Under review as a conference paper at ICLR 2026

ULTRACUA: SCALING COMPUTER USE AGENT
THROUGH GUI AND PROGRAMMATIC CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-modal agents for computer use rely exclusively on primitive actions (click,
type, scroll) that require accurate visual grounding and lengthy execution chains,
leading to cascading failures and performance bottlenecks. While other agents
leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use
agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a
foundation model that bridges this gap through hybrid control—seamlessly inte-
grating GUI primitives with high-level programmatic tool calls. To achieve this,
our approach comprises four key components: (1) an automated pipeline that
scales programmatic tools from software documentation, open-source reposito-
ries, and code generation; (2) a synthetic data engine producing 17,000+ verifiable
tasks spanning real-world computer-use scenarios; (3) a multi-agent system gen-
erating high-quality hybrid control trajectories with both low-level GUI actions
and high-level programmatic tool calls; and (4) a two-stage training pipeline com-
bining supervised fine-tuning with online reinforcement learning, enabling strate-
gic alternation between low-level and high-level actions. Experiments with our
7B and 32B models demonstrate substantial improvements over state-of-the-art
agents. On OSWorld, UltraCUA models achieve an average 27% relative improve-
ment over base models, while being 11% faster in terms of steps. Out-of-domain
evaluation on WindowsAgentArena shows our model reaches 21.7% success rate,
outperforming baselines trained on Windows data. The hybrid control mechanism
proves critical, reducing error propagation while maintaining execution efficiency.
This work establishes a scalable paradigm that bridges primitive GUI interactions
and programmatic intelligence for stronger and unified computer use.

w OSWorld: Success Rate @ 15 steps ‘WAA: SR @ 15 steps GUI Agents

259 % g Click e
H I I / % f : Cascade Errors
il

O\?

Bt) \‘
o o\"b’ o e w“‘ s Faster & Stronger

Rl (A.]

"Edit VS Code keybindings from ... to..." ‘
UltraCUA

Programmatic Tool Call

\\\\\\\

Click » » Type

open_vscode_keybinding

(a) OSWorld (b) WindowsAgentArena (c) GUI Agents v.s. UltraCUA
Figure 1: (a)(b): UltraCUA’s performances; (¢) Comparison between GUI Agents and UltraCUA.

1 INTRODUCTION

Computer-use automation has emerged as a critical capability for enabling autonomous agents to
interact with the vast ecosystem of desktop and web applications that humans use daily (Hong et al.,
2023; Shaw et al., 2024; Zhang et al., 2023). However, current computer-use agents (CUAs) face a
fundamental limitation: they operate exclusively through primitive actions such as clicking, typing,
and scrolling (Rawles et al., 2024; Koh et al., 2024). This constraint creates a significant perfor-
mance gap compared to agents that leverage rich programmatic interfaces—APIs, MCP servers, and
tools—to accomplish complex tasks efficiently (Qin et al., 2023b; Schick et al., 2023b).

The reliance on primitive actions introduces critical challenges. First, lengthy execution chains ac-
cumulate errors that cascade into failures—a single misplaced click can derail an entire task (Zheng

Under review as a conference paper at ICLR 2026

et al., 2024; Yan et al., 2023). Second, operations that could be accomplished with a single program-
matic call require dozens of GUI actions, creating performance bottlenecks. For example, extracting
data from multiple spreadsheets requires a traditional CUA to navigate menus, select cells individ-
ually, copy values, switch applications, and paste content—each action a potential failure point. In
contrast, an agent with spreadsheet APIs could accomplish this reliably with far fewer operations.
This efficiency gap is stark: while other agents leveraging programmatic interfaces exceed 80% suc-
cess on benchmarks like GAIA (Mialon et al., 2024; Zhang et al., 2025), GUI-only computer-use
agents remain fundamentally limited, motivating our unified approach that combines GUI generality
with programmatic efficiency.

In this paper, we bridge this capability gap through hybrid control, seamlessly integrating GUI
primitives with high-level programmatic tool calls. Rather than treating these as mutually exclusive
options, our approach enables a strategic combination of both modes. Agents learn to leverage
programmatic tool calls when they provide clear efficiency gains, while retaining GUI interactions
for universal coverage and fine-grained control. To summarize, our technical contributions include:

An automated pipeline for collecting programmatic tools that scales beyond manually curated
sets (Qin et al., 2023a; Tang et al., 2023). Our system extracts tools from software documenta-
tion, integrates open-sourced implementations, and employs coding agents to generate new tools
on demand. This scalable pipeline produces hundreds of tools across diverse environments, from
OSWorld’s Ubuntu applications to WindowsAgentArena’s Windows ecosystem.

A dual-pipeline synthetic data engine for verifiable computer-use task generation. Large-scale
task synthesis for CUA training is challenging due to the complexity of verifying task completion
in dynamic environments. To address this, we develop two complementary pipelines producing
16,000+ verified tasks. The first pipeline employs an instruction-first strategy where agents explore
computer environments and propose tasks based on observed states, with trajectories verified by
evaluator agents. The second pipeline uses an evaluator-first strategy, collecting atomic verifica-
tion functions (e.g., checking Chrome URLSs, verifying file paths, validating image attributes) from
environments, then reprogramming (e.g., modifying parameters) and composing (e.g., combining
multiple checks) them to create complex evaluation criteria. LLMs generate tasks satisfying these
pre-defined evaluators, ensuring reliable trajectory assessment for training.

A large-scale hybrid control trajectory collection. Existing computer-use datasets contain only
pure GUI action sequences, lacking demonstrations of programmatic tool integration. We collect
20,000+ successful trajectories by combining a powerful planner model (OpenAl 03) with a state-
of-the-art grounding model (GTA1-7B Yang et al. (2025))—a simple yet effective agentic frame-
work. The planner selects between programmatic tool calls and low-level GUI actions based on task
context, while the grounder ensures accurate GUI execution. This dataset enables training models
to seamlessly alternate between action modes for optimal task completion.

A foundation agent model with hybrid control trained using the programmatic tools, synthetic
tasks, and rollout trajectories described above. We train models at two scales (7B and 32B) through
supervised fine-tuning on the high-quality trajectories from our collection, followed by online rein-
forcement learning on our verifiable synthetic tasks. This two-stage approach produces agents that
effectively select between GUI primitives and programmatic tool calls based on task context.

