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Abstract

Neural Architecture Search (NAS) has become a popular method for discover-1

ing effective model architectures, especially for target hardware. As such, NAS2

methods that find optimal architectures under constraints are essential. In our3

paper, we propose LayerNAS to address the challenge of multi-objective NAS4

by transforming it into a combinatorial optimization problem, which effectively5

constrains the search complexity to be polynomial.6

LayerNAS rigorously derives its method from the fundamental assumption that7

modifications to previous layers have no impact on the subsequent layers. When8

dealing with search spaces containing L layers that meet this requirement, the9

method performs layerwise-search for each layer, selecting from a set of search10

options S. LayerNAS groups model candidates based on one objective, such11

as model size or latency, and searches for the optimal model based on another12

objective, thereby splitting the cost and reward elements of the search. This13

approach limits the search complexity to O(H · |S| · L), where H is a constant set14

in LayerNAS.15

Our experiments show that LayerNAS is able to consistently discover superior mod-16

els across a variety of search spaces in comparison to strong baselines, including17

search spaces derived from NATS-Bench, MobileNetV2 and MobileNetV3.18

1 Introduction19

With the surge of ever-growing neural models used across all ML-based disciplines, the efficiency20

of neural networks is becoming a fundamental factor in their success and applicability. A carefully21

crafted architecture can achieve good quality while maintaining efficiency during inference. However,22

designing optimized architectures is a complex and time-consuming process – this is especially23

true when multiple objectives are involved, including the model’s performance and one or more24

cost factors reflecting the model’s size, Multiply-Adds (MAdds) and inference latency. Neural25

Architecture Search (NAS), is a highly effective paradigm for dealing with such complexities. NAS26

automates the task and discovers more intricate and complex architectures than those that can be27

found by humans. Additionally, recent literature shows that NAS allows to search for optimal models28

under specific constraints (e.g., latency), with remarkable applications on architectures such as29

MobileNetV3 [15], EfficientNet [34] and FBNet [36].30

Most NAS algorithms encode model architectures using a list of integers, where each integer31

represents a selected search option for the corresponding layer. In particular, notice that for a32

given model with L layers, where each layer is selected from a set of search options S, the search33

space contains O(|S|L) candidates with different architectures. This exponential complexity presents34

a significant efficiency challenge for NAS algorithms.35
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Figure 1: Comparison with baseline models and NAS methods.

In this paper, we present LayerNAS, an algorithm that addresses the problem of Neural Architecture36

Search (NAS) through the framework of combinatorial optimization. The proposed approach decou-37

ples the constraints of the model and the evaluation of its quality, and explores the factorized search38

space more effectively in a layerwise manner, reducing the search complexity from exponential to39

polynomial.40

LayerNAS rigorously derives the method from the fundamental assumption: optimal models when41

searching for layeri can be constructed from one of the models in layeri−1. For search spaces that42

satisfy this assumption, LayerNAS enforces a directional search process from the first layer to the43

last layer. The directional layerwise search makes the search complexity O(C · |S| · L), where C is44

the number of candidates to search per layer.45

For multi-objective NAS problems, LayerNAS treats model constraints and model quality as separate46

metrics. Rather than utilizing a single objective function that combines multi-objectives, LayerNAS47

stores model candidates by their constraint metric value. LetMi,h be the best model candidate for48

layeri with cost = h. LayerNAS searches for optimal models under different constraints in the next49

layer by adding the cost of the selected search option for next layer to the current layer, i.e.,Mi,h.50

This transforms the problem into the following combinatorial optimization problem: for a model with51

L layers, what is the optimal combination of options for all layers needed to achieve the best quality52

under the cost constraint? If we bucketize the potential model candidates by their cost, the search53

space is limited to O(H · |S| · L), where H is number of buckets per layer. In practice, capping the54

search at 100 buckets achieves reasonable performance. Since this holds H constant, it makes the55

search complexity polynomial.56

Our contributions can be summarized as follows:57

• We propose LayerNAS, an algorithm that transforms the multi-objective NAS problem to a58

Combinatorial Optimization problem. This is a novel formulation of NAS.59

• LayerNAS is directly designed to tackle the search complexity of NAS, and reduce the60

search complexity from O(|S|L) to O(H · |S| · L), where H is a constant defined in the61

algorithm.62

• We demonstrate the effectiveness of LayerNAS by identifying high-performing model63

architectures under various Multiply-Adds (MAdds) constraints, by searching through64

search spaces derived from MobileNetV2 [30] and MobileNetV3 [15].65

2 Related Work66

The survey by [12] categorizes methods for Neural Architecture Search into three dimensions: search67

space, search strategy, and performance estimation strategy. The formulation of NAS as different68

