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ABSTRACT

Existing multi-label classification methods have long suffered from label het-
erogeneity, where learning a label obscures another. By modeling multi-label
classification as a multi-task problem, this issue can be regarded as a negative
transfer, which indicates challenges to achieve simultaneously satisfied perfor-
mance across multiple tasks. In this work, we propose the Hybrid Sharing Query
(HSQ), a transformer-based model that introduces the mixture-of-experts archi-
tecture to image multi-label classification. HSQ is designed to leverage label
correlations while mitigating heterogeneity effectively. To this end, HSQ is in-
corporated with a fusion expert framework that enables it to optimally combine
the strengths of task-specialized experts with shared experts, ultimately enhancing
multi-label classification performance across most labels. Extensive experiments
are conducted on two benchmark datasets, with the results demonstrating that the
proposed method achieves state-of-the-art performance and yields simultaneous
improvements across most labels. The code is available at this URL.

1 INTRODUCTION

In computer vision, multi-label classification (MLC) attempts to predict multiple labels that may
simultaneously appear in a single sample. It is more realistic and intuitive as a sample typically has
multiple attributes in real scenarios. However, the semantic correlation and heterogeneity among dif-
ferent labels pose a significant challenge to MLC, resulting in the labels either complement or con-
flict with each other. Previous works (Liu et al., 2021a; Ridnik et al., 2023; Ye et al., 2020) achieved
impressive performance via transformers or graph neural networks, trying to explore the correlation
among labels with shared backbone across labels. These approaches neglected the heterogeneity
among labels, which becomes the key obstacle to simultaneous improvement across labels.

In contrast to traditional multi-label classification approaches, MLC can be formulated as a multi-
task learning (MTL) problem by modeling the prediction of each label as an individual task. The
correlation and heterogeneity of the labels in MLC thus correspond to the task transfer problem of
MTL, where learning a new task may perfect (positive transfer) or deteriorate (negative transfer)
another. Under this context, the power of MTL in mitigating negative transfer may help improve the
performance of MLC.

Precedent works like (Ma et al., 2018) in MTL include a mixture of experts (MoE, (Jacobs et al.,
1991)), which utilizes a group of learned experts to handle different tasks separately. MOE has
been widely adopted in natural language processing, where experts are expected to process words
of various lexical categories. We advocate employing MoE in MLC image classification, which
shares commonality with lexical category handling. Furthermore, we notice that the conventional
MoE approach has primarily emphasized the utilization of expert groups within a specific task, with
limited attention to the exchange of expertise group knowledge across different tasks. This approach
may not align seamlessly with the MLC requirements, which will be scrutinized in our work.
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In this work, we introduce Hybrid Sharing Query (HSQ), a MoE-based MLC method with a novel
proposed fusion strategy to better exploit semantic correlation and heterogeneity among labels and
generate better underlying shared representation and task-specific representation. Additionally, we
prioritize the adaptive fusion of label-specific and shared features in the classification task of each
label, suppressing negative transfer and enhancing performance on the majority of labels. Specifi-
cally, we employ a group of shared experts to mine correlation among labels to generate multiple
distinct shared features while assigning a group of task-specialized experts to each task to extract a
series of label-specific features. This design can balance label-specific and shared features across
labels while also emphasizing unique label-specific features for each individual label. Moreover, we
employ gate networks to adaptively re-weight and harmonize features from task-specialized experts
and shared experts, enhancing positive correlations and suppressing negatives among tasks.

Experiments show that the proposed method outperforms all tested baselines across multiple datasets
on the majority of labels. The proposed method is also compatible with transformer-based MLC
methods, indicating potential improvement to existing works.

Our contribution is three-fold:

•We present MoE to the MLC task, with gated task-specialized and shared experts to capture cor-
relation and heterogeneity adaptively by formulating the MLC as an MTL problem.

•We empirically demonstrate that the fused experts help to extract correlations between tasks, en-
courage positive correlation sharing and suppress negative transfer, which benefits the overall and
per-label performance and mitigates cross-label performance gap.

•We verify the superiority of our proposed model on two benchmark datasets with state-of-the-art
performance overall and per-label.

