

000 001 002 003 004 005 PROMPTFE: AUTOMATED FEATURE ENGINEERING BY 006 PROMPTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022

ABSTRACT

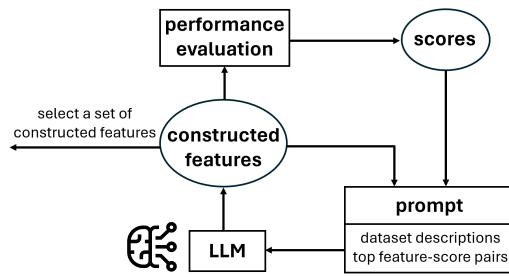
023 Automated feature engineering (AutoFE) liberates data scientists from the burden
024 of manual feature construction. The semantic information of datasets contains rich
025 context information for feature engineering but has been underutilized in many
026 existing AutoFE works. We present PromptFE, a novel AutoFE framework that
027 leverages large language models (LLMs) to automatically construct features in a
028 compact string format and generate semantic explanations based on dataset de-
029 scriptions. By learning the performance of constructed features in context, the
030 LLM iteratively improves feature construction. We demonstrate through exper-
031 iments on real-world datasets the superior performance of PromptFE over state-
032 of-the-art AutoFE methods. We verify the impact of dataset semantic information
033 and provide comprehensive study on the LLM-based feature construction process.
034

1 INTRODUCTION

035 Tabular data, a form of structured data comprising instances and attributes, have extensive use across
036 a broad range of domains including credit assessment, market prediction, and quality control. Tra-
037 ditional machine learning models, especially tree-based models (Breiman, 2001; Ke et al., 2017),
038 have strong performance on tabular datasets of small and medium sizes (Grinsztajn et al., 2022)
039 and good interpretability. Feature engineering refers to the construction of features to enhance the
040 performance of downstream models, which is crucial for traditional ML models as new features ex-
041 tract useful information for target prediction by capturing complex non-linear relationships. Feature
042 engineering by hand demands domain expertise to relieve significant human labor.

043 Automated feature engineering (AutoFE) employs meta algorithms and models to automate feature
044 engineering process for performance comparable to domain experts. Prior approaches like (Zhu
045 et al., 2022a;b; Zhang et al., 2023) construct and evaluate enormous features in a trial-and-error
046 manner. While some methods learn to optimize the utility of features during the FE process, they
047 do not utilize domain knowledge to guide feature search. The need to search features from scratch
048 for new datasets and downstream models hampers their efficacy and efficiency. Furthermore, these
049 methods cannot offer explanation of the engineered features, undermining the interpretability.

050 The text descriptions of tabular datasets provide
051 rich context for feature engineering. Domain
052 experts consult attribute descriptions to select
053 relevant feature attributes and compute new fea-
054 tures useful for target prediction. For example,
055 the *square footage* of a house times the *average housing price per square foot* in the neigh-
056 borhood may be a good predictor of the *market value* of the house. Pretrained on large volumes
057 of data, large language models (LLMs) (Rad-
058 ford et al., 2019; Brown et al., 2020; OpenAI,
059 2023; Touvron et al., 2023a;b) handle general
060 language processing tasks and encapsulate ex-
061 tensive domain knowledge. Under proper in-
062 structions, an LLM can process dataset seman-
063 tic information and utilize its knowledge to au-



064 **Figure 1:** Overview of PromptFE: (1) instructing the
065 LLM to construct new features by providing dataset
066 descriptions and example features; (2) evaluating the
067 constructed features; (3) updating the prompt with top-
068 performing features and scores; and (4) selecting a set
069 of constructed features to add to the dataset.

054 tomatically construct features in a manner similar to domain experts. The work by Hollmann et al.
 055 (2023) demonstrates the potential of such research direction but is not sufficiently effective in fea-
 056 ture search. Similarly, the work by Nam et al. (2024) suffers from large search space. The works by
 057 Han et al. (2024) and Zhang et al. (2024b) do not involve feature learning and improvement.

