OWi is the set of task nodes and CWi is the set of precedence edges. For a task node Oni ∈
OWi , let N (Oni) denote the set of its neighboring task nodes in the DAG. The input feature of Oni

is represented as hOni
∈ Rd.

To capture dependencies among tasks, we employ a Graph Attention Network (GAT). The attention
coefficient from task Oni to one of its neighbors Onj is defined as

αij =
exp

(
LeakyReLU(a⊤[WhOni

∥WhOnj
])
)∑

Onk∈N (Oni)
exp

(
LeakyReLU(a⊤[WhOni

∥WhOnk
])
) , (15)

where W is a learnable transformation matrix, a is a trainable attention vector, and ∥ denotes con-
catenation.

The hidden embedding of node Oni is then obtained by aggregating messages from its neighbors
with attention weights:

h′
Oni

= σ

 ∑
Onj∈N (Oni)

αij WhOnj

 , (16)

where σ(·) is a non-linear activation function, e.g., ReLU.

Once all nodes in Wi are updated, we compute the workflow-level DAG embedding by applying a
mean pooling over the task embeddings:

hWi
=

1

|OWi
|

∑
Oni∈OWi

h′
Oni

. (17)

The resulting hWi ∈ RH serves as a compact representation of the workflow DAG, capturing both
task-specific features and structural dependencies among tasks. This embedding is later used by
DEFT to inform scheduling decisions.

B.2 CROSS-ATTENTION FOR EXPERT SELECTION

At each decision step, we rank E parallel experts via a cross-attention mechanism that maps contex-
tual features to per-expert weights. Consider a batch of N actions with embeddings A∈RN×Dact .
Let g ∈ R1×Ddag be the learned DAG embedding, r ∈ R1×Dready the ready-task embedding, and
γ∈R1×1 the SLA deadline coefficient. We broadcast (g, r, γ) across the batch and form queries:

Q = Wq [A;g; r; γ] ∈ RN×d, (18)

where [·; ·] denotes concatenation and Wq is a learned projection. Each row of Q is the query for
one VM action.

Q/K/V in cross attention. We maintain a learnable token table T ∈RE×d, with one d-dimensional
token per expert. For each action in the batch, the attention inputs are:

Q = qn ∈ R1×d, K = T ∈ RE×d, V = T ∈ RE×d,

In standard self-attention, the attention output is:

Attention(Q,K, V) = softmax
(

QK⊤
√
d

)
V. (19)

However, in our gating scenario, we only require the attention weights to rank experts, and the
multiplication by V (which would produce a new representation) is unnecessary. So, let qn be the
n-th row of Q, the scaled dot-product attention gives:

αn = softmax
(

qnK
⊤

√
d

)
∈ RE , (20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where αn = [αn,1, . . . , αn,E] ∈ RE , and αn,e denotes the weight assigned to expert e for action n
(e = 1, . . . , E). Stacking over N actions yields α ∈ RN×E .

Sparse Top-k routing. For each action n, we select the index set of the top-k experts

E(n)k = TopK(αn),

and re-normalize the selected components to form mixture weights

wn,e =
αn,e∑

j∈E(n)
k

αn,j
(e ∈ E(n)k),

∑
e∈E(n)

k

wn,e = 1. (21)

The routed output for action n is ∑
e∈E(n)

k

wn,e fe(·), (22)

where fe(·) denotes the forward network of expert e.

C TRAINING OF EACH EXPERT UNDER DIFFERENT DEADLINES

Following existing works Shen et al. (2024; 2025), we use the OpenAI ES Salimans et al. (2017) to
train each expert under a different workflow urgency to learn specific knowledge under this deadline
scenario. OpenAI ES is a population-based optimization technique known for its robustness against
hyperparameter sensitivity, insensitivity to the design of reward signals, and suitability for parallel
implementation, making it particularly effective for policy optimization tasks in dynamic environ-
ments Salimans et al. (2017); Khadka & Tumer (2018). The main procedure involves the following
key steps:

(1) In each training generation, we first sample a population of N individuals centered around the
current policy parameters θ̂ from a Gaussian distribution. Specifically, the parameter vector for
individual i is generated as:

