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Abstract

The evolution of many real-world systems is best described by dynamic graphs,
whose statistical properties reflect the constraints of the system. When forecast-
ing their dynamics, the goal is to generate a time series of graphs respecting
these underlying constraints. Existing scalable dynamic graph learning methods,
however, are designed for local tasks such as link prediction or node classifica-
tion, and their independent, local predictions are ill-suited for graph generation.
This limitation is particularly relevant for discrete time dynamic graphs, where
coarse time resolution induces dependencies among edges within each snapshot.
We propose using a generalized notion of degrees to model such dependencies
directly, thereby shifting the focus from individual links to node dynamics. This
approach bypasses the need to learn a sparse graph representation, and yields an
inductive representation that enables the generation of large-scale discrete-time
dynamic graphs.

1 Introduction

The evolution of many real-world systems is best described by dynamic graphs, which capture
interactions and their temporal evolution. When forecasting their dynamics, the goal is not just
to predict individual edges but to generate sequences of graphs that reproduce key higher-order
properties. These properties govern crucial phenomena, such as systemic risk in socio-economic
systems [11], epidemics [22], disruptions to supply chains [8], as well as financial crashes [1, 3].

Past years have seen a large interest in learning on dynamic graphs [15, 19], and various scalable
methods have been developed for dynamic graphs, either as temporal extensions of graph convolu-
tional networks [17, 24, 26, 29] or as novel architectures [7, 30]. Most of these methods, however,
are optimized for discrimination tasks rather than for graph generation, and, as Chanpuriya et al. [5]
demonstrate, realistic yet novel graphs cannot be generated when training relies on discriminative,
edge-independent methods.

In this work, we focus on large-scale discrete-time dynamic graphs, where time is coarsened into
intervals and all interactions within an interval are collapsed into a single snapshot. This coarse-
graining introduces dependencies between edges [21], and such graphs are particularly common
when considering administrative data, such as trade data, regulatory filings, as well as tax records,
which are essential for modeling economic systemic risk [2, 8].

The large-scale discrete-time setting poses unique challenges. Unlike in continuous-time, one cannot
rely on the sparsity and exact ordering of edges to apply edge independent models, as demonstrated
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Figure 1: Conceptual illustration of the proposed framework, where the main innovation is the
extraction and sampling of local structure using generalized degrees, which in turn provides a
constraint for graph generation.

by Hosseini et al. [14]. At the same time, scalable methods that incorporate edge dependencies in
static graphs do not directly extend to this regime [4, 28].

To address this gap, we propose a framework that models the evolution of local node topologies
across snapshots, rather than individual links. This shift allows us to model important structural
constraints explicitly while avoiding the need to learn sparse edge-level representations. Overall we
develop an inductive representation that scales naturally to large graphs, enabling the generation of
discrete-time dynamic graphs that preserve key structural properties.

2 Notation & Methods

We consider a time series of possibly attributed graphs {G}}, with each graph defined as G; =
Vi, &, X4, Ey) , where V; and &, denote the node and edge set at time ¢ respectively, X; € RIVtlxdz
is the node feature matrix, and £, € RI€:[*% is the edge feature matrix.

Generalized degrees extend the standard degree notion by distinguishing between different classes
of edges, where each class represents a type of relationship. We formalize this idea as follows.
First, we assume the existence of a map from the history of graphs {Gy }+ < to edge embeddings
Zij € R¢:. These embeddings may be observed directly from data, or defined latently as functions
of the graph topology (e.g., via message passing networks), but crucially, we assume Z; ;; is defined
for all node pairs. We then define a function 7 : R% — {0,...,k} that partitions edges based on
their embedding 2} ;;.

Given a class v € {0, ..., k}, the y-degree of node i at time ¢ is defined as':
dj ;=i | m(Zeis) =7} M

To describe the local evolution of a node we consider how many of the edges that compose each
~v-degree will be present in the next time step, as given by the y-realization count:

i = i 1@ 5) € &y m(Zi) = v}, 2

Temporal signature. In this work, we do not attempt to learn the partition 7. Instead, our goal
is to illustrate the utility of generalized degrees. To this end, we construct generalized degrees that
capture the temporal evolution of a node’s neighborhood by partitioning edges according to their
direction and temporal signature. The temporal signature of an edge at time ¢ is a bit-string of length
7 recording its activity over the past 7 timesteps; for example, when 7 = 2, the in, 01-degree dltn;m
counts the number of incoming edges to node i with signature inactive at time ¢ — 1 and active at
time ¢. We note that such partitions are inspired by, and generalize the work of Longa et al. [18].

