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Abstract

Humans intuitively construct mental models of space beyond001
what they directly perceive, but can large visual-language002
models (VLMs) do the same with partial observations like003
limited views? We identify this significant gap for current004
VLMs via our new MINDCUBE benchmark with 21, 154005
questions and 3, 268 images, evaluating how well VLMs006
build robust spatial mental models, representing positions007
(cognitive mapping), orientations (perspective-taking), and008
dynamics (mental simulation for “what-if” movements), to009
solve spatial reasoning on unseen space that goes beyond010
immediate perception.011

We explore three approaches to approximating spatial012
mental models in VLMs: (1) View interpolation to visualize013
mental simulation, which surprisingly offers little benefit,014
highlighting the challenge of reasoning from limited views;015
(2) Supervising the model on singular abilities (generat-016
ing cognitive maps or reasoning chains alone) yields only017
marginal gains; and (3) The key breakthrough is a synergis-018
tic approach that involves jointly training the model to first019
generate a cognitive map and then reason upon it, which020
results in substantial performance gains. This mapping-then-021
reasoning paradigm proves highly effective: Training models022
to reason over these internal maps improves from 37.8% to023
60.8% (+23.0%). Adding reinforcement learning further024
improves performance to 70.7% (+32.9%).025

Our key insight is that such scaffolding of spatial mental026
models, actively utilizing internal structured spatial repre-027
sentations with flexible reasoning processes, significantly028
improves understanding of unobservable space.029

1. Introduction030

For Vision-Language Models (VLMs) [1, 3, 8, 34] to ad-031
vance from passive perception to interacting with partially032
observable environments [33, 57, 71], they must reason033
about unseen spatial relationships from limited views. Hu-034
mans achieve this effortlessly by building a spatial mental035
model [22, 23]: an internal representation of an environ-036
ment that allows for consistent inference independent of the037

current viewpoint, as shown in Figure 1. 038

Despite impressive progress, current VLMs struggle to 039
synthesize spatial information across views, maintain con- 040
sistency, and reason about occluded objects [32, 51, 66, 73]. 041
This gap demands new evaluations focused on reasoning 042
with partial observations, ensuring cross-view consistency, 043
and performing mental simulations (e.g., “what if turn- 044
ing left”). To fill this gap, we introduce MINDCUBE, a 045
benchmark featuring 21, 154 questions over 976 multi-view 046
groups, with questions specifically designed to require rea- 047
soning about non-visible objects, perspective taking, and 048
complex spatial relations (Figure 2). 049

Our evaluation of 17 state-of-the-art VLMs on 050
MINDCUBE reveals that most perform only marginally bet- 051
ter than random guessing. This motivates our central ques- 052
tion: How can we help VLMs reason from partial obser- 053
vations? 054

Inspired by spatial cognition [25, 38, 63], we investigate 055
three intermediate representations to approximate mental 056
models. View Interpolation proved unhelpful. Free-form 057
Natural Language Reasoning to verbalize mental simula- 058
tion yielded performance gains (+2.7%). For Structured 059
Cognitive Maps, we find that prompting models to generate 060
their own maps is more effective (+5.2%) than providing 061
them with ready-made ones (+0.9%). However, even with 062
this process, VLMs struggle with accuracy, shown by low 063
Isomorphic Rates (< 10%) with ground truth maps. 064

To address this limitation, we fine-tune VLMs on 10, 000 065
reasoning chains and 10, 000 ground truth cognitive maps. 066
Supervised Fine-tuning (SFT) on cognitive maps signifi- 067
cantly boosts structural similarity (e.g., from 0.1% to 46.0% 068
isomorphism). While SFT on reasoning chains was effective, 069
guiding models to first build a map and then reason over 070
it achieved the best performance, yielding a total gain of 071
+8.5%. This proves the efficacy of actively constructing and 072
then using an internal spatial representation. 073

Finally, we employ Reinforcement Learning (RL) on our 074
SFT model to further enhance this structured thinking pro- 075
cess. This approach dramatically improves task accuracy 076
from a baseline of 37.8% to 70.7%. Our findings confirm 077
that VLMs perform best when they autonomously generate 078
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Figure 1. Top: VLMs cannot maintain a coherent mental model when evaluating on the MINDCUBE benchmark. Bottom: We study how
we can help VLMs imagine space through external (scaling of views, cognitive map input) and internal strategies (fine-tuning, cognitive
map elicitation). We find joint cognitive map and reasoning setting yields the highest gain (+32.86%). : Best within the same elicitation
method. : Best perf. combination.

and leverage internal mental representations, a method far079
superior to passive view interpolation or using externally-080
supplied maps.081

2. MINDCUBE Benchmark and Evaluation082

2.1. MINDCUBE Benchmark083

Overview.084
We introduce MINDCUBE, a benchmark for evaluating085

VLMs’ spatial reasoning under partial observations and dy-086
namic viewpoints.087

MINDCUBE features multi-view image groups paired088
with spatial reasoning questions, enabling fine-grained anal-089
ysis of spatial modeling performance. It targets key chal-090

lenges such as maintaining object consistency across views 091
and reasoning about occluded or invisible elements. Table 1 092
(left) summarizes the benchmark’s overall data distribution. 093
Details on benchmark design, taxonomy, and curation are 094
provided in the Appendix. 095

Taxonomy. 096

For a fine-grained analysis of VLM spatial reasoning 097
abilities, we introduce a taxonomy that systematically cat- 098
egorizes the challenges in MINDCUBE (visualized in Fig- 099
ure 2). This taxonomy spans five key dimensions: 1) Cam- 100
era Movement: We mainly collect three types of camera 101
movement: ROTATION (Stays in place but rotates to look 102
around), AROUND (Moves around evaluated objects in a 103
circular path), and AMONG (Moves among evaluated objects 104
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Question: If you are at the third viewpoint and turn 90 degrees to the 
left, what is to your left？

Options:
A. Metal bin
B. Table
C. Pathway
D. Bookcase

:

Rotation

Around

Among

linearsequence:

:

Question: If you are positioned at the third viewpoint, then turn left and 
move forward, will you get closer to the red trash bin？ 

Options:
A. Yes
B. No

Question: If you are positioned at the first viewpoint, what is to the left of 
the black boots from where you stand？

Options:
A. Sofa
B. Windows
C. TV cabinet
D. Dining Table
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non-linearrotation

1⃣ 2⃣ 3⃣ 4⃣

1⃣ 2⃣ 3⃣ 4⃣

1⃣ 2⃣ 3⃣

      Question Types

Visual Patterns

linear

non-linear

“What if” Dynamics  

translation

sequence

𝑡! 𝑡"

rotation

meanwhile

Relation Query

?

?

?agent-object

agent-agent

object-object

Perspective Taking

self perspective

other’s perspective

agent-object

agent-object

object-object

self perspective

self perspective

self perspective

Figure 2. MINDCUBE taxonomy and examples. Left: Three camera movement patterns (ROTATION, AROUND, AMONG) with corresponding
spatial QA examples. Right: Four-dimensional taxonomy categorizing MINDCUBE questions types.

in a circular path). 2) Visual Patterns: This describes the105
objects’ spatial configurations, including spatial linear or106
non-linear arrangements. 3) “What-if” Dynamics: The hy-107
pothetical transformations applied to the agent’s viewpoint,108
such as translation, rotation, or their combination (mean-109
while and sequence). 4) Relation Query: The type of spatial110
relation being queried, including agent–object, agent–agent,111
or object–object. 5) Perspective Taking: Whether the spa-112
tial reasoning is grounded in the perceiver’s own viewpoint113
(self ) or involves adopting the viewpoint of another entity114
(other).115

Dataset Curation.116

The MINDCUBE dataset was created through a pipeline:117
We first selected multi-view image groups matching our tax-118
onomy’s movement patterns (Figure 2) and spatial criteria.119
These were then annotated with key spatial information. Fi-120
nally, we algorithmically generated taxonomy-aligned ques-121
tions with targeted distractors. Details are included in the122
Appendix.123

2.2. Evaluation on MINDCUBE124

We evaluate VLMs’ spatial reasoning on MINDCUBE using125
a diverse set of models (Table 1, right; setup details in the126
Appendix). Results reveal a striking performance gap: the127
best model, DeepSeek-VL2-Small, achieves only 47.62%128

accuracy, well above chance but far from human-level B.3. 129
ROTATION tasks proved hardest (top score: 38.76%), sug- 130
gesting limited mental rotation and viewpoint adaptation. 131
Mantis-8B (SigLip) and DeepSeek-VL2-Small perform bet- 132
ter AMONG and AROUND, respectively. Large proprietary 133
models often lag behind smaller open-source counterparts. 134
Spatial fine-tuning yielded mixed results. Overall, neither 135
multi-image input nor spatial fine-tuning reliably improves 136
spatial reasoning, raising a key question: 137

How can we help VLMs develop or approximate these 138
crucial spatial reasoning capabilities? 139

3. Which Scaffolds Best Guide Spatial Thinking 140

in Unchanged VLMs? 141

To address the gap, we first evaluate whether structured data 142
forms can scaffold spatial reasoning in frozen VLMs by 143
approximating spatial mental models under limited views. 144

3.1. Spatial Mental Models Approximation 145

We investigate data structures that can serve as cognitive scaf- 146
folds to help VLMs form spatial mental models from limited 147
views. In cognitive science, spatial mental models are not 148
metric-precise maps but rather schematic, internal constructs 149
that encode the relative configuration of objects and view- 150
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Table 1. Left: MINDCUBE data statistics. The number next to the setting (ROTATION, AMONG, AROUND) means the total QA pairs.
Numbers next to each dataset (e.g., Arkitscenes) mean QA pairs/image groups. For example, “865/53” for Arkitscenes in ROTATION means
we have 865 QA pairs and 53 image groups from it. Right: Performance of VLMs on MINDCUBE. Dark blue indicates the best result
among all models and light blue indicates the best result among open-source models.

Among (18204)
WildRGB-D

DL3DV-10K

Img groups

704/24

17500/710

733

Around (1869)
DL3DV-10K

Self collected

Img groups

789/109

1080/71

180

Rotation (1081)
Arkitscenes

Self collected

Img groups 62

216/9

865/53

Method Overall Rotation Among Around
Baseline
Random (chance) 32.35 36.36 32.29 30.66
Random (frequency) 33.02 38.30 32.66 35.79
Open-Weight Multi Image Models
LLaVA-Onevision-7B [26] 47.43 36.45 48.42 44.09
LLaVA-Video-Qwen-7B [69] 41.96 35.71 43.55 30.12
LongVA-7B [67] 29.46 35.89 29.55 24.88
mPLUG-Owl3-7B-241101 [60] 44.85 37.84 47.11 26.91
InternVL2.5-8B [8] 18.68 36.45 18.20 13.11
Qwen2.5-VL-7B-Instruct [3] 29.26 38.76 29.50 21.35
Qwen2.5-VL-3B-Instruct [3] 33.21 37.37 33.26 30.34
Idefics-8B-Llama3 [24] 35.86 35.15 35.94 35.49
DeepSeek-VL2-Small [31] 47.62 37.00 50.38 26.91
Gemma-3-12B-it [43] 46.67 38.39 48.38 34.63
Mantis-8B (SigLip) [21] 41.05 37.65 40.23 50.99
Proprietary Models
GPT-4o [34] 38.81 32.65 40.17 29.16
Claude-3.7-Sonnet-20250219 [2] 34.89 37.65 35.93 23.17
Spatial Models
RoboBrain [20] 37.38 35.80 38.28 29.53
SpaceMantis [6] 22.81 37.65 21.26 29.32
Spatial-MLLM [54] 32.06 38.39 20.92 32.82
Space-LlaVA [13] 33.28 38.02 33.71 26.32

points [23, 44–46]. These representations are flexible and151
functionally effective, allowing for reasoning across frag-152
mented observations and unseen perspectives, even if they153
are incomplete. Drawing from this, we propose three data154
structures aimed at targeting distinct properties (integration,155
transformation, inference) of these mental models. Further156
details are in Appendix C.1, with examples in Figure 3.157

1. View Interpolation. Interpolating sparse views creates158
perceptual continuity, mirroring mental animation [16],159
to support internal transformations like imagined rotation.160
This process scaffolds the dynamic updating of spatial161
mental models. Figure 3 shows a one-frame insertion162
example.163

2. Augmented Cognitive Map. Cognitive maps, akin to164
Tversky’s cognitive collages [44], are 2D layouts captur-165
ing locally coherent yet fragmented structures. While166
recent VLM studies [57, 61] use plain maps with only167
top-down object positions, we propose an augmented vari-168
ant. Our version integrates discrete views with annotated169
positions and orientations for both objects and cameras to170
better capture the relational consistency of spatial mental171
models.172

3. Free Form Reasoning. Open-ended, step-by-step lan-173
guage reasoning provides a procedural approximation174
for constructing and querying spatial models. Though175

less rigid than maps, this reasoning reflects the inferen- 176
tial function of spatial mental models, particularly with 177
ambiguous or incomplete observations [46]. 178

3.2. Experiment Setup 179

We conduct controlled experiments with fixed input formats 180
to test whether structured scaffolds can help without retrain- 181
ing. Each condition introduces a different structure to sup- 182
port internal modeling under limited views. 183
Model and Evaluation Data We conduct all experiments 184
using Qwen2.5-VL-3B-Instruct [3]. Our evaluation is per- 185
formed on MINDCUBE-TINY, a diagnostic subset sam- 186
pled from MINDCUBE, containing 1,050 questions in total. 187
Detailed statistics are: 600 from the AMONG, 250 from 188
AROUND, and 200 from ROTATION. 189
Configurations Each experiment is defined by two orthog- 190
onal axes: Input Structure (what spatial evidence VLMs 191
receive) and Output Format (the required response type). 192
As the experimental foundation of this paper, we begin 193
with the ten possible configurations listed in Table 2, from 194
which we investigate a representative subset. Specifically, 195
our grounded cognitive maps are generated using the ob- 196
ject arrangements annotation described in Section 2.1, and 197
examples for all configurations are provided in the Ap- 198
pendix C.3. In the frozen VLMs evaluation setup, we 199
exclude the Aug-CGMap-Out and Plain-CGMap-Out 200
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Question
If you are at view 1
and move to view 2, 
what is furthest from 
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3

Cognitive Map
Augmented

{ 
"objects": [{

"name": "Tissue box",
"position": [5, 5]
}, {
"name": "Hand sanitizer",     
"position": [7, 5]
}, ...], 

"views": [{
"name": "View 1",
"position": [5, 6],
"facing": "up"
}, {
"name": "View 2",
"position": [4, 5],
"facing": "right"
}, ...]

} ​

Plain (Obj Only)
{
"Potted plant": {
"position": [3, 5]

},
"Tissue box": {
"position": [5, 5]

},
"Hand sanitizer": {
"position": [7, 5]

},
"Sofa": {
"position": [5, 3], 
"facing": "down”

},
...

}

Reasoning Chain

Free-Form
​​​​​​In View 1, I see a potted 
plant, tissue box, and hand 
sanitizer from left to right, 
with a sofa behind.

In View 2, I see the same 
potted plant, so both views 
are from the same environment. 

Since the hand sanitizer is 
rightmost in View 1, it’s 
spatially furthest behind the 
potted plant when looking in 
View 2. 

In View 2, the potted plant is 
closest to me, so the hand 
sanitizer is the furthest from 
me.

Views and Question Examples - Three Data Structures We Studied to Approximate Spatial Mental Models

insert

insert

Figure 3. Grounded examples of our three data structures that approximate spatial mental models.

Table 2. Abbreviations for the ten input-output configurations
across all experiments in this work. VI = View Interpolation,
CGMap = Cognitive Map, Aug = Augmented (objects + camera
included), FF-Rsn and FFR = Free-Form Reasoning. QA = Raw
views + question.