058 We present **AutoFE by Prompting** (PromptFE), a novel AutoFE framework that leverages LLMs for
 059 effective, efficient, and interpretable feature engineering, as illustrated in Figure 1. With dataset de-
 060 scriptions and example features in canonical Reverse Polish Notation (cRPN), we prompt the LLM
 061 to construct new features. After evaluation, we update the prompt with top-performing features with
 062 the evaluation scores and instruct the LLM to construct further features. Iteratively, the LLM ex-
 063 plores the feature space and improves solutions by learning good examples in context. The dataset
 064 semantic information not only guides feature search, but helps the LLM understand the patterns in
 065 example features. Applying domain knowledge, the LLM generates semantically meaningful fea-
 066 tures and explains their usefulness. Experiments on real-world datasets demonstrate that PromptFE
 067 yields over 5% mean performance gain for three downstream models and significantly outperforms
 068 state-of-the-art baselines. Furthermore, we show in ablation study the effects of dataset semantic
 069 context and proposed feature canonicalization scheme. We also comprehensively study the behavior
 070 of the LLM-based feature construction process.

071 Our main contributions are: (1) We introduce a novel LLM-based AutoFE framework utilizing
 072 dataset semantic information for automated feature construction, which is the first method capable
 073 of generating features in the RPN format while providing semantic explanations. (2) We benchmark
 074 the performance of our approach against state-of-the-art baselines using both GPT-3.5 and GPT-4.
 075 (3) We investigate the impact of semantic context and study the behavior of the LLM-based feature
 076 construction process, providing a comprehensive view of our approach.

077 2 RELATED WORK

080 **Large Language Models.** LLMs are large-scale general-purpose neural networks pretrained on vast
 081 corpora of text data, typically built with transformer-based architectures (Vaswani et al., 2017). Gen-
 082 erative LLMs, such as the GPT family (Radford et al., 2019; Brown et al., 2020; OpenAI, 2023) and the
 083 LLaMA family (Touvron et al., 2023a;b), are pretrained to successively generate the next token
 084 given the text input and can be finetuned using reinforcement learning from human feedback (Ziegler
 085 et al., 2019; Ouyang et al., 2022). By this means, they acquire the syntactic and semantic knowl-
 086 edge of natural languages and achieve state-of-the-art performance on various tasks including text
 087 generation, summarization, and question answering. Prompting techniques (Liu et al., 2023) have
 088 been developed to adapt LLMs to downstream tasks without modifying model weights. Few-shot
 089 learning (Brown et al., 2020) includes examples in the prompt for the language model to learn in
 090 context. Leveraging such capability, an LLM may function as a problem solver (Yang et al., 2024)
 091 that iteratively improves candidate solutions according to the task description and performance feed-
 092 back. Chain-of-thought (Wei et al., 2022; Kojima et al., 2022) strengthens reasoning performance
 093 of LLMs through the elicitation of intermediate reasoning steps.

094 **Automated Feature Engineering.** AutoFE complements the input dataset with engineered fea-
 095 tures to enhance the performance of downstream models. Traditional AutoFE approaches include
 096 expansion-reduction (Kanter & Veeramachaneni, 2015; Horn et al., 2020; Zhang et al., 2023), evo-
 097 lutionary algorithms (Smith & Bull, 2005; Zhu et al., 2022a), and reinforcement learning (Khu-
 098 rana et al., 2018; Li et al., 2023; Wang et al., 2023). DIFER (Zhu et al., 2022b) utilizes encoder-
 099 decoder neural networks to learn the utility of features and optimize features in the embedding
 100 space. OpenFE (Zhang et al., 2023) develops a feature boost algorithm to speedup feature eval-
 101 uation. Nonetheless, these traditional approaches do not incorporate the semantic information of
 102 datasets, which hampers the efficacy and interpretability of engineered features.

103 **AutoFE with Domain Knowledge.** The benefits of incorporating domain knowledge in AutoFE
 104 include: (1) improving the effectiveness; and (2) reducing the cost of feature search, especially
 105 the feature evaluation overhead. One direction in prior works is to learn transferrable knowledge.
 106 LFE (Nargesian et al., 2017) represents features with quantile sketches transferable across datasets
 107 and inputs them to a feature transformation recommendation model. FETCH (Li et al., 2023) is an
 108 RL-based AutoFE framework that takes tabular data as the state and is generalizable to new data. E-

108 AFE (Wang et al., 2023) pretrains a feature evaluator to help efficiently train the RL-based AutoFE
 109 model. The other direction is to leverage the semantic information of datasets. KAFE (Galhotra
 110 et al., 2019) employs knowledge graphs to identify semantically informative features relevant to the
 111 prediction task. CAAFE (Hollmann et al., 2023) manipulates datasets using the code generated from
 112 an LLM based on dataset descriptions. FeatLLM (Han et al., 2024) generates first-order rules for
 113 classification tasks. ELF-Gym (Zhang et al., 2024b) generates first feature descriptions and then
 114 feature code. Neither approach involves feature learning and improvement. OCTree (Nam et al.,
 115 2024) relies on external decision tree algorithms to represent features and suffers from large search
 116 space. Differently, we adopt a compact form of feature representation in cRPN with pre-defined
 117 transformation operators. Our approach reduces the search space and helps the LLM learn the
 118 patterns of useful features, leading to stronger and more robust performance.