Experiments demonstrate substantial improvements over state-of-the-art CUAs. On OSWorld (Xie
et al.,, 2024), our models achieve an average 27% relative improvement over their base mod-
els across both scales. Notably, out-of-domain evaluation on WindowsAgentArena Bonatti et al.
(2024)—without any Windows-specific training—shows our 7B model reaches 21.7% success rate,
outperforming baselines trained on Windows data. These results validate that hybrid control pro-
vides consistent benefits across model scales and platforms. Our code, models, and datasets will be
released to facilitate future research.

2 METHODOLOGY

Our methodology comprises three key components for developing a foundation CUA model with
hybrid control. First, we build a comprehensive collection of programmatic tools through an auto-
mated extraction pipeline. Second, we design a dual-pipeline synthetic data engine that generates
verifiable tasks for complex real-world computer use. Finally, we train our model via supervised
fine-tuning on collected trajectories followed by online reinforcement learning on synthetic tasks.

Under review as a conference paper at ICLR 2026

Programmatic [@ GUI-Coding Agent] 1 ‘ (‘} X §] . * Instruction-First
‘% . #' Tool Collection Generation 1 Workspace Simulation Evaluator-First : et
Software 1 ol .)
. —
Documen(a(ion. LLMs Step 1: (@ G::‘”::C"O" 1| %) open Internet Media: =4 :
E oding :
Step 2: 1 :
LLM: Action Q Codes E Docs Computer Chrome Tab . breoffice Writer
s * Application: Evaluator 3

1
Step n: Success! 1

"Check "Lake
Tahoe" on
Wikipedia."

Open-Souce
Implementation

Python-style Interfaces
with docstrings

"Make the first line
N italic."

9 Task Synthesization

Programmatic Tool Collection

SFT -> RL Model Training

UIlraCUA 7B
Programmatic unraCUA 32B

Visual
Grounding UltraCUA Tool Call
T

Synthetic Tasks

! RSupemsed Fine-t lumng wOnhne RL

=|¢'
Agem Agenl & S If-PI:
step smp ol ay Update
ISynthetic Tasks Q

Figure 2: An overview of UltraCUA’s design.

vTralecmry Collection

Multi-Agent System
™

Grounder
Planner Agent Agent

Programmatic
Tools

2.1 AUTOMATED TOOL COLLECTION FOR HYBRID CONTROL

The foundation of our approach is hybrid control—seamlessly integrating primitive GUI actions
with high-level programmatic tools. We define a ”tool” as a high-level interface encapsulating se-
quences of computer-use actions, typically implemented as Python functions, keyboard shortcuts, or
combinations of primitive actions (e.g., type, key combinations)—but excluding actions requiring
visual grounding like clicks. Each tool is exposed to the model through a Python function signature
with descriptive docstrings specifying parameters and functionality.

While GUI-only agents suffer from cascading failures in lengthy action sequences, programmatic
interfaces alone cannot handle all computer interactions. Our hybrid approach enables agents to
leverage programmatic tools for efficiency when available, while retaining GUI actions to ensure
generalization. To build a hybrid action space where tools cover diverse applications and usage
scenarios, we developed an automated pipeline collecting hundreds of tools from the following
three complementary sources. Tool details are also present in Appendix A.3.

Extraction from Software Documentation. Application documentation contains expert knowl-
edge—particularly keyboard shortcuts—that bypass tedious GUI sequences. For example, chang-
ing VS Code’s color theme requires navigating File -+ Preferences -+ Color Theme with
GUI actions. Our pipeline extracts the shortcut (Ctr1+K, Ctrl+T) from documentation and
converts it into a programmatic tool: vscode . set_theme (). This transforms fragile multi-step
sequences into single, reliable operations.

Integration of Open-Source Implementations. We incorporate existing programmatic tools from
open-sourced frameworks, particularly leveraging implementations from AgentS2 (Agashe et al.,
2025) and AgentStore (Jia et al., 2024). These tools transform complex GUI sequences into efficient
programmatic calls. For example, this AgentS2 tool for spreadsheet manipulation replaces dozens
of manual clicks with a single function:

def set_cell _values(self, cell_values: dict, app_name: str, sheet_name:
str) :
"""Set multiple cell values in a spreadsheet.
Args: cell_values: {"A2": "hello", "B3": 123.45;"""
return SET_CELL_VALUES_CMD. format (
cell_values=cell_values, app_name=app_name, sheet_name=sheet_name

)

Automatic Scaling with Coding Agents. Inspired by CoACT-1 (Song et al., 2025), we adopt
the multi-agent paradigm where an orchestrator dynamically delegates subtasks to either a GUI
operator or a coding agent that executes Python/Bash scripts. This allows bypassing inefficient GUI
sequences through direct programmatic execution. We extend this by mining the coding agent’s
trajectories for reusable tools: when the coding agent solves subtasks programmatically, we employ
an automatic LLM workflow to extract and refine these solutions into parameterized functions, with
reflection steps and automated unit testing to ensure correctness. For example, from a trajectory
where the coding agent modifies VS Code settings via script, we extract:

Under review as a conference paper at ICLR 2026

def add_vs_code_keybinding(key: str, command: str, when: str = ""):
"""Create or update a VS Code keybinding.

Args: key: "ctrl+j", command: "workbench.action.
focusActiveEditorGroup"
Returns: {"path": "...", "action": "added", "backup": "..."j"""

2.2 SYNTHETIC DATA ENGINE FOR HYBRID CONTROL TASKS

Large-scale synthetic training tasks for CUAs remains scarce, while existing resources are primarily
test sets or complete trajectories with limited reproducibility. To address this, we developed a dual-
pipeline synthetic data engine producing 17,000+ verifiable tasks for real-world computer-use.
Our engine operates through two complementary strategies: evaluator-first generation ensuring
verifiability and instruction-first generation creating contextually relevant tasks with diversity.

2.2.1 EVALUATOR-FIRST GENERATION

This approach begins by collecting state-checking evaluators from computer environments—scripts
that verify specific system states (e.g., file existence, application settings, Ul elements). We use the
atomic evaluator functions in OSWorld (Xie et al., 2024) to reprogram these evaluators by modi-
fying parameters and compose multiple evaluators to create complex verification conditions. For
example, combining a file-checker with a URL-checker validator creates a task requiring both file
manipulation and browsing interaction.

Given these evaluator configurations, we prompt LLMs to generate corresponding tasks that would
satisfy the verification conditions. For instance, the file-URL checker combination might gener-
ate tasks like “Navigate to the Python documentation page and download the PDF tutorial to your
Documents folder,” which requires both web browsing to reach the correct URL and file system op-
erations to verify the download. This ensures every generated task has a programmatic way to verify
completion, critical for providing clear reward signals during RL training. This approach produces
4,000+ high-quality tasks with guaranteed verifiability.

