Generalized Degrees for Scalable Discrete Time Dynamic
Graph Generation

Kjartan van Driel"' Leonardo Niccold Ialongo!> Pablo Astudillo-Estévez**!

Stefan Thurner!-%6

Abstract

The evolution of many real-world systems is best described by dynamic graphs,
whose statistical properties reflect the constraints of the system. When forecast-
ing their dynamics, the goal is to generate a time series of graphs respecting
these underlying constraints. Existing scalable dynamic graph learning methods,
however, are designed for local tasks such as link prediction or node classifica-
tion, and their independent, local predictions are ill-suited for graph generation.
This limitation is particularly relevant for discrete time dynamic graphs, where
coarse time resolution induces dependencies among edges within each snapshot.
We propose using a generalized notion of degrees to model such dependencies
directly, thereby shifting the focus from individual links to node dynamics. This
approach bypasses the need to learn a sparse graph representation, and yields an
inductive representation that enables the generation of large-scale discrete-time
dynamic graphs.

1 Introduction

The evolution of many real-world systems is best described by dynamic graphs, which capture
interactions and their temporal evolution. When forecasting their dynamics, the goal is not just
to predict individual edges but to generate sequences of graphs that reproduce key higher-order
properties. These properties govern crucial phenomena, such as systemic risk in socio-economic
systems [11], epidemics [22], disruptions to supply chains [8], as well as financial crashes [1, 3].

Past years have seen a large interest in learning on dynamic graphs [15, 19], and various scalable
methods have been developed for dynamic graphs, either as temporal extensions of graph convolu-
tional networks [17, 24, 26, 29] or as novel architectures [7, 30]. Most of these methods, however,
are optimized for discrimination tasks rather than for graph generation, and, as Chanpuriya et al. [5]
demonstrate, realistic yet novel graphs cannot be generated when training relies on discriminative,
edge-independent methods.

In this work, we focus on large-scale discrete-time dynamic graphs, where time is coarsened into
intervals and all interactions within an interval are collapsed into a single snapshot. This coarse-
graining introduces dependencies between edges [21], and such graphs are particularly common
when considering administrative data, such as trade data, regulatory filings, as well as tax records,
which are essential for modeling economic systemic risk [2, 8].

The large-scale discrete-time setting poses unique challenges. Unlike in continuous-time, one cannot
rely on the sparsity and exact ordering of edges to apply edge independent models, as demonstrated

! Complexity Science Hub, 2 Supply Chain Intelligence Institute Austria, > Universidad San Francisco de
Quito & School of Economics, * Institute for New Economic Thinking, University of Oxford, 5 Section for
the Science of Complex Systems, Center for Medical Data Science, Medical University of Vienna, ¢ Santa Fe
Institute, t van-driel @csh.ac.at, ¥ thurner@csh.ac.at

van Driel et al., Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation (Extended Abstract).
Presented at the Fourth Learning on Graphs Conference (LoG 2025), Hybrid Event, December 10-12, 2025.

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

generate
embeddings
> {Zii}i
extract
Generate
degreesl snapshot
sample /
{7,iti
{Gt’ }f/<t ’
{di-1,i}i

Figure 1: Conceptual illustration of the proposed framework, where the main innovation is the
extraction and sampling of local structure using generalized degrees, which in turn provides a
constraint for graph generation.

by Hosseini et al. [14]. At the same time, scalable methods that incorporate edge dependencies in
static graphs do not directly extend to this regime [4, 28].

To address this gap, we propose a framework that models the evolution of local node topologies
across snapshots, rather than individual links. This shift allows us to model important structural
constraints explicitly while avoiding the need to learn sparse edge-level representations. Overall we
develop an inductive representation that scales naturally to large graphs, enabling the generation of
discrete-time dynamic graphs that preserve key structural properties.

2 Notation & Methods

We consider a time series of possibly attributed graphs {G}}, with each graph defined as G; =
Vi, &, X4, Ey) , where V; and &, denote the node and edge set at time ¢ respectively, X; € RIVtlxdz
is the node feature matrix, and £, € RI€:[*% is the edge feature matrix.