2



Figure 2: Illustration of the LayerNAS Algorithm described in Algorithm 1. For each layer: (1) select
a model candidate from current layer and generate children candidates; (2) filter out candidates not in
the target objective range; (3) update the model in the bucket if there’s a candidate with better quality;
and finally, move to the next layer.

problems has led to the development of a diverse array of search algorithms. Bayesian Optimization69

is first adopted for hyper-parameter tuning [3, 9, 13, 20]. Reinforcement Learning is utilized for70

training an agent to interact with a search space [45, 27, 46, 19]. Evolutionary algorithms [24, 29]71

have been employed by encoding model architectures to DNA and evolving the candidate pool.72

ProgressiveNAS [22] uses heuristic search to gradually build models by starting from simple and73

shallow model architectures and incrementally adding more operations to arrive at deep and complex74

final architectures. This is in contrast to LayerNAS, which iterates over changes in the layers of a full75

complex model.76

Recent advancements in mobile image models, such as MobileNetV3 [15], EfficientNet [34], FB-77

Net [36], are optimized by NAS. The search for these models is often constrained by metrics such78

as FLOPs, model size, latency, and others. To solve this multi-objective problem, most NAS al-79

gorithms [33, 5] design an objective function that combines these metrics into a single objective.80

LEMONADE [11] proposes a method to split two metrics, and searches for a Pareto front of a family81

of models. Once-for-All [4] proposes progressive shrinking algorithm to efficiently find optimal82

model architectures under different constraints.83

Larger models tend to have better performance compared to smaller models. However, the increased84

size of models also means increased computational resource requirement. As a result, the optimization85

of neural architectures within constrained resources is an important and meaningful aspect of NAS86

problems, which can be solved as multi-objective optimization [16]. There is increasing interest in87

treating NAS as a compression problem [43, 42] from an over-sized model. These works indicate88

that compressing with different configurations on each layer leads to a model better than uniform89

compression. Here, NAS can be used to search for optimal configurations [14, 25, 35].90

The applicability of NAS is significantly influenced by the efficiency of its search process. One-shot91

algorithms [23, 5, 1, 2] provide a novel approach by constructing a supernet from the search space to92

perform more efficient NAS. However, this approach has limit on number of branches in supernet due93

to the constraints of supernet size. The search cost is not only bounded by the complexity of search94

space, but also the cost of training under "train-and-eval" paradigm. Training-free NAS [26, 6, 44, 32]95

breaks this paradigm by estimating the model quality with other metrics that are fast to compute.96

However, the search quality heavily relies on the effectiveness of the metrics.97

3 Problem Definition98

Most NAS algorithms do not differentiate the various types of NAS problems. Rather, they employ99

a single encoding of the search space with a general solution for the search process. However, the100

unique characteristics of NAS problems can be leveraged to design a tailored approach. We categorize101

NAS problems into three major types:102
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• Topology search: the search space defines a graph with multiple nodes. The objective is103

to identify an optimal topology for connecting nodes with different operations. This task104

allows for the exploration of novel architectures.105

• Size search or compression search: the search occurs on a predefined model architecture106

with multiple layers. Each layer can be selected from as a set of search options. Empirically,107

the best-performing model is normally the one with the most parameters per layer. Therefore,108

in practice, we aim to search for the optimal model under certain constraints. NATSBench109

size search [10] provides a public dataset for this type of task. MobilNetV3 [15], Efficient-110

Net [34], FBNet [36] also establish the search space in this manner. This problem can also111

be viewed as a compression problem [14], as reducing the layer size serves as a means of112

compression by decreasing the model size, FLOPs and latency.113

• Scale search: model architectures are uniformly configured by hyper-parameters, such114

as number of layers or size of fully-connected layers. This task views the model as a115

holistic entity and uniformly scales it up or down, rather than adjusting individual layers or116

components.117

This taxonomy illustrates the significant variation among NAS problems. Rather than proposing118

a general solution to address all of them, we propose to tackle with search spaces in a layerwise119

manner. Specifically, we aim to find a model with L layers. For each layeri, we select from a set of120

search options Si. A model candidateM can be represented as a tuple with size L: (s1, s2, ..., sL).121

si ∈ Si is a selected search option on layeri. The objective is to find an optimal model architecture122