2.2.2 INSTRUCTION-FIRST GENERATION

Following Anonymous (2025), this approach generates tasks based on observed system states.
Agents explore computer environments through exploratory walks, reaching diverse UI states. At
each state, we analyze the current interface and generate contextually appropriate tasks (e.g., “create
a new spreadsheet” when in a file manager). Task completion is verified by an evaluator agent
rather than predefined scripts, allowing flexibility in execution paths. This approach generates
12,000+ tasks that naturally arise from real usage patterns, complementing the systematic cover-
age of evaluator-first generation.

2.2.3 WORKSPACE SIMULATION

A realistic workspace is crucial for generating meaningful tasks. When synthetic tasks require
interaction with specific content, our pipeline triggers a content preparation workflow tailored to
task requirements. For example, for code-related tasks, we fetch files from popular GitHub repos-
itories—extracting Python scripts from Hugging Face repos or configuration files from trending
projects. For image tasks, we retrieve open-source images from Wikipedia Commons matching
relevant categories. For document editing, we generate synthetic documents via LLMs with task-
appropriate content. This targeted approach ensures realistic task contexts: image editing tasks
receive actual photos, code refactoring tasks get real implementations, and document tasks operate
on properly formatted files. By matching content types to task requirements, we create scenarios
that accurately reflect real-world computer use.

2.2.4 COMPLEMENTARY DESIGN RATIONALE

In general, the two approaches serve distinct purposes. Evaluator-first generation produces complex,
verifiable tasks ideal for RL training—code-based evaluators provide precise rewards without expen-
sive trajectory verification. However, these tasks tend to be challenging due to evaluators’ design
and multi-evaluator compositions. Instruction-first generation offers greater diversity through envi-
ronment exploration, covering more real-world scenarios with naturally easier tasks. This comple-

Under review as a conference paper at ICLR 2026

mentary design ensures both reliable RL signals and broad task coverage. We further have detailed
data statistics in Table 6.

2.3 TRAINING A FOUNDATION AGENT FOR HYBRID CONTROL

We train our foundation model using a two-stage approach: supervised fine-tuning on high-quality
trajectory demonstrations followed by online reinforcement learning. This curriculum first estab-
lishes competency in hybrid control, then optimizes action selection between GUI primitives and
programmatic interfaces through self-play.

2.3.1 MULTI-AGENT ROLLOUT FOR TRAJECTORY GENERATION

To generate high-quality training data, we deploy a multi-agent system comprising a Planner agent
and a specialized Grounder agent. We use OpenAl 03 as the Planner, which operates in a ReAct
framework (Yao et al., 2022) with Agent-S2-style prompting (Agashe et al., 2025) to enhance rea-
soning capabilities. The Planner strategically chooses between programmatic calls and GUI actions
based on task context and available tools. When GUI interaction is needed, we employ GTA1-7B
(Yang et al., 2025) as the Grounding agent for precise visual localization, ensuring accurate element
targeting in complex interfaces. For each synthetic task, we expose relevant programmatic tools
to the Planner and perform 8 rollouts to capture diverse solution strategies. This process generates
26.8K successful trajectories demonstrating effective hybrid control strategies across our synthetic
tasks.

2.3.2 WORKING MEMORY MECHANISM

Complex hybrid execution paths risk losing
context as agents alternate between program- = <memory> , ' ,
matic tools and GUI actions. We address this 12Sk: Create folder "Favorites’ on
: : bookmarks bar.

through an integrated working memory sys-

. . Progress: Chrome open, bookmarks bar
tem using <memory></memory> tags, in- visible
spired by Bona.m et al. (2024). The agent U- | Next: Access bookmark manager via
tonomously maintains this memory—recording Ctrl+Shift4o0.
completed steps, extracted values, and inter- </memory>
mediate results—ensuring coherent execution
without external storage. The common mem-
ory content includes: (1) task objectives and constraints, (2) progress tracking across completed
actions, and (3) information that must persist across steps (e.g., file paths, UI element states, inter-
mediate values). For example, during a bookmark management task, the agent maintains structured
state information as shown. This mechanism proves crucial for multi-step tasks requiring informa-
tion persistence across action modality switches.

2.3.3 STAGE 1: SUPERVISED FINE-TUNING

We fine-tune multiple base models, including UI-TARS-1.5 (7B) (Qin et al., 2025) and OpenCUA
(32B) (Wang et al., 2025b) on the 26.8K successful trajectories from the rollout system. To ensure
balanced training across all trajectory steps, we create individual samples from each turn: for the
i-th turn, we include messages up to that point but apply loss only to the i-th assistant response.
This prevents overfitting to early trajectory steps while ensuring each action decision receives equal
training weight, teaching the model proper hybrid control at every step of task execution.

2.3.4 STAGE 2: ONLINE REINFORCEMENT LEARNING

While SFT provides behavioral foundations, mastering strategic action selection requires learning
from exploration. The hybrid action space creates numerous solution paths for each task—some
efficient, others suboptimal. Through online RL, agents can discover these optimal strategies via
self-play.

We begin by filtering our evaluator-first tasks (4,000+) through 8 rollouts per task with the SFT
model, identifying 1,000 tasks where the model succeeds at least once. We define task difficulty
as the average success rate across these 8 rollouts. During training, we randomly sample tasks

Under review as a conference paper at ICLR 2026

with difficulty scores in [0.4, 0.8]—avoiding tasks that are too easy or too challenging to maximize
learning efficiency within the model’s zone of proximal development.

For policy optimization, we employ a variant of GRPO (Shao et al., 2024) inspired by DAPO (Rosset
et al., 2024), with key modifications for our hybrid control setting. We remove KL regularization
and implement a clip-higher strategy to encourage exploration of diverse action sequences.

To prevent regression toward GUI-only solutions, we design a reward function that incentivizes tool
usage. The total reward for a trajectory 7 is:

R(7) = Rew(T) + Rioal(7) (D

where Reny(7) € {—1,1} is the sparse environment reward (1 for task success, -1 for failure), and
the tool-use reward is defined as:

Ruool(7) = 0.3 if Renv('r) = 1 and 7 contains tool calls)
0 otherwise

This reward structure teaches the agent not just to succeed, but to succeed efficiently through strate-
gic hybrid control. Notably, we exclude format rewards despite their common use in RL with LLMs.
We found in empirical analysis that models struggle with complex tool syntax early in training,
causing format penalties to dominate the learning signal and discourage outcome-based learning.
By focusing solely on outcome and tool-use rewards, we enable the model to gradually master tool
syntax through successful examples rather than punishment, leading to more robust learning. We
propagate rewards to each action step and normalize by trajectory length for stable optimization.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 BENCHMARKS

We use OSWorld-Verified (Xie et al., 2024) as our primary benchmark. It is a realistic benchmark
featuring a Ubuntu Desktop environment accessible through screen observations, comprising 369
tasks. OSWorld contains diverse tasks spanning common office suites, IDEs, and web browsers,
designed to rigorously test an agent’s long-horizon planning and visual grounding abilities. Each
task is self-contained with a deterministic starting state, a natural language goal, and an automated
rule-based evaluator, ensuring reproducible and reliable assessment. To evaluate cross-platform
generalization, we also test on WindowsAgentArena (Bonatti et al., 2024), which contains 154
real-world tasks in Windows 11 environments. This provides an out-of-domain evaluation since
our models are primarily trained on Ubuntu-based tasks, testing the transferability of learned hybrid
control strategies across operating systems.