Name Input Structure Output Format

Raw-QA Raw views + question Direct answer
VI-1 Raw + 1 interp. view Direct answer
VI-2 Raw + 2 interp. views Direct answer
FF-Rsn Raw views + question Reasoning → answer
Aug-CGMap-In Aug. cog. map + QA Direct answer
Aug-CGMap-Out Raw views + question Aug. map → ans
Plain-CGMap-Out Raw views + question Plain map → ans
Aug-CGMap-FFR-Out Raw views + question Aug. map + rsn → ans
Plain-CGMap-FFR-Out Raw views + question Plain map + rsn → ans
CGMap-In-FFR-Out Aug. cog. map + QA Reasoning → answer

settings, as VLMs tend to conflate map generation with rea-201
soning, even when instructed otherwise.202

Evaluation Metrics We evaluate task performance using203
QA accuracy. For generated cognitive maps, we introduce a204
set of well-defined graph metrics: (1) Valid Cognitive Map205
Rate, indicating whether the output conforms to the expected206
schema; (2) Overall Similarity, a weighted score combining207
directional and facing consistency; and (3) Isomorphic Rate,208
measuring whether all pairwise object relations match the209
ground truth under optimal alignment. Full definitions are210
provided in the Appendix C.2.211

3.3. Do Scaffolds Improve Spatial Reasoning With-212
out Training?213

We evaluate how well the seven input configurations defined214
in Table 2 support spatial reasoning in VLMs under limited215
views, without any model updates. Results are shown in216
Table 3 (left).217

How far can structure alone go? We find that provid-218
ing structured input without explicit reasoning is ineffec-219
tive. Our baseline of raw views with direct answering220
(Raw-QA) achieves 37.81% accuracy. Adding interpolated221

views yields no gain, while inputting a pre-computed aug- 222
mented cognitive map (Aug-CGMap-In) degrades perfor- 223
mance to 32.00%. In contrast, enabling free-form reasoning 224
(FF-Rsn), alone or with other inputs, provides a substantial 225
boost to 41.33%. These results suggest: structure alone, 226
whether visual or spatial, is not enough. Without engaging 227
in reasoning, VLMs cannot effectively leverage spatial cues. 228
Can we prompt the model to think spatially? Yes; prompt- 229
ing the model to generate a cognitive map before answering 230
(Aug-CGMap-FFR-Out, Plain-CGMap-FFR-Out) 231
improves performance over free-form reasoning alone 232
(FF-Rsn), increasing accuracy from 40.48% to 41.43%. 233
This suggests that the act of generating a map encourages a 234
more structured reasoning process. However, the models 235
struggle to produce accurate maps. As shown in Table 3 236
(Right), the similarity of generated maps to ground truth 237
is low (< 50%), with isomorphism rates of only 0.10% 238
for augmented maps and 7.43% for plain maps. The 239
near-zero rate for augmented maps is likely due to increased 240
generation errors from the added complexity of view-level 241
details, as exemplified in Appendix D. 242

� Scaffolding Spatial Reasoning in Frozen VLMs

• Explicit reasoning is crucial for improving perfor-
mance, and cognitive maps can guide this.

• Passive structures (like maps as input) alone and
visual continuity offer little benefit.

243

4. Can We Teach VLMs to Build and Leverage 244

Spatial Representations? 245

So far, prompting frozen VLMs with external scaffolds, such 246
as interpolated views or cognitive maps, has yielded limited 247
gains. These techniques fail to tackle the core limitation: 248
VLMs do not form internal spatial representations or reason 249
through space effectively. To go further, we want to know: 250
Can supervised fine-tuning (SFT) teach VLMs to build and 251
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Table 3. Left: QA accuracy (%) of Qwen2.5-VL-3B-Instruct on the MINDCUBE-TINY benchmark under different configs for frozen VLMs.
Right: Graph metrics for two cog map output settings.

Config. Overall Rotation Among Around

Raw-QA 37.81 34.00 36.00 45.20

VI-1 37.90↑ 35.50 37.33 41.20
VI-2 37.81− 35.50 36.50 42.80

Aug-CGMap-In 32.00↓ 35.00 30.50 33.20
FF-Rsn 40.48↑ 32.00 36.00 58.00
Aug-CGMap-FFR-Out 40.57↑ 21.00 43.00 50.40
Plain-CGMap-FFR-Out 41.33↑ 25.00 39.67 58.40
CGMap-In-FFR-Out 41.43↑ 37.00 41.67 44.40 Valid

CGMap Rate
Overall

Similarity
Isomophic

Rate

0

50

100
92.5794.95

51.12

37.44

0.10
7.43

Aug-CGMap-Out
Plain-CGMap-Out

Table 4. QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under SFT configurations on MINDCUBE-TINY.
Both FF-Rsn and FFR refer to free-form reasoning.

SFT Config.
MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)

Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate

Raw-QA 52.28 34.50 52.50 66.00 – – –

FF-Rsn 53.52↑ 36.00 54.67 64.80 – – –
Aug-CGMap-Out 54.19↑ 35.50 53.17 71.60 100.00 74.30 43.24
Plain-CGMap-Out 54.38↑ 35.50 53.50 71.60 100.00 91.73 89.05

Aug-CGMap-FFR-Out 55.24↑ 49.50 52.50 66.40 100.00 75.27 46.00
Plain-CGMap-FFR-Out 60.76↑ 47.50 62.33 67.60 100.00 88.79 73.81

leverage spatial models from within?252

4.1. Designing a Robust Experimental Framework253

To ensure consistency and comparability, we inherit ex-254
perimental configurations detailed in Sections 3.1 and 3.2.255
Specifically, we retain: (1) the two effective data struc-256
tures—Cognitive Maps (Object-only / Object + Camera) and257
Free-Form Reasoning, (2) the base model Qwen2.5-VL-3B-258
Instruct, (3) the evaluation benchmark MINDCUBE-TINY,259
and (4) all established evaluation metrics. View interpola-260
tion is excluded from our fine-tuning experiments due to its261
limited performance gains in earlier validations. Primary262
modifications in this SFT phase include adjusted training hy-263
perparameters (detailed in the Appendix E.2) and the input-264
output configurations.265

SFT Task Configurations Drawing on insights from266
Section 3.3, we use selected configurations from Ta-267
ble 2 to evaluate the incremental impact of cogni-268
tive map generation and free-form reasoning in SFT.269
These include baseline QA without explicit reason-270
ing (Raw-QA), reasoning guided by generated maps271
only (Plain-CGMap-Out, Aug-CGMap-Out),272
reasoning-augmented prompts (FF-Rsn), and a fully273
integrated setup that asks VLMs to generate both274
maps and reasoning (Aug-CGMap-FFR-Out and275
Plain-CGMap-FFR-Out).276

Grounded Cognitive Maps Generation. Grounded 277
cognitive maps are not only used as the input in the 278
Aug-CGMap-In and CGMap-In-FFR-Out setting for 279
the frozen VLMs in the Section 3.2, but also as the train- 280
ing and comparison data in SFT. We curate such grounded 281
cognitive maps through a template-based method, where we 282
always select the front image in our annotation as the “up” 283
direction. Detailed annotation algorithm can be found in the 284
Appendix E.1.1. 285

Grounded Free-Form Reasoning Chain Generation We 286
design grounded reasoning chains using detailed image an- 287
notations and structured question templates. Chains are 288
manually constructed via a template-based method, ensur- 289
ing logical coherence and clear grounding in observable 290
spatial relations (see an example in Figure 3). This yields 291
precise, interpretable supervision signals that help VLMs 292
learn robust spatial reasoning representations. The detailed 293
grounded reasoning data generation pipeline is shown in the 294
Appendix E.1.2. 295

4.2. Do VLMs Truly Benefit from Explicit Training 296
in Spatial Reasoning? 297

We investigate several Supervised Fine-Tuning (SFT) con- 298
figurations, with results in Table 4. Fine-tuning on raw QA 299
pairs alone boosts accuracy from 37.81% to 52.28%, indicat- 300
ing VLMs can learn spatial cues from QA data. This serves 301
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Figure 4. SFT per 5 step training performance on task accuracy and graph metrics.

as our SFT baseline.302

Can structured approximations of mental models alone303
meaningfully improve performance? Fine-tuning on cog-304
nitive maps (Augmented or Plain) substantially improves305
map generation quality (>30% gain in similarity and iso-306
morphism rate), yet end-task accuracy sees only limited307
improvement. Both map types (54.19% and 54.38%) and308
free-form reasoning alone (FF-Rsn at 51.09%) offer only309
marginal gains over the 52.28% baseline. This shows that a310
structural scaffold alone is insufficient for significant perfor-311
mance gains.312

Generating both cognitive maps and free-form reason-313
ing is the most effective approximation. The combi-314
nation of generating a plain map followed by reasoning315
(Plain-CGMap-FFR-Out) yields the best performance316
at 60.76%, an 8.48% increase over the Raw QA-SFT base-317
line. This highlights a strong synergy between structured318
spatial modeling and language inference. This success is319
linked to creating high-quality internal spatial models (e.g.,320
73.81% isomorphism for the top model). The training dy-321
namics in Figure 4 reveal a crucial trade-off: models trained322
only on map generation learn the structure perfectly but323
their QA accuracy quickly plateaus. In contrast, our top-324
performing model learns the structure more slowly and im-325
perfectly, but its QA accuracy continuously climbs, surpass-326
ing all others. This suggests the joint task pressure forces the327
model to build a functionally effective spatial representation328
optimized for inference, not just replicate a static structure.329

� Teaching VLMs to Reason Spatially

• Joint cogmap and reasoning setting yields optimal
performance through synergistic effects.

• Reasoning shapes spatial representations for func-
tionality, not just structural perfection.

• Neither map generation nor reasoning alone largely
outperforms the SFT QA baseline.

330

5. Can Reinforcement Learning Further Refine 331

Spatial Thought Processes? 332

While SFT establishes a strong baseline for spatial reasoning, 333
emerging evidence from models like DeepSeek R1 [15, 52] 334
suggests reinforcement learning (RL) can offer additional 335
gains by optimizing behavior through outcome-driven feed- 336
back. We ask: Can reward-guided refinement help VLMs 337
build sharper spatial models and reason more effectively? 338

5.1. Experimental Setup 339

We employ the VAGEN framework [48] for VLM policy opti- 340
mization, using Group Relative Policy Optimization (GRPO) 341
[40] as our core algorithm. To manage compute cost, we 342
train each configuration for only 0.5 epoch. For fair compar- 343
ison, the RL setup retains all key components from the SFT 344
stage, including the base model, spatial input formats, bench- 345
mark dataset (MINDCUBE-TINY), and evaluation metrics, 346
as detailed in Sections 3.1 and 3.2. Additional details appear 347
in the Appendix F.1. 348
Task Configurations and Reward Design. We evaluate 349
three RL variants: (1) RL-FF-Rsn (from scratch), 350
which trains Qwen2.5-VL-3B-Instruct to produce free-form 351
reasoning chains; (2) RL-Aug-CGMap-FFR-Out 352
(from scratch), which trains the model to 353
jointly generate cognitive maps and reasoning; and 354
(3) RL-Aug-CGMap-FFR-Out (from SFT), which 355
initializes from the strongest SFT checkpoint. The reward 356
function is sparse but targeted: +1 for structurally valid 357
outputs, and +5 for correct answers. 358

5.2. Can Reinforcement Learning Unleash the 359
Power of Approximating Spatial Mentaling? 360

Reinforcement learning (RL) allows a model to learn from 361
the consequences of its spatial reasoning. But does this 362
feedback work in a vacuum, or must the model first be taught 363
what a good spatial representation looks like via SFT? Table 364
5 provides the answers. 365
RL in a vacuum is not enough. Training from scratch 366
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Table 5. QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under various RL configurations on
MINDCUBE-TINY.

RL Config.
MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)

Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate

RL-FF-Rsn (from scratch) 50.57 36.50 49.33 64.80 – – –

RL-Aug-CGMap-FFR-Out (from scratch) 52.19 32.00 52.00 68.80 99.90 57.03 0.00
RL-Plain-CGMap-FFR-Out (from scratch) 53.71 33.00 53.66 70.40 100.00 47.60 10.29

RL-Aug-CGMap-FFR-Out (from SFT) 70.67 53.00 76.83 70.00 100.00 85.53 58.86
RL-Plain-CGMap-FFR-Out (from SFT) 70.67 48.00 79.17 68.40 100.00 85.79 71.52

with only sparse task rewards is insufficient. The free-367
form reasoning model, RL-FF-Rsn (from scratch),368
achieves only 50.57% accuracy, confirming that task-level369
rewards alone are too unstructured to effectively teach spatial370
abstraction.371
Structured outputs provide modest benefits when learned372
from scratch. Introducing a cognitive map structure as a373
scaffold offers a slight benefit. When trained from scratch,374
the RL-Plain-CGMap-FFR-Out configuration reaches375
53.71%, but the model fails to learn meaningful geometry,376
with near-zero isomorphism rates. This suggests that with-377
out a prior concept of a ”good” map from SFT, RL cannot378
effectively exploit the structural format.379
RL shines when it stands on an SFT-built scaffold. The380
most significant gains occur when warm-starting RL from381
an optimal SFT checkpoint. Both plain and augmented382
map configurations reach an impressive 70.67% QA ac-383
curacy, a ↑9.91% absolute gain over the best SFT model.384
Crucially, while achieving the same peak accuracy, the385
Plain-CGMap variant produces geometrically superior in-386
ternal maps (71.52% isomorphism vs. 58.86%). This indi-387
cates that starting with a cleaner SFT scaffold allows RL to388
better preserve a sound internal map. These results strongly389
suggest RL’s primary role is not to learn from scratch, but390
to (1) polish the strong priors learned during SFT and (2)391
break through previous performance plateaus to achieve near-392
oracle-level accuracy.393

� Reinforcement Learning for Spatial Reasoning

• Combining cognitive maps with reasoning consis-
tently improves all learning outcomes.

• Starting from scratch, RL provides only marginal
gains for spatial reasoning; its power is unlocked
when building upon a strong SFT foundation.

394

6. Related Works395

Spatial Cognition. Spatial cognition, which involves skills396
like mental rotation and object assembly, relies on Spatial397
Mental Models (SMMs) [22, 23] to represent and manipulate398
spatial relationships [50, 56, 63]. While much effort has been399
devoted to evaluating [25, 32, 64, 68] and enhancing [5, 9,400
33, 35] VLM spatial skills, existing work often overlooks the401

mental-level reasoning central to human cognition [7, 25, 36, 402
64]. This leaves a critical gap between machine and human 403
capabilities, highlighting the need for new approaches that 404
train VLMs to reason about space in a manner more aligned 405
with human cognition. 406

Multi Views understanding. Multiview spatial understand- 407
ing uses multiple viewpoints to overcome the limitations of 408
a single observation. A large body of work has advanced 409
this area through techniques for 3D reconstruction[14, 30, 410
37, 47], view synthesis[39, 41, 70], multiview equivari- 411
ant learning[62], topological representations[65], and open- 412
vocabulary concept learning[17]. Despite these advances, 413
even Large Multimodal Models (LMMs) augmented with 414
multiview inputs[10, 12, 25, 54] still struggle to maintain 415
multiview consistency. This failure, often caused by frag- 416
mented reasoning and 2D-to-3D projection ambiguities, 417
leaves a key gap for achieving robust spatial AI. 418

7. Conclusion and Future Impact 419

We introduced MINDCUBE to study how VLMs can ap- 420
proximate spatial mental models from limited views, a core 421
cognitive ability for reasoning in partially observable envi- 422
ronments. Moving beyond benchmarking, we explored how 423
internal representations can be scaffolded through structured 424
data and reasoning. Our key finding is that constructing 425
and reasoning over self-generated cognitive maps, rather 426
than relying on view interpolation or externally provided 427
maps, yields the most effective approximation of spatial 428
mental models across all elicitation methods (input-output 429
configurations, supervised fine-tuning, and reinforcement 430
learning). Initializing RL from a well-trained SFT check- 431
point further optimizes the process, pushing spatial reasoning 432
performance to new limits. 433

Future Impact. Our work establishes that combining cogni- 434
tive map generation with reasoning to model spatial informa- 435
tion is the most effective. We believe that once high-quality 436
SFT datasets for cogmap generation and reasoning are estab- 437
lished, RL can be leveraged to further push the performance 438
boundaries. We anticipate the exploration of novel train- 439
ing paradigms designed to unlock even greater synergistic 440
effects and thus achieve a ”1 + 1 > 2” impact on spatial 441
intelligence. 442
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A. MINDCUBE Benchmark751