M = (s1, s2, ..., sL) with the highest accuracy:123

argmax
(s1,s2,...,sL)

Accuracy(M) (1)

4 Method124

We propose LayerNAS as an algorithm that leverages layerwise attributes. When searching models125

Mi on layeri, we are searching for architectures in the form of (s1..i−1, xi, oi+1..L). s1..i−1 are126

the selected options for layer1..i−1, and oi+1..L are the default, predefined options. xi is the search127

option selected for layeri, which is the current layer in the search. In this formulation, only layeri128

can be changed, all preceding layers are fixed, and all succeeding layers are using the default option.129

In topology search, the default option is usually no-op; in size search, the default option can be the130

option with most computation.131

LayerNAS operates on a search space that meets the following assumption, which has been implicitly132

utilized by past chain-structured NAS techniques [22, 33, 15].133

Assumption 4.1. The optimal modelMi on layeri can be constructed from a model m ∈ Mi−1,134

where Mi−1 is a set of model candidates on layeri−1.135

This assumption implies:136

• Enforcing a sequential search process is possible when exploring layeri because improve-137

ments to the model cannot be achieved by modifying layeri−1.138

• The information for finding an optimal model architecture on layeri was collected when139

searching for model architectures on layeri−1.140

• Search spaces that are constructed in a layerwise manner, such as those in size search141

problems discussed in Section 3, can usually meet this assumption. Each search option can142

completely define how to construct a succeeding layer, and does not depend on the search143

options in previous layers.144

• It’s worth noting that not all search spaces can meet the assumption. Succeeding layers145

may be coupled with or affect preceding layers in some cases. In practice, we transform the146

search space in Section 5 to ensure that it meets the assumption.147

4.1 LayerNAS for Topology Search148

The LayerNAS algorithm is described by the pseudo code in Algorithm 1. Ml is a set of model candi-149

dates on layerl. Ml,h is the model on layerl mapped to h ∈ H, a lower dimensional representation.150

H is usually a finite integer set, so that we can index and store models.151
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Algorithm 1 LayerNAS algorithm
Inputs: L (num layers), R (num searches per layer), T (num models to generate in next layer)
l = 1
M1 = {∀M1}
repeat

for i = 1 to R do
Ml = select(Ml)
for j = 1 to T do
Ml+1 = apply_search_option(Ml, Sl+1)
h = ϕ(Ml+1)
accuracy = train_and_eval(Ml+1)
if accuracy > Accuracy(Ml+1,h) then
Ml+1,h =Ml+1

end if
end for

end for
l = l + 1
if l == L then
l = 1

end if
until no available candidates

Some functions can be customized for different NAS problems with a-priori knowledge:152

• select: samples a model from a set of model candidates in the previous layer Ml. It could153

be a mechanism of evolutionary algorithm [29] or a trained predictor [22] to select most154

promising candidates. The method will also filter out model architectures that we do not155

need to search, usually a model architecture that is invalid or known not to generate better156

candidates. This can significantly reduce the number of candidates to search.157

• apply_search_option: applies a search option from Sl+1 onMl to generateMl+1. We158

currently use random selection in the implementation, though, other methods could lead to159

improved search option.160

• ϕ : M → H maps model architecture in M to a lower dimensional representation H. ϕ161

could be an encoded index of model architecture, or other identifiers that group similar162

model architectures. We discuss this further in 4.2. When there is a unique id for each163

model, LayerNAS will store all model candidates in M.164

In this algorithm, the total number of model candidates we need to search is
∑L

i=1 |Mi| · |Si|. It has165

a polynomial form, but |ML| = O(|S|L) if we set ϕ(M) as unique id of models. This does not limit166

the order of |ML| to search. For topology search, we can design a sophisticated ϕ to group similar167

model candidates. In the following discussion, we will demonstrate how to lower the order of |ML|168

in multi-objective NAS.169

4.2 LayerNAS for Multi-objective NAS170

LayerNAS is aimed at designing an efficient algorithm for size search or compression search problems.171

As discussed in Section 3, such problems satisfy Assumption 4.1 by nature. Multi-objective NAS172

usually searches for an optimal model under some constraints, such as model size, inference latency,173

hardware-specific FLOPs or energy consumption. We use “cost” as a general term to refer to these174

constraints. These “cost” metrics are easy to calculate and can be determined when the model175

architecture is fixed. This is in contrast to calculating accuracy, which requires completing the model176

training. Because the model is constructed in a layer-wise manner, the cost of the model can be177

estimated by summing the costs of all layers.178

5



Hence, we can express the multi-objective NAS problem as,179

argmax
(s1,s2,...,sL)