3.1.2 BASELINES

To demonstrate the effectiveness of our approach, we compare our final model against several strong
baselines that isolate different components of the agent’s capabilities.

* General Models: powerful, pre-trained vision-language models that are not specifically fine-
tuned for GUI automation. We include leading models like Claude (Anthropic, 2025) and 03 (Ope-
nAl, 2025) to establish a baseline for generalist, out-of-the-box performance.

* Multi-Agent Frameworks: systems that orchestrate multiple components to solve computer-use
tasks. These frameworks typically employ a planner-grounder architecture and may be enhanced
with additional capabilities such as memory, experience replay, or the integration of a coding
agent. Prominent examples include Agent-S2 (Agashe et al., 2025) and Jedi-7B (Xie et al., 2025).

* Specialized Agentic Models: models that have been specifically fine-tuned or purpose-built for
computer control and GUI-centric scenarios. This includes models like OpenAl CUA OpenAl
(2025) UI-TARS (Qin et al., 2025) and OpenCUA (Wang et al., 2025b), which are trained on
large datasets of computer interaction trajectories to specialize their abilities for this domain.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the state-of-the-art methods on the OSWorld benchmark. We split the
results by steps and show the approach type in the second column. We report the success rate (%)
as the evaluation metric in the fourth column. } denotes our reproduced results, averaged across 4
independent runs. Same-colored rows share the same base model.

Success Rate (%)

Agent Method Model Category Open-Source
Max Steps: 15 Max Steps: 50

03 (OpenAl, 2025) General Model X 9.1 17.2
Claude 3.7 Sonnet (Anthropic, 2025) General Model X 27.1 35.8
OpenAl CUA (OpenAl, 2025) Agentic Model X 26.0 31.3
Jedi-7B w/ GPT-40 (Xie et al., 2025) Multi-Agent Framework v 26.8 27.0
Agent S2 (Agashe et al., 2025) Multi-Agent Framework v 27.0 34.5
Qwen2.5-VL-72B (Bai et al., 2025) General Model v 4.4 -
UI-TARS-72B-DPO (Qin et al., 2025) Agentic Model v 24.0 25.8
OpenCUA-7B (Wang et al., 2025b) Agentic Model v 243 28.2
UL-TARS-1.5-7B (Qin et al., 2025) Agentic Model v 23.41 26.11
OpenCUA-32B (Wang et al., 2025b) Agentic Model v 29.7 34.1
UltraCUA-7B Agentic Model v 28.91 30.21
UltraCUA-32B Agentic Model v 39.0 41.5t

3.1.3 IMPLEMENTATION DETAILS

Training Details. Our models are fine-tuned for 3 epochs during the SFT stage with a learning rate
of 2e-5. For SFT stage, we sample 66K steps from trajectories with evaluator-first and instruction-
first synthetic data, each 33K. The subsequent online RL stage is trained for 150 steps with a learning
rate of le-6. All experiments are conducted on NVIDIA H100 GPUs. During training, we control
the number of programmatic tools to limit the context length at 32K.

Evaluation Metrics. We use the following metrics to measure effectiveness and efficiency: 1) Suc-
cess Rate (SR): Our primary metric. It is the percentage of tasks the agent successfully completes
in a single attempt, as verified by the benchmark’s automated evaluators. 2) Pass@4: To account
for the stochastic nature of LLM inference, we also report Pass@4. A task is marked as successful
under this metric if the agent completes it correctly in at least one of four independent rollout at-
tempts. 3) Trajectory Efficiency: We measure the number of steps an agent takes to successfully
complete a task. Each step is either a GUI action or a programmatic tool call. A lower step count
indicates higher efficiency.

3.2 MAIN RESULTS

OSWorld Evaluation. Table | presents comprehensive results on the OSWorld benchmark across
different step budgets. Our UltraCUA-7B achieves 28.9% success rate at 15 steps, surpassing all
comparable 7B models including the strong UI-TARS-1.5-7B baseline (23.4%) with a 23.5% relative
improvement. More remarkably, UltraCUA-32B reaches 39.0% success rate, outperforming even
closed-source systems like Claude 3.7 Sonnet (27.1%) and OpenAl CUA (26.0%).

The results validate our hybrid control approach across model scales. While general-purpose mod-
els struggle without specialized training (e.g., Qwen2.5-VL-72B at 4.4% despite 72B parame-
ters), our models achieve superior performance through strategic integration of programmatic tool
calls. The consistent improvements from base models (UI-TARS-1.5-7B—UltraCUA-7B: +23.5%,
OpenCUA-32B—UltraCUA-32B: +31.3%) demonstrate that hybrid control provides orthogonal
benefits to agent capabilities.

Cross-Platform Generalization. To assess generaliza- Table 2: Out-of-domain evaluation on
tion beyond the training domain, we evaluate on Win- WindowsAgentArena.
dowsAgentArena without any Windows-specific fine-

tuning. Table 2 shows that UltraCUA-7B achieves 21.7% Model SR (%)
success rate, outperforming both Qwen2-VL-7B trained Qwen2-VL-7B (w/ OpenCUA Data) ~ 13.5
with OpenCUA’s Windows data (13.5%) and UI-TARS- UIL-TARS-1.5-7B 18.1
1.5-7B (18.1%). This 20% relative improvement over Ul- UltraCUA-7B 2L7

TARS demonstrates that hybrid control strategies learned on Ubuntu effectively transfer to Windows
environments, validating the domain-agnostic nature of our approach.

7

Under review as a conference paper at ICLR 2026

3.3 ABLATION STUDIES

We conduct a series of ablation studies to dissect our framework and validate the contribution of its
key components. These experiments isolate the impact of the hybrid action space, working memory,
and reinforcement learning stage on agent performance.