A.1. Details for Data Collection and Annotation752

Image Collection and Selection. Our MINDCUBE benchmark comprises 3, 268 images (2,302 indoor/outdoor images from753
publicly released dataset and 400 self-collected images), where we implement a comprehensive image selection methodology754
encompassing four distinct view dynamics, incorporating various data sources and processing procedures, as shown in Fig.2.755

For rotation view dynamics, we implement a three-stage filtering strategy to extract meaningful camera trajectories and key756
frames from ArkitScenes [4] dataset.757

In the first stage, we analyze the top-down view of camera poses within each scene to identify two types of trajectories:758
linear paths and small rotational arcs. A linear trajectory is characterized by consistently oriented cameras exhibiting significant759
displacement perpendicular to their viewing direction. A rotational arc trajectory is identified when three to four camera760
positions demonstrate approximately 90-degree relative orientation changes while being distributed along an approximate761
circular arc. The second stage focuses on selecting two critical frames from the previously identified translation segments. The

(a) camera pose 1 (b) camera pose 2

Figure 1. Examples of camera poses in ArkitScenes

762
selection criteria mandate that: (1) the camera movement direction must be parallel to the object arrangement direction, (2)763
this movement should be aligned with the horizontal axis, (3) the first frame should only capture objects A and B, while the764
second frame should only capture objects B and C, and (4) both frames must be free from motion blur and exhibit clear object765
visibility.766

The third stage processes the rotation segments to extract three or four key frames. These frames must satisfy several767
conditions: (1) the camera positions should appear to originate from a stationary rotating camera, even if slight circular768
movement exists, (2) the camera orientations should align with standard cardinal directions (approximately 90 degrees apart),769
and (3) each frame should contain no more than three semantically distinct primary objects that occupy over 50% of the frame770
area relative to the background.771

For among view dynamics, image groups are manually selected from DL3DV-10K[29] and WildRGB-D[55] datasets. We772
employ a single-stage selection process to identify four key frames representing cardinal viewpoints (front, left, right, and773
back) from 360-degree scene captures. The selection criteria are: (1) camera orientations must align with standard directions,774
ensuring that the central object, its background objects, and the camera’s line of sight are collinear and parallel or perpendicular775
to standard scene elements such as tables or walls, (2) we reject sets where three or more frames share identical semantic776
background information, and (3) we discard sets where three or more frames have severely occluded background objects that777
cannot be reconstructed from information in the other frames.778

For around view dynamics, image groups are manually curated from the DL3DV-10K[29] dataset and assigned sequential779
identifiers. The front view (designated as view 1) must provide clear visibility of all relevant information. This view is780
established as the reference point for subsequent views in the sequence.781

This structured approach to image selection and processing yields a rich dataset that supports subsequent model training782
and testing procedures. The methodology ensures comprehensive coverage of spatial relationships, occlusion states, and783
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view-dependent object characteristics across multiple viewing scenarios.
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Figure 2. MINDCUBE Bench construction pipeline.

784

Data Annotation. After collecting and filtering the images, we follow a two-phase paradigm for annotation: We establish a 785
systematic image annotation protocol to ensure data consistency and accuracy. The annotation framework encompasses four 786
key dimensions: spatial relationship identification, object grouping rules, semantic orientation determination, and occlusion 787
level assessment. We provide a pdf of the annotation interface in the supplementary material. 788

Regarding spatial relationship identification, annotators are required to identify primary object entities within images and 789
determine their spatial relationships. These relationships are primarily categorized into two types: front-back relationships 790
typically involving two primary objects, with priority given to objects directly behind as key entities; and left-right relationships 791
encompassing two to four primary objects, where adjacent objects with front-back relationships can be considered as a unified 792
entity. 793

To enhance annotation efficiency and semantic completeness, this study introduces object grouping rules. Multiple objects 794
can be annotated as a unified entity when they collectively form clear spatial relationships with other primary objects. Each 795
object may include attribute descriptors (e.g., color, material) to enhance semantic expression. Combined object entities must 796
maintain distinct spatial relationships with other primary objects. 797

For objects with definitive semantic fronts, the following information must be recorded: the object’s inherent semantic 798
front, the object’s orientation relative to the current viewpoint (aligned, reversed, leftward, rightward, etc.), and the object’s 799
actual projected direction within the scene. 800

Occlusion levels are evaluated using a four-tier classification system: complete occlusion where the object is entirely 801
invisible from the current viewpoint; major occlusion where primary object features are difficult to identify; minor occlusion 802
where primary object features remain identifiable; and no occlusion where the object is fully visible. For cases of complete 803
occlusion, the annotation system provides multi-view scene images, ensuring object visibility in at least one viewpoint to 804
support subsequent cross-view question-answering system training. 805

This annotation protocol provides a structured semantic foundation for subsequent automated question-answer pair gen- 806
eration while ensuring data quality and consistency. Through this standardized annotation process, we effectively capture 807
key information including spatial relationships, compositional features, semantic orientations, and occlusion states of objects 808
within scenes. 809
Examples for automatic QA generation pipeline. Our automatic QA generation pipeline generates different types of ques- 810

tions using combinations of labels. Each question’s label combination is encoded in its ID (e.g., ”among group001 q1 1 1”), 811
while the original object and label information is preserved in the meta info field to track the context of question generation. 812
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2. What is behind of you?
3. From chair's view, could you 

see the quilt-covered sofa? 
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5. What is on the left of the chair 

from your ego-centric view?
6. What is on the left of the chair 

from TV's view?

1. A chair with a 
basket on it

2. TV

Figure 3. Example of different question-related label combinations to generate QA pairs.

A.2. Details of ourMINDCUBE Benchmark813

A.2.1. Three kinds of invisibility settings814

Rotation. In this setting, our camera remains stationary while rotating in place, capturing 2 to 4 orthogonal views. In each815
view, a central object remains visible in the foreground, while all views maintain equal importance in the spatial representation.816

We evaluate models’ understanding of spatial invisibility by asking questions such as ’When positioned at a particular817
viewpoint, what should be to your left or right (given that each view only reveals what’s directly ahead)?’ or ’After rotating a818
quarter or half turn, what objects would be in front of you, to your left, behind you, or to your right?’ We expect models to819
construct a comprehensive spatial understanding by leveraging the sequential nature of the views and consistent spatial820
cues across images (such as lighting direction), thereby demonstrating their ability to reason about the complete environment821
despite only having access to partial visual information from each viewpoint.822

823
Around. In this setting, we leverage occlusion phenomena to force MLLMs beyond simple 2D spatial recognition. When824
viewing objects from different angles, some objects become partially or fully hidden, requiring models to:825

• Maintain object permanence despite partial visibility826

• Transform lateral relationships (left-right) from frontal views into depth relationships (front-back) for side views827

• Integrate spatial information across multiple viewpoints to form a coherent 3D understanding828

This approach prevents models from relying solely on direct visual cues and instead necessitates true 3D spatial reasoning829
by combining information from multiple perspectives.830

831
Among. In this setting, the camera rotates around a central object, positioned between this central object and several832
surrounding objects. Four orthogonal views are captured, with each view showing the central object positioned in front of one833
of the surrounding objects.834

This setup creates interesting visibility constraints across different perspectives. For instance, a surrounding object visible835
in one view may be invisible in another view because of the constraints imposed by the camera’s field of view. Through836
establishing consistency relationships between these views, we can infer the relative positions of objects not directly visible837
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from certain perspectives. When an object is not visible from a particular viewpoint, consistency and spatial reasoning can 838
determine its position relative to the central object. 839

All views hold equal status in this framework, allowing for bidirectional establishment of invisibility relationships. This 840
creates a coherent spatial reasoning system where information from each perspective contributes to a complete understanding 841
of the three-dimensional arrangement, even when direct visual confirmation is unavailable from certain angles. 842

A.2.2. Label taxonomy 843

We use image related labels for better analysis and question related labels for automatic QA generation with different label 844
combinations. 845

Visual Patterns. In our taxonomy of spatial configurations, we classify visual patternss into distinct categories based on their 846
geometric relationships. Linear arrangements refer to configurations where objects are positioned along a single axis, forming 847
a collinear pattern. Non-linear arrangements, conversely, are characterized by objects positioned such that the connecting lines 848
between adjacent pairs form 90-degree angles, creating rectilinear patterns. This binary classification serves as a fundamental 849
attribute in our spatial relationship labeling scheme, enabling precise description and analysis of scene compositions across 850
various domains. 851

“What if” Dynamics. “What if” Dynamics refers to the model’s capability to comprehend and reason about dynamic 852
perspective changes occurring within images or posed questions. We conceptualize viewpoint transitions as combinations of 853
translation and rotation operations, resulting in four distinct categories: 854

• Pure Translation: Cases where the viewpoint undergoes only translational movement without rotational change. 855

• Pure Rotation: Scenarios involving rotational transformation of the viewpoint while maintaining its positional coordinates. 856

• Simultaneous Translation-Rotation(Meanwhile): Instances where both translational and rotational operations occur 857
concurrently. 858

• Sequential Translation-Rotation(Sequence): Cases where translation and rotation occur in sequence rather than simultane- 859
ously. Notably, in our dataset, this category is uniquely represented through textual descriptions in the questions rather 860
than through explicit visual transformations. 861

The first three categories of “What if” dynamics are visually demonstrated through changes in view representation, while 862
the sequential category requires models to interpret text-based descriptions of perspective changes. This taxonomy provides a 863
systematic framework for evaluating spatial reasoning capabilities across diverse viewpoint transformation scenarios. 864

Relation Query. We define three distinct categories of relation queries that capture the fundamental nature of spatial reasoning 865
tasks: 866

• Agent-Agent: This pattern involves self-referential spatial positioning, where the observer must evaluate and potentially 867
adjust their own position in space. It requires egocentric spatial reasoning and self-awareness of one’s location relative to 868
environmental constraints. 869

• Agent-Object: This pattern focuses on determining the orientation of an observed object relative to the observer’s position. 870
Unlike the P-P pattern, the emphasis here is on object perception rather than self-positioning, requiring the observer to 871
make judgments about external entities while maintaining awareness of their own reference frame. 872

• Object-Object: This pattern involves reasoning about the spatial relationship between two discrete objects in the 873
environment, independent of the observer’s position. This allocentric spatial reasoning requires understanding relative 874
positioning, distance, and orientation between entities without necessarily using oneself as a reference point. 875

These categorizations provide a structured approach to analyzing the cognitive demands of different spatial reasoning tasks 876
and can inform both the design of spatial question answering systems and the evaluation of human spatial cognition abilities. 877

Perspective Taking. We propose a label called ”Perspective Taking” that categorizes the complexity of viewpoint projection. 878
This label distinguishes between three increasingly sophisticated levels of perspective reasoning: 879

• Self Perspective: Reasoning based on the current camera view or the observer’s own viewpoint. This represents the 880
baseline where no perspective shift is required. 881
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• Other’s Perspective Taking-1: The ability to determine visibility relationships from another agent’s viewpoint. This882
involves understanding what objects are visible or occluded from a different viewpoint (e.g., determining whether a883
specific object is within the field of view of another camera). The another agent’s viewpoint is usually determined by an884
object with a clear orientation in the image.885

• Other’s Perspective Taking-2: The ability to understand how spatial relationships transform when viewed from another886
agent’s perspective. This more advanced capability requires mental rotation and spatial transformation to reason about887
relative positions (e.g., determining whether, from another viewpoint, object X appears to be positioned behind object Y).888

This classification aligns with developmental psychology research on perspective-taking abilities, where Level-1 perspective889
taking typically develops earlier than the more cognitively demanding Level-2 perspective taking.890

A.3. Examples891

Example of Among setting

View1 View2 View3 View4

meanwhile non-linearagent-object self perspective:

Question: If you are standing at the viewpoint presented 
in image 1, then you turn left and move forward, will you 
get closer to the light-colored sofa? 
Options: A. Yes B. No

System Prompt: Based on these four images (image 1, 2, 3, and 4) showing the red ball from different viewpoints 
(front, left, back, and right), with each camera aligned with room walls and partially capturing the surroundings:

Question: From the viewpoint presented in image 1, what 
is to the left of the red ball?
Options: A. white-red cabinet B. light-colored sofa C. dark 
brown sofa D. school bag and TV cabinet

meanwhile non-linearagent-agent self perspective:

Question: Based on view1 and view2 showing the same 
scene, which direction did you move from the first view 
to the second view? 
Options: A. Forward-left  B. Forward-right

Question: If you are standing at the viewpoint presented
 in image 1, what is behind you? 
Options: A. white-red cabinet B. light-colored sofa C. dark 
brown sofa D. school bag and TV cabinet 

Question: From the viewpoint presented in image 1, what 
is to the right of the red ball?
Options: A. white-red cabinet B. light-colored sofa C. dark 
brown sofa D. school bag and TV cabinet

meanwhile non-linearobject-object self perspective:

meanwhile non-linearobject-object other perspective:

Question: If you are positioned where the light-colored 
sofa is and facing the same direction, what would be to 
the left of the red ball from this view?
Options: A. dark brown sofa B. school bag and TV 
cabinet C. white-red cabinet

Question: If you are positioned where the dark brown 
sofa is and facing the same direction, what would be to 
the right of the red ball from this view?
Options: A. school bag and TV cabinet B. white-red 
cabinet C. light-colored sofa 

Figure 4. Example of among setting.
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Example of Around setting

View1(Front) View2(Left) View3(Right)

meanwhile linearobject-object self perspective:

Question: In the second image, what is the nearest 
object the nearest object behind of the black waste bin?
Options: . A. green waste bin B. blue  waste bin C. 
shrubbery 

System Prompt: Given 3 orthogonal perspectives of a scene, they are the front view, left view and right view.

Question: If you are at the view of the second image now, 
then you turn right and go straight, is the green waste bin 
be closer to you?
Options: A. Yes B. No

meanwhile linearagent-agent self perspective:

Question: Based on view1 and view2 showing the same 
scene, please determine which direction did you move? 
A. Left-front B. Right-front.
Options: A. Forward-left  B. Forward-right

Question: In the third image, what is the nearest object 
behind of the blue  waste bin.
Options: A. green waste bin B. blue  waste bin C. 
shrubbery 
 

Question: If you are at the view of the third image now, 
then you turn left and go straight, is the green waste bin 
be closer to you?
Options: A. Yes B. No

meanwhile linearobject-object self perspective:

Figure 5. Example-1 of around setting.

B. Evaluation on MINDCUBE 892

B.1. Prompt Templates for Evaluation 893

Evaluation Prompt Prefix
Based on these images, answer the question based on this rule: You only need to provide *ONE* correct answer
selecting from the options listed below. For example, if you think the correct answer is ‘A. above’ from ‘ A. above B.
under C. front D. behind.’, your response should only be ‘A. above’.
The Question is:

894

B.2. Details in text only evaluation 895

In the text-only evaluation, we replace the original image input with corresponding textual descriptions and assess the 896
performance of models based on these descriptions. The purpose of this evaluation is to highlight how much information may 897
be lost or distorted when the visual input is substituted with text-based representations, and to demonstrate the crucial role of 898
visual data in the models’ performance. 899

We used two types of captions: brief and dense. The brief captions provide a concise overview of the image, while the 900
dense captions offer a more detailed description with a focus on the spatial relationships between objects. Additionally, the 901
models are evaluated using textual descriptions (text-only evaluation) based on these captions, with no access to the actual 902
images. 903

Prompt for Brief Captioning
Describe this image briefly.

904
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Example of Around setting

View1 View2 View3

meanwhile linearobject-object self perspective:

Question: In the second image, what is the nearest 
object the nearest object behind of the double trash can?
Options: A. sanitation cart B. bench C. battery powered 
vehicle D. car  (View 123 or View 145 Used)

System Prompt1: Given 3 orthogonal perspectives of a scene, they are the front view, left view and right view.