Accuracy(ML)

s.t.
L∑

i=1

Cost(si) ≤ target
(2)

where Cost(si) is the cost of applying option si on layeri.180

We introduce an additional assumption by considering the cost in Assumption 4.1:181

Assumption 4.2. The optimal model Mi with cost = C when searching for layeri can be con-182

structed from the optimal modelMi−1 with cost = C − Cost(si) from Mi−1.183

In this assumption, we only keep one optimal model out of a set of models with similar costs. Suppose184

we have two models with the same cost, butMi has better quality thanM′i. The assumption will be185

satisfied if any changes on following layers toMi will generate a better model than making the same186

change toM′i.187

By applying Assumption 4.2 to Equation (2), we can formulate the problem as combinatorial188

optimization:189

argmax
xi

Accuracy(Mi)

s.t.
i−1∑
j=1

Cost(s1..i−1, xi, oi+1,L) ≤ target

where Mi = (s1..i−1, xi, oi+1..L),Mi−1 = (s1..i−1, oi..L) ∈Mi−1,h′

(3)

This formulation decouples cost from reward, so there is no need to manually design an objective190

function to combine these metrics into a single value, and we can avoid tuning hyper-parameters of191

such an objective. Formulating the problem as combinatorial optimization allows solving it efficiently192

using dynamic programming. Ml,h can be considered as a memorial table to record best models on193

layerl at cost h. For layerl,Ml generates theMl+1 by applying different options selected from194

Sl+1 on layerl+1. The search complexity is O(H · |S| · L).195

We do not need to store all Ml,h candidates, but rather group them with the following transformation:196

197

ϕ(Mi) =

⌊
Cost(Mi)−minCost(Mi)

maxCost(Mi)−minCost(Mi)
×H

⌋
(4)

where H is the desired number of buckets to keep. Each bucket contains model candidates with costs198

in a specific range. In practice, we can set H = 100, meaning we store optimal model candidates199

within 1% of the cost range.200

Equation (4) limits |Mi| to be a constant value since H is a constant. minCost(Mi) and201

maxCost(Mi) can be easily calculated when we know how to select the search option from Si+1..SL202

in order to maximize or minimize the model cost. This can be achieved by defining the order within203

Si. Let si = 1 represent the option with the maximal cost on layeri, and si = |S| represent the204

option with the minimal cost on layeri. This approach for constructing the search space facilitates an205

efficient calculation of maximal and minimal costs.206

The optimization applied above leads to achieving polynomial search complexity O(H · |S| · L)207

. O(|M|) = H is upper bound of the number of model candidates in each layer, and becomes a208

constant after applying Equation (4). |S| is the number of search options on each layer.209

LayerNAS for Multi-objective NAS does not change the implementation of Algorithm 1. Instead, we210

configure methods to perform dynamic programming with the same framework:211

• ϕ: groups Mi by their costs with Equation (4)212

• select: filters outMl if allMl+1 constructed from it are out of the range of target cost. This213

significantly reduces the number of candidates to search.214
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• In practice, Assumption 4.2 is not always true because accuracy may vary in each training215

trial. The algorithm may store a lucky model candidate that happens to get a better accuracy216

due to variation. We store multiple candidates for each h to reduce the problem from training217

accuracy variation.218

5 Experiments219

5.1 Search on ImageNet220

Search Space: we construct several search spaces based on MobileNetV2, MobileNetV2 (width221

multiplier=1.4), MobileNetV3-Small and MobileNetV3-Large. For each search space, we set similar222

backbone of the base model. For each layer, we consider kernel sizes from {3, 5, 7}, base filters and223

expanded filters from a set of integers, and a fixed strides. The objective is to find better models with224

similar MAdds of the base model.225

To avoid coupling between preceding and succeeding layers, we first search the shared base filters in226

each block to create residual shortcuts, and search for kernel sizes and expanded filters subsequently.227

This ensures the search space satisfy Assumption 4.1.228

We estimate and compare the number of unique model candidates defined by the search space and229

the maximal number of searches in Table 1. In the experiments, we set H = 100, and store 3 best230

models with same h-value. Note that the maximal number of searches does not mean actual searches231

conducted in the experiments, but rather an upper bound defined by the algorithm.232