θi = θ̂ + σϵi, ϵi ∼ N(0, I) (23)

(2) Next, we evaluate the fitness F (θi) of each individual parameter θi, which is defined as the
negative of the total scheduling cost (including VM rental fees and SLA violation penalties) obtained
by using the policy network parameterized by θi:

F (θi) = R(τ) = −
T−1∑
t=0

Cvm
t − Csla

T (W) (24)

(3) Subsequently, we update the current policy parameter θ̂ by estimating the gradient to maximize
the expected fitness of the population, thereby minimizing the total scheduling cost:

∇θ̂Eϵi∼N(0,I)[F (θ̂ + σϵi)] ≈
1

Nσ

N∑
i=1

F (θ̂ + σϵi)ϵi (25)

This process of sampling, evaluating, and updating parameters repeats until a maximum number of
generations is reached. The training procedure is outlined in Algorithm 1.

D TRAINING OF GRAPH-ADAPTIVE GATING NETWORK

Let {ϕk}Kk=1 be the pre-trained MLP experts obtained in Appendix C, where K denotes the number
of experts. During the second-stage training, we jointly optimize the graph-adaptive gating network
with parameters θg , the State Embedding Module (SEM) with parameters θs, and all pre-trained
experts {ϕk}Kk=1. We pack all trainable parameters into a single vector:

Θ̂← [θg; θs; {ϕk}Kk=1].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 OpenAI ES for policy training
Input: Population size: N , max number of generation: Gen, initial parameters of policy π with
DEFT: θ̂, initial learning rate: α, and the Gaussian standard noise deviation: σ
Output: The trained policy π

1: while the current number of generation <= Gen do
2: Randomly sample a CADWS training instance: Pro.
3: for each individual (i=1,2,...) in N do
4: Sample a ϵi ∼ N (0, I).
5: The parameters of πi represented by individual i: θi = θ̂ + σϵi
6: Evaluate the fitness value of F (θi) using equation 24 based on Pro
7: end for
8: Estimate the policy gradient∇θ̂Eθi∼N (θ̂,σ2I)F (θi) using equation 25.

9: Update parameters of π: θ̂ ← θ̂ + α 1
Nσ

∑N
i=1{F (θ̂ + σϵi)ϵi}.

10: end while
11: return the trained policy π

Given a state st (DAG embedding, ready-task features, VM features, and deadline), the SEM pro-
duces a context vector ht = fθs(st), the gating network outputs expert weights wt = gθg (st, ht)

with
∑K

k=1 wt,k = 1, and the DEFT policy mixes expert output as:

πDEFT(at|st) =
K∑

k=1

wt,k πk(at|st;ϕk). (26)

The fitness is the negative total scheduling cost in equation 24. The pseudo-code is shown in Algo-
rithm 2.

Algorithm 2 DEFT Training (SEM + Gating + Experts via OpenAI ES)
Inputs: Pre-trained experts {ϕk}Kk=1 (to be fine-tuned); initial gating params θg; initial SEM params
θs; CADWS training distribution D; population size N ; ES hyperparameters (learning rate α, noise
standard deviation σ, generations Gen).
Output: Trained (θg, θs, {ϕk}Kk=1)

1: Define the trainable parameter vector Θ̂← [θg; θs; {ϕk}Kk=1]

Note: In OpenAI ES, each individual is sampled as Θi = Θ̂ + σϵi with ϵi ∼ N (0, I); Algo-
rithm 1 handles sampling and gradient estimation.

2: Define FITNESS(Θi):
3: Load Θi→(θg, θs, {ϕk}Kk=1) into DEFT
4: Sample a CADWS instance Pro ∼ D
5: Roll out πDEFT on Pro: for each step t, compute ht = fθs(st), wt = gθg (st, ht), and

πDEFT(at|st) =
∑K

k=1 wt,k πk(at|st;ϕk)
6: Return FITNESS(Θi) using equation 24
7: Optimize Θ̂ by invoking Algorithm 1 with population size N , noise σ, learning rate α, genera-

tions Gen, and FITNESS as the evaluator
8: return the optimized (θg, θs, {ϕk}Kk=1)

E VM CONFIGURATION AND WORKFLOW PATTERNS

VM Configuration. We adopt six Amazon EC2 VM types ranging from m5.large to
m5.12xlarge, varying in computational power and cost. Table 4 lists their specifications.