"Undirected is chosen for ease of exhibition, for directed graphs, we assume two functions 7", 7*", where

then d}, = [{j | 7" (Z1.i5) = v} U{j | #"(Z.5:) = 7}, so that one can distinguish the direction of the
edge.
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Figure 2: To highlight how our framework captures key properties of dynamic graphs, we generate
an out of sample timeseries and compare key structural properties to the data. In particular we show:
the edge overlap with respect to the data at time ¢ = 0, the degree sequence of new nodes att = 1,
and the exit rate as a function of degree at time ¢ = 0. Together, these properties capture whether the
framework reproduces the right level of turnover among edges, new nodes, and exiting nodes. A,D
show the overlap of generated edges &, to that of the data &,. B,E show the histogram of out-degree
of entering nodes for the Data, the learned model (y-deg Proposed), and the heuristic generation
(7-deg Realised). C,F show the exit rate for nodes given their in-10 degree.

Learning. For scalable learning, the key observation is that given the partition function 7, one can
model p({7;;}; | {G¢ }i<+) without considering the likelihood over edges, thereby bypassing the
need to learn a sparse matrix representation. We leave details of the learning procedure out of the
main text (see Appendix B), but in short: we assume conditional independence between nodes given

their previous degrees d;_1 ; so that the distribution factorizes as p({74,; }s | {Gv }ir<t) = [ 1, (7%, |

Te,i
v )
di_y;

within [0, 1]. We learn this distribution using a conditional ReaNVP normalizing flow [9, 27], with a
learned variational dequantizer [13] to handle discreteness, though the framework is not limited to
this choice. For more details on our model choice see Appendix B.3.

d_,;_l,i). To simplify the architecture, we learn the ~y-realization ratio o) ; = which is bounded

Generation. The sampled realization counts describe the local evolution of individual nodes and
can be viewed as constraints on the graph’s topology. Crucially, satisfying such constraints introduces
dependencies between edges, addressing the problem raised in the work of Chanpuriya et al. [5].

We propose a simple heuristic for directed discrete-time dynamic graphs that produces snapshots that
approximately satisfy the constraints set by the realization counts. In brief, we assign each node a
number of in-stubs matching its in-realization counts and then attach them, without replacement, to
other nodes in proportion to their respective out-realization ratio, see Appendix D for details.

3 Experiments

We present two experiments to evaluate our framework. First, we demonstrate that it enables the
generation of large dynamic graphs, learning the properties of entering and exiting nodes. Second,
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we show that generalized degrees carry information beyond the temporal signatures of individual
edges, using a link prediction task.

For the generation experiment, we use two large discrete-time dynamic graph datasets: Ecuador
[2] and tgbl-flight [15]. Ecuador is a confidential, country-wide transaction graph provided by the
Ecuadorian tax authorities (see Appendix A for details). For the link prediction experiment, we focus
on the tgbl-flight benchmark.

3.1 Dynamic graph generation

To illustrate that our framework’s ability to generate realistic discrete time dynamic graphs, we
showcase its ability to reproduce three non-trivial structural properties: (i) overlap of edges with a
reference set, (ii) the degree sequence of incoming nodes, and (iii) the exit rate as a function of degree.
These properties together capture the extent to which the model reproduces turnover among edges,
newly arriving nodes, and departing nodes, and highlight the main difference from discrimination
tasks like link prediction. For both datasets, we train the model up to time ¢7, and generate a single out
of sample time series extending four steps into the future. The results, shown in Figure 2, confirm that

our learned distribution pg (7 ; | J;/,M) reproduces essential, and non-trivial properties of empirical
dynamic graphs.

3.2 Link prediction

Bl EdgeBank, EE EdgeBank..