Generalized degrees extend the standard degree notion by distinguishing between different classes
of edges, where each class represents a type of relationship. We formalize this idea as follows.
First, we assume the existence of a map from the history of graphs {Gy }+ < to edge embeddings
Zij € R¢:. These embeddings may be observed directly from data, or defined latently as functions
of the graph topology (e.g., via message passing networks), but crucially, we assume Z; ;; is defined
for all node pairs. We then define a function 7 : R% — {0,...,k} that partitions edges based on
their embedding 2} ;;.

Given a class v € {0, ..., k}, the y-degree of node i at time ¢ is defined as':
dj ;=i | m(Zeis) =7} M

To describe the local evolution of a node we consider how many of the edges that compose each
~v-degree will be present in the next time step, as given by the y-realization count:

i = i 1@ 5) € &y m(Zi) = v}, 2

Temporal signature. In this work, we do not attempt to learn the partition 7. Instead, our goal
is to illustrate the utility of generalized degrees. To this end, we construct generalized degrees that
capture the temporal evolution of a node’s neighborhood by partitioning edges according to their
direction and temporal signature. The temporal signature of an edge at time ¢ is a bit-string of length
7 recording its activity over the past 7 timesteps; for example, when 7 = 2, the in, 01-degree dltn;m
counts the number of incoming edges to node i with signature inactive at time ¢ — 1 and active at
time ¢. We note that such partitions are inspired by, and generalize the work of Longa et al. [18].

"Undirected is chosen for ease of exhibition, for directed graphs, we assume two functions 7", 7*", where

then d}, = [{j | 7" (Z1.i5) = v} U{j | #"(Z.5:) = 7}, so that one can distinguish the direction of the
edge.

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

Overlap B New nodes C Exit rate
1.00 [% E ok L %
b 103 | iac 2 le ®
O oors| " E g 107 pE Ny
T © 02k) © *
M. . S E ‘*. — **
=1 g 0.50 |- ~ L o F oA b= &
U O =~ - * AR S l" 5 & *
U 0.25 | - > g
-_ F 10 = ' 3
TR R B R 100 o i Bud il i
D E . F
E 1.00 - % 5,,* %
*
D 2075t w W0 E 9 101 E#
- o © F
= © c % c
H Tosof % & %K 3 100 L = X
-_— > O 10! E + < *
Q ©° v E [9)
D o2 - S 102 |
e - | E
1 1 1 1 1 100 wl ..ﬁnl sinl PRTTTT B T TR BRI MATARTTTT |
0 1 2 3 4 10° 10! 102 103 100 10! 102 103
t dout,Ol +1 din,lO +1
*® |[Eoné&ll/lE] W T=1 % Data * Data
€0 N ét|/|£0| =2 y-deg Proposed y-deg
T=3 y-deg Realised

Figure 2: To highlight how our framework captures key properties of dynamic graphs, we generate
an out of sample timeseries and compare key structural properties to the data. In particular we show:
the edge overlap with respect to the data at time ¢ = 0, the degree sequence of new nodes att = 1,
and the exit rate as a function of degree at time ¢ = 0. Together, these properties capture whether the
framework reproduces the right level of turnover among edges, new nodes, and exiting nodes. A,D
show the overlap of generated edges &, to that of the data &,. B,E show the histogram of out-degree
of entering nodes for the Data, the learned model (y-deg Proposed), and the heuristic generation
(7-deg Realised). C,F show the exit rate for nodes given their in-10 degree.

Learning. For scalable learning, the key observation is that given the partition function 7, one can
model p({7;;}; | {G¢ }i<+) without considering the likelihood over edges, thereby bypassing the
need to learn a sparse matrix representation. We leave details of the learning procedure out of the
main text (see Appendix B), but in short: we assume conditional independence between nodes given

their previous degrees d;_1 ; so that the distribution factorizes as p({74,; }s | {Gv }ir<t) = [1, (7%, |

Te,i
v)
di_y;

within [0, 1]. We learn this distribution using a conditional ReaNVP normalizing flow [9, 27], with a
learned variational dequantizer [13] to handle discreteness, though the framework is not limited to
this choice. For more details on our model choice see Appendix B.3.

d_,;_l,i). To simplify the architecture, we learn the ~y-realization ratio o) ; = which is bounded

Generation. The sampled realization counts describe the local evolution of individual nodes and
can be viewed as constraints on the graph’s topology. Crucially, satisfying such constraints introduces
dependencies between edges, addressing the problem raised in the work of Chanpuriya et al. [5].