3.3.1 THE IMPACT OF HYBRID CONTROL

To validate the effectiveness of hybrid control, we examine its impact on both specialized agentic
models and powerful multi-agent frameworks.

Impact on Specialized Models. We compare three configurations: (1) UI-TARS-1.5-7B (GUI-
only baseline), (2) our model with tools disabled (UltraCUA-7B w/o Tools), and (3) our full model
with hybrid control. Table 3 shows that hybrid control yields substantial improvements: success
rate increases from 21.8% to 27.0% (+23.9% relative) while maintaining similar step counts. The
addition of programmatic tools proves essential for effectiveness in complex automation tasks.

Impact on Multi-Agent Frameworks. To test whether hybrid control benefits extend to state-of-
the-art systems, we evaluate our GTA1-7B + 03 rollout framework with and without programmatic
tools. As shown in Table 3, hybrid control provides even larger gains in this setting: success rate
improves from 44.0% to 48.2% (+9.5% relative) and average steps decrease by 14.9%. This demon-
strates that hybrid control becomes increasingly valuable as the underlying system becomes more
capable.

Tallj)le 3: Impact of hybrid control on different agent architectures. Hybrid control benefits both
specialized models and multi-agent frameworks.

Model Configuration Success Rate (%) Pass@4 Avg. Steps
Agentic Models (Max Steps: 15)

UI-TARS-1.5-7B (GUI-Only) 234 333 9.31
UltraCUA-7B-SFT w/o Tools (GUI-Only) 25.1 343 9.24
UltraCUA-7B-SFT (Hybrid Control) 27.0 379 8.46
Commercial Models & Multi-Agent Framework (Max Steps: 50)

Claude-4-Sonnet 439 -

GTA1-7B + 03 w/o Tools 44.0 60.5 15.53
GTA1-7B + 03 (Hybrid Control) 48.2 62.4 13.22

3.3.2 THE IMPORTANCE OF REINFORCEMENT LEARNING

We evaluate the impact of online RL by comparing models before and after this training stage, for
UltraCUA-7B. From Table 1 (RL results) and Table 3 (SFT results), we can see that online RL brings
7% overall improvement (27.0—28.9). Figure 3 reveals how RL transforms agent behavior in three
key ways. First, outcome rewards increase steadily during RL (Fig. 3a), confirming performance
gains. Interestingly, format rewards also improve substantially (Fig. 3b) despite not being explicitly
optimized. This suggests agents learn proper tool syntax naturally through successful task comple-
tion. Most significantly, RL reshapes tool-use strategy (Fig. 3c). Tool-related failures drop 46%
(122—66) while successes increase by 5%, indicating pre-RL models often make harmful tool calls.
Correspondingly, overall tool usage decreases, showing agents learn to be selective rather than ag-
gressive with tool deployment. These results demonstrate that while SFT teaches the mechanics of
hybrid control, RL enables strategic decision-making about when to use each action type—a crucial
distinction for effective automation. = eloe RL(SFT) mm AferRL

Task Outcomes When Using Tools

122
I SG 63 ss
0 20 40 6 8 100 120 140 160 0O 20 40 60 80 100 120 140 160 0 . ..

Training Step Training Step Num. Tasks Failed Num. Tasks Successful

(a) Outcome Reward (b) Format Reward (c) Tool-call Pattern
Figure 3: Evolution of agent behavior during reinforcement learning.
3.3.3 IMPACT OF WORKING MEMORY

We evaluate working memory by training models with and without <memory></memory> blocks
in the SFT data, isolating the contribution of explicit state tracking. Table 4 shows consistent im-

Under review as a conference paper at ICLR 2026

provements from working memory: success rate increases from 25.4% to 27.0% (+6.3% relative)
and average steps decrease slightly. While modest, these gains are meaningful for tasks requiring
persistent state—file operations, form filling, and cross-application workflows. The efficiency im-
provement suggests memory helps agents avoid redundant actions like re-navigating to previously
visited screens or re-extracting obtained information.

Table 4: Impact of working memory on model performance. Models are trained with identical data
except for the presence of memory blocks.

Model Configuration Success Rate (%) Pass@4 Avg. Steps
UltraCUA-7B-SFT w/o Memory 25.4 37.1 8.56
UltraCUA-7B-SFT w/ Memory 27.0 379 8.46
Relative Improvement +6.3% +2.1% -1.2%

3.4 ANALYSIS
3.4.1 TooL USAGE PATTERNS

To understand how our model leverages the hybrid action space, we analyze tool usage patterns
across different application domains and task types.

Tool Usage Scales with Model Capa-

o, X > Libreoffice Writer [fhrome p %
bility. Figure 4 reveals a clear correla- ¢w #8 [vibreofice Calc o T M

: b d 1 bl d 1 _ = @ Libreoffice Writer é:f' rome Librbafice Writer
tion between model capability and tool us- & , Uoreofice Impress @S
age sophistication. The multi-agent frame- £ e UncURTD
work (GTA1-7B+03) demonstrates exten- VCode @ Thuncersid % Py N
sive tool utilization with 60-80 calls and 8- £ **iig: eC@OS =
10 unique tools per domain, while our sin- &= ‘$Eeipes @we e

S mdBps Libreoffice Calc

gle models show progressively conserva- . . o " "
tive patterns—UltraCUA-32B uses tools Tool Call Frequency
moderately (20-40 calls) and UltraCUA-

7B sparingly (0-20 calls). This pattern Fjgyre 4: Tool-call patterns across domains and mod-

validates our hybrid control hypothesis: ¢]s. Stronger models exhibit higher frequency and di-
stronger models not only call tools more versity.

frequently but also leverage greater diver-

sity, suggesting they better recognize when programmatic interfaces provide efficiency gains. The
trend holds across all domains from office suites to development environments, confirming that ef-
fective hybrid control emerges naturally with increased model capability.

Out-of-Distribution Tool Generalization. We Table 5: OSWorld with OOD tools.
evaluate the model’s ability to utilize tools not seen

during training by introducing new programmatic Configuration SR (%) Avg. Steps
Fools at 1pference time. These tools are unseen dur- UlraCUATB.SET 270 .46
ing training due to context length limit. Table 5 w/ 00D tools 275 3.80

shows that models can adapt to unseen tools, achiev-
ing modest performance gains (+1.9% relative SR). However, the increased steps suggests adapta-
tion challenges—models may explore unfamiliar tools before selecting appropriate ones. This zero-
shot tool generalization capability also extends beyond single-platform scenarios: Table 2 demon-
strates that our model achieves 21.7% success rate on Windows tasks despite training exclusively on
Ubuntu, outperforming baselines by leveraging its learned hybrid control strategies across platforms
and tool ecosystems.