Workflow Patterns. We simulate four workflow types (CyberShake, Montage, Inspiral, SIPHT)
with different DAG structures. The number of tasks per workflow varies with the scale, as shown in
Table 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: The configuration of VM instances.

VM Type vCPU/Memory (GB) Cost ($/hour)
m5.large 2/8 0.096
m5.xlarge 4/16 0.192
m5.2xlarge 8/32 0.384
m5.4xlarge 16/64 0.768
m5.8xlarge 32/128 1.536
m5.12xlarge 48/192 2.304

Table 5: Workflow patterns and sizes.

Scale CyberShake Montage Inspiral/SIPHT
Small 30 25 30
Medium 50 50 50/60
Large 100 100 100

F ADDITIONAL TRAINING AND TESTING DETAILS

Training and testing use instances of 10 workflows with a Poisson arrival process (λ = 0.01).
Within any single instance, all workflows share the same deadline γ; across instances, γ varies by
phase. In Stage-1, each expert is pre-trained on S-scale instances at a fixed deadline chosen from
{1.25, 1.75, 2.25, 5.0}. In Stage-2, the state embedding network, gating network, and pre-trained
experts networks are jointly optimized on S-scale instances where the per-instance deadline is sam-
pled from {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}. Although experts are pre-trained at discrete γ values,
phase-2 training uses a mixed-deadline distribution that exposes all experts and the gating network
to various γ values (e.g., 1.5, 2.0). Through this phase, the gating network learns a smooth mapping
from varied deadlines and state features to suitable expert choices. For intermediate deadlines such
as γ = 1.5 or γ = 2.0, the gating network does not simply pick the nearest experts, it also considers
the current scheduling pressure, deciding whether SLA risk or VM cost should be prioritized. As a
result, it adaptively selects between the experts whose behaviors best match the ongoing context.

For testing, we use 30 instances per scale (S/M/L); each instance draws a single deadline from
the same sampled set and applies it to all workflows. This protocol exposes the gating network to
deadline variation while permitting mild expert fine-tuning. Additionally, in this work, we set the
parameters of Top-k as 1, meaning that we only select one pre-trained expert by the gating network
at every decision step. Top-1 routing enables the gating network to directly activate the expert whose
behavior best fits the current scheduling state, while still rotating across different experts over the
full trajectory. The benefit of this Top-1 routing behavior is illustrated in Appendixes H.1 and I.
Table 6 summarizes the detailed configuration of training and testing.

G ADDITIONAL EXPERIMENTS ON CONVERGENCE AND STABILITY

Convergence analysis. Figure 3 shows the convergence curves of ES-RL, SPN-CWS, GATES, and
DEFT on small- and medium-scale workflows. ES-RL exhibits slow and unstable learning, with
large fluctuations and much lower solution quality in both cases. SPN-CWS converges faster but
plateaus at higher total costs, reflecting its limited policy expressiveness. GATES shows more stable
convergence and better final performance, yet still lags behind DEFT. In contrast, DEFT not only
converges quickly but also reaches the lowest total cost with reduced variance, confirming that its
MoE architecture and graph-adaptive gating enable more effective policy learning across different
workflow scales.

Performance stability analysis. Figure 4 compares the distribution of total costs across indepen-
dent runs on small- and medium-scale workflows. ES-RL exhibits the largest variance, with widely
scattered results and frequent extreme outliers, indicating unstable learning behavior. SPN-CWS
shows moderate improvement but still suffers from noticeable variability as workflow size increases.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Training and testing setup. “Scale” indicates the workflow scale/size. “Card.” stands for
cardinality.

Phase Updated Params Scale γ Card.
Stage-1 train Experts S Fixed {1.25, 1.75, 2.25, 5.0}
Stage-2 train SEM+Gate+Exp S Sampled {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}
S test None S Sampled {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}
M test None M Sampled {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}
L test None L Sampled {1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 3.0}

0 400 800 1200 1600 2000 2400 2800
Generation

100

200

-(T
ot

al
 c

os
t)

Convergence on S scale workflows

ES-RL
SPN-CWS
GATES
DEFT

(a) Small workflow

0 400 800 1200 1600 2000 2400 2800
Generation

100

200-(T
ot

al
 c

os
t)

Convergence on M scale workflows

ES-RL
SPN-CWS
GATES
DEFT

(b) Medium workflow

Figure 3: Convergence of testing performance under dynamic workflow deadlines.