Question: If you are at the view of the second image now, 
then you turn right and go straight, is the sanitation cart 
be closer to you?
Options: A. Yes B. No (View 123 or View 145 Used)

meanwhile linearagent-agent self perspective:

Question: Based on view1 and view2 showing the same 
scene, please determine which direction did you move? 
A. Left-front B. Right-front.
Options: A. Forward-left  B. Forward-right

Question: IIn the third image, what is the nearest object 
behind of the sanitation cart?
Options: A. double trash can B. bench C. battery powered 
vehicle D. car  (View 123 or View 145 Used)

Question: If you are at the view of the third image now, 
then you turn left and go straight, is the double trash be 
closer to you?
Options: A. Yes B. No (View 123 or View 145 Used)

meanwhile linearobject-object self perspective:

View4 View5 View6

System Prompt2: Given 3 orthogonal perspectives of a scene, they are the behind view, left view and right view.

Question: In the second image, what is the nearest 
object the nearest object behind of the double trash can?
Options: A. sanitation cart B. bench C. battery powered 
vehicle D. car  (View 623 or View 645 Used)

Question: I=In the third image, what is the nearest object 
behind of the sanitation cart?
Options: A. double trash can B. bench C. battery powered 
vehicle D. car  (View 623 or View 645 Used)

Question: If you are at the view of the second image now, 
then you turn right and go straight, is the sanitation cart 
be closer to you?
Options: A. Yes B. No (View 623 or View 645 Used)

Question: If you are at the view of the third image now, 
then you turn left and go straight, is the double trash be 
closer to you?
Options: A. Yes B. No (View 623 or View 645 Used)

meanwhile linearobject-object self perspective: meanwhile linearobject-object self perspective:

Figure 6. Example-2 of around setting.

Prompt for Dense Captioning
Describe this image in detail, specifially focusing on the spatial relationship between objects.

905
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Text-only evaluation Prompt Prefix
You need to gather information about each image based on the descriptions I provide below, and answer the given
questions using those textual descriptions, without directly viewing the images.

Image 1: ¡Caption 1¿
...
Image N: ¡Caption N¿

906

As shown in the Table 1, all three models exhibit a noticeable performance decline when replacing the original image input 907
with its corresponding text-based description. Specifically, the brief captions cause the most significant performance drop. For 908
instance, RoboBrain-8B experiences a 7.83% decrease with the brief captions, and LLaVA-OneVision-7B drops by 12.91% in 909
the same condition. Even when using dense captions, which offer more detail, there is still a performance reduction, although 910
the decrease is slightly less pronounced compared to brief captions. In conclusion, while textual descriptions can convey some 911
information, they fail to capture the richness and intricacies of visual data, leading to a marked reduction in performance 912
across all models. 913

Table 1. Text-only (T) evaluation vs. original evaluation with image inputs (I). The results highlight a significant performance drop when
the original image input is replaced with the corresponding text-based caption, particularly with the brief captions. In all cases, model
performance decreases notably, underscoring that our benchmark is vision-centric.

Model Brief (T) Dense (T) Original (I)

RoboBrain-8B 33.92%(407/1200) ↓7.83% 35.58%(427/1200) ↓6.17% 41.75%(501/1200)
LLaVA-OneVision-7B 34.17%(410/1200) ↓12.91% 35.92%(431/1200) ↓11.16% 47.08%(565/1200)
InternVL2.5-8B 27.00%(324/1200) ↓5.33% 28.75%(345/1200) ↓3.58% 32.33%(388/1200)

B.3. Human Evaluation 914

We use our Tiny Benchmark— encompassing all task categories for evaluation by 5 human annotators, each of whom 915
independently answers every question. Here is the results2. 916

Table 2. Comparison of Human and GPT-4 Performance (%)

Model/Annotator GPT4-o Human-max Human-min Human-avg
Accuracy 36.54 94.77 94.20 94.55

This observation demonstrates the disparity in spatial reasoning capabilities between humans and state-of-the-art multimodal 917
large language models, where humans exhibit superior performance in solving spatial problems that remain challenging for 918
advanced AI systems. 919

B.4. Evaluation Setup 920

To comprehensively evaluate model performance, we conducted experiments on a diverse suite of models. This suite 921
includes models with native multi-image reasoning capabilities (e.g., LLaVA-Onevision [26], LLaVA-Video [69], mPLUG- 922
Owl3 [60], InternVL2.5 [8], QwenVL2.5 [3], LongVA [67], IDEFICS [24], DeepSeek-VL2 [31]), Gemma3 [43], models 923
fine-tuned on interleaved image-text data (e.g., Mantis [21]), leading proprietary APIs (e.g., GPT-4o, Claude-3.7-Sonnet), and 924
models specifically fine-tuned for spatial reasoning tasks (e.g., RoboBrain [20], Space-Mantis [6], Space-LLaVA [13], and 925
Spatial-MLLM [54]). 926

B.5. Analysis in settings 927

B.5.1. Around 928

First, we examine the relationship between occlusion degree and response accuracy across four visibility levels (fully visible, 929
mostly visible, mostly occluded, fully occluded) to determine whether performance degrades proportionally with increasing 930
occlusion. Second, we investigate the impact of camera height variation within the same lateral viewpoint, as different vertical 931
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perspectives yield distinct occlusion patterns that may challenge the model’s ability to maintain spatial coherence. Third,932
we compare two fundamental spatial transformation paradigms: Left-to-Behind versus Front-to-Behind relationships. These933
paradigms evaluate whether models perform consistently when transferring spatial relationships across viewpoints, particularly934
in scenarios with significant object size discrepancies where smaller objects may be completely occluded from one angle935
but visible from another. This multifaceted analysis approach enables a more nuanced understanding of MLLMs’ genuine936
3D spatial reasoning capabilities beyond simple pattern recognition of 2D visual cues. We evaluated several state-of-the-art937
MLLMs, including GPT4-o.938
Occlusion Degree Analysis. Our analysis reveals a notable correlation between occlusion degree and model performance.939
Accuracy rates declined progressively with increasing occlusion, with an average decrease of 23.4% between fully visible940
and fully occluded conditions (p <0.01). Interestingly, the performance degradation was non-linear, with a precipitous drop941
occurring between the mostly visible and mostly occluded categories (18.7% decrease), suggesting a potential threshold942
effect in the models’ spatial reasoning capabilities. Error analysis further revealed that models frequently defaulted to943
proximity-based guessing when confronted with heavily occluded objects, rather than leveraging cross-view information to944
reason about hidden spatial relationships.945

946
Camera Height Impact Analysis. Varying camera heights significantly affected model performance through dif-947
ferent occlusion patterns. High-angle perspectives yielded 12.3% higher accuracy than eye-level views by revealing tops of948
partially occluded objects and providing better scene context. This advantage was most pronounced in dense arrangements949
where top-down angles exposed spatial gaps between objects otherwise invisible from eye-level. Models clearly benefited950
from the holistic understanding afforded by elevated viewpoints, where global spatial relationships became more apparent. In951
contrast, eye-level perspectives with more severe occlusions led to poorer spatial reasoning, suggesting limited ability to952
mentally reconstruct hidden scene elements from partial visual information.953

954
Spatial Transformation Paradigm Comparison. The comparison between Left-to-Behind and Front-to-Behind955
spatial transformations revealed asymmetric reasoning capabilities. Models demonstrated 15.8% higher accuracy in956
Left-to-Behind scenarios compared to Front-to-Behind transformations, despite the conceptual similarity of these spatial957
reasoning tasks. This asymmetry was most pronounced in scenes with significant object size disparities, where models958
correctly identified smaller objects behind larger ones in side views 62.4% of the time, but identified the same spatial959
relationship from front-to-side transformation only 47.2% of the time. This suggests that current MLLMs may be utilizing960
different cognitive mechanisms for different types of spatial transformations, rather than employing a unified 3D spatial961
reasoning framework.962

963
964

The integration of findings across all three dimensions indicates that current MLLMs possess partial but inconsistent965
3D spatial reasoning capabilities. The models’ performance appears heavily influenced by the visibility of key reference966
points across multiple viewpoints, suggesting a reliance on visual correspondence matching rather than true 3D mental967
modeling. The observed asymmetries in spatial transformation paradigms further support this hypothesis, as a robust 3D968
reasoning system would demonstrate consistent performance regardless of the specific transformation required.969

B.5.2. Among970

Table 3. Homogeneity analysis of Among setting

Attribute Invariance Test

GPT4-o T F

T 13.85 13.93
F 13.49 58.74

Quantity Sensitivity Test

GPT4-o T F

T 13.10 10.42
F 11.61 64.88

Attribute Invariance Test. We modify only the visual attributes (e.g., color, category) of the central object while keeping971
the spatial configuration of all objects unchanged. A robust spatial reasoning system should maintain consistent answers, as972
spatial relationships remain invariant despite superficial attribute changes.973

We evaluated model robustness against non-geometric attribute changes using 2,000 paired samples. The evaluation metrics974
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Figure 7. Examples in Attribute Invariance Test.

we used are described in the appendix. The analysis revealed: 975

χ2 =
(|TF − FT | − 1)2

TF + FT
≈ 0.02, Consistency =

TT + FF

Total
≈ 88.6% (1) 976

The McNemar’s test showed no significant difference (χ2(1) = 0.02, p > 0.89), with high answer consistency (88.6%). 977
This confirms spatial reasoning remains invariant to superficial attribute changes. 978

979
980

Quantity Sensitivity Test. We increase the number of central objects (e.g., from one to three) while retaining the original 981
peripheral objects. This modification is hypothesized to enhance reasoning performance, as additional central objects provide 982
more reference points for establishing cross-view correspondences and consistency. 983

Analysis of 360 paired samples comparing single vs. multiple central objects showed: 984

χ2 ≈ 0.85 (p > 0.36), (2) 985

∆Accuracy = 5.1%, (3) 986

h = 2arcsin (
√
p2)− 2 arcsin (

√
p1) ≈ 0.10 (4) 987

The non-significant improvement (χ2(1) = 0.85, p > 0.36) with small effect size (h = 0.10) suggests additional central 988
objects provide limited benefits under current configurations. 989

Three key findings emerge from our analysis: 1.In attribute invariance, model maintains 88.6% consistency (p > 0.89) 990
for modified object attributes, confirming geometric reasoning predominance over visual features; 2. In quantity sensitivity, 991
model’s 5.1% accuracy gain (h = 0.10, p > 0.36) indicates current multi-object configurations inadequately leverage spatial 992
references. 993

Our systematic evaluation demonstrates MLLMs can achieve attribute-invariant spatial reasoning (>88% consistency) but 994
struggle to utilize additional reference objects effectively. This highlights the need for: (1) enhanced geometric reasoning 995
architectures, and (2) comprehensive benchmarks evaluating both attribute invariance and quantity sensitivity in 3D spatial 996
understanding. 997

B.6. Failure case analysis 998

The observed pattern of errors indicates that models primarily rely on local relationship matching rather than inferring 999
global spatial configurations, which represents a critical gap compared to human-like spatial reasoning abilities. Future 1000
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Figure 8. Examples in Quantity Sensitivity Test.

architectural improvements should therefore focus on enhancing transitive spatial inference mechanisms and view-invariant1001
scene representation to support more robust reasoning across multiple perspectives.1002

C. Data Structures as Cognitive Scaffolds, Evaluation Metrics, and Input-Output Configurations1003

In this section, we provide detailed descriptions of the three data structures employed as cognitive scaffolds to approximate1004
spatial mental models in VLMs, followed by formal definitions of the evaluation metrics employed across all experiments.1005
Furthermore, we show the prompts for all the input-output configurations that were used across the following experiments.1006

C.1. Data Structures as Cognitive Scaffolds1007

The human ability to navigate and reason about space, especially with incomplete information, is largely attributed to the1008
formation of internal spatial mental models. These models, as extensively studied in cognitive science, are not necessarily1009
veridical, metric-perfect replicas of the environment. Instead, they are often schematic and even distorted, yet functionally1010
effective representations. These models can be especially useful for understanding the environment spatial layouts for agentic1011
settings [49, 59], such as embodied scenarios [11, 18, 19, 27, 28, 42, 58]. Pioneering work by Barbara Tversky suggests1012
that these internal constructs are more akin to ”cognitive collages” – flexible assemblies of spatial information gleaned from1013
various perspectives and experiences, rather than rigid, map-like blueprints [44]. These ”cognitive collages” allow for the1014
integration of fragmented observations and support reasoning across unseen perspectives. Johnson-Laird [23] posits that1015
mental models, including those for space, serve as ”structural analogs of the world,” enabling individuals to simulate and infer1016
spatial relationships, such as determining the relative positions of objects from sequential descriptions (e.g., ”A is to the left of1017
B; B is in front of C”). Research by Tversky [46] has also demonstrated that individuals can construct rich, multi-dimensional1018
mental representations even from linear, descriptive texts, and subsequently query these models from various psychological1019
viewpoints.1020
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Question: Based on these four different viewpoints (front, left, 
back, and right), if you are positioned at the first viewpoint, 
then you tum right and move forward,wil you get closer to the 
window? 
Options: A. No B.Yes

<Reasoning>:
1. The first image shows a view with a vent,likely the front view.
2. The second image has a window visible,indicating it is the 
view opposite to the first.
3. The third image features a large cardboard, potentially a 
covered window on one side.
4. The fourth image shows a plain wal,suggesting the view 
opposite the third image.
Based on these, the four views are likely structured in a roughly 
rectangular layout. Starting at the first view (front with vent), 
turning right would bring you to the wall (fourth image), away 
from the window (second image). Therefore, my answer is A. 
No.

Question: Based on these four different viewpoints (front, left, 
back, andright), if you are positioned at the third viewpoint, 
what is behind you?
Options: A.Washing machine B.White wood rack C.White + 
gray curtains D. White wall and window

<Reasoning>:
The third viewpoint shows the right side of the shoe, with the 
washing machine visible in the background. 

Therefore, if you are positioned at the third viewpoint,the 
washing machine is behind you. Therefore, my answer is A. 
Washing machine.

Figure 9. Failure case analysis. We show GPT4-o’s reasoning process. In case 1, the model is unable to establish the spatial location
corresponding to each view; In case 2, the model confuses the subject of the “behind” relationship.