A comprehensive description of the search spaces and discovered model architectures in this experi-233

ment can be found in the Appendix for further reference.234

Table 1: Comparison of model candidates in the search spaces

Search Space
Target
MAdds

# Unique
Models

# Max
Trials

MobileNetV3-Small 60M 5.0e+ 20 1.2e+ 5
MobileNetV3-Large 220M 4.8e+ 26 1.5e+ 5

MobileNetV2 300M 5.3e+ 30 1.4e+ 5
MobileNetV2 1.4x 600M 1.6e+ 39 2.0e+ 6

Search, train and evaluation:235

During the search process, we train the model candidates for 5 epochs, and use the top-1 accuracy on236

ImageNet as a proxy metrics. Following the search process, we select several model architectures237

with best accuracy on 5 epochs, train and evaluate them on 4x4 TPU with 4096 batch size (128238

images per core). We use RMSPropOptimizer with 0.9 momentum, train for 500 epochs. Initial239

learning rate is 2.64, with 12.5 warmup epochs, then decay with cosine schedule.240

Results241

We list the best models discovered by LayerNAS, and compare them with baseline models and242

results from recent NAS works in Table 2. For all targeted MAdds, the models discovered by243

LayerNAS achieve better performance: 69.0% top-1 accuracy on ImageNet for 61M MAdds, a244

1.6% improvement over MobileNetV3-Small; 75.6% for 229M MAdds, a 0.4% improvement over245

MobileNetV3-Large; 77.1% accuracy for 322M MAdds, a 5.1% improvement over MobileNetV2;246

and finally, 78.6% accuracy for 627M MAdds, a 3.9% improvement over MobileNetV2 1.4x.247

Note that for all of these models, we include squeeze-and-excitation blocks [17] and use Swish248

activation [28], in order to to achieve the best performance. Some recent works on NAS algorithms,249

as well as the original MobileNetV2, do not use these techniques. For a fair comparison, we also250

list the model performance after removing squeeze-and-excitation and replacing Swish activation251

with ReLU. The results show that the relative improvement from LayerNAS is present even after252

removing these components.253
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Table 2: Comparison of models on ImageNet
Model Top1 Acc. Params MAdds

MobileNetV3-Small† [15] 67.4 2.5M 56M
MNasSmall [33] 64.9 1.9M 65M

LayerNAS (Ours)† 69.0 3.7M 61M
MobileNetV3-Large†[15] 75.2 5.4M 219M

LayerNAS (Ours) † 75.6 5.1M 229M
MobileNetV2?[30] 72.0 3.5M 300M

ProxylessNas-mobile?[5] 74.6 4.1M 320M
MNasNet-A1 [33] 75.2 3.9M 315M

FairNAS-C?[8] 74.7 5.6M 325M
LayerNAS-no-SE(Ours)? 75.5 3.5M 319M

EfficientNet-B0 [34] 77.1 5.3M 390M
SGNAS-B [18] 76.8 - 326M
FairNAS-C†[8] 76.7 5.6M 325M

GreedyNAS-B†[41] 76.8 5.2M 324M
LayerNAS (Ours)† 77.1 5.2M 322M

MobileNetV2 1.4x?[30] 74.7 6.9M 585M
ProgressiveNAS?[22] 74.2 5.1M 588M

Shapley-NAS?[37] 76.1 5.4M 582M
MAGIC-AT?[38] 76.8 6M 598M

LayerNAS-no-SE (Ours)? 77.1 7.6M 598M
LayerNAS (Ours) † 78.6 9.7M 627M

? Without squeeze-and-excitation blocks.
† With squeeze-and-excitation blocks.

5.2 NATS-Bench254

The following experiments compare LayerNAS with others NAS algorithms on NATS-Bench [10].255

We evaluate NAS algorithms from these three perspectives:256

• Candidate quality: the quality of the best candidate found by the algorithm, as can be257

indicated by the peak value in the chart.258

• Stability: the ability to find the best candidate, after running multiple searches and analyzing259

the average value and range of variation.260

• Efficiency: The training time required to find the best candidate. The sooner the peak261

accuracy candidate is reached, the more efficient the algorithm.262

NATS-Bench topology search263

NATS-Bench topology search defines a search space on 6 ops that connect 4 tensors, each op has264

5 options (conv1x1, conv3x3, maxpool3x3, no-op, skip). It contains 15625 candidates with their265

number of parameters, FLOPs, accuracy on Cifar-10, Cifar-100 [21], ImageNet16-120 [7].266