GATES achieves tighter distributions with fewer outliers, reflecting more stable scheduling perfor-
mance. DEFT demonstrates the most concentrated distribution across both scales, with consistently
lower variance and narrower interquartile ranges. This highlights that the combination of MoE spe-
cialization and graph-adaptive gating not only reduces average total cost but also ensures robust
performance stability, which is crucial for real-world deployment.

ES-RL SPN-CWS GATES DEFT
Algorithm

50

60

70

80

To
ta

l C
os

t

WF_Size=S

(a) Small workflow

ES-RL SPN-CWS GATES DEFT
Algorithm

80

100

120

140

160

To
ta

l C
os

t

WF_Size=M

(b) Medium workflow

Figure 4: Stability on the testing set with dynamic workflow deadlines.

H ADDITIONAL ABLATION STUDIES

We present additional ablation studies examining three key parameters in DEFT: (i) the number of
experts, (ii) the choice of Top-k routing, and (iii) the selection of γ values for expert pretraining.
Together, these results verify the architectural choices of DEFT and demonstrate that the proposed
graph-adaptive MoE architecture provides consistent and meaningful gains in CADWS. All these
ablation experiments are under a small setting with 10 instances, each composed of 5 workflows.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.1 JOINT ABLATION ON THE NUMBER OF EXPERTS AND TOP-k ROUTING

To obtain a complete understanding of how the proposed DEFT behaves under different architectural
settings in CADWS, we conduct a joint ablation over representative combinations of expert numbers
{2, 4, 8} and Top-k routing choices {1, 2, 4}. This results in nine configurations in total. Table 7
reports the scheduling performance of each configuration.

Table 7: Effect of varying expert counts and Top-k routing choices in DEFT.

#Experts Top-k S M L

Total Cost VM SLA Total Cost VM SLA Total Cost VM SLA

2
1 19.80 9.11 10.69 32.09 16.66 15.43 49.09 25.05 24.04
2 20.56 9.47 11.09 35.13 18.25 16.88 53.36 26.43 26.93

4
1 20.18 9.17 11.01 28.32 16.73 11.59 45.20 24.04 21.16
2 19.86 9.08 10.78 31.48 17.09 14.39 48.76 25.24 23.52
4 20.60 9.62 10.98 30.88 16.89 13.99 48.79 25.95 22.84

8
1 19.61 9.20 10.41 32.67 17.08 15.59 49.02 25.25 23.77
2 20.69 9.38 11.31 32.80 17.26 15.54 53.90 28.08 25.82
4 20.75 9.86 10.89 33.12 17.88 15.24 50.50 28.03 22.47

Effect of Expert numbers. As shown in Table 7, configurations with only two experts consistently
underperform on most testing scenarios, particularly in M and L, regardless of the choice of Top-k.
The limited deadline coverage during pre-training forces the two experts to absorb broad and hetero-
geneous scheduling patterns, leading to coarse-grained behaviors with insufficient specialization. As
a result, the gating network has few meaningful routing options, and increasing k offers no benefit.

Conversely, eight-expert configurations suffer from excessive redundancy. Many pre-training γ val-
ues are too close, leading experts to converge to nearly identical policies. This redundancy increases
routing ambiguity, as multiple experts provide almost the same policy behaviors, making the expert
selection harder for the gating network and causing overall performance to degrade across all Top-k
settings.

Effect of Top-k Routing. Top-1 routing consistently performs best across most settings accord-
ing to Table 7. Activating only the highest-scoring expert preserves the specialization encoded in
each expert policy and avoids the noise introduced by averaging multiple experts’ outputs. Increas-
ing k generally weakens this specialization signal and yields diminishing or negative performance,
especially when the expert pool already contains overlapping behaviors, as in the 8-expert case.