Inspired by these cognitive theories, we explore three distinct data structures designed to act as cognitive scaffolds for 1021
VLMs. When VLMs are presented with limited visual input, these structures aim to approximate different facets of human 1022
spatial mental modeling: dynamic updating, integrated spatial layout representation, and inferential reasoning. 1023

C.1.1. View Interpolation for Dynamic Updating 1024

Human spatial mental models are not static; they are continuously updated with new sensory information and through 1025
mental simulation, such as imagining a change in viewpoint. To approximate this dynamic updating and mental animation 1026
capability [16], we employ view interpolation. This technique aims to bridge perceptual gaps between discrete, sparsely 1027
sampled views by generating intermediate visual frames. 1028
Our Setting: In our experiments, view interpolation is implemented by inserting synthetic frames between consecutive views 1029
provided to the model. For instance, if ”1 interpolated frame” is specified, one new frame is generated and inserted between an 1030
initial view Vn and the subsequent view Vn+1 (e.g., between View 1 and View 2). Similarly, ”2 interpolated frames” would 1031
mean two synthetic frames are inserted in sequence between Vn and Vn+1. For the interpolated frames, we either define a 1032
heuristic function to choose from the original datasets [4, 55] where we sampled our data, or we use Stable Virtual Camera [72] 1033
to generate intermediate frames for those image groups without. This approach is intended to provide a smoother perceptual 1034
experience, potentially aiding the VLM in tracking object relations and maintaining spatial consistency across viewpoint shifts. 1035
(Refer to Figure 3 in the main paper for a conceptual illustration) 1036

C.1.2. Cognitive Maps for Integrated Spatial Layouts 1037

A core aspect of spatial cognition is the ability to form an allocentric (world-centered) or survey-like understanding of an 1038
environment, capturing the relative locations of objects. Tversky [44, 45] highlights that such representations often involve 1039
different frames of reference and hierarchical structures. Cognitive maps in our context are 2D schematic representations that 1040
attempt to embody this integrated spatial layout. 1041

Our Setting: We investigate two variants of cognitive maps, both represented as structured data (e.g., JSON-like objects), 1042
to capture the spatial layout: 1043

• We provide a 2D grid map of the scene that is related to the question to be answered. 1044
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• The map uses a 10×10 grid, where [0, 0] is the top-left corner and [9, 9] is the bottom-right corner (i.e., bird’s-eye1045
view).1046

• Directions are defined as follows:1047

– up = towards the top of the grid (decreasing y-value)1048

– right = towards the right of the grid (increasing x-value)1049

– down = towards the bottom of the grid (increasing y-value)1050

– left = towards the left of the grid (decreasing x-value)1051

– inner = into the 2D map (perpendicular to the grid, pointing away from you)1052

– outer = out of the 2D map (perpendicular to the grid, pointing toward you)1053

• The map contains:1054

– objects — a list of all important items in the scene with their position1055

– facing — indicating the direction an object is oriented (when applicable)1056

– views — representing different camera viewpoints in the scene1057

• Augmented Cognitive Map: This version explicitly integrates the observer’s perspective by encoding the positions1058
and orientations (facing directions) of the camera viewpoints within the map, alongside the objects and their locations.1059
For instance, as depicted in our data examples (refer to Figure 3, Cognitive Map - Augmented panel), an augmented map1060
might define a list of objects with their name and position (e.g., "Tissue box": { "position": [5,1061
5] }), and a separate list of views detailing each camera’s name (e.g., "View 1"), position (e.g., [3, 5]), and1062
facing direction (e.g., "up").1063

• Plain Cognitive Map (Object Only): This is a more simplified, object-centric representation. It primarily focuses on the1064
spatial locations of objects and, for some objects, their intrinsic orientation (facing direction) from a1065
top-down survey perspective, without explicitly embedding camera view information within its structure. For example (refer1066
to Figure 3, Cognitive Map - Plain panel), a plain map might list objects like "Potted plant" with its position1067
(e.g., [5, 6]) and facing direction (e.g., "down"), and another object like "Sofa" with only its position (e.g.,1068
[4, 5]). This type of map still allows for reasoning about object-to-object relationships and, where specified, object1069
orientations, but abstracts away the explicit camera viewpoints that generated the scene understanding.1070

In both map types, coordinates represent positions on a 2D grid, and facing directions can be categorical (e.g., "up",1071
"down", "left", "right", "outer", "inner"). These structures aim to provide the VLM with an explicit, albeit1072
potentially imperfect, schematic of the environment that it can then learn to generate and utilize for spatial reasoning tasks.1073

C.1.3. Free Form Reasoning1074

Spatial mental models are not just static representations; they are actively used for inference and problem-solving [46].1075
To approximate this procedural and inferential aspect, we utilize free-form reasoning, implemented as a natural language1076
Chain-of-Thought (CoT) [53] process. This encourages the VLM to externalize its step-by-step reasoning process when1077
deducing an answer to a spatial query.1078
Our Setting: The VLM is prompted to generate a textual reasoning chain before outputting the final answer. This process1079
is guided by a three-step principle, exemplified by the reasoning chain shown in Figure 3, the reasoning chain panel. For1080
the steps shown in that example, they are: (1) Initial Observation and Grounding: The model first processes each available1081
view, identifying key objects and their immediate spatial relationships within that specific viewpoint. For instance, the1082
example chain begins with: "In View 1, I see a potted plant, tissue box, and hand sanitizer1083
from left to right, with a sofa behind." This step grounds the reasoning in direct visual evidence from1084
individual perspectives. (2) Cross-View Integration and Environment Consolidation:Next, the model attempts to identify1085
consistent objects or environmental cues across the different views to recognize that they depict the same underlying 3D1086
scene. The example reasoning continues: "In View 2, I see the same potted plant, so both views1087
are from the same environment." This step is crucial for building a unified understanding of the space from1088
discrete observations. (3) Question-Guided Spatial Inference: Finally, based on the specific question posed and the integrated1089
understanding from the previous steps, the model performs step-by-step logical and spatial inferences to arrive at the1090
answer. In the example, this involves relating the object positions across views relative to the observer’s position in View1091
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2: "Since the hand sanitizer is rightmost in View 1, it’s spatially furthest behind 1092
the potted plant when looking in View 2. In View 2, the potted plant is closest 1093
to me, so the hand sanitizer is the furthest from me." 1094

C.2. Evaluation Metrics 1095

To quantitatively assess how these data structures affect the performance of VLMs in the spatial mental modeling presented 1096
in MINDCUBE, and to evaluate the quality of the generated cognitive maps, we employed the following metrics: (1) QA 1097
Accuracy, and (2) Graph Metrics for Generated Cognitive Maps. 1098

C.2.1. QA Accuracy 1099

QA Accuracy serves as the core metric for evaluating task performance. It quantifies the proportion of questions that the 1100
vision-language model (VLM) answers correctly out of the total number of questions. A higher QA Accuracy indicates better 1101
alignment between the model’s responses and the ground truth. 1102

The metric is formally defined as: 1103

QA Accuracy =
Ncorrect

Ntotal
× 100%

where Ncorrect denotes the number of correctly answered questions, and Ntotal is the total number of questions evaluated. 1104

C.2.2. Graph Metrics for Cognitive Maps 1105

To quantitatively evaluate the quality of a generated cognitive map, we use a set of structured graph-based metrics. The overall 1106
process consists of several key steps: 1107

1. Validity Check. First, we ensure that the generated map is syntactically and semantically valid—i.e., it has a correct JSON 1108
format, contains interpretable object positions, and includes at least one valid object. 1109

2. Rotation Normalization. Since we do not enforce a fixed orientation for generated maps (to allow for flexible generation 1110
from vision-language models), we evaluate the similarity between the generated map and the ground truth across a set of 1111
3D rotations. We always choose the best-aligned rotation to compute our similarity scores. 1112

3. Structural Matching. We define a relation graph between object pairs in each map, capturing directional and proximity- 1113
based relationships. A core part of the evaluation is determining whether these relationships in the ground truth are 1114
preserved in the generated map. 1115

4. Similarity Metrics. We compute coverage (how many ground-truth objects are present), directional similarity (relative 1116
spatial relations), and facing similarity (object orientation). These are aggregated into an overall similarity score. 1117

5. Rotation-Invariant Isomorphism. We also evaluate whether a generated map is graph-isomorphic to the ground truth 1118
under any allowed 3D rotation, providing a strict measure of structural correctness. 1119

Below, we provide precise mathematical definitions for each of these components. 1120

Notation. A cognitive map is a finite set of objects O = {o1, . . . , on} where each object oi is associated with (i) a 2-D 1121
position vector pi = (xi, yi) ∈ R2 and (ii) an optional facing label fi ∈ {up, right, down, left, inner, outer} ∪ {∅}. For two 1122
maps, we distinguish (1) the ground-truth map (O⋆, p⋆, f⋆) and (2) a generated map (Og, pg, fg). 1123

The set of objects that appear in both maps is Oc = O⋆ ∩ Og. 1124

Extended directional relation. We define a directional or proximity-based relationship between any ordered object pair 1125
(oi, oj) based on their spatial arrangement and optional facing annotations. This relation is captured via the function: 1126

dir(oi, oj) =



right |xj − xi| > |yj − yi| and xj > xi,

left |xj − xi| > |yj − yi| and xj < xi,

down |yj − yi| ≥ |xj − xi| and yj > yi,

up |yj − yi| ≥ |xj − xi| and yj < yi,

inner ∥pj − pi∥2 < δ and (fi = inner ∨ fj = outer),
outer ∥pj − pi∥2 < δ and (fi = outer ∨ fj = inner),
∅ otherwise,

1127
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with threshold δ = 0.5 as in the implementation. These relations form a relation matrix:1128

R(oi, oj) = dir(oi, oj).1129

Coverage. Coverage measures how many ground-truth objects are successfully retrieved in the generated map:1130

Cov =
|Oc|
|O⋆|

∈ [0, 1].1131

Directional similarity. We now evaluate how well the generated map preserves the directional relationships among object1132
pairs from the ground truth. Define:1133

P⋆ = {(oi, oj) ∈ Oc ×Oc | i ̸= j, R⋆(oi, oj) ̸= ∅}.1134

Then the directional similarity score is given by:1135

Sdir =

∣∣{(oi, oj) ∈ P⋆ | Rg(oi, oj) = R⋆(oi, oj)}
∣∣

|P⋆|
∈ [0, 1],1136

which corresponds to the proportion of directional relations in the ground truth that are correctly matched in the generated map.1137

Facing similarity. For objects with defined facing directions, we compare their orientation across the two maps:1138

F⋆ = {oi ∈ Oc | f⋆
i ̸= ∅}.1139

Then:1140

Sface =

∣∣{oi ∈ F⋆ | fg
i = f⋆

i }
∣∣

|F⋆|
∈ [0, 1].1141

Overall similarity. To aggregate the directional and facing similarities, we use a weighted combination:1142

Soverall = α · Sdir + (1− α) · Sface ∈ [0, 1],1143

where α = 0.7 places greater emphasis on spatial layout than orientation.1144

Rotation-invariant isomorphism. To ensure fair comparison regardless of orientation, we define a set of 3D rotations:1145
R = {R1, . . . , Rm}, including all 90° turns about the z-axis, and one 90° turn about each of the x- and y-axes.1146

We say the maps are rotation-invariant isomorphic if there exists a rotation such that their relation matrices match1147
completely:1148

∃ k ∈ {1, . . . ,m} ∀ oi, oj ∈ O⋆ : R⋆(oi, oj) = Rg
(k)(oi, oj),1149

where Rg
(k) is the relation matrix computed after applying Rk to the generated map.1150

Graph validity. Finally, a generated map is deemed valid if: (1) It is well-formed JSON, (2) All fields conform to expected1151
formats and constraints, and (3) At least one object has a valid position.1152

Together, the tuple
(
Cov, Sdir, Sface, Soverall, Isorot

)
provides a comprehensive, rotation-aware evaluation of how closely a1153

generated cognitive map matches ground truth structure and orientation.1154

C.3. Prompts for All Input-Output Configurations1155

Below, we provide all prompts for the input-output configurations we investigate in our work.1156

C.3.1. Example for Raw QA1157

1158
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Example Prompt for Raw QA

[Answer Format]
Based on these images, answer the question based on this rule: You only need to provide *ONE* correct answer
selected from the options listed below. For example, if you think the correct answer is ‘A. Above’ from ‘A. Above B.
Under C. Front D. Behind’, your response should **only** be ‘A. Above’.
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1159

C.3.2. Example for FF-Rsn 1160

Example Prompt for FF-Rsn: Free-Form Reasoning

[Answer Format]
Based on these images, answer the question based on this rule: You can do step-by-step reasoning first. You must
provide *ONE* correct answer selecting from the options listed below *at the end of your response*. For example, if
you think the correct answer is ‘A. Above’ from ‘A. Above B. Under C. Front D. Behind’, you must output ‘A. Above’
at the end of your response.
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1161

C.3.3. Example for VI-1 and VI-2 1162
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Prompt for VI-1: View Interpolation with 1 Frame

[Answer Format]
Based on these images, answer the question based on this rule: You only need to provide *ONE* correct answer
selected from the options listed below. For example, if you think the correct answer is ‘A. Above’ from ‘A. Above B.
Under C. Front D. Behind’, your response should **only** be ‘A. Above’.
[Question]
Based on these 8 images showing the white jar from different viewpoints (from front (image 1) to left (image 3), from
left (image 3) to back (image 5), from back (image 5) to right (image 7), from right (image 7) back to front (image 1)),
with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint presented in
image 7, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1163

Prompt for VI-2: View Interpolation with 2 Frames

[Answer Format]
Based on these images, answer the question based on this rule: You only need to provide *ONE* correct answer
selected from the options listed below. For example, if you think the correct answer is ‘A. Above’ from ‘A. Above B.
Under C. Front D. Behind’, your response should **only** be ‘A. Above’.
[Question]
Based on these 12 images showing the white jar from different viewpoints (from front (image 1) to left (image 4),
from left (image 4) to back (image 7), from back (image 7) to right (image 10), from right (image 10) back to front

1164
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(image 1)), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 10, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1165

C.3.4. Example for Aug-CGMap-In 1166

Prompt for Aug-CGMap-In: Grounded Augmented Cognitive Map as Input

[Answer Format]
Based on these images, answer the question based on this rule: You only need to provide *ONE* correct answer
selected from the options listed below. For example, if you think the correct answer is ‘A. Above’ from ‘A. Above B.
Under C. Front D. Behind’, your response should **only** be ‘A. Above’.
[Cognitive Map Format]
We provide you a 2D grid map of the scene that is related to the question you should answer. Below is the description
of the map:
- The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- The map is shown in the bird’s view
- Directions are defined as:
* up = towards the top of the grid (decreasing y-value)
* right = towards the right of the grid (increasing x-value)
* down = towards the bottom of the grid (increasing y-value)
* left = towards the left of the grid (decreasing x-value)
* inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
* outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- ”objects” lists all important items in the scene with their positions
- ”facing” indicates which direction an object is oriented towards (when applicable)
- ”views” represents the different camera viewpoints in the scene
- ”facing objects” indicates the camera is facing which objects

{
"objects": [

{ "name": "white jar", "position": [5, 5] },
{ "name": "bed sheet with a floral pattern", "position": [5, 8] },
{ "name": "white headboard", "position": [2, 5] },
{ "name": "clothes rack", "position": [5, 2] },
{ "name": "table with cups on it", "position": [8, 5] }

],
"views": [

{ "name": "Image 1", "position": [5, 6], "facing": "up" },
{ "name": "Image 2", "position": [4, 5], "facing": "right" },
{ "name": "Image 3", "position": [5, 4], "facing": "down" },
{ "name": "Image 4", "position": [6, 5], "facing": "left" }

]
}

1167
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[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1168

C.3.5. Example for Aug-CGMap-Out1169

Prompt for Aug-CGMap-Out: Ask VLM to Output Augmented Cognitive Map and Direct Answer

[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show
the scene from different viewpoints. You will then create a detailed cognitive map representing the scene using a
10x10 grid coordinate system.
[Rules]
1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a floral pattern, white headboard,
clothes rack, table with cups on it}
2. Create a cognitive map with the following structure in the bird’s view:
- A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- up = towards the top of the grid (decreasing y)
- right = towards the right of the grid (increasing x)
- down = towards the bottom of the grid (increasing y)
- left = towards the left of the grid (decreasing x)
- inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
- outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- Include positions of all objects from the specified categories
- Estimate the center location (coordinates [x, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them
- Each object’s estimated location should accurately reflect its real position in the scene, preserving the relative spatial
relationships among all objects
- Combine and merge information from the images since they are pointing to the same scene, calibrating the object
locations accordingly
- Include camera positions and directions for each view
3. Carefully integrate information from all views to create a single coherent spatial representation.
[Answer Format]
1. Given the provided views and main objects mentioned in the above rules, you **MUST** present your cognitive
map in the following JSON format **before your reasoning**:

{
"objects": [

{"name": "object_name", "position": [x, y], "facing": "direction"},
{"name": "object_without_orientation", "position": [x, y]}

],
"views": [

{"name": "View/Image 1", "position": [x, y], "facing": "direction"},
1170
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{"name": "View/Image 2", "position": [x, y], "facing": "direction"}
]

}

2. Next, based on your generated cognitive map, please generate the answer to the question. For example, if you think
the correct answer is ‘A. Above’ from ‘A. Above B. Under C. Front D. Behind’, you must output ‘A. Above’. Your
answer format should be like <CogMap>\n<Your cognitive map>\n<Answer>\n<Your answer>
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1171

C.3.6. Example for Plain-CGMap-Out 1172

Prompt for Plain-CGMap-Out: Ask VLM to Output Plain Cognitive Map and Direct Answer

[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show
the scene from different viewpoints. You will then create a detailed cognitive map representing the scene using a
10x10 grid coordinate system.
[Rules]
1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a floral pattern, white headboard,
clothes rack, table with cups on it}
2. Create a cognitive map with the following structure in the bird’s view:
- A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner
- up = towards the top of the grid (decreasing y)
- right = towards the right of the grid (increasing x)
- down = towards the bottom of the grid (increasing y)
- left = towards the left of the grid (decreasing x)
- Include positions of all objects from the specified categories
- Estimate the center location (coordinates [x, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them
- Object positions must maintain accurate relative spatial relationships
- Combine and merge information from the images since they are pointing to the same scene, calibrating the object
locations with grid coordinates accordingly
3. Carefully integrate information from all views to create a single coherent spatial representation.
[Answer Format]
1. Given the provided views and main objects mentioned in the above rules, you **MUST** present your cognitive
map in the following JSON format **before your reasoning**:

{
"object_category_1": {"position": [x, y]},
"object_category_2": {"position": [x, y], "facing": "direction"},
# if the object is asked for orientation

1173
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...
}

2. Next, based on your generated cognitive map, please generate the answer to the question. For example, if you think
the correct answer is ‘A. Above’ from ‘A. Above B. Under C. Front D. Behind’, you must output ‘A. Above’. Your
answer format should be like <CogMap>\n<Your cognitive map>\n<Answer>\n<Your answer>
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1174

C.3.7. Example for Plain-CGMap-FFR-Out1175

Prompt for Plain-CGMap-FFR-Out: Ask VLM to Output Plain Cognitive Map and Free-Form Reasoning

[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show
the scene from different viewpoints. You will then create a detailed cognitive map representing the scene using a
10x10 grid coordinate system.
[Rules]
1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a floral pattern, white headboard,
clothes rack, table with cups on it}
2. Create a cognitive map with the following structure in the bird’s view:
- A 10x10 grid where [0, 0] is at the top-left corner and [9, 9] is at the bottom-right corner
- up = towards the top of the grid (decreasing y)
- right = towards the right of the grid (increasing x)
- down = towards the bottom of the grid (increasing y)
- left = towards the left of the grid (decreasing x)
- Include positions of all objects from the specified categories
- Estimate the center location (coordinates [x, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them
- Object positions must maintain accurate relative spatial relationships
- Combine and merge information from the images since they are pointing to the same scene, calibrating the object
locations with grid coordinates accordingly
3. Carefully integrate information from all views to create a single coherent spatial representation.
[Answer Format]
1. Given the provided views and main objects mentioned in the above rules, you **MUST** present your cognitive
map in the following JSON format **before your reasoning**:

{
"object_category_1": {"position": [x, y]},
"object_category_2": {"position": [x, y], "facing": "direction"},
# if the object is asked for orientation
...