2 RELATED WORK

Multi-label classification in computer vision. Models via various approaches have been pro-
posed to address MLC. Zhu et al. (2017) use convolutional networks on an attention map to op-
timize ResNet prediction. Rajpurkar et al. (2017) solve the medical multi-label problem by using
DenseNet (Huang et al., 2017). Wang et al. (2016) attempt to extract features from the image and
generate the label as a sequence through a learned joint embedding space. Chen et al. (2019a) intro-
duce graph convolutional network into this task, mapping label word embedding to inter-dependent
object classifiers. Lanchantin et al. (2021a); Liu et al. (2021a) introduce transformer into MLC.
These methods fail to see the negative transfer and positive correlation among labels. Some works
also notice a similar problem in MLC from the MTL aspect. Wu et al. (2019) try to mitigate such a
problem via a different architecture. Our study aims to improve overall performance in MLC while
attempting to simultaneously enhance performance on as many labels as possible.

Multi-task learning. MLC can be recognized as a special case of MTL, treating each label as a
separate classification task (Wu et al., 2019). Previous works on this topic include hard and soft
parameter sharing, etc. Hard parameter sharing (Caruana, 1997) comes with a shared feature ex-
traction backbone as a bottom and task-specialized towers as a top. Soft parameter sharing does
not explicitly share network components across tasks but jointly learns other information through
gradient sharing or other techniques. Duong et al. (2015); Yang and Hospedales (2017) encourage
knowledge sharing across experts via different constraints like L2 norm. Cross-Stitch (Misra et al.,
2016) trains two networks for two tasks and shares gradients between some layers controlled by
gates. However, these architectures require more attention to the correlations among tasks, and the
naive knowledge-sharing strategy may hamper the performance of models. In this work, we propose
HSQ to reveal these correlations in the hope of generating a better representation for each task.

Mixture of experts in deep learning. Efforts have been made to improve models’ performance
by scaling up the model size with MoE (Jacobs et al., 1991), which first attempts to combine the
outputs of several experts with a gate network. MMOE (Ma et al., 2018) with similar settings
further decouples the seesaw phenomenon between several tasks by assigning exclusive gate and
tower networks to each task. MOEC (Xie et al., 2023) adopts a clustering loss to impose variance-
based constraints on the routing stage, obtaining clusters of experts with more diverse knowledge.
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PLE (Tang et al., 2020) adds shared and task-specific experts to MMOE to allow better information
sharing between tasks. Traditional MoE imposes a substantial computational burden since all experts
activate, even when only some tasks are required. To mitigate such a cost, the sparse MoE (Shazeer
et al., 2017) strategy emerges in contrast to the regular dense one. The routing strategy determines
which experts contribute to the task output. Zhou et al. (2022); Rosenbaum et al. (2018); Nie et al.
(2021); Zuo et al. (2022); Roller et al. (2021); Dai et al. (2022) and others explore various routing
strategies, including randomizing, hashing, expert-choosing, etc. Switch Transformer (Fedus et al.,
2022) introduces a sparse MoE to the transformer layer to replace the feed-forward neural network.
Our method introduces the MoE into the multi-label classification field by virtue of task-specialized
and shared experts exploiting correlations among tasks. Moreover, we utilize a gate network to
enhance positive correlation and suppress negative correlation in pursuit of better fusion.

Backbone Transformer
Encoder

Transformer
Decoder

···

Learnable Classification Tokens

×L

key

value

P
iz
z
a

K
n
if
e

Shared

×ns
· · ·

Task-Specialized

· · ·×nt

B
ot
tl
e

··· ×L

P
iz
z
a

K
n
if
e

B
ot
tl
e

Task-Specialized

· · ·×nt

Task-Specialized

· · ·×nt

P
iz
z
a

K
n
if
e√

 

√
 

B
ot
tl
e
×
 

}}}×L

··
·

··
·

CLS Head

×N

ns: # shared experts

nt: # task-specialized experts

L : # labels

: gate network

query

···
: shared experts group

: task-specialized experts group

Hybrid Sharing Layer

Figure 1: The architecture of the proposed HSQ. After being extracted by the backbone, the input
image’s features are then processed by a transformer, where learnable classification tokens are used
as the query. N Hybrid Sharing Layers are employed sequentially, consisting of L groups of task-
specialized experts and a group of shared ones. Individual gates for every group control the weighted
outputs. A final classification head is utilized to make predictions.