We propose a simple heuristic for directed discrete-time dynamic graphs that produces snapshots that
approximately satisfy the constraints set by the realization counts. In brief, we assign each node a
number of in-stubs matching its in-realization counts and then attach them, without replacement, to
other nodes in proportion to their respective out-realization ratio, see Appendix D for details.

3 Experiments

We present two experiments to evaluate our framework. First, we demonstrate that it enables the
generation of large dynamic graphs, learning the properties of entering and exiting nodes. Second,

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

we show that generalized degrees carry information beyond the temporal signatures of individual
edges, using a link prediction task.

For the generation experiment, we use two large discrete-time dynamic graph datasets: Ecuador
[2] and tgbl-flight [15]. Ecuador is a confidential, country-wide transaction graph provided by the
Ecuadorian tax authorities (see Appendix A for details). For the link prediction experiment, we focus
on the tgbl-flight benchmark.

3.1 Dynamic graph generation

To illustrate that our framework’s ability to generate realistic discrete time dynamic graphs, we
showcase its ability to reproduce three non-trivial structural properties: (i) overlap of edges with a
reference set, (ii) the degree sequence of incoming nodes, and (iii) the exit rate as a function of degree.
These properties together capture the extent to which the model reproduces turnover among edges,
newly arriving nodes, and departing nodes, and highlight the main difference from discrimination
tasks like link prediction. For both datasets, we train the model up to time ¢7, and generate a single out
of sample time series extending four steps into the future. The results, shown in Figure 2, confirm that

our learned distribution pg (7 ; | J;/,M) reproduces essential, and non-trivial properties of empirical
dynamic graphs.

3.2 Link prediction

Bl EdgeBank, EE EdgeBank..

If the constraints implied by realization counts m rBank: MW EdgeBanky]

. [y-deg. [SotA
accurately capture the dynamics of the graph, o8 " >
then the corresponding realization ratios should 06k

provide good estimates of edge existence prob-

abilities. In our setting, the generalized degrees 04r
arise from a partition of edges based on their 02}k
temporal signature. We show that this captures 00

1qfqrmatlon beyond th.e t?,mporal signature of in- t=17=21=3 EdgeBank SotA
dividual edges: predictions derived from our

learned model, pg(7;; | di—1,:), outperform Figure 3: Link prediction performance on the tgbl-
those from f-Bank., a heuristic that simply flight benchmark. Left: our method -deg as well
records the frequency with which edges of tem- as edge based benchmarks f-Bank and EdgeBank
poral signature length 7 at time ¢ are active at defined on the same time window 7. Right: Stan-
the subsequent timestep ¢ + 1. We also compare dard EdgeBank benchmark [23], as well as the
against the EdgeBank heuristic [23], and state- current leaderboard for tgbl-flight: [10, 20, 24, 25,
of-the-art graph learning methods [10, 20, 24, 31].

25, 31] on the large tgbl-flight benchmark [15].

The results are shown in Figure 3, with further

details in Appendix C.

MRR

4 Conclusions & Outlook

We propose a framework that shifts the perspective from individual edges to that of node dynamics.
Our representation of these dynamics — in terms of generalized degrees — allows us to explicitly
model the evolution of local structural constraints. This reframes dynamic graph generation as a
constrained link prediction problem. Our experiments suggest that the approach is promising: it
scales to large graphs, reproduces non-trivial topological properties, and performs surprisingly well
on link prediction.