4 CONCLUSION

We introduced UltraCUA, a foundation agent that bridges the critical gap between general-purpose
GUI agents and specialized API-based agents. We achieve this through a novel hybrid action space
that seamlessly integrates low-level GUI actions with high-level tool use. Our core contributions are
a scalable pipeline for automated tool acquisition, a synthetic data engine for generating verifiable
hybrid tasks, and a two-stage SFT+RL curriculum to teach strategic action selection. Our method
achieves state-of-the-art performance on the OSWorld benchmark. Ablation studies confirm that the
hybrid action space is the essential driver of this success, demonstrating a new and more effective
paradigm for building robust and efficient agents for general computer control.

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025. 3,5, 6,7

Anonymous. Scaling synthetic environment generation for digital ai agents via exploration, 2025.
Under review. 4

Anthropic. Claude 3.7 sonnet and claude code. Technical report, Anthropic, 2025. URL https:
//www.anthropic.com/news/claude-3-7-sonnet. System Card. 6, 7

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025. 7

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024. 2, 5, 6

Tianle Cai, Xuezhi Wang, Yiming Zhan, Jiaming Chen, Yuan Wang, Yunchang Pan, Wayne Zhang,
Da Li, Peilin Li, Yihui Wang, et al. Large language models as tool makers. arXiv preprint
arXiv:2305.17126, 2023. 13

Xiang Deng, Lichend Vong, Shuyan Naga, Aohan Chen, Bowei Xia, Boyuan Wang, Jiaming Wang,
Jing-Cheng Zhang, Kexuan Liu, Libo Li, et al. Mind2web: A generalist agent for the web. arXiv
preprint arXiv:2306.06070, 2023. 13

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025. 13

Wenyi Hong, Weihan Zhang, Junkai Chen, Yutao Zheng, Yue Zhang, Bin Wang, Guo Zhao, Canyu
Zhang, Aili Li, Yunchao Sun, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023. 1, 13

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
computer assistant. arXiv preprint arXiv:2410.18603, 2024. 3

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Dua, Ming Liang, and Aniruddha Nayak. Vi-
sualwebarena: Evaluating multimodal agents on realistic visual web tasks. In Association for
Computational Linguistics (ACL), 2024. 1

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: A benchmark for general ai assistants. In International Conference on Learning
Representations (ICLR), 2024. 2

OpenAl. Openai 03 and o4-mini system card. Technical report, OpenAl, 2025. URL
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b—e7758£3722c1/
o3-and-o4-mini-system—card.pdf. System Card. 6, 7

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023. 13

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025. 13

Yujia Qin, Shihao Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023a. 2

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

Under review as a conference paper at ICLR 2026

Yujia Qin, Shengding Liang, Yining Du, Wenqi Ye, Yan Cheng, Yaxi Lin, Yi Ruan, Jian Li, Xu Sun,
Jie Fu, et al. Toolllm: Facilitating large language models to master 16000+ real-world apis. arXiv
preprint arXiv:2307.16789, 2023b. 1, 13

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025. 5, 6, 7, 13

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidworld: A dynamic benchmarking environment for autonomous agents. In International
Conference on Machine Learning (ICML), 2024. 1

Corin Rosset, Nan Jiang, and Alekh Agarwal. Direct action-policy optimization. arXiv preprint
arXiv:2405.19553, 2024. 6

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Tsvigun, Gael Coscul-
luela, Spencer Sacerdoti-Cohen, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023a. 13

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Tsvigun, Gael Cosculluela,
Spencer Sacerdoti-Cohen, Thomas Scialom, C Stiegler, and D R. Toolformer: Language models
can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023b. 1

Zhihong Shao, Peize Wang, Lirui Dou, Yuxian Wang, Yushan Liu, Dian Zhang, Shang-Yi Li, Nuo
Zhou, Han Liu, Zaibin Zheng, et al. Deepseekmath: Pushing the limits of mathematical reasoning
in open language models. arXiv preprint arXiv:2402.03300, 2024. 6

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. 1

Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
Zeyuan Chen, Jieyu Zhao, et al. Coact-1: Computer-using agents with coding as actions. arXiv
preprint arXiv:2508.03923, 2025. 3

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca:
Generalized tool learning for language models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301, 2023. 2

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025a. 13

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, et al. Opencua: Open foundations for computer-use agents.
arXiv preprint arXiv:2508.09123, 2025b. 5, 6, 7, 13

Tianbao Xie, Danyang Liu, Yutong Wang, Can Zhang, Zheyuan Li, Yichen Zhu, Tao Yu, Jeff Hoff-
man, Hui Su, and Mohit Bansal. Osworld: A massively multitask and multilingual benchmark
for general-purpose agents. arXiv preprint arXiv:2404.09852, 2024. 2, 4, 6, 13

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025. 6, 7

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, et al. Gpt-4v in wonderland: Large multimodal models for zero-shot
smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023. 2

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. Gtal: Gui test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025. 2, 5, 13

11

Under review as a conference paper at ICLR 2026

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024. 13

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Graham Durrett, and Karthik Narasimhan. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022. 5

Chi Zhang, Zhao Huang, Boyu Li, Hongyu Li, Song-Chun Zheng, Limin Yu, Hualei Wang, We-
ichen Ma, and Han Zhang. Appagent: Multimodal agents as smartphone users. arXiv preprint
arXiv:2312.13771,2023. 1, 13

Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu,
Yahui Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-
purpose task solving. arXiv preprint arXiv:2506.12508, 2025. 2

Lianmin Zheng, Yujie Zhang, Shuyan Wang, and Long Chen. Gpt-4v(ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024. 1

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Li, Caiming Li, Yitao Liu, Mohammed
Al-Tawil, Song-Chun Huang, Weizhen Wang, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023. 13