3 METHOD

The MLC task for images is to find all possible correct labels in a pre-defined label set for a provided
image. Thus, our model takes the provided image I and gives probability scoring L̂ ∈ RL on all
labels L. The proposed HSQ model comprises three main parts, namely, 1) feature extraction back-
bone, 2) query transformer, and 3) mixture-of-expert hybrid sharing head. The backbone extracts
image representation with a robust replaceable network, followed by a transformer-based query
model to explore underlying information between such extracted representation and each given la-
bel. The Hybrid Sharing Layers are applied to better exploit the correlations between every possible
task and suppress potential negative transfer problems.
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3.1 FEATURE EXTRACTION BACKBONE

Features in any given image will be extracted through a feature extraction backbone. Multiple
preceding works have contributed to this stage. We employ various well-established models to
capture global and local feature information within images more effectively. For a 3-channel input
image I ∈ R3×Hi× Wi , Hi and Wi are the height and width of an image. A feature extractor is
applied to extract feature R ∈ RCi×H×W , where Ci denotes the number of feature embedding, with
a succeeding convolutional layer linearly projecting its feature space from Ci into C.

3.2 QUERY TRANSFORMER

The semantic heterogeneity across labels requires the model to discern and capture unique feature
representations specific to each individual task. Inspired by the remarkable performance of the
query-based classifier, we employ learnable query tokens for classification to mitigate semantic
conflicts between tasks. Specifically, this work employs a transformer to better extract and wrap
task-specific underlying features in class-wise learnable tokens.

Given an extracted image representation R, an encoder-decoder standard transformer is applied to
inspect features for each label. On the encoder side, the image representation from the backbone is
flattened into R ∈ RC×HW and proceeded by Ne encoder layers as tokens. To decouple different
labels effectively, we endorse Liu et al. (2021a); Lanchantin et al. (2021b) to use learnable tokens
as the query. On the decoder side, a learnable token is fed to the transformer decoder as the query
for each possible label so that the feature of each label would be learned individually. Nd decoder
layers are stacked to extract the features of input representations in accordance with each possible
label. The decoder layer accepts T ∈ RL×C for every L possible label, where C is the embedding
dimension for each token. The cross-attention module in the transformer decoder performs on the
query from the learnable label tokens (decoder) and the key and value from the extracted features
(encoder), facilitating each label to mine respective representations.

3.3 HYBRID SHARING LAYER

Given the potential semantic correlations among different labels, the features extracted from corre-
sponding tasks may exhibit a positive correlation, providing complementary information to enhance
model performance. However, improper exploitation of these correlations through learning jointly
may cause performance degeneration since parts of these labels conflict with each other semantically
due to their inherent heterogeneity, making them hard to learn jointly. To better leverage the positive
correlations while suppressing detrimental impact due to heterogeneity between different tasks, we
introduce the MoE mechanism into the multi-label classification area, inspired by the success of
Progressive Layered Extraction (PLE) (Tang et al., 2020). Particularly, we employ several shared
and task-specialized experts to capture positively correlated features among tasks and task-specific
features, respectively, with a gate network adaptively fusing these features. The design of experts
and gates can be very flexible and compatible as long as the output shapes are aligned, and in this
work, we employ simple but effective linear layers to illustrate our approach.

Figure 2 depicts the details of Hybrid Sharing Layers, where L indicates the number of tasks, i.e.
the number of labels in multi-label classification. For any task ti, i ∈ {1, 2, · · ·L}, a group of task-
specialized experts Eti,j , j ∈ {1, 2, · · ·nt}, is assigned to extract features for this task exclusively,
where nt refers to the number of experts for this task. Apart from these task-specialized experts
groups for every task, a group of shared experts Es,j , j ∈ {1, 2, · · ·ns} is responsible for gathering
global patterns and dispatching them to those potentially positively correlated tasks. Outputs of each
expert group are harmonized by gate network, respectively, so that each task would have customized
control on the weight of task-specialized and shared experts’ outputs.