If the constraints implied by realization counts m rBank: MW EdgeBanky ]

. [ y-deg. [ SotA
accurately capture the dynamics of the graph, o8 " >
then the corresponding realization ratios should 06k

provide good estimates of edge existence prob-

abilities. In our setting, the generalized degrees 04r
arise from a partition of edges based on their 02}k
temporal signature. We show that this captures 00

1qfqrmatlon beyond th.e t?,mporal signature of in- t=17=21=3 EdgeBank SotA
dividual edges: predictions derived from our

learned model, pg(7;; | di—1,:), outperform Figure 3: Link prediction performance on the tgbl-
those from f-Bank., a heuristic that simply flight benchmark. Left: our method -deg as well
records the frequency with which edges of tem- as edge based benchmarks f-Bank and EdgeBank
poral signature length 7 at time ¢ are active at defined on the same time window 7. Right: Stan-
the subsequent timestep ¢ + 1. We also compare dard EdgeBank benchmark [23], as well as the
against the EdgeBank heuristic [23], and state- current leaderboard for tgbl-flight: [10, 20, 24, 25,
of-the-art graph learning methods [10, 20, 24, 31].

25, 31] on the large tgbl-flight benchmark [15].

The results are shown in Figure 3, with further

details in Appendix C.

MRR

4 Conclusions & Outlook

We propose a framework that shifts the perspective from individual edges to that of node dynamics.
Our representation of these dynamics — in terms of generalized degrees — allows us to explicitly
model the evolution of local structural constraints. This reframes dynamic graph generation as a
constrained link prediction problem. Our experiments suggest that the approach is promising: it
scales to large graphs, reproduces non-trivial topological properties, and performs surprisingly well
on link prediction.

The current partition is a design choice rather than a learned one. We chose a representation based
on temporal signatures to demonstrate the value of our framework; however, this does not scale
well for large 7. For future work, it will be crucial to cast the identification of the precise partition
as a learning problem in itself. So far, our focus has been on learning the realization counts, yet
enforcing these constraints during graph generation remains challenging. One promising direction
is to combine our framework with scalable degree-guided diffusion methods [6, 28]. Finally, we
acknowledge several simplifying assumptions in the current setup, most notably conditioning only on
generalized degrees, which should be relaxed in future work.
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A Datasets

Ecuador is firm to firm transaction dataset collected through VAT filings and it is provided by the
Internal Revenues Service (IRS) of Ecuador. It comprises fine-grained information about all the
transactions between firms within the country of Ecuador between 2007 and 2015. Basic statistics
are shown in Table 1, for full details on Ecuador dataset we refer to appendix A.4 in the work of
Bacilieri et al. [2].

Table 1: Graph dataset statistics.

Dataset #Nodes #Edges #Timesteps

Ecuador[2] 328,640 24,678,048 9
tgbl-flight[15] 18,143 67,169,570 1,385

B Learning
B.1 Learning problem

Our objective is to learn the realization ratio rather than the realization count directly. The ratio is

defined as
’“Z i
. 3

i =y
’ di_q,

where 7, is the realization count and d]_, ; is the vector of generalized degrees at the previous
timestep. Let d, = 27! denote the dimension of the vector Ot 5.

-
Qy

Both O‘Zi and 7/ ; are discrete quantities, and so to apply normalizing flows and avoid mode collapse,
we first dequantize them following [13]. Specifically, we introduce a dequantizing normalizing flow

qs(- | O_ft,mﬁﬁq,i)a “
with support bounded by [0, 1]%.

From this flow, we draw noise
€~ qp(- | Arisdi14)- 5)

Using the sampled noise, we define a dequantized realization ratio:

r) . +e7
~y K
Qy

=t 6
] ©

and the learning objective for (ét,i | J;_Li) and ¢y (€] &y 4, J;_Li) asin [13]:

log P(at7i| dt:Li) )

46 (| Ariydi—15)

EFt=iNDataEgN‘I¢("&t,i,d_:c—l,z‘)

Where we can recover the original discrete quantities as:

~Y Y
. Lat,i (d/_1;+ 1”
= 1a), (4 + 1)), o, = oo ®)

B.2 Architecture

For both the learned model p(d ; | d_;g,l,i), and the associated dequantizer g4 (€| &, d:,l,,»), we
use a conditional RealNVP normalizing flow [9, 27], where only add the conditional dependence in
the coupling layers.