}
1176
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2. Next, please also provide your reasons step by step in detail, then provide *ONE* correct an-
swer selecting from the options. Your response’s format should be like <CogMap>\n<Your cognitive
map>\n<Reasoning>\n...\n<Answer> Therefore, my answer is <selected option>. Your
¡selected option¿ must be in the format like ”A. Above”. Your option must be from the available options.
[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1177

C.3.8. Example for Aug-CGMap-FFR-Out 1178

Prompt for Aut-CGMap-FFR-Out: Ask VLM to Output Augmented Cognitive Map and Free-Form Reasoning

[Task]
Your task is to analyze the spatial arrangement of objects in the scene by examining the provided images, which show
the scene from different viewpoints. You will then create a detailed cognitive map representing the scene using a
10x10 grid coordinate system.
[Rules]
1. Focus ONLY on these categories of objects in the scene: {white jar, bed sheet with a floral pattern, white headboard,
clothes rack, table with cups on it}
2. Create a cognitive map with the following structure in the bird’s view:
- A 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- up = towards the top of the grid (decreasing y)
- right = towards the right of the grid (increasing x)
- down = towards the bottom of the grid (increasing y)
- left = towards the left of the grid (decreasing x)
- inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
- outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- Include positions of all objects from the specified categories
- Estimate the center location (coordinates [x, y]) of each instance within provided categories
- If a category contains multiple instances, include all of them
- Each object’s estimated location should accurately reflect its real position in the scene, preserving the relative spatial
relationships among all objects
- Combine and merge information from the images since they are pointing to the same scene, calibrating the object
locations accordingly
- Include camera positions and directions for each view
3. Carefully integrate information from all views to create a single coherent spatial representation.
[Answer Format]
1. Given the provided views and main objects mentioned in the above rules, you **MUST** present your cognitive
map in the following JSON format **before your reasoning**:

{
"objects": [

{"name": "object_name", "position": [x, y], "facing": "direction"},
1179
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{"name": "object_without_orientation", "position": [x, y]}
],
"views": [

{"name": "View/Image 1", "position": [x, y], "facing": "direction"},
{"name": "View/Image 2", "position": [x, y], "facing": "direction"}

]
}

2. Next, please also provide your reasons step by step in detail, then provide *ONE* correct an-
swer selecting from the options. Your response’s format should be like <CogMap>\n<Your cognitive
map>\n<Reasoning>\n...\n<Answer> Therefore, my answer is <selected option>. Your
¡selected option¿ must be in the format like ”A. Above”. Your option must be from the available options. [Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1180

C.3.9. Example for CGMap-In-FFR-Out1181

Prompt for CGMap-In-FFR-Out: Input VLM with Grounded Cognitive Map and Output with Free-Form Reasoning

[Answer Format]
Based on these images, answer the question based on this rule: You can do step-by-step reasoning first. You must
provide *ONE* correct answer selecting from the options listed below *at the end of your response*. For example, if
you think the correct answer is ‘A. Above’ from ‘A. Above B. Under C. Front D. Behind’, you must output ‘A. Above’
at the end of your response.
[Cognitive Map Format]
We provide you a 2D grid map of the scene that is related to the question you should answer. Below is the description
of the map:
- The map uses a 10x10 grid where [0,0] is at the top-left corner and [9,9] is at the bottom-right corner
- The map is shown in the bird’s view
- Directions are defined as:
* up = towards the top of the grid (decreasing y-value)
* right = towards the right of the grid (increasing x-value)
* down = towards the bottom of the grid (increasing y-value)
* left = towards the left of the grid (decreasing x-value)
* inner = straight into the 2D map (perpendicular to the grid, pointing away from you)
* outer = straight out of the 2D map (perpendicular to the grid, pointing towards you)
- ”objects” lists all important items in the scene with their positions
- ”facing” indicates which direction an object is oriented towards (when applicable)
- ”views” represents the different camera viewpoints in the scene
- ”facing objects” indicates the camera is facing which objects

{
"objects": [

1182
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{ "name": "white jar", "position": [5, 5] },
{ "name": "bed sheet with a floral pattern", "position": [5, 8] },
{ "name": "white headboard", "position": [2, 5] },
{ "name": "clothes rack", "position": [5, 2] },
{ "name": "table with cups on it", "position": [8, 5] }

],
"views": [

{ "name": "Image 1", "position": [5, 6], "facing": "up" },
{ "name": "Image 2", "position": [4, 5], "facing": "right" },
{ "name": "Image 3", "position": [5, 4], "facing": "down" },
{ "name": "Image 4", "position": [6, 5], "facing": "left" }

]
}

[Question]
Based on these four images (image 1, 2, 3, and 4) showing the white jar from different viewpoints (front, left, back,
and right), with each camera aligned with room walls and partially capturing the surroundings: From the viewpoint
presented in image 4, what is to the left of the white jar?
A. Table with cups on it B. Clothes rack C. Bed sheet with a floral pattern D. White headboard

1183

D. Which Scaffolds Best Guide Spatial Thinking in Unchanged VLMs? 1184

The primary experimental setup for evaluating how different structural scaffolds can guide spatial reasoning in unchanged 1185
VLMs, has been comprehensively described in Section 3 of the main paper. This current section is dedicated to presenting 1186
qualitative examples of model outputs, serving as case studies for the different scaffolding configurations tested. 1187

For precise details on the input prompt structures and specific instructions provided to the Qwen2.5-VL-3B-Instruct for 1188
each experimental condition (e.g., Raw QA, FF-Rsn, Plain-CGMap-FFR-Out), please refer to Appendix C.3. 1189

D.1. VLM Response Examples for Configurations in Section C.3 1190

Output for Raw QA: Input Prompt Refer to C.3.1

C. Bed sheet with a floral pattern
1191

Output for VI: Input Prompt Refer to C.3.3

B. Clothes rack
1192

Output for Aug-CGMap-In: Input Prompt Refer to C.3.4

C. Bed sheet with a floral pattern
1193

Output for FF-Rsn: Input Prompt Refer to C.3.2

To determine what is to the left of the white jar from the viewpoint presented in image 4, let’s analyze the scene:
- In image 4, the white jar is placed on a table covered with a pink tablecloth featuring heart patterns.
- The table has a glass top and is positioned against a wall.
- To the left of the jar, there is a piece of furniture that appears to be a bed or a bed frame.

1194
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Given this information, the object to the left of the white jar is most likely a bed or a bed frame.
Therefore, the correct answer is:
C. Bed sheet with a floral pattern

1195

Output for Aug-CGMap-FFR-Out: Input Prompt Refer to C.3.8

‘‘‘json
{

"objects": [
{"name": "white jar", "position": [150, 446], "facing": "left"},
{"name": "bed sheet with a floral pattern", "position": [0, 317],
"facing": "left"},
{"name": "clothes rack", "position": [0, 108],
"facing": "left"},
{"name": "table with cups on it", "position": [188, 200],
"facing": "left"},
{"name": "white headboard", "position": [188, 317],
"facing": "left"}

],
"views": [

{"name": "Image 1", "position": [0, 0], "facing": "left"},
{"name": "Image 2", "position": [0, 0], "facing": "left"},
{"name": "Image 3", "position": [0, 0], "facing": "left"},
{"name": "Image 4", "position": [0, 0], "facing": "left"}

]
}
‘‘‘

¡CogMap¿
¡Your cognitive map¿
¡Reasoning¿
From the viewpoint presented in image 4, we can see that the white jar is positioned in the foreground, facing left. The
bed sheet with a floral pattern is located directly behind the white jar, covering the lower part of the image. The clothes
rack is visible on the left side of the image, slightly above the bed sheet. The table with cups on it is situated further
back, to the right of the white jar. The white headboard is also visible, but it is not as prominent as the other objects
due to its position behind the bed sheet.
Therefore, my answer is A. Table with cups on it.
¡/Answer¿
Therefore, my answer is A. Table with cups on it.

1196

Output for Plain-CGMap-FFR-Out: Input Prompt Refer to C.3.7

‘‘‘json
{

"white_jar": {"position": [150, 440], "facing": "left"},
"table_with_cups_on_it": {"position": [187, 260],
"facing": "right"}

}
‘‘‘

1197
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¡CogMap¿
¡Your cognitive map¿
¡Reasoning¿
From the viewpoint presented in image 4, we can see that the white jar is positioned on the bed sheet with a floral
pattern. The table with cups on it is located to the right of the white jar, as indicated by its position in the image. The
clothes rack is not visible in this particular view, and the white headboard is not directly related to the white jar or the
table with cups on it. Therefore, the correct answer is A. Table with cups on it.
¡Answer¿
Therefore, my answer is A. Table with cups on it.

1198

Output for CGMap-In-FFR-Out: Input Prompt Refer to C.3.9

C. Bed sheet with a floral pattern
1199

D.2. Additional Graph Metrics for Generated Graphs 1200

To quantitatively assess the quality of the cognitive maps produced by our models, we employ a suite of graph-based 1201
metrics detailed in Section C.2.2. Table 4 presents a comparison of the cognitive maps generated by two of our methods: 1202
Aug-CGMap-FFR-Out and Plain-CGMap-FFR-Out. 1203

The results highlight several key findings: 1204

• High Validity: Both methods demonstrate a strong ability to generate syntactically and semantically valid maps, achieving 1205
high Valid Rates (94.95% for Plain-CGMap-FFR-Out and 92.57% for Aug-CGMap-FFR-Out). This indicates that 1206
the models successfully learned the required JSON structure for the cognitive maps. 1207

• Structural Complexity: Achieving perfect structural replication of the ground truth remains challenging, as shown by 1208
the modest Isomorphism Rates. The Plain-CGMap-FFR-Out method performs significantly better, with 7.43% of 1209
its maps being structurally identical (isomorphic) to the ground truth, compared to a mere 0.10% for the augmented map 1210
method. 1211

• Superior Similarity Performance: A clear performance difference in semantic similarity is evident. The 1212
Aug-CGMap-FFR-Out method, which explicitly includes camera views, achieves a substantially higher Overall Simi- 1213
larity (51.12%) and is superior in representing both the relative directional relationships (Avg. Dir. Sim. of 43.57%) and 1214
the correct orientation of individual objects (Avg. Facing Sim. of 68.75%). In contrast, while Plain-CGMap-FFR-Out 1215
maintains higher validity and isomorphism, it lags behind in all three similarity metrics. 1216

Table 4. Comparison of graph metrics for cognitive maps generated by different methods. The metrics evaluate the quality of the generated
maps against the ground truth. Valid Rate: percentage of syntactically and semantically valid maps. Isomorphism Rate: percentage
of maps that are structurally identical (isomorphic) to the ground truth, accounting for rotation. Overall Sim. (Similarity): a weighted
score combining directional and facing similarity (Soverall = α · Sdir + (1− α) · Sface). Avg. Dir. Sim. (Average Directional Similarity):
correctness of relative spatial relations between objects. Avg. Facing Sim. (Average Facing Similarity): correctness of object orientations.
All values are percentages (%).

Method Valid Rate Isomorphism Rate Overall Sim. Avg. Dir. Sim. Avg. Facing Sim.

Aug-CGMap-FFR-Out 92.57 0.10 51.12 43.57 68.75
Plain-CGMap-FFR-Out 94.95 7.43 37.44 28.29 58.78

E. Can We Teach VLMs to Build and Leverage Spatial Representations? 1217

In the main paper, we demonstrated that prompting frozen VLMs with external scaffolds offers limited improvements. This 1218
highlighted a core limitation: the models themselves aren’t effectively forming internal spatial representations or reasoning 1219
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through space. To address this, we investigated whether supervised fine-tuning (SFT) could teach VLMs to build and leverage1220
these spatial models internally. This section of the appendix provides further details on our SFT methodology, starting with the1221
crucial step of data curation.1222

E.1. Supervised Fine-Tuning Data Curation1223

Effective SFT heavily relies on the quality and nature of the training data. To teach our VLMs the desired spatial reasoning1224
capabilities, we meticulously curated two primary types of data: cognitive maps and free-form reasoning chains. These were1225
designed to provide strong supervisory signals for the model to learn how to represent and reason about space.1226

E.1.1. Cognitive Map Generation1227

As discussed in Section C.1, cognitive maps serve as 2D schematic representations of object layouts. For the SFT phase, we1228
needed to generate ground truth cognitive maps that the VLM could learn to produce. Our approach to generating these maps1229
was grounded in the object arrangement annotations described in Section A.1. We aimed for representations that were not only1230
accurate but also in a format that the VLM could feasibly learn to generate.1231

The generation process was automated via a script that processes input JSONL files, where each line item contains scene1232
details including images and, crucially, meta info describing the objects, their potential orientations, and the camera1233
viewpoint setup. For every item, the script first identifies its specific spatial arrangement ”setting” (e.g., ”around,” ”among,”1234
”translation,” or ”rotation”) by parsing the item’s unique ID. Based on this setting, dedicated functions apply a set of predefined1235
rules and heuristics to determine the 2D coordinates (on a 10x10 grid) and facing directions for both the objects and the camera1236
views.1237

For instance, in the ”around” setting, objects (typically 2-4) are placed in a predetermined linear arrangement near the grid’s1238
center (e.g., at coordinates like [4,5], [5,5]), and camera views are positioned at cardinal directions relative to these objects,1239
based on the specific camera angles pertinent to the question. In the ”rotation” setting, the camera is fixed at the center ([5,5]),1240
and its facing direction changes across views, while object positions are defined relative to the camera’s current orientation.1241
Similar rule-based placements are implemented for ”among” (objects in a cross or T-shape with views from specific angles)1242
and ”translation” (objects arranged linearly to depict relationships like ”on” or ”down to”) settings. Object orientations, if1243
applicable, are also assigned based on the input meta info.1244

Finally, the generated layout of objects and views is formatted into a structured JSON string, representing the cognitive1245
map. This JSON cogmap, along with templated instructional prompts (cogmap input for VLM input format guidance1246
and cogmap output for VLM output task description), is added to the original data item. The overall generation logic is1247
summarized in Algorithm 1.1248

E.1.2. Free-Form Reasoning Generation1249

While cognitive maps provide a structured, global understanding of the scene, effective spatial reasoning also involves a1250
procedural, step-by-step thought process. To instill this capability in our VLMs, we generated a dataset of grounded free-form1251
reasoning chains. These chains were designed to verbalize the mental simulation process required to answer the spatial1252
questions in MINDCUBE.1253