Algorithm 1 outlines the detailed mechanism of the MoE mechanism that we applied. Let Xt ∈
RN×L×di be a batched input to the mixture-of-expert layer, where N refers to batch size and di
means input embedding dimension. And let Xs be the input for shared experts group with the exact
same shape as Xt. The outputs of a Hybrid Sharing Layer comprise task-specialized outputs and a
shared output.

In the task-specialized section, each label (task) is processed independently. For a batched input
Xti ∈ RN×di on task ti, a set of task-specific experts, denoted as Eti,j ∈ Rdi×do , is utilized,
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Figure 2: The Architecture of a Hybrid Sharing Layer. For L labels, the layer consists of L groups of
task-specialized experts and a group of shared experts. The detailed structure of the shared experts
is illustrated on the right.

where j represents the j-th expert in the group. Yti|ti,j = XtiEti,j ∈ RN×do represents the out-
put of expert Eti,j on task ti. The subscript of Y , separated by |, refers to the output task and
expert subscript, respectively, meaning that it is the output of the j-th task-specialized expert in ti
and takes inputs from task ti. Similarly, a group of shared experts, denoted as Es,j ∈ Rdi×do ,
is used for task ti. Shared experts, which would be used in all tasks, also accept Xti in task
ti, and Yti|s,j = XtiEs,j ∈ RN×do represents the output of expert Es,j on task ti. A gate
network, denoted as Gti ∈ Rdi×(L·nt+ns), is employed to produce weights for outputs from all
shared and task-specialized experts on task ti. The gate network takes Xti as input, and outputs
Softmax(XtiGti) ∈ RN×(nt+ns) as the weights for experts’ outputs. Here, nt task-specialized
experts for ti and all ns shared ones are employed. The task output is a weighted mean of all experts
with activation σ, as described in the following equations, where (k) stands for tensor indexing.

Yti = Concat(Yti|ti,j , Yti|s,j) ∈ RN×do×(nt+ns)

Oti =
∑
k

[
σ(Yti)

(k) ⊙ Softmax(XtiGti)
(k)

]
∈ RN×do (1)

In the shared section, all shared experts Es and task-specialized experts Eti are utilized to gather
potential features, with a total of ns + L × nt experts. These experts use shared input Xs as their
input. Similar to the task-specialized part, a gate fuses shared and task-specialized features. The
shared gate network, denoted as Gs, harmonizes the outputs from both shared experts and task-
specialized experts across all tasks with weights derived from the shared input Xs. Algorithm 1
described shared and task-specialized parts in the Hybrid Sharing Layer.

Ys = Concat(Ys|sj , Ys|ti,j ) ∈ RN×d0×(L·nt+ns)

Os =
∑
k

[
σ(Ys)

(k) ⊙ Softmax(XsGS)
(k))

]
∈ RN×d0 (2)

It is worth noting that the shared and task-specialized parts receive the outputs from their respective
parts in the previous layer as inputs, except the initial layer, which uses an identical input.

4 EXPERIMENT

We have performed extensive experiments on two datasets, MS-COCO and PASCAL VOC, to verify
the superiority of our model. In accordance with the preceding works, we choose mean average
precision as our primary metric. Some experiments also report some secondary metrics, including
overall F1-score (OF1) and pre-category F1-score (CF1). Metrics on Top-3 are also reported. The
definitions of these metrics are available in the Appendix.
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Algorithm 1: Hybrid Sharing Layer Proce-
dure
Data: Input to shared experts Xs; Input to

task ti experts Xti ; Shared expert gate
Gs; Task ti expert gate Gti ; Number
of shared experts ns; Number of
task-specialized experts per task nt;
Shared experts Es,(·); Task-specialized
experts Et(·),(·); Number of labels L;
Activation function σ

Result: Shared output Os; Task-specialized
output Oti

Ys = [ ]
for i← 1 to L do

Yti = [ ]
end
for i← 1 to L do

for j ← 1 to nt do
Ys|ti,j = XsEti,j

Ys.append(Ys|ti,j )
Yti|ti,j = XtiEti,j

Yti .append(Yti|ti,j)
end

end
for j ← 1 to ns do

Ys|sj = XsEs,j

Ys.append(Ys|sj )
for i← 1 to L do

Yti|sj = XtiEs,j

Yti .append(Yti|sj )
end

end
As ← Softmax(GsXs)
Y ′
s ← Concat(Ys)

