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ABSTRACT

Recent advances in semi-supervised learning (SSL) have achieved remarkable
success in learning with partially labeled in-distribution data. However, many
existing SSL models fail to learn on unlabeled data sampled from novel seman-
tic classes and thus rely on the closed-set assumption. In this work, we adopt
the open-set SSL setting and target a pragmatic but under-explored Generalized
Category Discovery (GCD) setting. The GCD setting aims to categorize unla-
beled training data coming from known or unknown novel classes by leveraging
the information in the labeled data. We propose a two-stage Contrastive Affinity
Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address
this challenging problem. Our approach discovers reliable affinities between la-
beled and unlabelled samples to learn better clusters for both known and novel
classes. Specifically, we first embed learnable visual prompts into a pre-trained
visual transformer (ViT) backbone and supervise these prompts with an auxiliary
loss to reinforce semantic discriminativeness and learn generalizable affinity rela-
tionships. Secondly, we propose an affinity-based contrastive loss based on an iter-
ative semi-supervised affinity propagation process which can further enhance the
benefits of prompt supervision. Extensive experimental evaluation demonstrates
that our method is effective in discovering novel classes even with limited anno-
tations and surpasses the current state-of-the-art on six benchmark datasets (with
more than 10% on CUB and StanfordCars, and a significant margin on ImageNet-
100). Our code and models will be publicly released.

1 INTRODUCTION

The deep neural networks have demonstrated favorable performance in the Semi-Supervised Learn-
ing (SSL) setting (Van Engelen & Hoos, 2020; Zhai et al., 2019; Xie et al., 2020; Hijazi et al., 2015).
Some recent works can even achieve comparable performance to their fully-supervised counterparts
using few annotations for image recognition (Tarvainen & Valpola, 2017; Xie et al., 2020; Cai et al.,
2022). However, these approaches heavily rely on the closed-world assumption that unlabeled data
share the same underlying class label space as the labeled data (Yang et al., 2021; Geng et al., 2020).
In many realistic scenarios, this assumption does not hold true because of the dynamic nature of real-
world tasks where novel classes can appear in addition to known classes. Furthermore, exhaustive
annotations will incur exorbitant costs, and sometimes it is intractable to cover all classes.

In contrast to SSL, generalized category discovery (GCD) (Vaze et al., 2022) is a nascent but more
pragmatic and challenging setting due to the semantic shift, i.e., unlabeled data can be sampled from
other unseen distributions (Yang et al., 2021). To be more specific, GCD intends to categorize the
unlabeled data given the information of some labeled data, but the unlabeled data contains novel
classes that are not included in the labeled dataset. The key challenge in GCD is to discriminate
among novel classes when only the ground truth of known classes is given in the training set. There-
fore, properly guiding the model to discover latent semantic information in the unlabeled set with
novel classes is a crucial and non-trivial problem.

A recent seminal work, GCD (Vaze et al., 2022), takes advantage of the large-scale pre-trained visual
transformer (ViT), and learns robust clusters for known and novel classes with a semi-supervised
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contrastive learning phase on downstream target datasets. However, we discover that the remarkable
potential of pre-trained ViT is actually suppressed by this practice, due to the inherent limitations
of its self-supervised contrastive learning on the unlabeled set, i.e., considering as false negatives
different unlabeled samples from the same underlying class. Empirically, abundant false negatives
in contrastive training can deteriorate the compactness and purity of semantic clustering (Huynh
et al., 2022; Khorasgani et al., 2022). We argue that abundant reliable pseudo-positive pairs can be
mined by iterative affinity learning and favorably facilitate semantic clustering.

Meanwhile, although a frozen pre-trained backbone in GCD can alleviate overfitting on known
classes (Cao et al., 2021; Vaze et al., 2022), this constrains the network to adapt itself to down-
stream datasets, and to learn beneficial semantic discriminativeness. Although visual prompt tuning
(VPT) for ViTs (Jia et al., 2022) manifests effectiveness in fully-supervised learning, we observe no
superiority of VPT compared with fine-tuning the last block, especially on small datasets.

To address the above limitations, we propose Prompt-based Contrastive Affinity Learning (Prompt-
CAL). Our approach aims to discover both old and novel semantic clusters in the unlabeled data
by simultaneously learning discriminative prompts and better feature representations via reliable
affinity information in sample neighborhoods. Our proposed Contrastive Affinity Learning (CAL)
and discriminative Multi-Prompt Clustering (MPC) achieve a synergistic effect. Firstly, CAL se-
lects abundant reliable pseudo-positive pairs based on the proposed reliable affinity graph, further
enhancing the semantic discriminability of the prompts. Secondly, MPC refines ViT semantic rep-
resentation for better pseudo-labeling on refined affinity graphs. In this process, as model represen-
tation is iteratively refined, we can obtain higher quality pseudo-positives for further self-training as
well as obtaining higher-quality clusters from the unlabelled data.

Our contributions can be summarized in three folds: (1) We propose a two-stage contrastive affinity
learning framework, PromptCAL, to solve the generalized category discovery problem. (2) We
propose contrastive affinity learning that selects reliable pseudo-positive pairs by learning from con-
structed affinity graphs based on a semi-supervised affinity propagation strategy. (3) We demon-
strate that our PromptCAL can achieve significantly better performance on multiple benchmarks
compared with previous state-of-the-art, thereby showing its effectiveness.

2 METHOD

The challenging aspect of GCD in comparison to SSL setting is the requirement of clustering novel
semantics under both semantic shifts and missing annotations (Yang et al., 2021). However, existing
methods (Vaze et al., 2022; Han et al., 2020; Zhao & Han, 2021; Zhong et al., 2021) cannot reliably
harness the massive pre-trained knowledge in self-supervised learning. Moreover, recent SoTAs
(Vaze et al., 2022; Cao et al., 2021) lack suitable strategies to adapt the pre-trained backbone to
learn discriminative semantic information without overfitting on known classes.