The current partition is a design choice rather than a learned one. We chose a representation based
on temporal signatures to demonstrate the value of our framework; however, this does not scale
well for large 7. For future work, it will be crucial to cast the identification of the precise partition
as a learning problem in itself. So far, our focus has been on learning the realization counts, yet
enforcing these constraints during graph generation remains challenging. One promising direction
is to combine our framework with scalable degree-guided diffusion methods [6, 28]. Finally, we
acknowledge several simplifying assumptions in the current setup, most notably conditioning only on
generalized degrees, which should be relaxed in future work.

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

Acknowledgments

We gratefully acknowledge financial support from the Austrian Federal Ministry for Economy,
Energy, and Tourism (BMWET) and the Federal State of Upper Austria for supporting the Supply
Chain Intelligence Institute Austria (ASCII), the Austrian Science Fund (FWF) for REMASS, doi:
10.55776/EFP5, the Austrian Central Bank, project Resilience of Economic Systems #18789, and the
Austrian Research Promotion Agency FFG, project 924336, SYRIalert.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. “Systemic Risk and Stability
in Financial Networks”. In: American Economic Review 105.2 (Feb. 2015), pp. 564-608. DOI:
10.1257/aer.20130456. 1

Andrea Bacilieri et al. Firm-Level Production Networks: What Do We (Really) Know? July 8,
2025. DOI: 10.2139/ssrn.5344255. URL: https://papers.ssrn. com/abstract=
5344255. 1,4,7

Stefano Battiston et al. “DebtRank: Too Central to Fail? Financial Networks, the FED and
Systemic Risk™. In: Scientific Reports 2.1 (1 Aug. 2,2012), p. 541. DOI: 10.1038/srep00541.
URL: https://www.nature.com/articles/srep00541. |

Andreas Bergmeister et al. Efficient and Scalable Graph Generation through Iterative Local
Expansion. May 14, 2024. DOI: 10.48550/arXiv.2312.11529. URL: http://arxiv.
org/abs/2312.11529. 2

Sudhanshu Chanpuriya et al. On the Role of Edge Dependency in Graph Generative Models.
Dec. 6, 2023. DOI: 10.48550/arXiv.2312.03691. URL: http://arxiv.org/abs/2312.
03691. 1,3

Xiaohui Chen et al. Efficient and Degree-Guided Graph Generation via Discrete Diffusion
Modeling. May 31, 2023. DOI: 10.48550/arXiv.2305.04111. URL: http://arxiv.org/
abs/2305.04111.4

Weilin Cong et al. Do We Really Need Complicated Model Architectures For Temporal
Networks? Feb. 22, 2023. DOI: 10.48550/arXiv.2302.11636. URL: http://arxiv.org/
abs/2302.11636. 1

Christian Diem et al. “Quantifying Firm-Level Economic Systemic Risk from Nation-Wide
Supply Networks”. In: Scientific Reports 12.1 (1 May 11, 2022), p. 7719. DOI: 10.1038/
s41598-022-11522-z. URL: https://www.nature . com/articles/s41598-022-
11622-z. 1

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation Using Real NVP.
Feb. 27, 2017. DOI: 10.48550/arXiv.1605.08803. URL: http://arxiv.org/abs/1605.
08803. 3,7

Jian Gao, Jianshe Wu, and JingYi Ding. HyperEvent:Learning Cohesive Events for Large-
scale Dynamic Link Prediction. July 16, 2025. DOI: 10.48550/arXiv.2507.11836. URL:
http://arxiv.org/abs/2507.11836. 4

Dirk Helbing. “Globally Networked Risks and How to Respond”. In: Nature 497.7447 (May
2013), pp. 51-59. DOI: 10 . 1038 /nature12047. URL: https : //www . nature . com/
articles/nature12047. 1

Tennessee Hickling and Dennis Prangle. Flexible Tails for Normalizing Flows. June 22, 2024.
DOI: 10.48550/arXiv.2406.16971. URL: http://arxiv.org/abs/2406.16971. 8
Jonathan Ho et al. Flow++: Improving Flow-Based Generative Models with Variational
Dequantization and Architecture Design. May 15,2019. DOI: 10.48550/arXiv.1902.00275.
URL: http://arxiv.org/abs/1902.00275. 3, 7