Os ←
∑

As ⊙ σ(Ys)
for i← 1 to L do

Y ′
ti ← Concat(Yti)

Ati ← Softmax(GtiXti)
Oti ←

∑
Ati ⊙ σ(Yti)

end
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4.1 ABLATION STUDY

As shown in Table 1, the number of shared experts greatly influences the performance. We choose
ResNet10T as the backbone and Q2L with the same backbone as the baseline. An ablation study is
performed on MS-COCO. The input image is fixed at a size of 576 × 576. The proposed model,
which includes shared experts (HSQ), outperforms the baseline by 1.3% on mAP, demonstrating that
including shared experts facilitates the transfer of information between tasks and mitigates negative
transfer. The results also reveal that removing shared experts from the model leads to a considerable
drop in performance due to the complete cutoff of sharing information among all tasks, underscoring
the importance of sharing features in achieving substantial performance improvements. HSQ-Linear
indicates that the hybrid sharing layers of the model are replaced by fully-connected layers with the
same depth and dimensions, sharing all information across all labels without discriminating task-
specialized information. It is demonstrated that the inclusion of shared experts is a crucial factor
in enhancing the performance of the proposed model compared with HSQ-Linear. The findings
highlight the potential benefits of incorporating shared experts and can inform the development of
future multi-label image classification models.

4.2 PERFORMANCE ON THE MS-COCO DATASET

MS-COCO (Lin et al., 2014) is a large dataset of 80 object classes originally for image segmentation
and object detection tasks. By extracting object information in annotations, it is also widely used
to evaluate various models for multi-label image classification tasks. We test our model on MS-
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Table 1: Ablation Study on MS-COCO. ns, nt stand for the number of shared experts and task-
specialized experts per task, †indicates that it is not available in the original work and we implement
it in this paper.

Method Backbone Resolution ns nt mAP(%)

Q2L-R10T†(Liu et al., 2021a) ResNet10T 576× 576 - - 74.8
HSQ-R10T(Ours) ResNet10T 576× 576 0 1 71.5

HSQ-Linear ResNet10T 576× 576 - - 75.7
HSQ-R10T(Ours) ResNet10T 576× 576 1 1 76.3
HSQ-R10T(Ours) ResNet10T 576× 576 4 1 76.1
HSQ-R10T(Ours) ResNet10T 576× 576 16 1 76.5

COCO to compare it with previous well-known works and state-of-the-art approaches. Results are
shown in Table 2. We use ResNet101 (He et al., 2016) and ConvNeXt (Liu et al., 2022)(CvN) as
the backbone and set input resolution to 576 × 576. Those backbones noted with -22k indicate
that they are pre-trained on ImageNet-22k. Our HSQ model with CvN as the backbone achieves
state-of-the-art performance at an mAP of 92.0%. Among all ResNet101-based approaches, our
model outperforms all its counterparts. HSQ-R101 at the resolution of 576× 576 achieves an mAP
of 87.1%. Please note that for this model, we employ two successive Hybrid Sharing Layers of
do = 1024, 512, MLP with one hidden layer of 128 neurons as gate and one of 64 as classifier.

Table 2: Performance (%) on MS-COCO. Bests are in bold. † indicates that it is not available in the
original work and we implement it in this paper.

Method Backbone Resolution mAP All Top3

CF1 OF1 CF1 OF1

SRN (Zhu et al., 2017) ResNet101 224× 224 77.1 71.2 75.8 67.4 72.9
ResNet-101 (He et al., 2016) ResNet101 224× 224 78.3 72.8 76.8 69.7 73.6
CADM (Chen et al., 2019b) ResNet101 448× 448 82.3 77.0 79.6 73.5 76.0

ML-GCN (Chen et al., 2019a) ResNet101 448× 448 83.0 78.0 80.3 74.2 76.3
KSSNet (Liu et al., 2018) ResNet101 448× 448 83.7 77.2 81.5 - -