To this end, we propose a prompt-based contrastive affinity learning method, consisting of two syn-
ergistic learning objectives: multi-prompt clustering (MPC) and contrastive affinity learning (CAL)
(the basic formulation in Sec. 2.1). Specifically, in the first stage, we learn warm-up representation
(in Sec. 2.2) for further tuning. In the second stage for CAL, we discover reliable pseudo-positives
on affinity graphs in the embedding space based on proposed semi-supervised affinity generation
(SemiAG) (in Sec. 2.3). Next, we propose our task-aligned contrastive affinity loss (in Sec. 2.4)
based on SemiAG and a graph sampling technique.

2.1 FORMULATION AND PRELIMINARIES

Before introducing our method, we formulate the GCD problem and present some preliminaries.

Problem Definition. Our setting follows GCD (Vaze et al., 2022). The task of Generalized Category
Discovery (GCD) assumes that the training dataset D = Dl

⋃
Du comprises two subsets: a labeled

set Dl = {xxxi, yi}N1
i=1 ⊂ Xl × Yl with its label space Yl = Ckwn, and an unlabeled set Du =

{xxxi}N2
i=1 ⊂ Xu with its underlying label space Yu = C = Ckwn

⋃
Cnew. Here, C, Ckwn, and Cnew

denote the label set for all, known, and new classes, respectively. Following (Vaze et al., 2022), we
assume the knowledge of |C| and access to a validation set where only samples from Yl are labeled.
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Notation. We take a self-supervised ImageNet pre-trained ViT, DINO (Caron et al., 2021), as our
backbone (Sharir et al., 2021). Then, we denote the deep visual prompt-adapted ViT backbone (Jia
et al., 2022) as f(·|θ, θP) parameterized by prompts θP and last block weights θ. For each mini-batch
B, there are two augmented views for each sample. Given a sample vector x ∈ B, we can extract
its embedding h = f(x|θ, θP) ∈ H and project h into feature vector z = g(h|θH) ∈ Z through a
projection head g(·|θH) with parameters θH. Here, H,Z denote embedding and feature spaces.

Contrastive Loss. To simplify notations of PromptCAL, we define an extended contrastive loss
based on standard supervised contrastive loss (Khosla et al., 2020). Given a query vector tq and a
set of key vectors Tk, we define:

Lcon(tq,Tk; τ,P,N ) = − 1

|P(tq)|
∑

t+k ∈P(tq)

exp(
tq·t+k

τ )∑
ta∈A(tq)

exp(
tq·ta
τ )

(1)

where τ is the temperature parameter of contrastive loss, and · denotes the cosine similarity opera-
tion. Then P(tq) and N (tq) represent the positive and negative sets of tq , respectively. We define
anchor set as A(tq) = P(tq)

⋃
N (xq). Here, tq and elements of Tk are L2 normalized.

2.2 WARM-UP WITH MULTI-PROMPT CLUSTERING

Although computation overhead gets reduced by only tuning the last block in (Vaze et al., 2022), it
restricts the backbone from learning better semantically discriminative representations and adapting
well to diverse downstream datasets, e.g., low-resolution images or fine-grained datasets. Mean-
while, we discover that naively adapting backbone with visual prompts (VPT) (Jia et al., 2022)
overfits small dataset (refer to ablations on CUB-200 in section 3.5).

Motivated by (Lee et al., 2015; Wang et al., 2018), we propose multi-prompt clustering (MPC)
to regularize and force prompts to learn semantically discriminative features with a task-related
auxiliary loss. Suppose there are NP tunable prompts before each ViT block. We assign the first
NCLU input prompts, at the last ViT block, as [CLU] prompts which are supervised by a task-related
clustering loss in both training stages. All the remaining prompts are automatically tuned with no
supervision, which provides the backbone with extra adaptability.

Specifically, we average the L2-normalized embeddings from all [CLU] into an ensembled embed-
ding hCLU and project it through an auxiliary head into zCLU. Eventually, we conduct MPC on hCLU
or zCLU by the same task loss on h or z, but weighted by a hyper-parameter γ.

To enhance the initial representation for contrastive affinity learning, we apply warm-up training
to adapt the pre-trained backbone to downstream target datasets and to learn [CLS] and [CLU] for
next-stage training. The overall training objective in this stage is formulated as:

L1(x) = LCLS
semi(z) + γLCLU

semi (zCLU) (2)

where LCLS
semi and LCLU

semi represent the semi-supervised contrastive loss (SemiCL) on [CLS] and its
MPC counterpart on [CLU], respectively, and γ is the MPC weight. Further, based on extended
contrastive loss (Eq. 1), the SemiCL for token z is written as:

LCLS
semi(z) = (1− α)Lcon

(
z,ZB; τ,Pself,Nself

)
+ αLcon

(
z,ZBl ; τ,Psup,Nsup

)
I
(
x ∈ Bl

)
(3)

where I is an indicator function. The first and second terms denote supervised and self-supervised
contrastive loss on projected features of all and only labeled batches ZB and ZBl , respectively.
Pself(z) and Psup(z) respectively denote the embeddings of augmented counterparts and samples in
same class, while Nself(z) and Nsup(z) denote the negative samples. Similarly, we can define the
variables in the MPC loss function LCLU

semi .

2.3 SEMI-SUPERVISED AFFINITY GENERATION

Pseudo-labeling techniques, e.g., nearest neighbors or pair-wise predictions as positives (Zhong
et al., 2021; Cao et al., 2021; Fini et al., 2021; Han et al., 2020), in recent works are not robust to
semantic shifts (Oliver et al., 2018). To address this issue, we propose a semi-supervised affinity
generation (SemiAG) method with the assumption that local neighbors share the same semantics.
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Figure 1: An intuitive example for SemiAG. Each step of the SemiAG process can either remove some false
positives or retrieve new positives for the query embedding (in dark green). The distance between each pair is
proportional to the cosine distance in the embedding space.