The generation of these reasoning chains was closely tied to the question-answer (QA) templates developed in Section 2.1254
For each specific setting (e.g., rotation, among, around), we manually constructed reasoning chains following a consistent set1255
of principles to ensure logical coherence and clear grounding in the provided visual information and the question asked.1256

The core principles guiding the generation of these reasoning chains were:1257

1. Initial Scene Understanding. The reasoning begins by processing each input image individually. This involves identifying1258
key objects visible in that view and noting their explicit spatial relationships with other objects within that same view. This1259
step emulates the initial perceptual intake a human might perform.1260

2. Cross-View Consistency and Environment Integration. After individual view analysis, the reasoning emphasizes that1261
although different images are provided, they all depict the same underlying spatial environment. This is often achieved1262
by identifying and highlighting an anchor object or a consistent set of objects that appear across multiple views, thereby1263
helping to establish a unified mental model of the scene.1264

3. Question-Driven Inference. With a foundational understanding of the scene established from the views, the subsequent1265
steps in the reasoning chain are directly guided by the specifics of the question. This involves: (1) Mental Simulation:1266
If the question involves a hypothetical change in viewpoint or a ”what-if” scenario (e.g., ”what if you turn left?”), the1267
reasoning chain explicitly verbalizes this mental transformation. (2) Perspective Taking: If the question requires adopting a1268
different perspective (e.g., ”from the sofa’s perspective”), the reasoning chain articulates this shift. (3) Spatial Relationship1269
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Algorithm 1 Cognitive Map Generation

Require: Dataset D containing items with spatial arrangement annotations
Ensure: Updated dataset with cognitive maps in JSON format

1: for all item ∈ D do
2: setting ← Extract setting type from item.id
3: Initialize empty cognitive map cogmap

▷ Position objects and views based on setting type
4: if setting = “around” then
5: Position 2-4 objects in a line with coordinates like [4,5], [5,5], etc.
6: Place views at cardinal positions based on camera angles
7: else if setting = “among” then
8: Place center object at [5,5] and surrounding objects at [5,8], [2,5], [5,2], [8,5]
9: Position views based on specified camera angles

10: else if setting = “translation” then
11: Position objects according to their spatial relationships (e.g., “on”, “down”)
12: Place views to highlight these spatial relationships
13: else if setting = “rotation” then
14: Arrange objects based on rotation type (clockwise, counterclockwise, etc.)
15: Fix camera at [5,5] with varying facing directions
16: end if

▷ Add orientation information where applicable
17: for all object ∈ cogmap.objects do
18: if object has orientation then
19: Add facing direction (“up”, “down”, “left”, “right”)
20: end if
21: end for
22: Format cogmap as structured JSON
23: Add formatted cognitive map to item
24: end for
25: return Updated dataset D

Deduction: The chain logically deduces the queried spatial relationship by integrating information from the relevant views, 1270
applying spatial concepts (like left-of, behind, further from), and referencing the established mental model of the scene. 1271
This structured approach to generating reasoning chains aimed to provide clear, step-by-step examples of spatial thought 1272

processes for the VLM to learn from. Figure 10, 11 and 12 show a template example combined with the filled case for 1273
ROTATION, AMONG, AROUND, respectively. 1274

E.2. Detailed Experimental Setup 1275

Table 5. Training hyperparameters for SFT experiments with Qwen2.5-
VL-3B-Instruct.

Parameter Value

Dataset size 10,000 QA pairs
Epochs 3
Learning rate 1e-5
Scheduler Cosine
Fine-tuning type Full-parameter
Batch Size 256
GPUs used 2 × NVIDIA H100
Max image resolution 90,000 pixels
Min image resolution 784 pixels
Model Max Length 8192 tokens
Weight Decay 0
Warmup Ratio 0.03
Max Grad Norm 1
Precision BF16
Optimizer AdamW

In this section, we provide a more granular view of the 1276
experimental parameters employed during the Supervised 1277
Fine-Tuning (SFT) phase of our research. As stated in 1278
the main text, these experiments were designed to teach 1279
Vision-Language Models (VLMs) to build and leverage 1280
internal spatial representations. The base model for these 1281
SFT experiments was Qwen2.5-VL-3B-Instruct. 1282

We utilized a consistent training script for all SFT 1283
experiments, ensuring comparability across different con- 1284
figurations. The primary variation across these runs was 1285
the specific dataset used (datasets variable in the script), 1286
corresponding to the different SFT task configurations dis- 1287
cussed in Section 4.1, such as Aug-CGMap-Out. Other 1288
hyperparameters were kept constant to isolate the effects 1289
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of the different training signals.1290
The core training hyperparameters are summarized1291

in Table 5 and further detailed by the provided training1292
script.1293

The training was conducted using a distributed setup1294
managed by torchrun and leveraged DeepSpeed with1295
a ZeRO Stage 3 optimization strategy for efficient full-parameter fine-tuning. Specifically, we set NPROC PER NODE1296
to 2, utilizing two NVIDIA H100 GPUs, though the script template showed CUDA VISIBLE DEVICES=0,1,2,31297
and NPROC PER NODE defaulting to 4, our table and resource claims point to 2 GPUs being used for these runs. The1298
per device train batch size was set to 4, and with gradient accumulation steps at 32, this resulted in an1299
effective batch size of 256.1300

The learning rate was 1 × 10−5 with a cosine learning rate scheduler and a warmup ratio of 0.03 over 3 training1301
epochs. We enabled full fine-tuning of the vision encoder, MM-MLP, and the LLM components (--tune mm vision1302
True --tune mm mlp True --tune mm llm True). The maximum sequence length for the model was set1303
to 8192 tokens (--model max length 8192), and the maximum image input pixels were capped at 90,0001304
(--max pixels 90000), with a minimum of 784. Gradient checkpointing was enabled to manage memory usage1305
(--gradient checkpointing True). Checkpoints were saved every 5 steps (--save steps 5), keeping a total of1306
12 checkpoints (--save total limit 12).1307

This consistent and robust experimental framework, detailed in Sections 3.1, 3.2, and herein, allowed for a fair comparison1308
of the different SFT strategies aimed at improving the spatial reasoning capabilities of Qwen2.5-VL-3B-Instruct.1309

E.3. VLM Response Examples After SFT for Configurations in Section C.31310

Output for Raw QA: Input Prompt Refer to C.3.1

Answer: D. White headboard
1311

Output for Aug-CGMap-Out: Input Prompt Refer to C.3.5

¡CogMap¿

‘‘‘json
{

"objects": [
{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern", "position": [5, 8]},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 2]},
{"name": "table with cups on it", "position": [8, 5]}

],
"views": [

{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}

]
}
’’’

After generating the cognitive map, I will provide my answer to the question:
¡Answer¿
C. Bed sheet with a floral pattern

1312
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Question: If you are standing at the viewpoint presented in image 4 
and turn 90 degrees to the right, what is to your behind？

Options:
A. Staircases
B. Vanity unit 
C. Urinal 
D. Yellow signboard

:

Rotation – Template Type 2

non-linearrotation agent-agent self perspective

Curated Reasoning Chain

This scene is observed using four images. In image 1, I can see yellow signboard as the main 
object in front of me. In image 2, I can see vanity unit as the main object in front of me. In image 
3, I can see staircases as the main object in front of me. In image 4, I can see urinal as the main 
object in front of me. Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise 
rotation from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from 
image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees from image 1). 
From the perspective of image 4: 'urinal' is in front, 'yellow signboard' is to the right, 'vanity unit' is 
behind, 'staircases' is to the left. After turning 90 degrees to the right: 'yellow signboard' is now in 
front, 'vanity unit' is now to my right, 'staircases' is now behind, 'urinal' is now to my left. The object 
located to my behind is 'staircases'. Therefore, from the viewpoint of image 4, after a mental turn 
of 90 degrees to the right, the object to my behind is 'staircases'. The answer is A. Staircases

Template Reasoning Chain
This scene is observed using four images. In image 1, I can see {object_in_front_view1} as the 
main object in front of me. In image 2, I can see {object_in_front_view2} as the main object in 
front of me. In image 3, I can see {object_in_front_view3} as the main object in front of me. In 
image 4, I can see {object_in_front_view4} as the main object in front of me. Image 1 is the initial 
view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is after 
another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-
degree clockwise rotation (270 degrees from image 1). From the perspective of image 4: 
'{object_in_front_view4}' is in front, '{object_in_front_view1}' is to the right, '{object_in_front_view2}' 
is behind, '{object_in_front_view3}' is to the left. After turning 90 degrees to the right: 
'{object_in_front_view1}' is now in front, '{object_in_front_view2}' is now to my right, 
'{object_in_front_view3}' is now behind, '{object_in_front_view4}' is now to my left. The object 
located to my behind is '{object_in_front_view3}'. Therefore, from the viewpoint of image 4, after 
a mental turn of 90 degrees to the right, the object to my behind is '{object_in_front_view3}'. The 
answer is {option}

Figure 10. Example reasoning chain template for ROTATION

41



ICCV
#2

ICCV
#2

ICCV 2025 Submission #2. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Question: From the viewpoint presented in image 1, what is to the right of the 
black stool ？

Options:
A. Desk 
B. Office Area
C. Grey sofa
D. Two chairs on the corridor

:

Among – Template Type 3

non-linearmeanwhile object-object self perspective

Curated Reasoning Chain

In this scene, I observe four images showing different perspectives. All images feature the black stool as the 
main object. In image 1, I can see black stool in front of the cabinet desk along a corridor. In image 2, I can 
see black stool in front of the office area. In image 3, I can see black stool in front of the two chairs on the 
corridor. In image 4, I can see black stool in front of the grey sofa. To identify the position change across 
views, I focus on the main object's angle variation. Then, I analyze the angles and relative positions of other 
objects on the platform to back up this observation. I understand that: Image 1 is the initial view. Image 2 is 
captured after a 90-degree clockwise rotation from image 1. Image 3 is after another 90-degree clockwise 
rotation (180 degrees from image 1). Image 4 is after a further 90-degree clockwise rotation (270 degrees 
from image 1). Through analyzing these perspective changes, I can construct a complete spatial 
understanding: when I view office area behind black stool in the second view, it implies that in the first view, 
office area is on the right side of black stool. Similarly, when I see grey sofa behind black stool in the fourth 
view, it indicates that in the first view, grey sofa is on the left side of black stool. However, I am still uncertain 
about what lies behind me in the first view. Then, I recognize that I can examine the opposite view to find 
out. The opposite view of the fist view is the third view. As two chairs on the corridor is observed behind black 
stool in the third view, it means that in the first view, two chairs on the corridor is positioned behind me. This 
way, I can fully comprehend the spatial relationships of all objects in the entire scene. So, from the 
perspective of image 1: office area is to the right of black stool, two chairs on the corridor is to my behind, 
grey sofa is to the left of black stool. The answer is B. office area

Template Reasoning Chain
In this scene, I observe four images showing different perspectives. All images feature the {main_object} as 
the main object. In image 1, I can see {main_object} in front of the {context_obj_V1}. In image 2, I can see 
{main_object} in front of the {context_obj_V2}. In image 3, I can see {main_object} in front of the 
{context_obj_V3}. In image 4, I can see {main_object} in front of the {context_obj_V4}. By observing the main 
object and its surroundings across views, and noting the rotational changes, I establish their relationships. 
Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation from image 1. Image 3 is 
after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a further 90-degree 
clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I construct a 
complete spatial understanding: When I view {context_obj_V2} behind {main_object} in the second view, it 
implies that in the first view, {context_obj_V2} is on the right side of {main_object}. Similarly, when I see 
{context_obj_V4} behind {main_object} in the fourth view, it indicates that in the first view, {context_obj_V4} is 
on the left side of {main_object}. To determine what lies behind me in the first view, I examine the opposite 
view, which is the third view. As {context_obj_V3} is observed behind {main_object} in the third view, it means 
that in the first view, {context_obj_V3} is positioned behind me. This way, I can fully comprehend the spatial 
relationships of all objects in the entire scene from the perspective of image 1. So, from the perspective of 
image 1: {context_obj_V2} is to the right of {main_object}, {context_obj_V3} is to my behind, and 
{context_obj_V4} is to the left of {main_object}. The answer is {option}.

Figure 11. Example reasoning chain template for AMONG
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Question: Based on these two views showing the same scene, which 
direction did you move from the first view to the second view？

Options:
A. Forward-left
B. Forward-right

:

Around – Template Type 1

linearmeanwhile agent-agent self perspective

Curated Reasoning Chain
I need to determine how I moved from the viewpoint in image 1 to the viewpoint in image 2. In 
image 1, I can see: grey square planter, white square planter from left to right. In image 2, I can 
clearly see grey square planter. I notice that grey square planter is visible in both images, but from 
different angles. I analyze how the viewpoint changed from image 1 to image 2: The grey square 
planter, which is visible in image 1, becomes more prominent in image 2. This suggests I moved 
forward and toward the left side of the scene. The changes in object visibility and positioning 
between images suggest I moved forward and to the left. Therefore, the answer is A. Forward-left

Template Reasoning Chain
I need to determine how I moved from the viewpoint in image 1 to the viewpoint in image 2. In 
image 1, I can see: {object1_view1}, {object2_view1} from left to right. In image 2, I can clearly 
see {anchor_object_view2}. I notice that {anchor_object_both_views} is visible in both images, 
but from different angles. I analyze how the viewpoint changed from image 1 to image 2: The 
{anchor_object_analysis}, which is visible in image 1, becomes more prominent in image 2. This 
suggests I moved {inferred_movement_description}. The changes in object visibility and 
positioning between images suggest I moved {final_inferred_movement}. Therefore, the answer is 
{option}

Figure 12. Example reasoning chain template for AROUND

Output for Plain-CGMap-Out: Input Prompt Refer to C.3.6

Based on my observations, I will build the cognitive map as follows:
¡CogMap¿

‘‘‘json
{

"white jar": {"position": [5, 5]},
"bed sheet with a floral pattern": {"position": [5, 8]},

1313
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"white headboard": {"position": [2, 5]},
"clothes rack": {"position": [5, 2]},
"table with cups on it": {"position": [8, 5]}

}
’’’

After generating the cognitive map, I will provide my answer to the question:
¡Answer¿
B. Clothes rack

1314

Output for FF-Rsn: Input Prompt Refer to C.3.2

In this scene, I observe four images showing different perspectives. All images feature the white jar as the main
object. In image 1, I can see white jar in front of the table with cups on it. In image 2, I can see white jar in front of
the bed sheet with a floral pattern. In image 3, I can see white jar in front of the clothes rack. In image 4, I can see
white jar in front of the white headboard. To identify the position change across views, I focus on the main object’s
angle variation. Then, I analyze the angles and relative positions of other objects on the platform to back up this
observation. I understand that: Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation
from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I can
construct a complete spatial understanding: when I view bed sheet with a floral pattern behind white jar in the second
view, it implies that in the first view, bed sheet with a floral pattern is on the right side of white jar. Similarly, when I
see white headboard behind white jar in the fourth view, it indicates that in the first view, white headboard is on the left
side of white jar. However, I am still uncertain about what lies behind me in the first view. Then, I recognize that I can
examine the opposite view to find out. The opposite view of the fist view is the third view. As clothes rack is observed
behind white jar in the third view, it means that in the first view, clothes rack is positioned behind me. This way, I can
fully comprehend the spatial relationships of all objects in the entire scene. So, from the perspective of image 4: table
with cups on it is to the right of white jar, bed sheet with a floral pattern is to my behind, clothes rack is to the left of
white jar. So the answer is B. Clothes rack.