MS-CMA (You et al., 2020) ResNet101 448× 448 83.8 78.4 81.0 74.3 77.2
MCAR (Gao and Zhou, 2021) ResNet101 448× 448 83.8 78.0 80.3 75.1 76.7
SSGRL (Chen et al., 2019c) ResNet101 576× 576 83.8 76.8 79.7 72.7 76.2

C-Trans (Lanchantin et al., 2021a) ResNet101 576× 576 85.1 79.9 81.7 76.0 77.6
ADD-GCN (Ye et al., 2020) ResNet101 576× 576 85.2 80.1 82.0 75.8 77.9
Q2L-R101 (Liu et al., 2021a) ResNet101 448× 448 84.9 79.3 81.5 73.3 75.4
Q2L-R101 (Liu et al., 2021a) ResNet101 576× 576 86.5 81.0 82.8 76.5 78.3

SST (Chen et al., 2022) ResNet101 448× 448 85.9 80.2 82.2 76.0 77.9
ResNet101+TF (Xu et al., 2022) ResNet101 576× 576 85.9 80.3 82.4 - -

PSD+TF (Xu et al., 2022) ResNet101 576× 576 86.7 81.2 82.9 - -
SCO-DCNN (Zhang et al., 2023) ResNet101 576× 576 86.0 79.8 83.0 - -

HSQ-R101(Ours) ResNet101 576× 576 87.1 81.8 83.4 91.8 93.4
ASL (Ridnik et al., 2021a) TResNetL 448× 448 86.6 81.4 81.8 75.1 77.4

TResNetL TResNetL(22k) 448× 448 88.4 - - - -
Q2L-TResL (Liu et al., 2021a) TResNetL 448× 448 87.3 81.6 83.1 77.0 78.5
Q2L-TResL (Liu et al., 2021a) TResNetL(22k) 448× 448 89.2 83.8 84.9 79.0 80.2

MITr-l (Cheng et al., 2022) MLTr-l(22k) 384× 384 88.5 83.3 84.9 - -
Swin-L (Liu et al., 2021b) Swin-L(22k) 384× 384 89.6 84.8 86.1 80.0 81.1
CvT-w24 (Wu et al., 2021) CvT-w24(22k) 384× 384 90.5 85.4 86.6 80.3 81.3

Q2L-SwinL (Liu et al., 2021a) Swin-L(22k) 384× 384 90.5 85.4 86.4 80.5 81.2
Q2L-CvT (Liu et al., 2021a) CvT-w24(22k) 384× 384 91.3 85.9 86.8 80.8 81.6

ML-Decoder†(Ridnik et al., 2023) TResNet-XL(Open Image) 640× 640 91.2 76.8 76.9 90.8 92.0

HSQ-CvN(Ours) ConvNeXt(22k) 576× 576 92.0 86.6 87.5 94.0 95.2

4.3 PERFORMANCE ON THE VOC DATASET

PASCAL-VOC (Everingham et al., 2015) 2007 is also a well-acknowledged dataset for multi-label
image classification. It comprises images of 20 classes and is split into train-val and test sets. We
follow previous work to train on train-val set and validate on test set on 2007 version. The results of
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Table 3: Performance (%) on VOC, in terms of per-label AP and mAP. Bests are in bold.

Methods aero bike bird boat bottle bus car cat chair cow mAP

CNN-RNN (Wang et al., 2016) 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 84.0
VGG+SVM (Simonyan and Zisserman, 2015) 98.9 95.0 96.8 95.4 69.7 90.4 93.5 96.0 74.2 86.6 89.7

Fev+Lv (Yang et al., 2016) 97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 90.6
HCP (Wei et al., 2015) 98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 90.9

RDAL (Wang et al., 2017) 98.6 97.4 96.3 96.2 75.2 92.4 96.5 97.1 76.5 92.0 91.9
RARL (Chen et al., 2018) 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 92.0

SSGRL(576) (Chen et al., 2019c) 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 95.0
MCAR (Gao and Zhou, 2021) 99.7 99.0 98.5 98.2 85.4 96.9 97.4 98.9 83.7 95.5 94.8