Specifically, we first construct an consensus affinity graph in H based on each neighborhood statis-
tics (Premachandran & Kakarala, 2013). Then, we conduct affinity propagation on the entire graph
to calibrate affinities. Lastly, we incorporate the semi-supervised priori from Dl into the graph. We
explain these steps below.

Consensus KNN graph. Given an embedding graph GH = (V, E) whose node set contains NG

embeddings as V = {hi}NG
i=1 and edge set as E = {ei,j = hi ·hj}NG

i,j=1, we build a consensus graph
Gc = (gi,j)

NG
i,j=1 via consensus statistics. Each edge gi,j is defined as:

gi,j =

{|{hc|hi,hj ∈ OK(hc)),∀hc ∈ V}| i ̸= j

0 i = j,
(4)

where, OK(hc) = argtopKhj
({hj · hc|hj ∈ V}) denotes the K-neighborhood of hc ∈ V . Then,

we can convert it into a probabilistic matrix G̃c by the row normalization.

Affinity propagation with priori. Furthermore, we leverage the graph diffusion (Yang et al., 2012)
on the probabilistic matrix G̃c to propagate local affinities along multi-hop paths to characterize
higher-order structural information. Specifically, we apply TPG diffusion algorithm (Yang et al.,
2012), which iteratively computes the diffused graph G̃d as:

G̃
(t+1)
d = G̃cG̃

(t)
d G̃T + I, (5)

where I is an identity matrix, and T is the total diffusion step. G̃
(t)
d denotes the t-th step diffused

graph and set G̃(0)
d = G̃. We denote the final diffused graph as G̃d.

However, the consensus graph and affinity propagation neglect abundant prior information in the
labeled data. To address the issue, we convert sample-wise class labels to pairwise constraints to
constrain G̃d. We set the edge Gb(i, j) = 1 two nodes have the same labels as yi = yj and prune
the edge if yi ̸= yj , Meanwhile, we sparsify G̃d with a pre-defined quantile q , then it is denoted as:

Gb(i, j) =

{
0 yi ̸= yj

1 (yi = yj) ∨
(
G̃d(i, j) > q

) (6)

On generated binarized affinity graph Gb, all positive pairs are taken as pseudo-labels for further
training. Note that we compute the binarized graphs for both [CLS] and [CLU].

2.4 CONTRASTIVE AFFINITY LEARNING

Figure 2: The overall framework of con-
trastive affinity learning. g(·), gCLU(·),
gT(·), gT,CLU(·) denote the [CLS] projec-
tion head, [CLU] projection head of the stu-
dent and those of teacher.

In this subsection, we show how to use the generated
pseudo labels to update the models.

Graph sampling with memory. One practical issue
arises: SemiAG on mini-batches is not effective due to
sampling insufficiency; while conducting SemiAG offline
on the entire dataset is time-consuming and memory in-
efficiency (Iscen et al., 2019). To strike a balance be-
tween the graph size and computation resources, we dy-
namically construct a sub-graph G′

H sub-sampled from
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the entire graph GH with an extra embedding memory
bank M and an exponentially moving averaged (EMA)
teacher fT, gT, like MoCo (He et al., 2020). In each batch,
the EMA teacher produces stable embeddings, which are
enqueued to the first-in-first-out memory. The sub-graph
G′

H is constructed by the embeddings in the memory and teacher embeddings in the current batch
as ZT,B = M

⋃
{hT = fT(x)|x ∈ B}. In this way, we can apply SemiAG on the sub-graph on the

fly with adjustable memories.

Contrastive affinity loss. Given the sub-graph G′
H and its corresponding binarized graph G′

b by
SemiAG, we formulate a contrastive affinity loss to refine the semantic representation as:

LCLS
CAL(hi, G

′
b) = Lcon(hi,M∪ZT,B, τa,Pa(hi),Na(hi)) (7)

where τa is a temperature parameter, and the positive set Pa contains the teacher embedding of the
generated counterparts and the embedding of samples with the same pseudo label in the memory
bank. Different from SemiCL in Eq. 3, CAL loss focuses on embedding space H rather than feature
space Z . But both of them are conducted on both [CLU] and [CLS] tokens.

Besides, we also apply the MPC loss in Eq. 3 in this contrastive affinity learning process to enhance
the representation ability of prompts. To increase the consistency between the teacher and student,
we modify the feature space from the all batch ZB into the teacher and memory space ZT,B. Please
refer to the Appendix for more details.

3 EXPERIMENTS

3.1 DATASETS

We evaluate PromptCAL on six benchmarks, i.e., CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), ImageNet-100 (Krizhevsky et al., 2017), CUB-200 (Wah et al., 2011),
StandfordCars (Krause et al., 2013), and Aircraft (Maji et al., 2013). A summary of all datasets is
listed in Appendix A. First, we randomly split each dataset by known/novel classes using pre-defined
|Ckwn| (#Known Classes in Table 7). Then, for each sampled known class, we further randomly
sample a pre-defined ratio of samples into Dl. All unlabeled samples constitute Du. We set labeling
ratio |Dl|

|D| = 50% for all known classes on all datasets for main comparison in Sec. 3.4, following
(Vaze et al., 2022). We adopt the same dataset split of Dl as in (Vaze et al., 2022). Meanwhile, we
also present results in more challenging GCD setting with smaller |Ckwn| and |Dl|

|D| in Sec. 6.