We bound the output by adding an additional logistic head to the forward flow:
=e+z-(1-2e), )
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and then transform it using the logit function,

2 =log (1 f/x,) . (10)

Furthermore we preprocess each element as d;_, ; ~ log(1 + d]_, ;) and disregard the entries
counting the edges corresponding to temporal signature 0 . . . 0. The hyperparameters are shown in
table 2

Table 2: Hyperparameters for conditional ReaNVP normalizing flow experiments

Parameter Value

Data Dimensions

Input dimension 27 +1
Context dimension omtl 1
Main Model Architecture
Number of flows 6
Hidden layers per flow 2
Hidden dimension o7 +4

Dequantizer Architecture

Number of flows 4
Hidden layers per flow 2
Hidden dimension 274
Context MLP

Context net layers 8

Context net hidden dim 8 (271 — 1)

Training Parameters

Learning rate 1073
Batch size 300
Logistic € 1076

7 values tested {2,3,4}

B.3 Motivation of architecture choice

Here we briefly discuss our motivation to use normalizing flows. As shown in Figure 4, the dis-
tribution of realization counts has several properties that make Normalizing Flows well suited for
our exploratory work. First, the distribution is multi-modal, which is generally difficult to model
and therefore motivates expressive generative models. Second, the data is both discrete and ordinal,
which motivates the use of latent variable models with dequantization. While similar setups are
possible with other expressive models such as diffusion models, the underlying dequantizer, to our
knowledge, is still a normalizing flow. Our approach therefore avoids mixing different architectures
for distribution modeling and dequantization.

We further note that it is known that realNVP is not well suited for capturing fat tailed distributions[12],
but we leave these complications for future for work.

C Link prediction

To apply the learned model pg (& ; | (ft_l,,») for link prediction, we assign a score s, ;; to each triplet
(i,7,t). We interpret a;”i as the sampled probability that node 7 retains an edge of type . To obtain
stable estimates for both nodes 7 and j, we draw ngampie = 10 samples of @, ; and & ;, and then take
the average: Egampie (0¢,i) and Equmple (s, ;).
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Figure 4: Conditional marginal of r?fi in the data without dequantization noise, with dequantization
noise, and in the learned model, conditioned on the in-degree for ¢ = 2009 in the Ecuador dataset.

For each datapoint (741, d¢ ;), we sample learned dequantization noise € ~ gy (- | 74414, d¢ ), as

well as the model prediction Ftﬂ,i ~ pa(- | cﬁz) Panel A shows the histogram of (r?ﬂ, d;™); panel
B shows the histogram of (rp;} + %™, d;™); and panel C shows the histogram of (7}, d;"™). The

distribution exhibits a non-trivial, multimodal shape, motivating the use of expressive models.

The score is defined as [ )
S(i7j7 t) = ]Esample (O‘Zz ) : ]Esample (a:’j) ,

—

where 1" = 7®(&;;,;) and ¥ = 7" (&;5,1).

D Graph generation models

We generate directed discrete-time dynamic graphs as follows: We train pg (& ; | ci,;_u) on data
from the earliest time in the dataset up to time ¢,.

For Ecuador, ¢, = 2010, and for tgbl-flight, ¢, = 60 x 7 x 86400. Note that the tgbl-flight dataset
is discretized in steps of At = 86400 (one day). In the procedure below, we treat At = 1 for ease of
exhibition. We also extract the proportion f.y of new nodes at each timestep up to .

Then to generate the network we apply Algorithm 1. This procedure exactly preserves the local
structure of incoming edges, while approximately preserving the structure of outgoing edges.
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Algorithm 1 Discrete-time dynamic graph generation heuristic.

Require: Time steps 7 = {to,to + 1, ... }, new-node fraction fyew, graph history {Gy }<4,.
1: forallt € T do
2: Add new nodes so that the fraction of new nodes equals fiew

3: Initialize each new node 7 with (itl «0

4: for all nodes ¢ do

5: Extract d; ; from {Gy }v <

6: Sample 711, ~ po(- | di.)

7 Split 7414 into 7}, ; and 7%

8: Assign in-stubs { 7", }, to node i

9: end for
10: for all nodes 7 and classes v do
11: Connect out-stubs of i to nodes j # i of class 7,
12: without replacement with probability oz?j_t’l'fi,
13: using Kool, van Hoof, and Welling [16]
14: end for .

15: Compute updated degrees d;y1
16: Remove nodes ¢ with J;H =0
17: end for

10
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