ASL(TResNetL) (Ridnik et al., 2021a) 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 95.8
ADD-GCN(576) (Ye et al., 2020) 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 96.0

Q2L-TResL (Liu et al., 2021a) 99.9 98.9 99.0 98.4 87.7 98.6 98.8 99.1 84.5 98.3 96.1
HSQ-CvN(22k) 99.9 99.9 97.2 99.4 84.1 99.1 98.3 99.1 84.9 100.0 96.4

Methods table dog horse mbike person plant sheep sofa train tv mAP

CNN-RNN (Wang et al., 2016) 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0
VGG+SVM (Simonyan and Zisserman, 2015) 87.8 96.0 96.3 93.1 97.2 70.0 92.1 80.3 98.1 87.0 89.7

Fev+Lv (Yang et al., 2016) 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6
HCP (Wei et al., 2015) 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

RDAL (Wang et al., 2017) 87.7 96.8 97.5 93.8 98.5 81.6 93.7 82.8 98.6 89.3 91.9
RARL (Chen et al., 2018) 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0

SSGRL(576) (Chen et al., 2019c) 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
MCAR (Gao and Zhou, 2021) 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8 94.8

ASL(TResNetL) (Ridnik et al., 2021a) 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8
ADD-GCN(576) (Ye et al., 2020) 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0

Q2L-TResL (Liu et al., 2021a) 89.2 99.2 99.2 99.2 99.3 90.2 98.8 88.3 99.5 95.5 96.1
HSQ-CvN(22k) 91.2 99.2 99.9 99.9 99.2 88.0 100.0 91.6 99.8 97.8 96.4

experiments on it are displayed in Table 3. Our model is compared against various established meth-
ods and state-of-the-art techniques. Notably, our proposed approach surpasses all its counterparts,
achieving an impressive mAP score of 96.4%. The per-class average precision is also presented,
with the SOTA performance bolded. Items that improve in comparison with previous works are
underscored in the last two rows.

Performance among Labels and Cross-label Comparison Among the 20 available labels, our
model exhibits superior performance in 15 of them. Compared to Q2L, another transformer-based
model, our model improves 105 pairs of labels, 27 pairs more than Q2L achieved. To provide a visual
comparison, we randomly select two labels with moderate performance (i.e., ”table” and ”train”) and
illustrate them in Figure 7. In this graph, each dot represents a specific approach, with dots in the
upper-right corner indicating better performance. We further explore the performance difference
between two pairs of labels with similar semantics, as depicted in Figure 3 and 4. Our method not
only outperforms previous work but also exhibits a smaller absolute cross-label performance gap.

Robust Performance across Multiple Image Scales. In addition to previous experiments on MS-
COCO, we perform extra experiments on different image scales to verify the performance of our
model improves as image resolution decreases in Figure 6. We perform experiments on 576 ×
576, 488 × 448 and 384 × 384. Results confirm that our model provides consistent considerable
performance as image scale decreases.

4.4 VISUALIZATION RESULT

The proposed model incorporates several gates to harmonize outputs from experts. We verify that
different tasks would rely on different experts on PASCAL VOC. Figure 5 depicts the weights of
experts’ outputs on all 20 tasks and the average load across tasks on a sampled data batch. The last
row represents an expert’s average load across all tasks. Weights are softmax-activated values of the
gate networks’ outputs, presented in log scale, along 33 different experts on the X-axis, 32 of which
are shared, and the last one is respective task-specialized. A lighter block color indicates an expert
with more weight in the final harmonized output. It is evident to note that all tasks focus on different
experts. For instance, Es,8, Es,30, Es,28 have the most significant impact on chair, dog and horse
respectively. The weight distributions across experts exhibit variations among tasks, indicating that
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distinct tasks rely on different sets of experts, each extracting distinctive representations, while even
average loads on experts show that all experts are engaged during inference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

aero
bike
bird
boat

bottle
bus
car
cat

chair
cow

table
dog

horse
mbike
person

plant
sheep
sofa
train

tv
mean

10−1

10−2

10−3

10−4

Figure 5: Experts load visualization on 20 labels of VOC2007. Each block indicates a weight for
an expert on one task. The first 20 rows represent 20 labels from the VOC dataset, and the last row
stands for the average load of experts. The x-axis denotes different experts, where experts 1-32 are
shared among all tasks, while expert 33 is task-specific. The color represents weight in log space.
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Figure 6: Performance comparison be-
tween Q2L (Liu et al., 2021a) and HSQ
on MS-COCO with backbone as Con-
vNext (Liu et al., 2022)(22k)
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train). The upper-right points in the fig-
ure perform better. AP is in %