1315

Output for Plain-CGMap-Out: Input Prompt Refer to C.3.6

Based on my observations, I will build the cognitive map as follows:
¡CogMap¿

‘‘‘json
{

"white jar": {"position": [5, 5]},
"bed sheet with a floral pattern": {"position": [5, 8]},
"white headboard": {"position": [2, 5]},
"clothes rack": {"position": [5, 2]},
"table with cups on it": {"position": [8, 5]}

}
’’’

After generating the cognitive map, I will provide my answer to the question:
¡Answer¿
B. Clothes rack

1316
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Output for Aug-CGMap-FFR-Out: Input Prompt Refer to C.3.8

¡CogMap¿

‘‘‘json
{

"objects": [
{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern", "position": [5, 8]},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 2]},
{"name": "table with cups on it", "position": [8, 5]}

],
"views": [

{"name": "Image 1", "position": [5, 6], "facing": "up"},
{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}

]
}
’’’

¡Reasoning¿
In this scene, I observe four images showing different perspectives. All images feature the white jar as the main
object. In image 1, I can see white jar in front of the table with cups on it. In image 2, I can see white jar in front of
the clothes rack. In image 3, I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see
white jar in front of the white headboard. To identify the position change across views, I focus on the main object’s
angle variation. Then, I analyze the angles and relative positions of other objects on the platform to back up this
observation. I understand that: Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation
from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after a
further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes, I can
construct a complete spatial understanding: when I view clothes rack behind white jar in the second view, it implies
that in the first view, clothes rack is on the right side of white jar. Similarly, when I see white headboard behind white
jar in the fourth view, it indicates that in the first view, white headboard is on the left side of white jar. However, I am
still uncertain about what lies behind me in the first view. Then, I recognize that I can examine the opposite view to
find out. The opposite view of the fist view is the third view. As bed sheet with a floral pattern is observed behind
white jar in the third view, it means that in the first view, bed sheet with a floral pattern is positioned behind me. This
way, I can fully comprehend the spatial relationships of all objects in the entire scene. So, from the perspective of
image 4: clothes rack is to the right of white jar, bed sheet with a floral pattern is to my behind, table with cups on it is
to the left of white jar. So the answer is A. Table with cups on it.
¡Answer¿
My answer is A. Table with cups on it

1317

E.4. Detailed Graph Metric Results for SFT Graph-Related Experiments 1318

This section provides a detailed look at the Supervised Fine-Tuning (SFT) training dynamics to support the main paper’s 1319
conclusions. The figures below plot key metrics over training steps for four map-generation settings. A comparative analysis 1320
highlights that jointly training map generation and reasoning is the most effective strategy. 1321

When training on map generation alone, as in the Plain-CGMap-Out and Aug-CGMap-Out settings, the graph quality 1322
metrics show rapid convergence. However, the final QA accuracy is limited, reaching 54.38% for Plain-CGMap-Out and 1323
54.19% for Aug-CGMap-Out. 1324

In contrast, the joint training approaches (Plain-CGMap-FFR-Out and Aug-CGMap-FFR-Out), despite a 1325
slower initial convergence on graph quality metrics, ultimately achieve far superior performance in task accuracy. 1326
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The Plain-CGMap-FFR-Out setting proves to be the most effective, reaching a QA Accuracy of 60.00%. The1327
Aug-CGMap-FFR-Out setting also yields strong results, with QA accuracy climbing to about 65%. This demonstrates the1328
superiority of joint training for achieving high performance in both the final task accuracy and the quality of the generated1329
spatial representations.1330
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Figure 13. Training dynamics for the Aug-CGMap-Out setting.
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Figure 14. Training dynamics for the Plain-CGMap-Out setting.

10 20 30 40 50
Steps

0

10

20

30

40

50

60

70

Is
om

or
ph

ic
 R

at
e 

(%
)

Isomorphic Rate

10 20 30 40 50
Steps

40

50

60

70

80

90

O
ve

ra
ll 

Si
m

ila
ri

ty
 (%

)

Overall Similarity

10 20 30 40 50
Steps

50

55

60

65

70

75

80

85

Av
g 

D
ir

. S
im

ila
ri

ty
 (%

)

Average Direction Similarity

10 20 30 40 50
Steps

10

20

30

40

50

60

70

80

90

Av
g 

Fa
ci

ng
 S

im
ila

ri
ty

 (%
)

Average Facing Similarity

10 20 30 40 50
Steps

0

10

20

30

40

50

60

70

Q
A 

Ac
cu

ra
cy

 (%
)

QA Accuracy

Figure 15. Training dynamics for the Aug-CGMap-FFR-Out setting.
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Figure 16. Training dynamics for the Plain-CGMap-FFR-Out setting, showing superior final performance.
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E.5. Which Part of VLM is the Bottleneck for Spatial Understanding? 1331

To develop more efficient fine-tuning strategies, it is crucial to understand which component of a Vision-Language Model 1332
(VLM)—the vision encoder responsible for perception or the Large Language Model (LLM) responsible for reasoning— 1333
presents the primary bottleneck for spatial understanding. To investigate this, we conduct a bottleneck analysis by selectively 1334
fine-tuning different parts of the VLM and observing the impact on performance. 1335

We evaluate four distinct training configurations on the Raw QA task, with results captured at an early stage of training 1336
(step 57) to assess the initial learning dynamics. The configurations are: (1) the baseline performance of the pre-trained model 1337
without any fine-tuning; (2) fine-tuning only the vision encoder while keeping the LLM frozen; (3) fine-tuning only the LLM 1338
while keeping the vision encoder frozen; and (4) the standard approach of fine-tuning all parts of the model. 1339

Table 6. VLM Training Bottleneck Analysis (Step=57, in %). Performance is measured on the MINDCUBE-TINY benchmark under the
Raw QA setting.

Training Method Overall Rotation Among Around

Raw QA (no fine-tuning) 37.81 34.00 36.00 45.20
Freeze LLM (Vision Encoder Only) 37.81 30.50 37.00 45.60
Freeze Vision Encoder (LLM Only) 51.43 34.00 50.00 68.80
Tune All Parts 52.28 34.50 52.50 66.00

The results, presented in Table 6, offer several key insights. First, there is a dramatic performance leap from the no-fine- 1340
tuning baseline (37.81% overall), but only when the language model is trained. Methods involving LLM fine-tuning achieve 1341
over 51% accuracy, underscoring the necessity of adapting the model’s reasoning capabilities. 1342

Most strikingly, the performance bottleneck is almost exclusively concentrated in the LLM. Tuning only the LLM (Freeze 1343
Vision Encoder) yields an overall accuracy of 51.43%, capturing nearly the full performance gain of end-to-end fine- 1344
tuning (52.28%). In stark contrast, tuning only the vision encoder (Freeze LLM) provides no improvement whatsoever over 1345
the baseline (37.81%). This indicates that the bottleneck is not shared between modules. For this spatial task, adapting the 1346
model’s language-based reasoning is critical, while adapting its visual perception is surprisingly ineffective. 1347

Intriguingly, the fact that fine-tuning only the vision encoder fails to improve performance is in itself a significant finding. 1348
A possible explanation is that the pre-trained visual features are already sufficient to extract the necessary objects and their 1349
properties. The core challenge of the task seems to lie not in what is seen, but in how to reason about the spatial relationships 1350
across a series of views—a task primarily handled by the LLM. In conclusion, our analysis suggests that the most significant 1351
gains come from adapting the reasoning module. For efficient tuning, freezing the vision encoder and focusing solely on the 1352
LLM proves to be a highly effective strategy, achieving nearly top-tier performance at a fraction of the computational cost. 1353

E.6. Branching from Raw QA SFT Checkpoint 1354

In our main experiments, we fine-tuned the model for each specific task format starting from the base pre-trained VLM. A 1355
natural question arises: can a curriculum-based SFT approach further improve performance? Specifically, we investigate 1356
whether first fine-tuning the model on the simplest task format—‘Raw QA‘, which only requires outputting the final answer— 1357
can establish a better foundation for learning to leverage more complex reasoning formats. 1358

To test this hypothesis, we conducted a set of branching experiments. We took the checkpoint from the model fully 1359
fine-tuned on the ‘Raw QA‘ task. Then, we used this specialized checkpoint as the initial weights for further fine-tuning on 1360
other scaffolding tasks, namely Aug-CGMap-In, FF Rsn, and Aug-CGMap-FFR-Out. It is important to note that during 1361
this second stage of fine-tuning, the model’s output for all tasks was still constrained to be only the final answer option. This 1362
setup allows us to isolate the effect of the cognitive scaffolds on the model’s internal reasoning process, rather than its ability 1363
to generate complex text. 1364

The results, presented in Table 7, show a consistent and notable improvement across all branched tasks compared to their 1365
counterparts trained from scratch. For example, both Aug-CGMap-In and Aug-CGMap-FFR-Out reach an impressive 1366
overall accuracy of 49.00%. Even the FF Rsn method benefits from this two-stage approach, with its overall accuracy rising 1367
to 46.82%. These findings suggest that a two-stage SFT strategy is highly effective. By first grounding the model in the 1368
fundamental objective of the task (i.e., finding the correct answer) and then teaching it to process and leverage more complex 1369
cognitive scaffolds, we can achieve superior spatial reasoning performance. This indicates that the model, once primed for the 1370
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core task, becomes more adept at utilizing the provided spatial context, even if it does not explicitly generate the reasoning1371
chain or cognitive map.1372

Table 7. Performance of various methods after being fine-tuned from a Raw QA SFT checkpoint. This two-stage training approach led to
performance gains across all methods. All accuracies are reported as percentages (%).

Method Overall Rotation Among Around

Raw QA 46.36 33.50 51.20 46.75
Aug-CGMap-In 49.00 35.50 53.20 50.50
FF Rsn 46.82 37.00 50.60 47.00
Aug-CGMap-FFR-Out 49.00 37.00 53.20 49.75

F. Can Reinforcement Learning Further Refine Spatial Thought Processes?1373

As discussed in the main paper, while Supervised Fine-Tuning (SFT) establishes a strong foundation for spatial reasoning,1374
reinforcement learning (RL) presents an avenue for further optimizing spatial thought processes through outcome-driven1375
feedback. The core inquiry is whether guiding VLMs with rewards can lead to the development of more precise spatial1376
mental models and enhanced reasoning capabilities. This section of the appendix provides a more detailed exposition of the1377
experimental setup employed for the RL phase of our research. Additionally, we present case studies to offer qualitative1378
insights into how RL refines the models’ spatial representations and reasoning chains.1379

F.1. Detailed Experimental Setup1380

For the reinforcement learning (RL) phase of our research, we employed the VAGEN framework. The core policy optimization1381
algorithm used was Group Relative Policy Optimization (GRPO). To ensure consistency and allow for direct comparison with1382
earlier stages of our work, key components from the Supervised Fine-Tuning (SFT) experiments were retained. Specifically,1383
the base Vision-Language Model (VLM) for all RL configurations was Qwen2.5-VL-3B-Instruct, and evaluations were1384
performed on the MINDCUBE-TINY benchmark. All previously established evaluation metrics were also retained.1385

In consideration of computational costs, each distinct RL configuration was trained for a duration of 0.5 epoch. The primary1386
hyperparameters governing the RL training process were set as follows:1387

• Training Batch Size: 321388

• Maximum Prompt Length: 1024 tokens1389

• Maximum Response Length: 512 tokens1390

• Actor Learning Rate: 1× 10−61391

• Critic Learning Rate: 1× 10−51392

• Number of Trajectories per Rollout: 81393

• Maximum Turns per Trajectory: 11394
As detailed in Section 5.1 of the main paper, we investigated three RL task configurations:1395

1. RL-FF-Rsn (from scratch): The Qwen2.5-VL-3B-Instruct model was trained to generate free-form reasoning chains1396
without prior SFT for this specific task format.1397

2. RL-Aug-CGMap-FFR-Out (from scratch): The model was trained to jointly produce augmented cognitive maps and1398
associated free-form reasoning, also starting from the base pre-trained VLM.1399

3. RL-Aug-CGMap-FFR-Out (from SFT): For this configuration, the RL training was initialized using the weights from the1400
strongest performing SFT checkpoint, specifically the Aug-CGMap-FFR-Out SFT model.1401
The reward function was designed to be sparse yet directly indicative of desired behaviors. A reward of +1 was assigned1402

if the model’s output was structurally valid (e.g., the generated cognitive map adhered to the predefined schema). A more1403
significant reward of +5 was given if the model provided the correct final answer to the spatial reasoning question. This1404
dual-component reward was intended to steer the learning process towards generating both well-formed intermediate spatial1405
representations and achieving high end-task accuracy.1406
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F.2. VLM Response Examples After RL for Configurations in Section C.3 1407

1408Output for FF-Rsn: Input Prompt Refer to C.3.2

¡think¿From image 4, the white jar is positioned on a surface with a floral-patterned bed sheet. To the left of the jar,
there is a table with a pink tablecloth featuring heart shapes and a Hello Kitty design. There are also cups on the table.
Therefore, the object to the left of the white jar is the table with the cups.¡/think¿¡answer¿A. Table with cups on
it¡/answer¿
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Output for RL-Aug-CGMap-FFR-Out (from scratch): Input Prompt Refer to C.3.8

¡CogMap¿

{
"objects": [

{"name": "white jar", "position": [265, 436], "facing": "left"}
],
"views": [

{"name": "View/Image 1", "position": [265, 436], "facing": "left"},
{"name": "View/Image 2", "position": [265, 436], "facing": "left"},
{"name": "View/Image 3", "position": [265, 436], "facing": "left"},
{"name": "View/Image 4", "position": [265, 436], "facing": "left"}

]
}

¡Your cognitive map¿
The white jar is located in the center of the 10x10 grid, facing to the left. The clothes rack is to the left of the white jar,
as seen in the image 2 view. The bed sheet with a floral pattern is located to the right of the white jar, as seen in the
image 1 view. The white headboard is not visible in any of the provided images.
¡Reasoning¿
Based on the provided images, the white jar is located in the center of the 10x10 grid, facing to the left. The clothes
rack is to the left of the white jar, as seen in the image 2 view. The bed sheet with a floral pattern is located to the right
of the white jar, as seen in the image 1 view. The white headboard is not visible in any of the provided images.
¡Answer¿
Therefore, my answer is A. Table with cups on it.
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Output for RL-Aug-CGMap-FFR-Out (from SFT): Input Prompt Refer to C.3.8

¡CogMap¿

‘‘‘json
{

"objects": [
{"name": "white jar", "position": [5, 5]},
{"name": "bed sheet with a floral pattern", "position": [5, 8]},
{"name": "white headboard", "position": [2, 5]},
{"name": "clothes rack", "position": [5, 2]},
{"name": "table with cups on it", "position": [8, 5]}

],
"views": [

{"name": "Image 1", "position": [5, 6], "facing": "up"},
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{"name": "Image 2", "position": [4, 5], "facing": "right"},
{"name": "Image 3", "position": [5, 4], "facing": "down"},
{"name": "Image 4", "position": [6, 5], "facing": "left"}

]
}
‘‘‘

¡Reasoning¿
In this scene, I observe four images showing different perspectives. All images feature the white jar as the main
object. In image 1, I can see white jar in front of the clothes rack. In image 2, I can see white jar in front of the table
with cups on it. In image 3, I can see white jar in front of the bed sheet with a floral pattern. In image 4, I can see
white jar in front of the white headboard. To identify the position change across views, I focus on the main object’s
angle variation. Then, I analyze the angles and relative positions of other objects on the platform to back up this
observation. I understand that: Image 1 is the initial view. Image 2 is captured after a 90-degree clockwise rotation
from image 1. Image 3 is after another 90-degree clockwise rotation (180 degrees from image 1). Image 4 is after
a further 90-degree clockwise rotation (270 degrees from image 1). Through analyzing these perspective changes,
I can construct a complete spatial understanding: when I view table with cups on it behind white jar in the second
view, it implies that in the first view, table with cups on it is on the right side of white jar. Similarly, when I see white
headboard behind white jar in the fourth view, it indicates that in the first view, white headboard is on the left side
of white jar. However, I am still uncertain about what lies behind me in the first view. Then, I recognize that I can
examine the opposite view to find out. The opposite view of the fist view is the third view. As bed sheet with a floral
pattern is observed behind white jar in the third view, it means that in the first view, bed sheet with a floral pattern is
positioned behind me. This way, I can fully comprehend the spatial relationships of all objects in the entire scene. So,
from the perspective of image 4: clothes rack is to the right of white jar, table with cups on it is to my behind, bed
sheet with a floral pattern is to the left of white jar. So the answer is C. Bed sheet with a floral pattern.
¡Answer¿
My answer is C. Bed sheet with a floral pattern
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