In Table 3, we compare with recent state-of-the-art methods. Although training-free NAS has267

advantage of lower search cost, LayerNAS can achieve much better results.268

NATS-Bench size search269

NATS-Bench size search defines a search space on a 5-layer CNN model, each layer has 8 options270

on different number of channels, from 8 to 64. The search space contains 32768 model candidates.271

The one with the highest accuracy has 64 channels for all layers, we can refer this candidate as “the272

largest model”. Instead of searching for the best model, we set the goal to search for the optimal273

model with 50% FLOPs of the largest model.274

Under this constraints for size search, we implement popular NAS algorithms for comparison, which275

are also used in the original benchmark papers [40, 10]: random search, proximal policy optimization276

(PPO) [31] and regularized evolution (RE) [29]. We conduct 5 runs for each algorithm, and record277

the best accuracy at different training costs.278

LayerNAS treats this as a compression problem. The base model, which is the largest model, has 64279

channels on all layers. By applying search options with fewer channels, the model becomes smaller,280
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faster and less accurate. The search process is to find the optimal model with expected FLOPs. By281

filtering out candidates that do not produce architectures falling within the expected FLOPs range,282

we can significantly reduce the number of candidates that need to be searched.283

Table 3: Comparison on NATS-Bench topology search. Mean and deviation of test accuracy on 5
runs.

Cifar10 Cifar100 ImageNet16-120 Search cost (sec)

RS 92.39±0.06 63.54±0.24 42.71±0.34 1e+5
RE [29] 94.13±0.18 71.40±0.50 44.76±0.64 1e+5

PPO [31] 94.02±0.13 71.68±0.65 44.95±0.52 1e+5
KNAS [39] 93.05 68.91 34.11 4200
TE-NAS [6] 93.90±0.47 71.24±0.56 42.38±0.46 1558

EigenNas [44] 93.46±0.02 71.42±0.63 45.54±0.04 -
NASI [32] 93.55±0.10 71.20±0.14 44.84±1.41 120

FairNAS [8] 93.23±0.18 71.00±1.46 42.19±0.31 1e+5
SGNAS [18] 93.53±0.12 70.31±1.09 44.98±2.10 9e+4
LayerNAS 94.34±0.12 73.01±0.63 46.58±0.59 1e+5

Optimal test accuracy 94.37 73.51 47.31

Table 4: Comparison on NATS-Bench size search. Average on 5 runs.

Cifar10 Cifar100 ImageNet16-120
Training time (sec) 2e+5 4e+5 6e+5

Target mFLOPs 140 140 35

Validation Test Validation Test Validation Test
RS 0.8399 0.9265 0.5947 0.6935 0.3638 0.4381

RE [29] 0.8440 0.9282 0.6057 0.6962 0.3770 0.4476
PPO [31] 0.8432 0.9283 0.6033 0.6957 0.3723 0.4438

LayerNAS 0.8440 0.9320 0.6067 0.7064 0.3812 0.4537
Optimal validation 0.8452 0.9264 0.6060 0.6922 0.3843 0.4500

Optimal test 0.8356 0.9334 0.5870 0.7086 0.3530 0.4553

6 Conclusion and Future Work284

In this research, we propose LayerNAS that formulates Multi-objective Neural Architecture Search285

to Combinatorial Optimization. By decoupling multi-objectives into cost and accuracy, and leverages286

layerwise attributes, we are able to reduce the search complexity from O(|S|L) to O(H · |S| · L).287

Our experiment results demonstrate the effectiveness of LayerNAS in discovering models that achieve288

superior performance compared to both baseline models and models discovered by other NAS289

algorithms under various constraints of MAdds. Specifically, models discovered through LayerNAS290

achieve top-1 accuracy on ImageNet of 69% for 61M MAdds, 75.6% for 229M MAdds, 77.1%291

for 322M MAdds, 78.6% for 627M MAdds. Furthermore, our analysis reveals that LayerNAS292

outperforms other NAS algorithms on NATS-Bench in all aspects including best model quality,293

stability and efficiency.294

While the current implementation of LayerNAS has shown promising results, several current limita-295

tions that can be addressed by future work:296

• LayerNAS is not designed to solve scale search problems mentioned in Section 3, because297

many hyper-parameters of model architecture are interdependent in scale search problem,298

which contradicts the statement in Assumption 4.1.299

• One-shot NAS algorithms have been shown to be more efficient. We aim to investigate the300

potential of applying LayerNAS to One-shot NAS algorithms.301
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