Ryien Hosseini et al. “A Deep Probabilistic Framework for Continuous Time Dynamic Graph
Generation”. In: Proceedings of the AAAI Conference on Artificial Intelligence 39.16 (16
Apr. 11, 2025), pp. 17249-17257. DOI: 10 . 1609 /aaai . v39i16 . 33896. URL: https :
//0js.aaai.org/index.php/AAAT/article/view/33896. 2

https://doi.org/10.1257/aer.20130456
https://doi.org/10.2139/ssrn.5344255
https://papers.ssrn.com/abstract=5344255
https://papers.ssrn.com/abstract=5344255
https://doi.org/10.1038/srep00541
https://www.nature.com/articles/srep00541
https://doi.org/10.48550/arXiv.2312.11529
http://arxiv.org/abs/2312.11529
http://arxiv.org/abs/2312.11529
https://doi.org/10.48550/arXiv.2312.03691
http://arxiv.org/abs/2312.03691
http://arxiv.org/abs/2312.03691
https://doi.org/10.48550/arXiv.2305.04111
http://arxiv.org/abs/2305.04111
http://arxiv.org/abs/2305.04111
https://doi.org/10.48550/arXiv.2302.11636
http://arxiv.org/abs/2302.11636
http://arxiv.org/abs/2302.11636
https://doi.org/10.1038/s41598-022-11522-z
https://doi.org/10.1038/s41598-022-11522-z
https://www.nature.com/articles/s41598-022-11522-z
https://www.nature.com/articles/s41598-022-11522-z
https://doi.org/10.48550/arXiv.1605.08803
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803
https://doi.org/10.48550/arXiv.2507.11836
http://arxiv.org/abs/2507.11836
https://doi.org/10.1038/nature12047
https://www.nature.com/articles/nature12047
https://www.nature.com/articles/nature12047
https://doi.org/10.48550/arXiv.2406.16971
http://arxiv.org/abs/2406.16971
https://doi.org/10.48550/arXiv.1902.00275
http://arxiv.org/abs/1902.00275
https://doi.org/10.1609/aaai.v39i16.33896
https://ojs.aaai.org/index.php/AAAI/article/view/33896
https://ojs.aaai.org/index.php/AAAI/article/view/33896

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Shenyang Huang et al. “Temporal Graph Benchmark for Machine Learning on Tempo-
ral Graphs”. In: Advances in Neural Information Processing Systems 36 (Dec. 15, 2023),
pp- 2056-2073. URL: https://proceedings.neurips.cc/paper_files/paper/2023/
hash/066b98e63313162f6562b35962671288-Abstract-Datasets_and_Benchmarks.
html. 1,4,7

Wouter Kool, Herke van Hoof, and Max Welling. Stochastic Beams and Where to Find Them:
The Gumbel-Top-k Trick for Sampling Sequences Without Replacement. May 29, 2019. URL:
http://arxiv.org/abs/1903.06059. 10

Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Predicting Dynamic Embedding Trajectory
in Temporal Interaction Networks”. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. July 25, 2019, pp. 1269-1278. DOT:
10.1145/3292500.3330895. URL: http://arxiv.org/abs/1908.01207. 1

A. Longa et al. “Generating Fine-Grained Surrogate Temporal Networks”. In: Communications
Physics 7.1 (Jan. 9, 2024), p. 22. DOI: 10.1038/s42005-023-01517- 1. URL: https:
//www.nature.com/articles/s42005-023-01517-1.2

Antonio Longa et al. Graph Neural Networks for Temporal Graphs: State of the Art, Open
Challenges, and Opportunities. July 8, 2023. DOI: 10.48550/arXiv.2302.01018. URL:
http://arxiv.org/abs/2302.01018. 1

Xiaodong Lu et al. Improving Temporal Link Prediction via Temporal Walk Matrix Projection.
Oct. 5, 2024. DOI: 10.48550/arXiv.2410.04013. URL: http://arxiv.org/abs/2410.
04013.4

Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. “Motifs in Temporal Networks”.
In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.
Feb. 2, 2017, pp. 601-610. DOI: 10.1145/3018661.3018731. URL: http://arxiv.org/
abs/1612.09259. 1