4 Experts + Top-1. The joint ablation reveals a clear and consistent pattern: the number of experts
determines how many distinct scheduling policies the DEFT can express, while the Top-k value
controls how precisely the gating network of DEFT can leverage that diversity. Their interaction
is therefore essential, as experts only perform well under specific Top-k settings and vice versa.
Among all nine tested combinations, the configuration with 4 experts and Top-1 routing achieves
the strongest overall performance in CADWS. With four experts, the policy pool is diverse enough
to include clearly separated SLA-saving and VM-saving strategies, yet compact enough to avoid
redundancy. Top-1 routing then allows the gating network to cleanly choose the expert whose policy
best matches the current state, resulting in more stable and clearer scheduling decisions. As shown
in Table 7, this combination achieves the lowest total cost, especially in M and L testing scenarios.
These results indicate that DEFT performs better when expert diversity is meaningful and the gating
network can decisively pick the right expert, which is precisely why we adopt the 4-expert Top-1
configuration in this paper.

To further analyze the Top-1 phenomenon, we performed a transparency analysis that logs the VM
selection by every expert, as detailed in Appendix I. The results show that Top-1 routing can ac-
tivate the experts whose policy behaviors best match the current scheduling state, providing better
performance than higher Top-k in our CADWS settings.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H.2 THE CHOICE OF γ FOR EXPERT PRE-TRAINING

As the previous ablation in Appendix H.1 has identified the 4-expert Top-1 configuration as the most
effective design in DEFT, the following γ study is conducted under this setting. We evaluate three
configurations of γ values for expert pre-training: (1) evenly spaced values, (2) randomly sampled
values, and (3) compact cluster values. These γ-sets differ primarily in how broadly they cover
the full spectrum of deadline tightness. Table 8 summarizes the results under the ablation testing
scenario.

Table 8: Effect of different γ sets for DEFT expert pre-training.

γ set for expert pre-training S M L

cost VM SLA cost VM SLA cost VM SLA

Evenly spaced: [1.25, 1.75, 2.25, 5.0] 20.18 9.17 11.01 28.32 16.73 11.59 45.20 24.04 21.16
Randomly sampled: [1.25, 1.5, 3.0, 5.0] 20.61 9.67 10.94 32.70 17.92 14.78 53.41 28.70 24.71
Compact cluster: [1.0, 1.25, 1.5, 1.75] 21.04 9.21 11.83 34.39 18.09 16.30 53.49 28.16 25.33

The experiments show a consistent pattern. Both the evenly spaced and the randomly sampled γ-sets
span a wide range of deadline conditions, which exposes each expert to sufficiently different deadline
regimes during pre-training. As a result, the experts learn clearly differentiated scheduling styles,
from strongly SLA-saving to VM-saving, giving the gating network a diverse and well-separated
expert portfolio. This diversity directly translates into better scheduling performance, improving
performance compared with the compact cluster set.

In contrast, the manually crafted γ-set clusters most values in a narrow interval. This restricted
coverage causes experts to receive nearly identical training signals, leading them to converge to
overly similar policy behaviors. The resulting homogenized expert pool provides little meaningful
variation for the gating network to exploit, making expert routing less informative and ultimately
degrading scheduling quality.

Overall, these results indicate that DEFT does not require precise tuning of the γ values. What
matters is simply that the selected γ-set adequately spans the diversity of deadline tightness levels.
Whenever this condition is satisfied, such as with uniformly spaced or randomly sampled values, the
expert specialization remains well-structured, and the proposed graph-adaptive gating network can
reliably differentiate between experts and select the fittest one at each decision step.

H.3 SUMMARY

Overall, these ablation studies lead to three clear conclusions about the design of DEFT. First,
the MoE architecture of DEFT is effective only when the expert pool provides genuinely diverse
scheduling behaviors and the gating network can reliably select among them. The joint ablation
over the numbers of experts and Top-k routing shows that this balance is achieved most robustly
by the 4-expert Top-1 configuration in our CADWS problem. Second, the choice of pre-training
γ values does not require careful tuning; DEFT remains stable as long as the selected pre-training
γ-set spans a broad range of all deadline tightness.