3.2 EVALUATION PROTOCOL

We follow the evaluation protocol in GCD (Vaze et al., 2022). For all models except for ORCA
(Cao et al., 2021), we perform SemiKMeans (Vaze et al., 2022) on the predicted embeddings to get
the cluster assignment for each sample. Then, all cluster prototypes are mapped through the optimal
assignment solved by Hungarian algorithm (Wright, 1990) to their ground-truth classes. We report
the standard accuracy scores on Known, Novel, and All classes. For PromptCAL, we report scores
with standard clustering accuracy on the predicted embeddings from the student model. Addition-
ally, we adapt and reproduce ORCA (Cao et al., 2021) in our setting and conduct comparisons in
section 3.5. Since ORCA is a classification model, we evaluate it by the classification accuracy on
known classes, and clustering accuracy on novel and overall classes. More details about adapted
ORCA are given in Appendix B.

3.3 IMPLEMENTATION DETAILS

For our PromptCAL, we set α = 0.35 and τ = 1.0 following GCD (Vaze et al., 2022) for both
stages. We freeze the first 11 blocks and only tune the last block together with learnable prompts.
Regrading prompt tuning, we pre-append NP = 5 prompts at each layer and assign first NCLU = 2
out of 5 as [CLU] prompts in all of our experiments. In the second training stage, we initialize
the ViT backbone and two projection heads with the warm-up representation, and set β = 0.6,
τa = 0.07, memory size |MCLU| = |M| = 4096, neighborhood size K = |M|/(2|C|), nega-
tive sample number to be 1024 for all datasets, unless specified. For SemiAG parameters, we set
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threshold q to be 80% quantile value over the above-average non-zero affinity distribution for all
fine-grained datasets, and 50% for all generic datasets. We empirically find that setting step T = 1
in SemiAG works well in most cases. Our teacher model is initialized by the student weights at the
beginning, and we conduct momentum updates with a momentum factor of 0.999 at each iteration.
During the inference, the [CLS] representation of the student model is for prediction. More detailed
implementation details and baseline setups are discussed in Appendix B.1.

3.4 MAIN RESULTS

In this section, we extensively conduct the performance comparison of PromptCAL against our
baseline (GCD), and several adapted SoTA in other related settings, on six benchmarks.

Evaluation on generic datasets. We first evaluate PromptCAL on three generic datasets, i.e.,
CIFAR-10/100, and ImageNet-100 in Table 1. The results in Table 1 show that our PromptCAL
achieves the state-of-the-art performance and significantly surpasses our baseline method GCD on
all three datasets (∼ 6% on CIFAR-10, ∼ 6% on CIFAR-100, and ∼ 8% on ImageNet-100 for
All classes improvements) as well as Novel Category Discovery (NCD) SoTA methods i.e., UNO+
(Fini et al., 2021) and RankStats+ (Han et al., 2020)). Besides, compared to GCD, PromptCAL
manifests its advantage over all methods on New classes without sacrificing the performance on
Known classes, i.e., about 1% on CIFAR-10, 10% improvement on CIFAR-100 and ImageNet-100.

Comparing the 1st stage and 2nd stage PromptCAL, we observe large performance boost. In ad-
dition, we also notice that both stages of PromptCAL have significant contributions to the final
performance on the generic dataset, e.g., the first stage improves ∼ 3% and ∼ 2.6% over GCD on
CIFAR-100 and ImageNet-100, respectively; while the second stage further improves by 2.9% and
10%. To summarize, above results in Table 1 validate the effectiveness of PromptCAL on generic
datasets.

Method CIFAR-10 CIFAR-100 ImageNet-100

Classes All Known New All Known New All Known New

KMeans 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8

UNO+ 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
GCD 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3

PromptCAL (1st Stage) 97.1 97.7 96.7 76.0 80.8 66.6 76.7 90.5 69.8
PromptCAL 97.5 97.3 97.6 78.9 80.3 76.1 82.0 93.7 76.1

Table 1: Evaluation on generic datasets. Scores reported in accuracy.

Evaluation on fine-grained datasets. We also report results on fine-grained datasets to demon-
strate the PromptCAL effectiveness. The KMeans (Arthur & Vassilvitskii, 2006) represents running
KMeans++ Algorithm on DINO representation, and thus its performance reflects the representa-
tion adaptability and learning difficulty of pre-trained DINO on downstream datasets. Apparently,
compared with generic datasets in Table 2, category discovery on fine-grained datasets is more chal-
lenging. Despite the challenging nature, our PromptCAL consistently exceeds RankStats, UNO, and
GCD on All and New classes by more than 10% overall accuracy on CUB-200 and StanfordCars.

Different from the results on generic datasets (in Table 1), experimental results on fine-grained
datasets display that the highest performance gain of PromptCAL originates from the second stage
training. Noticeably, the warm-up stage performance of PromptCAL even drops compared with
GCD on CUB-200 and Aircraft-100; while, CAL in 2nd stage achieves consistent improvement on
all datasets. These results validate our initial hypothesis and our motivation of proposing SemiAG
and CAL, i.e., properly generating reliable pseudo-labels for further training is crucial.

3.5 ABLATION AND ANALYSIS

In this section, we conduct extensive ablation experiments on challenging CUB-200 dataset to draw
interesting conclusions which reveal the contributions of each PromptCAL component. Together
with ablation results, we present some in-depth analysis on the superiority of SemiAG and respon-
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Method CUB-200 StanfordCars-196 Aircraft-100

All Known New All Known New All Known New

KMeans 34.3 38.9 32.1 12.8 10.6 13.8 12.9 12.9 12.8
RankStats+ 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8

UNO+ 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
GCD 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9

PromptCAL (1st Stage) 51.1 55.4 48.9 42.6 62.8 32.9 44.5 44.6 44.5
PromptCAL 62.1 66.0 60.1 51.9 69.4 43.5 48.3 47.9 48.5

Table 2: Evaluation on fine-grained datasets. Scores reported in accuracy.

sibility of visual prompts in PromptCAL. Further, we explore how PromptCAL performs in more
challenging scenarios of decreased labeling ratios and increased openess, i.e., more classes are un-
labeled and novel, which are closer to real-world applications. Finally, we analyze the effect and
sensitivity of hyper-parameters of PromptCAL in Appendix D, and present some visualization re-
sults in Appendix D.3.

cKNN AP SemiPriori SemiCL All Known New

% % % % 56.2 65.4 51.6
! ! ! % 60.5 65.0 58.3
! ! % ! 61.3 67.5 58.2
! % ! ! 57.0 64.1 53.4
! ! ! ! 62.1 66.0 60.1

Table 3: Ablation study on effectiveness of SemiAG
in the second-stage on CUB-200 dataset. Here,
cKNN: consensus KNN graph; AP: affinity prop-
agation; SemiPriori: semi-supervised prior knowl-
edge; SemiCL: semi-supervised contrastive loss in
projected feature space on [CLS] and [CLU]. Scores
reported in clustering accuracy. Each component fa-
vorably contributes to the overall performance.