Romualdo Pastor-Satorras et al. “Epidemic Processes in Complex Networks”. In: Reviews of
Modern Physics 87.3 (Aug. 31, 2015), pp. 925-979. DOI: 10.1103/RevModPhys .87 .925.
URL: https://link.aps.org/doi/10.1103/RevModPhys.87.925. 1

Farimah Poursafaei et al. Towards Better Evaluation for Dynamic Link Prediction. Sept. 12,
2022. DOIL: 10 . 48550/ arXiv . 2207 . 10128. URL: http://arxiv . org/abs /2207 .
10128.4

Emanuele Rossi et al. Temporal Graph Networks for Deep Learning on Dynamic Graphs.
Oct. 9, 2020. DOI: 10.48550/arXiv.2006.10637. URL: http://arxiv.org/abs/2006.
10637. 1,4

Rakshit Trivedi et al. “DyRep: Learning Representations over Dynamic Graphs”. In: Interna-
tional Conference on Learning Representations. Sept. 27, 2018. URL: https://openreview.
net/forum?id=HyePrhR5KX. 4

Yanbang Wang et al. Inductive Representation Learning in Temporal Networks via Causal
Anonymous Walks. Oct. 31, 2022. DOI: 10.48550/arXiv.2101.05974. URL: http://
arxiv.org/abs/2101.05974. 1

Christina Winkler et al. Learning Likelihoods with Conditional Normalizing Flows. Nov. 12,
2023. DOIL: 10 . 48550/ arXiv . 1912 .00042. URL: http://arxiv.org/abs/1912.
00042. 3,7

Mingyang Wu, Xiaohui Chen, and Li-Ping Liu. EDGE++: Improved Training and Sampling
of EDGE. Oct. 28, 2023. DOI: 10.48550/arXiv.2310.14441. URL: http://arxiv.org/
abs/2310.14441.2,4

Da Xu et al. Inductive Representation Learning on Temporal Graphs. Feb. 19, 2020. DOTI:
10.48550/arXiv.2002.07962. URL: http://arxiv.org/abs/2002.07962. 1

Le Yu et al. “Towards Better Dynamic Graph Learning: New Architecture and Unified Library”.
In: Thirty-Seventh Conference on Neural Information Processing Systems. Nov. 2, 2023. URL:
https://openreview.net/forum?id=xHNzWHbk1j. 1

Xiaohui Zhang et al. Efficient Neural Common Neighbor for Temporal Graph Link Prediction.
June 12, 2024. DOI: 10.48550/arXiv.2406.07926. URL: http://arxiv.org/abs/2406.
07926. 4

https://proceedings.neurips.cc/paper_files/paper/2023/hash/066b98e63313162f6562b35962671288-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/066b98e63313162f6562b35962671288-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/066b98e63313162f6562b35962671288-Abstract-Datasets_and_Benchmarks.html
http://arxiv.org/abs/1903.06059
https://doi.org/10.1145/3292500.3330895
http://arxiv.org/abs/1908.01207
https://doi.org/10.1038/s42005-023-01517-1
https://www.nature.com/articles/s42005-023-01517-1
https://www.nature.com/articles/s42005-023-01517-1
https://doi.org/10.48550/arXiv.2302.01018
http://arxiv.org/abs/2302.01018
https://doi.org/10.48550/arXiv.2410.04013
http://arxiv.org/abs/2410.04013
http://arxiv.org/abs/2410.04013
https://doi.org/10.1145/3018661.3018731
http://arxiv.org/abs/1612.09259
http://arxiv.org/abs/1612.09259
https://doi.org/10.1103/RevModPhys.87.925
https://link.aps.org/doi/10.1103/RevModPhys.87.925
https://doi.org/10.48550/arXiv.2207.10128
http://arxiv.org/abs/2207.10128
http://arxiv.org/abs/2207.10128
https://doi.org/10.48550/arXiv.2006.10637
http://arxiv.org/abs/2006.10637
http://arxiv.org/abs/2006.10637
https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX
https://doi.org/10.48550/arXiv.2101.05974
http://arxiv.org/abs/2101.05974
http://arxiv.org/abs/2101.05974
https://doi.org/10.48550/arXiv.1912.00042
http://arxiv.org/abs/1912.00042
http://arxiv.org/abs/1912.00042
https://doi.org/10.48550/arXiv.2310.14441
http://arxiv.org/abs/2310.14441
http://arxiv.org/abs/2310.14441
https://doi.org/10.48550/arXiv.2002.07962
http://arxiv.org/abs/2002.07962
https://openreview.net/forum?id=xHNzWHbklj
https://doi.org/10.48550/arXiv.2406.07926
http://arxiv.org/abs/2406.07926
http://arxiv.org/abs/2406.07926