I THE CHOICE OF TOP-1 ROUTING IN DEFT

From Appendix H.1, we already know that the Top-1 routing in DEFT shows more stable and good
performance than higher Top-k. To further understand this phenomenon, we performed a trans-
parency experiment that logs the VM selected by each expert. When the current number of VM
actions becomes larger than the previous state, these newly appearing corresponds to the newly
rented VMs at the current state, which allows us to see whether an expert prefers renting or reusing
VMs. We also record the VM occupation rate as an indicator of system load: a high VM occupation
rate means the VM pool is heavily occupied with long queues, while a low occupation rate means
the system has abundant free VM capacity. Table 9 presents six representative examples from dif-
ferent scheduling states and reveals expert behaviors that explain why Top-1 routing is better suited
to CADWS than Top-k (k > 1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Transparency experiment. At each decision step, we log the VM chosen by each expert,
the current and previous numbers of available VM actions, the current VM occupation rate, and the
deadline coefficient γ.

Example VM selection per expert current VM numbers previous VM numbers VM occupation rate γ

1 [28, 28, 28, 28] 28 27 0.91 1.25
2 [47, 47, 47, 38] 47 46 0.82 2.25
3 [25, 8, 8, 48] 52 52 0.23 1.25
4 [6, 26, 18, 21] 33 33 0.078 2.25
5 [34, 24, 34, 25] 34 33 0.43 1.25
6 [54, 62, 48, 33] 62 61 0.62 2.25

I.1 EXPERT BEHAVIOR ACROSS EXTREME AND TRADE-OFF STATES

Examples 1–4 show two types of extreme scheduling states in which experts tend to converge to a
similar decision. Examples 1 and 2 correspond to SLA-critical situations with very high VM occu-
pation rate (0.91 and 0.82). In Example 1, tight deadlines (γ = 1.25) make reusing existing VMs
likely to trigger SLA violations, and all experts select to rent a new VM (index 28). In Example 2,
even with a more relaxed deadline (γ = 2.25), the high VM occupation rate keeps SLA violation
risky, and most experts again choose to rent a new VM (47), with only one expert opting for using
an existing VM (38). Examples 3 and 4 represent VM-abundant states with low occupation rate
(0.23 and 0.078). Under such conditions, the system already has enough idle VM capacity, so rent-
ing another new VM tends to increase cost while offering few benefits for avoiding SLA penalties.
In these cases, experts naturally agree on reusing existing VMs such as indices 6, 8, 18, or 25, re-
gardless of deadline tightness. These four examples demonstrate that under both extreme states,
SLA-critical and VM-abundant states, experts gravitate toward similar or even the same VM action,
making Top-1 and Top-k produce nearly identical decisions.

By contrast, Examples 5 and 6 reflect intermediate trade-off states where neither SLA pressure
nor VM cost fully dominates. In Example 5, moderate occupation rate (0.43) and a tight deadline
(γ = 1.25) cause experts to split between renting the new VM (34) and reusing existing ones (24
or 25). Example 6 shows similar divergence at a slightly higher occupation rate (0.62) with a relaxed
deadline (γ = 2.25). These trade-off states are exactly where the experts behave differently: some
choose the newly rented VM to avoid possible SLA violations, while others reuse existing VMs to
keep the VM cost low.

I.2 WHY TOP-1 IS A BETTER FIT FOR CADWS

In CADWS, the action space is discrete. The scheduler should select one VM at each decision step.
This means the gating network cannot “blend” expert recommendations. For example, in Table 10,
if Expert 1 strongly prefers VM B and Expert 2 prefers VM C, mixing their action distributions
under Top-k can artificially raise the probability of an entirely different VM (e.g., VM D). This
blended action distribution misled the gating network to pick a VM that none of the experts actually
recommended. This limitation has little impact in extreme states (Examples 1–4), where all experts
tend to agree on the same VM. However, the situation changes in trade-off states (Examples 5
and 6), where experts genuinely disagree: some prefer renting a new VM to stay safe on SLA
violation, while others would rather reuse existing VMs to save VM cost. Top-k (k > 1) mixes
these conflicting opinions and often blurs the strongest action signal, which can push the scheduler
toward a less suitable VM.