Prompt SemiCL (CLU) LCLU
CAL CAL stage All Known New

% % % % 51.3 56.6 48.7
! % % % 51.1 55.4 48.9
! ! % ! 59.4 69.2 54.6
! % ! ! 60.2 65.1 57.8
% ! ! ! 61.3 68.3 57.8
! ! ! ! 62.1 66.0 60.1

Table 4: Ablation study on effectiveness of prompt-
related components on CUB-200 dataset. Here,
Prompt: whether the backbone has prompts;
SemiCL (CLU): semi-supervised contrastive loss on
[CLU] prompts; LCLU

CAL: CAL loss on [CLU]; CAL
stage: second-stage training. Scores reported in
clustering accuracy. Each component favorably con-
tributes to the overall performance gain.

Effectiveness of contrastive affinity learning. As mentioned in main results (section 3.4), the
SemiAG dominates the large improvements of PromptCAl on most datasets. We begin by presenting
the ablation experiments related to contrastive affinity learning in the second stage in Table 3.

In the table, the 1st row denotes the performance of using naive KNN as pseudo-positives for CAL
loss; while, the last row represents our full PromptCAL setup. The 2nd, 3rd, and 4th row signify
PromptCAL without affinity propagation (section 2.3), semi-supervised prior knowledge (section
2.3), and semi-supervised contrastive loss, respectively.

From Table 3, we can observe that incorporating each component has a clear contribution: (a) Affin-
ity propagation is the most consequential to final performance (improving by 5.1% on All and 6.7%
on New), which proves the importance of counteracting adverse effects of false negatives in con-
trastive loss by retrieving abundant reliable positives. (b) Naive KNN perform significantly poorer
than SemiAG, due to its susceptibility to noisy neighborhoods. (c) Retaining semicl is beneficial,
and we postulate it is because the self-supervised loss can push away noisy pseudo-positive samples
as well as prevent overfitting on Dl or representation collapse. (d) SemiPriori further benefits overall
performance by ∼ 1% on All and 1.8% on New, which manifests the importance of incorporating
the prior knowledge from Dl for better affinity learning.

We further provide figures of memory precision and recall of different psuedo-labeling strategies
during contrastive affinity learning (in Fig. 3). We can observe that SemiAG and SemiAG w/o
SemiPriori has balanced precision and recall; while, KNN and SemiAG w/o AP suffer from ei-
ther low precision or low recall. We argue that both precision and recall matters in CAL method.
Moreover, SemiAG has higher precision and recall than SemiPriori due to priori constraint (eq. 6).

Role of multi-prompt clustering. Table 4 presents the ablation results for prompt-related compo-
nents in PromptCAL. The 1st and 2nd rows denote the GCD baseline and our warm-up model with
[CLU] prompts. We note that visual prompts make no significant difference to the performance.
However, we argue that it is due to lack of semantic discriminative supervision. Specifically, by ob-
serving PromptCAL without semantic discrimination supervision (3rd row) underperforms Prompt-
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CAL without sample discrimination supervision (4th row) by 0.8% on All and 3.2% on New, we
can infer that semantic discriminativeness is critical to learning novel classes. Furthermore, super-
vised visual prompts are beneficial to discovering novel classes, since PromptCAL surpasses its
counterpart without prompts and related MPC loss (5th row) on New by 2.3%. To summarize, MPC
plays a beneficial and auxiliary role in learning about novel classes.

Figure 3: Memory precision and recall curves of
SemiAG (red), SemiAG without SemiPriori (green),
SemiAG without AP (blue), and naive KNN (purple),
recorded at each training epoch. Corresponding to the
5th, 3rd, 4th, and 1st row in Table 3. For all setups,
we keep all other hyperparameters fixed. Precision
and recall are computed with ground-truth labels of
embeddings in the [CLS] memory bank. The curves
illustrate that both high precision and high recall mat-
ter in contrastive affinity learning.

Figure 4: t-SNE (Van der Maaten & Hinton, 2008)
visualization of ViT embeddings on CIFAR-10 test
set for PromptCAL at the 2nd stage (left), Prompt-
CAL at the 1st stage (middle), and warm-up train-
ing with naive VPT without MPC (right). Here,
[CLS], [CLU], [CLU]∗, and [PP] denote embed-
dings from ViT class token, our defined clustering
prompts, ensembled unsupervised prompts, and a
randomly picked and automatically learned prompt
without supervision (for PromptCAL stage-2, it is un-
supervised in both stages), respectively. The clus-
tering quality of embeddings shows that MPC re-
inforces the semantic discriminativeness of [CLU],
same holds for [PP] despite no supervision. Each
component favorably contributes to the overall per-
formance.