5 CONCLUSION

In this paper, regarding MLC as an MTL problem, we introduce HSQ, a transformer-based multi-
label image classification model, which is constituted of a feature extraction backbone, query trans-
former, and Hybrid Sharing Layers that provide evident information sharing among tasks with
shared and task-specialized experts leveraging inter- and intra-task information, respectively. Task-
specialized experts are organized by respective gate networks, allowing each task to accept corre-
lated information from shared experts independently. Shared experts accept input from all tasks,
fusing all potentially useful information. Our model mitigates the negative transfer problem in MLC
when formulating it as an MTL problem, where learning several labels jointly may hinder perfor-
mance improvement. Our experiments demonstrate that HSQ provides a significant improvement
on tested datasets. Furthermore, HSQ can simultaneously enhance per-label performance across
multiple labels, mitigate performance gap among labels, and effectively handle semantic correlation
and heterogeneity.
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Reproducibility Statement In this paper, we make efforts to provide detailed information to en-
sure the reproducibility and completeness of our work. Figure 1 illustrates the architecture of our
model. Algorithm 1 and Figure 2 provide a clear overview and procedure for our crucial compo-
nent, the Hybrid Sharing Layer. Section A.3 in the Appendix describes the hyper-parameters and
devices we use, including optimizer, learning rate, etc. Section 4.2 and 4.3 describe details on how
we prepare our dataset, including version, partitioning strategy, etc. The code will be available upon
acceptance.
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A APPENDIX

A.1 METRICS DEFINITION

We here provide the definitions of metrics that are mentioned in our paper.

Pre-Category Precision: CP =
1

C

∑
i

N c
i

Np
i

Pre-Category Recall: CR =
1

C

∑
i

N c
i

Ng
i

Pre-Category F1 score: CF1 =
2× CP× CR

CP+ CR

Overall Precision: OP =

∑
i N

c
i∑

i N
p
i

Overall Recall: OR =

∑
i N

c
i∑

i N
g
i

Overall F1 score: OF1 =
2×OP×OR

OP+OR

where C stands for the number of labels, N c
i refers to the number of samples that are correctly

predicted for the i-th label, Np
i denotes the number of predicted samples for the i-th label, and Ng

i
means the number of ground truth samples for the i-th label.

A.2 FLOPS AND #PARAMETERS DETAILS

Model Backbone Resolution FLOPs #Parameters

Q2L-R10T†(Liu et al., 2021a) ResNet10T 576 8.4G 14.8M
HSQ (ns = 1, nt = 1) ResNet10T 576 8.6G 14.3M

HSQ (ns = 16, nt = 1) ResNet10T 576 8.7G 15.5M

A.3 IMPLEMENTATION DETAILS

Unless otherwise stated, the following setting is valid for all experiments. We resize all input images
from any dataset to Hi×Wi = 576× 576. After a pre-trained backbone with timm, a convolutional
layer projection would keep the embedding size C = Ci = 2048 as default.
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Two layers of mixture-of-expert layers with output embedding dimension do = 64, 16 are imple-
mented after a transformer with one encoder layer and two decoder layers, followed by a linear layer
to make a final prediction.

We train the model for 100 epochs using the Adam optimizer, with weight decay of 1e-2, (β1, β2)
= (0.9, 0.9999), and a learning rate of 1e-4. All experiments are run on 4 Tesla V100-SXM2-32GB.
The pre-training details of the experiments are provided in parentheses. We, by default, do not train
our model on extra data, except if it is otherwise stated. Note that models with -22k indicate that
they use a pre-trained backbone on ImageNet22k (Ridnik et al., 2021b). Additionally, experiments
marked with † indicate that they have been replicated in this work.
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