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RELATED WORK

Multi-Modal Agents for Computer Automation. The ambition to create agents that can oper-
ate graphical user interfaces is long-standing, but has seen remarkable progress with the advent of
Vision-Language Models (VLMs). Early approaches often relied on structured data like HTML or
accessibility trees. More recent and generalizable agents operate directly from pixels and high-level
instructions. In web automation, benchmarks like WebArena (Zhou et al., 2023) and Mind2Web
(Deng et al., 2023) have driven the development of agents capable of complex online tasks. Simi-
larly, in general computer control, works like CogAgent (Hong et al., 2023) and OSWorld (Xie et al.,
2024) have demonstrated agents that can navigate desktop environments, and AppAgent (Zhang
et al., 2023) has shown similar capabilities on mobile devices. Current approaches to GUI au-
tomation can be broadly categorized into two paradigms. Multi-Agent systems employ specialized
models for different subtasks—for instance, GPT-40+Aria-UI (Yang et al., 2024) and GTA-1 Yang
et al. (2025) combine a planner model with a dedicated grounder model, leveraging the strengths
of each component for strategic planning and precise visual grounding respectively. In contrast,
Foundation Agent Models like UI-TARS (Qin et al., 2025), UI-TARS-2 (Wang et al., 2025a), and
OpenCUA (Wang et al., 2025b) adopt an end-to-end approach, where a single unified model au-
tonomously handles both planning and grounding tasks. While multi-agent systems benefit from
modular design and specialized expertise, foundation models offer simpler deployment and poten-
tially better coordination between planning and execution. A common thread among these powerful
agents is their reliance on a primitive action space consisting of clicks, types, and scrolls. While
this provides generality, it also leads to the brittleness and long-horizon planning challenges that our
work directly addresses. Our contribution is the introduction of a hybrid action space that retains
this generality while adding the efficiency and robustness of high-level tools.

Tool and API Augmentation for LLMs. Parallel to the development of GUI agents, another line
of research has focused on augmenting Large Language Models (LLMs) with the ability to use
external tools and APIs. The seminal work of ToolFormer (Schick et al., 2023a) showed that mod-
els could learn to call APIs to access information they lack. This paradigm was rapidly scaled up
by frameworks like ToolLLM (Qin et al., 2023b) and the Gorilla benchmark (Patil et al., 2023),
which enabled models to select from thousands of real-world APIs. Furthermore, the concept of
“tool-making” (Cai et al., 2023) has explored agents that can write their own tools when needed, a
capability we incorporate into our tool acquisition pipeline. Recent advances have introduced rein-
forcement learning to tool-use training. ReTool (Feng et al., 2025) and ToolRL (Qian et al., 2025)
pioneered the use of online RL for training end-to-end tool-use agents, demonstrating that reward
signals alone can guide models to learn effective tool selection and usage strategies. These methods
move beyond supervised learning on static datasets, allowing agents to discover optimal tool-use pat-
terns through interaction and feedback. This RL-based paradigm aligns closely with our approach,
where we employ online reinforcement learning to train agents that can strategically alternate be-
tween primitive GUI actions and high-level tool calls. While these tool-augmented agents are highly
effective for structured, programmatic tasks, they typically operate in a non-visual, text-based envi-
ronment and lack the ability to interact with the vast number of applications that do not expose an
API. Our work bridges this gap, bringing the power of a rich tool ecosystem to the visually-grounded
domain of GUI agents.

Table 6: Comparison of our two synthetic data generation strategies.

Synthesization Strategy Task Count Rollout SR (%) Avg. Difficulty Avg. Steps Total Samples Total Trajectories

Evaluator-First 4K 29 Medium-Hard 6.8 33K 4.8K
Instruction-First 13K 45 Easy-Medium 6.5 149K 22K

A.2 THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) to assist with specific aspects of paper preparation. Specif-
ically, LLMs were employed for: (1) language polishing and grammar checking to improve clarity
and readability, (2) formatting suggestions to ensure compliance with conference style guidelines,
and (3) recommendations for data visualization approaches to better present experimental results.
All research ideas, experimental design, implementation, and core scientific contributions were de-

13

Under review as a conference paper at ICLR 2026

veloped by the authors without LLM assistance. The LLMs served purely as writing and presenta-
tion aids.

A.3 DETAILS FOR PROGRAMMATIC TOOLS

Table 7 summarizes the programmatic tools available across 10 different application domains on
OSWorld. The collection comprises 881 tools in total, with individual domains offering between 4
(System) and 135 (VS Code) tools. These tools provide fine-grained control over desktop applica-
tions, enabling agents to perform tasks ranging from basic navigation (e.g., jump-to_next_tab) to
complex application-specific operations (e.g., batch_spreadsheet_numeric_formatter). The
comprehensive tool coverage ensures that agents can effectively automate diverse desktop work-

flows across different software environments.))
Table 7: Overview of Available Tools Across Different Domains

Domain Tool Count Example Tools

Jjump_to_next_tab

Chrome 69 chrome_domain_data_ wiper
open_downloads_page
save_image_as

GIMP 88 undo_last_action
swap-foreground-background-colors
open_find_and._-replace

LibreOffice General 41 open_print_preview
open_hyperlink_dialog
spreadsheet_column_formula_injector

LibreOffice Calc 114 batch_spreadsheet_numeric_formatter
navigate_to_end-of_data_right
set_line_spacing_1

LibreOffice Impress 75 insert_non_breaking_space
apply-subscript
select_to_start_of_next_page

LibreOffice Writer 123 select_to_start_of_paragraph
apply-double_underline
open_system_terminal_and_execute

System 4 open_app_or_filename
switch_applications
open_message_in_conversation

Thunderbird 119 delete message_permanently
search.messages_advanced
set_video_as_wallpaper

VLC 83 volume_up
Jjump-1l minute_forward
add_-vs_code_keybinding

VS Code 135 vscode_exclude_folders
search.within_current_file

Total 881

A.4 DETAILS FOR SYNTHETIC TASKS

We generated a comprehensive synthetic dataset of 17,864 tasks across 10 application domains
using two complementary approaches. As shown in Table 8, the evaluator-first approach contributed
4,387 high-quality tasks with complex multi-step instructions, while the instruction-first approach
generated 13,477 tasks to ensure broad coverage of application functionalities.

The dataset spans diverse applications from productivity tools (LibreOffice suite with 5,885 com-
bined tasks) to specialized software like GIMP (1,121 tasks) and development environments like
VS Code (1,990 tasks). Chrome represents the largest single-domain category with 2,826 tasks,
reflecting the importance of web interactions. The multi-apps category (2,113 tasks) specifically

14

Under review as a conference paper at ICLR 2026

tests cross-application workflows. Task complexity varies from simple operations (e.g., ”Change
the text alignment to Center”) to sophisticated procedures requiring multiple coordinated actions
(e.g., "Convert video to MP4 and save with a new filename”), ensuring comprehensive evaluation
of agents” GUI navigation and task execution capabilities.

Table 8: Overview of Synthetic Data Generation Across Different Domains

Domain Evaluator-First Instruction-First Example
Instructions

Chrome 751 2,075 Find hotels in Paris 2,826
for 2 adults for

three nights
starting next Friday
and sort the list by
lowest price.

Restore the
previous session
pages in Google
Chrome.

GIMP 401 720 Please replace the 1,121
current white
backdrop with a
solid green color,
but keep the black
circle in the centre
exactly as it is.