To vividly illustrate this point, we present the t-SNE (Van der Maaten & Hinton, 2008) visualization
results in Fig. 4. Comparing VPT without MPC with PromptCAL at 1st stage, we can observe
that (a) CLU supervised by MPC can learn more semantically meaningful embeddings, in sharp
contrast to automatically learned prompts in VPT. (b) Though not supervised, automatically learned
prompts PP in PromptCAL 1st learn semantically enhanced structures, benefiting from MPC on
CLU. Moreover, by comparing PromtCAL at 2nd stage and PromptCAL 1st, we can conclude that:
(c) [CLU] supervised by CAL loss can learn better semantic clustering than those supervised by
SemiCL, and better benefit [PP] prompts. (d) [CLS] of PromptCAL 2nd learns more compact and
better-separated clusters compared with that of PromptCAL 1st. Therefore, we can conclude that
the second stage enhances the prompts’ potential using CAL loss, which further enables prompts
and CAL to synergically improve the overall performance.

Comparing with other related SoTA. In Table 5, we compare our PromptCAL with the recent
SoTA on CIFAR-10/100 (Krizhevsky et al., 2009) dataset in another related setting, i.e., open-world
semi-supervised learning. Here, we report reproduced results of the original ORCA (with ResNet).
We also adapt ORCA with a pre-trained DINO backbone and only tune the last block, denoted as
ORCA (DINO), to make the comparison fair. Firstly, the performance of our reproduced ORCA
(DINO) surpasses its original version by a large margin on both datasets, which manifests the ben-
efits of using large-scale pre-trained ViT. Secondly, our PromptCAL outperforms the competitive
ORCA (DINO) on both datasets with notable advantages on New classes on CIFAR-100 with 23%.
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Method CIFAR-10 CIFAR-100

Classes All Known New All Known New

KMeans 83.6 85.7 82.5 52.0 52.2 50.8
GCD 91.5 97.9 88.2 73.0 76.2 66.5

ORCA∗ (ResNet) 89.4 87.9 90.2 54.9 66.3 43.3
ORCA∗ (DINO) 96.5 96.3 96.6 67.3 83.9 53.1

PromptCAL (1st Stage) 97.1 97.7 96.7 76.0 80.8 66.6
PromptCAL 97.5 97.3 97.6 78.9 80.3 76.1

Table 5: Evaluation on generic datasets. Scores report in accuracy. Asterisk (*) denotes that we adapt the
method on our dataset split.

Method |Ckwn| = 50, |Dl|
|D| = 0.1 |Ckwn| = 25, |Dl|

|D| = 0.5 |Ckwn| = 10, |Dl|
|D| = 0.5

All Known New All Known New All Known New

GCD 60.2 68.9 55.8 56.8 67.6 55.0 48.3 65.1 47.3
ORCA∗ (ResNet) 39.4 55.1 31.2 37.0 64.1 31.7 30.1 64.3 27.1
ORCA† (DINO) 41.8 80.1 49.8 23.0 87.2 25.3 9.7 92.6 10.8

PromptCAL (1st Stage) 62.7 74.7 56.6 60.2 70.7 58.5 48.7 68.4 47.6
PromptCAL 68.9 77.5 64.7 65.7 76.9 63.8 53.2 79.3 51.7

Table 6: Ablation study on few-annotation GCD on CIFAR-100 dataset. Scores reported in accuracy.

Compared with GCD and ORCA, we conclude that the second-stage training of PromptCAL ex-
hibits great superiority in discovering novel classes.

Toward few-annotation GCD. To further evaluate our PromptCAL against three state-of-the-art
counterparts, GCD, ORCA (ResNet), and ViT-adapted ORCA, on more challenging few-annotation
setups on CIFAR-100 dataset, i.e., fewer classes and samples are annotated. We here consider three
setups in Table 6: (1) known class number |Ckwn| = 50 with labeling ratio equals to 10%; (2)
|Ckwn| = 25 with labeling ratio equals to 50%; (3) |Ckwn| = 10 with labeling ratios equals to 50%.

From the Table 6, PromptCAL is robust to both low-labeling ratios and few-class scenarios, out-
competing all SoTA methods with huge margins. Practically, it posits more challenges to models
to infer new semantic clustering when the known class number deceases due to the semantic shift
issue. However, PromptCAL is still able to maitain high performance, achieving 51.7% accuracy
on new classes and surpassing GCD with ∼ 5% on overall accuracy. Besides, we realize that the
classification-based model, ORCA, achieves much poorer in few-class scenarios, which, we specu-
late, is because classfication model cannot effectively mine new semantic information and severely
overfit on Known classes. In contrast, clustering models, GCD and our PromptCAL, can learn
generalizable representation through the contrastive loss during training. This inherent representa-
tion learning behavior empower the network in generalized category discovery. Since our proposed
SemiAG in PromptCAL can effectively calibrate the learned representation with an affinity self-
learning process, it gains larger edges oon New classes.

4 CONCLUSION

In this paper, we propose a two-stage Contrastive Affinity Learning method with auxiliary visual
Prompts for generalized category discover. Specifically, we first embed learnable visual prompts to
reinforce semantic discriminativeness of method. Then we apply an iterative semi-supervised affin-
ity propagation process to mine positive samples of both prompts and class tokens and optimize them
with an affinity-based contrastive loss. Experimentally, we evaluated our method on six generalized
category discover benchmarks and demonstrated its superiority with significant improvement, e.g.,
+10% on CUB and StanfordCarson CUB and StanfordCars and a large margin on ImageNet100.

REPRODUCIBILITY STATEMENT

We introduce the datasets, experimental settings, and the details of our method on Section 3.1, 3.2,
3.3 and Appendix B and will make the code available after publication.
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A DATASET DETAILS

We evaluate PromptCAL on six benchmarks, i.e., CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), ImageNet-100 (Krizhevsky et al., 2017), CUB-200 (Wah et al., 2011),
StandfordCars (Krause et al., 2013), and Aircraft (Maji et al., 2013). The profile of six benchmark
datasets is displayed in Table 7.