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

A Datasets

Ecuador is firm to firm transaction dataset collected through VAT filings and it is provided by the
Internal Revenues Service (IRS) of Ecuador. It comprises fine-grained information about all the
transactions between firms within the country of Ecuador between 2007 and 2015. Basic statistics
are shown in Table 1, for full details on Ecuador dataset we refer to appendix A.4 in the work of
Bacilieri et al. [2].

Table 1: Graph dataset statistics.

Dataset #Nodes #Edges #Timesteps

Ecuador[2] 328,640 24,678,048 9
tgbl-flight[15] 18,143 67,169,570 1,385

B Learning
B.1 Learning problem

Our objective is to learn the realization ratio rather than the realization count directly. The ratio is

defined as
’“Z i
. 3

i =y
’ di_q,

where 7, is the realization count and d]_, ; is the vector of generalized degrees at the previous
timestep. Let d, = 27! denote the dimension of the vector Ot 5.

-
Qy

Both O‘Zi and 7/ ; are discrete quantities, and so to apply normalizing flows and avoid mode collapse,
we first dequantize them following [13]. Specifically, we introduce a dequantizing normalizing flow

qs(- | O_ft,mﬁﬁq,i)a “
with support bounded by [0, 1]%.

From this flow, we draw noise
€~ qp(- | Arisdi14)- 5)

Using the sampled noise, we define a dequantized realization ratio:

r) . +e7
~y K
Qy

=t 6
] ©

and the learning objective for (ét,i | J;_Li) and ¢y (€] &y 4, J;_Li) asin [13]:

log P(at7i| dt:Li))

46 (| Ariydi—15)

EFt=iNDataEgN‘I¢("&t,i,d_:c—l,z‘)

Where we can recover the original discrete quantities as:

~Y Y
. Lat,i (d/_1;+ 1”
= 1a), (4 + 1)), o, = oo ®)

B.2 Architecture

For both the learned model p(d ; | d_;g,l,i), and the associated dequantizer g4 (€| &, d:,l,,»), we
use a conditional RealNVP normalizing flow [9, 27], where only add the conditional dependence in
the coupling layers.

We bound the output by adding an additional logistic head to the forward flow:
=e+z-(1-2e),)

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

and then transform it using the logit function,

2 =log (1 f/x,) . (10)

Furthermore we preprocess each element as d;_, ; ~ log(1 + d]_, ;) and disregard the entries
counting the edges corresponding to temporal signature 0 . . . 0. The hyperparameters are shown in
table 2

Table 2: Hyperparameters for conditional ReaNVP normalizing flow experiments

Parameter Value

Data Dimensions

Input dimension 27 +1
Context dimension omtl 1
Main Model Architecture
Number of flows 6
Hidden layers per flow 2
Hidden dimension o7 +4

Dequantizer Architecture

Number of flows 4
Hidden layers per flow 2
Hidden dimension 274
Context MLP

Context net layers 8

Context net hidden dim 8 (271 — 1)

Training Parameters

Learning rate 1073
Batch size 300
Logistic € 1076

7 values tested {2,3,4}

B.3 Motivation of architecture choice

Here we briefly discuss our motivation to use normalizing flows. As shown in Figure 4, the dis-
tribution of realization counts has several properties that make Normalizing Flows well suited for
our exploratory work. First, the distribution is multi-modal, which is generally difficult to model
and therefore motivates expressive generative models. Second, the data is both discrete and ordinal,
which motivates the use of latent variable models with dequantization. While similar setups are
possible with other expressive models such as diffusion models, the underlying dequantizer, to our
knowledge, is still a normalizing flow. Our approach therefore avoids mixing different architectures
for distribution modeling and dequantization.