In GIMP, navigate
to the Display
section and set the
check style to
Medium checks.
LibreOffice Calc 651 1,496 Open the 2,147
spreadsheet and
make the entire
header row (row 1)
bold.

Protect the sheet
Sheet2 in
LibreOffice Calc.
LibreOffice Impress 501 1,397 Make every slide in 1,898
this deck use a
solid dark-green
background (RGB
01280). I'd like all
the pages to share
that exact colour so
the presentation
looks consistent.

Add a video from
videos/video3.mov
to slide 3 in
LibreOffice
Impress.

Continued on next page

15

Under review as a conference paper at ICLR 2026

Table 8 — Continued from previous page

Domain Evaluator-First Instruction-First Example
Instructions

LibreOffice Writer 851 989 Change the default 1,840
font in LibreOlffice

Writer to Calibri.

Change the text
alignment to
Center in
LibreOlffice Writer.

OS/System 301 1,197 I accidentally 1,498
created a file called
“draft.txt” on my
Desktop. Please
delete it completely
so it’s no longer
there.

View the
partitioning table
of the disk named
{disk_name} in the
Disks app.
Thunderbird 351 1,084 Create a new folder 1,435
named "ToSort”
inside the Local
Folders section.

Import contacts
from Windows Mail
into Thunderbird.
VLC 330 666 Open the cat photo 996
in VLC and set it as
my desktop
wallpaper.

Play the current
video in VLC
Media Player.

VS Code 250 1,740 Could you open VS 1,990
Code and create a
new text file named
"meet-
ing_notes.txt”
inside the folder
”/home-
/user/notes” ?
Make sure to save
the file before you
finish.

Search for the term
Data Structure in
the document and
highlight it in
LibreOffice Writer

Continued on next page

16

Under review as a conference paper at ICLR 2026

Table 8 — Continued from previous page

Domain Evaluator-First Instruction-First Example

Instructions

Multi-apps - 2,113 Change the desktop ~ 2,113
wallpaper to
Desert on the
Ubuntu desktop.

Search for
JavaScript in Brave
settings and enable
it.

Total 4,387 13,477 17,364

A.5 QUALITATIVE EXAMPLES

To illustrate the practical advantages of our hybrid control paradigm, we present three represen-
tative examples in Figures 5, 7, and 6. These cases highlight how UltraCUA strategically selects
between high-level programmatic tools and low-level GUI actions to enhance efficiency, tackle com-
plex problems, and ensure robust execution.

In the first example (Figure 5), the agent is asked to clear YouTube browsing history. Instead of
relying on a potentially brittle sequence of clicks through menus, it initiates the workflow with a
single programmatic tool call, open_history_page, to navigate directly to the correct settings
page. Subsequently, it seamlessly transitions to primitive GUI actions—typing into a search field
and clicking buttons—to perform the more nuanced task of filtering and deleting the specific entries.
This demonstrates a practical fusion of programmatic speed for navigation and GUI flexibility for
manipulation.

A more complex scenario in Figure 7 showcases the model’s ability to automate workflows that
are intractable for purely GUI-based agents. When tasked with batch-processing images on the
desktop, UltraCUA correctly identifies the need for a scripted solution. It programmatically opens
a system terminal, installs the necessary software (imagemagick), and proceeds to write and
execute a multi-line shell script to automate the entire process. This ability to generate and utilize
code represents a significant leap in problem-solving capability.

Finally, the email-starring task (Figure 6) exemplifies the agent’s capacity for intelligent and fluid
alternation between control modes. The process begins with a precise low-level GUI click to se-
lect the target "Bills” folder, effectively setting the context. Immediately following this, the agent
switches to high-level, reliable tool calls—select_all and add_or_remove_star—to execute
the core bulk operation. This strategic handoff from a specific GUI action to general-purpose tools
ensures both precision and operational robustness.

17

Under review as a conference paper at ICLR 2026

Google
Step 1: - . i
tool_call(tool_name='open_history_page', in t"s‘e’:zb. . .) _S'!‘e;: ka o
args=(}) . put("youtube.com”) . pyautogui.hotkey('ctrl', 'a')

Step 4: . Step 5: : Step 6:
pyautogui.click(672, 330) . pyautogui.hotkey('ctrl', 'a') . pyautogui.click(1565, 139)

Step 7: . Step 8:
pyautogui.click(1200, 640) . i ! ")

Could you help me clear browsing history from Youtube?

Figure 5: An example of UltraCUA-32B helping clearing certain Chrome history with hybrid con-
trol. The agent calls programmatic tool at the first step to assist directly going into the desired page.

- - .]
1 o - e a - T

' ‘R .) . i - — !
' . —— . _— !
[] " | b— . - = '
. . S . 1
] " F .) '
1 . 1
' . :
' :

N - Step 3: '
N | call | Sler_)‘ 2 I " - tool_call(tool_name='add_or_remove_star', 1!
. tool_call(tool_name='select_all', args={}) . args=(}) N
i]
[+ '
N 1
']
']
N 1
N 1
']
']
N 1
N 1
' Step 4: :
1 computer.terminate(status='success') P
1

Add a star to every email in local Bills folder

Figure 6: An example of UltraCUA-32B helping processing emails. The agent alternates between
low-level actions and programmatic tool calls smartly, leading to efficient completion of the task.

18

Under review as a conference paper at ICLR 2026

Step 1: tool_call(tool_name="open_system_terminal_and execute', args=(\"command\': ep 2:
ke s0x0 - pyautogui.write('sudo apt update && sudo

~/Desktop/brightened basename ~/Desktop[1]\}) - apt install -y imagemagick')

Step 3:
pyautogui.hotkey('enter')

Step 4:) Step 5:
pyautogui.write('password') . time.sleep(10)

Step 6:
pyautogui.click(369, 529)

Step 7: . b B

time.sleep(5)

Step 9:
Input some more commands

Step 10: " Step 11: Step 12:
pyautogui.write(") " pyautogui.press(‘enter') pyautogui.press(‘enter')

ep 13: . ep 14:

pyautogui.write('chmod +x pyautogui.write('~/Desktop/process_images.sh');
~/Desktop/process_images.sh') . pyautogui.press(‘enter’)

Please batch process all images on the desktop by increasing their brightness to 50,

instead of adjusting them individually within GIMP.

ep

Py ii.write('ls ges');
pyautogui.press('enter')

Figure 7: An example of UltraCUA-32B helping processing images with hybrid control. The model
starts coding at the very first step by calling the terminal tool, and finally wrote a bash script and
executed it to make the task successful.

19