Dataset CIFAR-10 CIFAR-100 ImageNet-100 CUB-200 Aircraft StanfordCars

#Images in D 50k 50k 127.2k 6k 6.6k 8.1k
#Classes 10 100 100 200 100 196
#Known Classes 5 80 50 100 50 98

Table 7: Benchmark datasets for our performance evaluation.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETERS, ARCHITECTURE AND LOSSES

We use a 12-layer base Vision Transformer (Sharir et al., 2021) with a patch size of 16 (ViT-B/16) as
our backbone in all of our experiments. The backbone weight is initialized with pre-trained DINO
(Caron et al., 2021) on the ImageNet-1K dataset. We use two randomly initialized DINO heads for
the projection on [CLS] and [CLU], separately. In both stages, we train ViT with a batch size of

12
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128 for all datasets and with standard SGD with a momentum of 0.9, a weight decay of 5 × 10−5,
and an initial learning rate of 0.1.

In the 1st stage training of PromptCAL, we adopt an unsupervised knowledge distillation loss with
a loss weight of 0.5 (which gradually decays to zero in the first 5 training epochs) on ImageNet-1K.
We empirically find this loss has no significant effect on the final performance. Considering the
potential effect of randomly initialized visual prompts, we add this loss.

To adapt ORCA (Cao et al., 2021) to our setting, we run ORCA (ResNet) on our dataset splits
without any modification. For ORCA (DINO), we replace their ResNet backbone with the same
pre-trained DINO. We also freeze the first 11 layers of DINO, and use the same optimizer, training
schedules for ORCA (DINO), following the practice of PromptCAL and GCD.

For GCD (Vaze et al., 2022), we rigorously follow its original setup. Same as (Vaze et al., 2022), our
data augmentation strategy includes: resizing to 224× 224, random horizontal and vertical flipping,
and color jittering. Moreover, we adopt the checkpoint with the best Acc on Known classes on the
validation set in the first training stage, following GCd (Vaze et al., 2022); for the second stage, we
use best CVI score on the validation set for best checkpointing, following (Han et al., 2019).

C RELATED WORK

C.1 CATEGORY DISCOVERY

Here, we first distinguish Genearlized Category Discovery (GCD) (Vaze et al., 2022) from Novel
Category Discovery (NCD) (Zhong et al., 2021; Hsu et al., 2017; ?) and Semi-Supervised Learning
(SSL) (Van Engelen & Hoos, 2020). NCD aims to categorize the unlabeled samples coming from
novel classes given some labeled data from known classes; while SSL focuses on learning with
in-distribution unlabeled data. Differently, GCD more challenging and general in that it further
looses the constraint and assumes that unlabeled data can come from both known and novel classes
(Vaze et al., 2022). Most methods for category discovery focus on learning the robust representation
under semantic and distribution shifts. For example, Earlier work formulate category discovery
into deep transfer learning (Han et al., 2019; Hsu et al., 2019). Recently, self-supervised learning
based methods show great success, such as SCAN (Van Gansbeke et al., 2020) and ORCA (Cao
et al., 2021). SCAN (Van Gansbeke et al., 2020) first proposes to leverage the self-supervised
pre-trained representation for unsupervised category discovery. ORCA (Cao et al., 2021) utilizes
contrastive learning (Chen et al., 2020) pretrained model for knowledge transfer. The most related
work to ours is GCD (Vaze et al., 2022), which utilizes semi-supervised contrastive learning to learn
robust semantic clustering using large-scale pre-trained ViT. However, the remarkable potential of
the pre-trained model is actually suppressed by this practice, since it only applies self-supervised
contrastive learning on the unlabeled set to update weights. Unlike previous work, our PromptCAL
simultaneously learns discriminative prompts and better feature representations via reliable affinity
information in sample neighborhoods.

C.2 VISUAL PROMPT LEARNING

Prompt learning originates from the field of NLP (Liu et al., 2021), which focuses on the efficient
adaptation of the large-scale pre-trained language model. It is a competitive product of the “pre-
training, fine-tuning” framework, by introducing a textual prompt to reformulate the downstream
tasks into the form of the pretrained task (Lester et al., 2021; Li & Liang, 2021). It shows strong
potential in data-efficient learning (Zhou et al., 2021; Gao et al., 2021) and attracts wide attention
from the field of visual understanding recently (Jia et al., 2022). Visual prompt learning (VPT) (Jia
et al., 2022) is the first to validate the effectiveness and potential of prompt tuning in the field of
computer vision. Specifically, it adds some extra tokens in each block as prompts and tunes these
prompts with downstream objectives while freezing the original pretrained models. VPT shows
improved performance on general image classification tasks than entire finetuning and only adapting
the last block, but its advantage seems not remarkable on small datasets. However, based on our
experimental discoveries, we found no significant benefits brought by GCD in category discovery
problem. Alternatively, we intend to propose the multi-prompt clustering learning to refine the visual
prompt representation which indirectly benefits discriminative semantic clustering. Thus, our work
differs GCD in different contexts and the learning goal.
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C.3 POSITIVE MINING