The transparency analysis in Table 9 and the examples in Table 10 reveal that: When the system is in
an extreme state, Top-1 and Top-k behave almost the same because experts reach natural agreement.
When the system enters a trade-off state, Top-k becomes unreliable because it smooths away the
expert differences that actually matter. Top-1 avoids this problem by letting the gating network
choose the single expert that best understands the current situation, leading to clearer and more
stable decisions, renting VMs when deadlines are tight, and reusing VMs when saving VM cost
matters more. This makes Top-1 a better match in our CADWS problem.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 10: Top-k blending can select a VM that no expert actually prefers (expert weights w1=0.4,
w2=0.6).

Action probability distributions Who prefers this VM?

VM Expert 1 π(1)(a) Expert 2 π(2)(a) Mixed πmix(a) Expert 1 Expert 2 Top-k (k = 2) mixing

A 0.10 0.05 0.07 – – –
B 0.45 0.10 0.24 Yes – –
C 0.05 0.50 0.32 – Yes –
D 0.40 0.35 0.37 – – Yes

I.3 EXPERT SELECTION ACROSS TIME

Using Top-1 does not eliminate the benefits of a multi-expert architecture from MoE. In CADWS, a
full scheduling process consists of thousands to tens of thousands of decision steps, and the gating
network frequently selects among experts in a context-dependent manner. When VM occupation
rate rises and workflow deadlines tighten, the gating network chooses towards SLA-saving experts;
when deadlines relax, it shifts towards VM-saving experts. Thus, DEFT does leverage diverse expert
policies and mixes them across the whole scheduling process, which is exactly how MoE delivers
gains in CADWS.

J ARCHITECTURAL-LEVEL ADVANCES BEYOND GATES

Although DEFT reuses the GNN encoder from GATES, it introduces a fundamentally different
decision-making mechanism. GATES relies on a single-path priority mapping module (PMM),
which restricts the scheduler to one static scheduling mode. In contrast, DEFT replaces this fixed
PMM with a MoE architecture by incorporating a graph-adaptive gating network and a set of spe-
cialized experts, as shown in Figure 1 (c). The gating network selects the most suitable expert based
on the evolving deadline pressure, workflow structure, and VM cost state, enabling DEFT to select
policy behaviors dynamically over the whole scheduling horizon. This adaptive, multi-mode expert
policy cannot be expressed by GATES. Therefore, DEFT is not a minor modification of GATES but a
framework that expands the expressive power of the scheduling policy through expert specialization
and deadline-conditioned expert routing.

To further clarify, in our CADWS setting, deadline tightness is the main factor driving scheduling
performance, so we use it as the primary dimension for expert specialization in our MoE design. In
other scenarios where workflow size, task heterogeneity, or resource type have a stronger impact on
scheduling, these attributes could also be used to define expert specializations.

23

	Introduction
	Related Work
	Deep Reinforcement Learning for CADWS
	Evolution of Mixture-of-Experts (MoE)

	Preliminaries
	Cost-Aware Dynamic Workflow Scheduling
	Markov Decision Process Formulation

	Methodology
	The proposed DEFT Policy
	Deadline-aware expert design
	Graph-Adaptive Gating Network
	Training Method
	Expert Pre-training
	Gating Network Training

	Experiments
	Problem Settings and experiment configuration
	Main Results under Dynamic Deadlines
	Test performance on scenarios with different deadlines
	Ablation Studies

	Conclusion
	Detailed Problem Formulation
	Workflow model
	Cloud environment
	VM rental cost and SLA penalty

	The details of Graph-adaptive gating networks
	DAG-embedding learning
	Cross-attention for expert selection

	Training of each expert under different deadlines
	Training of graph-adaptive gating network
	VM Configuration and Workflow Patterns
	Additional Training and Testing Details
	Additional Experiments on Convergence and Stability
	Additional Ablation Studies
	Joint Ablation on the Number of Experts and Top-k Routing
	The Choice of for Expert Pre-Training
	Summary

	The Choice of Top-1 Routing in DEFT
	Expert Behavior Across Extreme and Trade-off States
	Why Top-1 is a Better Fit for CADWS
	Expert Selection Across Time

	Architectural-Level Advances Beyond GATES