We further note that it is known that realNVP is not well suited for capturing fat tailed distributions[12],
but we leave these complications for future for work.

C Link prediction

To apply the learned model pg (& ; | (ft_l,,») for link prediction, we assign a score s, ;; to each triplet
(i,7,t). We interpret a;”i as the sampled probability that node 7 retains an edge of type . To obtain
stable estimates for both nodes 7 and j, we draw ngampie = 10 samples of @, ; and & ;, and then take
the average: Egampie (0¢,i) and Equmple (s, ;).

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

Data Data + var deq Learned pg
A 4 B C

103 4 —, 103 3 103 4 3
35 % 0 i
= £ € ~ <
107 ; 58 % 1071 28 1024 2§
1] i i 4 E
1_8’ T 18 10t |1l 18

- lll I
.on 0 100 4 0 100 J o
10° 10' 10?2 10° 10° 10' 102 103 10° 10 102 103
di"+1 dy"+1 dy"+1

Figure 4: Conditional marginal of r?fi in the data without dequantization noise, with dequantization
noise, and in the learned model, conditioned on the in-degree for ¢ = 2009 in the Ecuador dataset.

For each datapoint (741, d¢ ;), we sample learned dequantization noise € ~ gy (- | 74414, d¢), as

well as the model prediction Ftﬂ,i ~ pa(- | cﬁz) Panel A shows the histogram of (r?ﬂ, d;™); panel
B shows the histogram of (rp;} + %™, d;™); and panel C shows the histogram of (7}, d;"™). The

distribution exhibits a non-trivial, multimodal shape, motivating the use of expressive models.

The score is defined as [)
S(i7j7 t) =]Esample (O‘Zz) :]Esample (a:’j) ,

—

where 1" = 7®(&;;,;) and ¥ = 7" (&;5,1).

D Graph generation models

We generate directed discrete-time dynamic graphs as follows: We train pg (& ; | ci,;_u) on data
from the earliest time in the dataset up to time ¢,.

For Ecuador, ¢, = 2010, and for tgbl-flight, ¢, = 60 x 7 x 86400. Note that the tgbl-flight dataset
is discretized in steps of At = 86400 (one day). In the procedure below, we treat At = 1 for ease of
exhibition. We also extract the proportion f.y of new nodes at each timestep up to .

Then to generate the network we apply Algorithm 1. This procedure exactly preserves the local
structure of incoming edges, while approximately preserving the structure of outgoing edges.

Generalized Degrees for Scalable Discrete Time Dynamic Graph Generation

Algorithm 1 Discrete-time dynamic graph generation heuristic.

Require: Time steps 7 = {to,to + 1, ... }, new-node fraction fyew, graph history {Gy }<4,.
1: forallt € T do
2: Add new nodes so that the fraction of new nodes equals fiew

3: Initialize each new node 7 with (itl «0

4: for all nodes ¢ do

5: Extract d; ; from {Gy }v <

6: Sample 711, ~ po(- | di.)

7 Split 7414 into 7}, ; and 7%

8: Assign in-stubs { 7", }, to node i

9: end for
10: for all nodes 7 and classes v do
11: Connect out-stubs of i to nodes j # i of class 7,
12: without replacement with probability oz?j_t’l'fi,
13: using Kool, van Hoof, and Welling [16]
14: end for .

15: Compute updated degrees d;y1
16: Remove nodes ¢ with J;H =0
17: end for

10

	1 Introduction
	2 Notation & Methods
	3 Experiments
	3.1 Dynamic graph generation
	3.2 Link prediction

	4 Conclusions & Outlook
	A Datasets
	B Learning
	B.1 Learning problem
	B.2 Architecture
	B.3 Motivation of architecture choice

	C Link prediction
	D Graph generation models