Previous researches prove the effectiveness of pseudo-labeling in the open-set setting (Cao et al.,
2021; Han et al., 2020; Van Gansbeke et al., 2020; Fini et al., 2021; Zhao & Han, 2021; Zhong et al.,
2021). Many existing methods in related settings propose to learn pairwise similarity from labeled
data to generate pseudo-labels on unlabeled data (Cao et al., 2021; Han et al., 2020; Van Gansbeke
et al., 2020). MCL (Hsu et al., 2019) first proposes to utilize pairwise labels instead of class labels to
solve the multi-class classification problem in various settings. Meanwhile, there is a line of recent
works which utilize pseudo-labeling technique to discover positive pairs likely to share the same
class. RankStats and RankStats++ (Han et al., 2020) propose to use ranking statistics to fine robust
positive samples. NCL (Zhong et al., 2021) utilize k-Nearest Neighbors for each sample. UNO
(Fini et al., 2021) formulates NCD as a classification problem and generates pseudo-labels by cross-
view predictions. Our method differs from previous work in proposing a reliable pseudo-labeling
method based on affinity graph for contrastive learning. We notice that (Iscen et al., 2019) proposes
to utilize a graph diffusion method to solve the semi-supervised classification problem. But, there
are several major differences with our work: first, our setting is open-set and thus more challenging
than semi-supervised learning; second, we conduct efficient diffusion per iteration supported by a
memory bank, while they conduct diffusion per epoch on all data; third, we compute affinity propa-
gation on the affinity graph based on consensus information and semi-supervised priori, while they
conduct propagation on naive KNN graph. Consensus KNN is first proposed in (Premachandran &
Kakarala, 2013). However, our work is more related to deep clustering (Han et al., 2019), while their
method is based on features extracted by conventional algorithms; we empower the consensus KNN
with contrastive affinity learning which iteratively refines the representation graph and increases the
neighborhood reliability; lastly, we propose multi-prompt clustering to learn semantic discriminative
features and make affinity learning mutually benefit from the prompt clustering.

D MORE EXPERIMENT RESULTS

In this section, we present more experimental results on PromptCAL ablation studies.

D.1 ANALYSIS ON HYPER-PARAMETERS.

In PromptCAL, there exist three tunable hyperparameters: neighborhood size K for graph construc-
tion, quantile threshold value q in SemiAG, and the weight β of contrastive affinity loss. To investi-
gate the sensitiveness of these parameters, we conduct ablation experiments on CIFAR-100 dataset
by sampling: (1) the neighborhood K = 5, 10, 20, 30, (2) the quantile threshold q = 0.4, 0.5, 0.6,
and (3) the weight β = 0.4, 0.6, 0.8. The neighborhood size controls the locality of consensus in-
formation. Its ablation result on CIFAR-100 dataset is shown in Table 8, which demonstrates that
PromptCAL is rather robust when K is small and larger neighborhoods can hurt performance due to
more noisy pseudo-positives included in SemiAG. Table 9 exposes that PromptCAL is rather robust
to variation in threshold q on All classes. As we can observe, the performance on All when q = 0.4
only slightly drops. Interestingly, the New performance consistently improves when q increases
with a little sacrifice in Known performance, while q = 0.5 best balances between Known and New
classes. We explain that higher q will increase the reliability of New pseudo-positives in SemiAG,
at the cost of more reliable Known positives being taken as false negatives.

For the loss weights, its value reflects the relative intensity of supervised contrastive learning with
generated affinities w.r.t.self-supervised contrastive learning for sample-wise discriminativeness.
From Table 10, we can observe that PromptCAL is rather robust to the increase and decrease of
the CAL loss weight β by 0.2; the variations of All performance have only minor changes (less than
1%). Meanwhile, a larger β improves the Known class performance, while a smaller β focus more
on learning New class. Thus, we set β = 0.6, which entitles the model with balanced capability on
both.
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CIFAR-100 Aircraft
K All Known New All Known New

5 80.9 85.5 71.7 51.2 59.2 47.2
10 81.2 84.2 75.3 51.3 52.6 50.6
20 78.9 80.3 76.1 48.3 47.9 48.5

Table 8: Ablation study on the neighborhood size on the CIFAR-100 dataset.

Method All Known New

GCD 51.3 56.6 48.7
PromptCAL-1st (MPC-2-3) 51.1 55.4 48.9
PromptCAL-1st (MPC-1-4) 51.7 57.2 48.9
PromptCAL-1st (MPC-5-0) 50.9 55.6 48.6

PromptCAL-1st (MPC-2-3, all-frozen) 51.1 55.4 48.9
PromptCAL-1st (MPC-2-3, no INKD) 51.1 56.3 48.5

Table 12: Superiority of visual prompts on CUB-200 dataset. Tuning more ViT blocks can lead to overfitting
on Known classes.

q All Known New

0.4 79.7 83.4 72.4
0.5 78.9 80.3 76.1
0.6 80.3 81.4 77.9

Table 9: Ablation study on
the neighborhood size K on
CIFAR-100 dataset.

β All Known New

0.4 49.6 51.0 48.9
0.6 48.3 47.9 48.5
0.8 49.1 53.6 46.9

Table 10: Ablation study on
the CAL loss weight β on
Aircraft dataset.

Method All Known New

GCD 73.0 76.2 66.5
GCD (tune 6 blocks) 62.9 74.5 39.8

VPT (5 prompts) 76.5 80.9 67.8
PromptCAL (K = 10) 81.2 84.2 75.3

Table 11: Superiority of visual prompts on CIFAR-
100 dataset. Tuning more ViT blocks can lead to
overfitting on Known classes.

D.2 ABLATION STUDY ON TUNING DINO.

To investigate the alternative architecture and testify to the effectiveness of prompt-adapted ViT
backbone, we conduct an ablation study on DINO architecture on CIFAR-100 dataset in Table 12.
By comparing 1st and 2nd row, we observe that tuning more ViT blocks actually hurts the overall
performance and achieves extremely poor accuracy on New classes, which drops ∼ 27% compared
with GCD. This justifies that PromptCAL and GCD freeze the first 11 ViT blocks for training to
avoid the loss of rich pre-trained knowledge. Moreover, we also conclude that the visual prompt-
adapted ViT backbone significantly enhances the performance on All, Known, and New. One main
possible reason is that CIFAR-100 is a low-resolution dataset and the backbone needs more powerful
adaptability to downstream datasets and tasks.

D.3 VISUALIZATIONS.
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Figure 5: Visualization of the results on retrieving the 10 nearest neighbors of a given query image (with green
border). Predictions of the first column is from GCD, and the second is from PromptCAL. The wrong predic-
tions are marked with red borders; while, accurate predictions are not. We fisrt subsample 1000 images from
ImageNet-100 conduct present results of 9 sampled examples, which contain both New and Known classes.
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