3 NOTATIONS

122 We denote a tabular dataset as $D = \langle \mathbb{X}, \mathbf{y} \rangle$, where $\mathbb{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_d\}$ is the set of raw features with
 123 $\mathbf{x}_i \in \mathbb{R}^n$ for $i = 1, \dots, d$ and $\mathbf{y} \in \mathbb{R}^n$ is the target. We construct a new feature $\tilde{\mathbf{x}} = t(\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_o})$ by transforming existing features $\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_o}$ via some operator $t \in \mathbb{R}^n \times \dots \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ of arity
 124 o . Given a set of transformation operators \mathbb{T} , we define the feature space $\mathbb{X}_{\mathbb{T}}$ recursively as: for any
 125 $\tilde{\mathbf{x}} \in \mathbb{X}_{\mathbb{T}}$, either $\tilde{\mathbf{x}} \in \mathbb{X}$; or $\exists t \in \mathbb{T}$, s.t., $\tilde{\mathbf{x}} = t(\tilde{\mathbf{x}}_{j_1}, \dots, \tilde{\mathbf{x}}_{j_o})$, where $\tilde{\mathbf{x}}_{j_1}, \dots, \tilde{\mathbf{x}}_{j_o} \in \mathbb{X}_{\mathbb{T}}$. To measure
 126 feature complexity, we compute the order of a feature $\tilde{\mathbf{x}} \in \mathbb{X}_{\mathbb{T}}$ as:

$$\alpha(\tilde{\mathbf{x}}) = \begin{cases} 0 & \text{if } \tilde{\mathbf{x}} \in \mathbb{X}, \\ 1 + \max_j \alpha(\tilde{\mathbf{x}}_j) & \text{if } \tilde{\mathbf{x}} = t(\tilde{\mathbf{x}}_{j_1}, \dots, \tilde{\mathbf{x}}_{j_o}) \exists t \in \mathbb{T}. \end{cases} \quad (1)$$

130 The constrained feature space with the order upper bounded by k is denoted as $\mathbb{X}_{\mathbb{T}}^{(k)} = \{\tilde{\mathbf{x}} \in \mathbb{X}_{\mathbb{T}} \mid$
 131 $\alpha(\tilde{\mathbf{x}}) \leq k\}$.

133 We denote the performance of a downstream machine learning model algorithm M on the dataset
 134 as $\mathcal{E}_M(\mathbb{X}, \mathbf{y})$. The objective of AutoFE is to augment the dataset with a set of constructed features
 135 $\tilde{\mathbb{X}}^*$ to optimize the model performance, specifically:

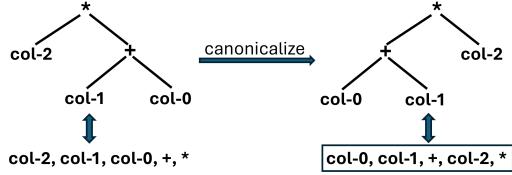
$$\tilde{\mathbb{X}}^* = \arg \max_{\tilde{\mathbb{X}} \subset \mathbb{X}_{\mathbb{T}}} \mathcal{E}_M(\mathbb{X} \cup \tilde{\mathbb{X}}, \mathbf{y}). \quad (2)$$

4 METHODOLOGY

141 In this section, we present PromptFE, a novel AutoFE framework leveraging the power of LLMs,
 142 particularly, the GPT models (Radford et al., 2019; Brown et al., 2020; OpenAI, 2023). The high-
 143 level idea is to provide the LLM with descriptive information of the dataset in the prompt and guide
 144 it to search for effective features using examples.

145 We represent features in a compact form in our
 146 prompt. A feature $\tilde{\mathbf{x}} \in \mathbb{X}_{\mathbb{T}}$ is expressible as a
 147 tree, where the leaf nodes are raw features and
 148 the internal nodes are operators. However, the
 149 expression trees of features containing commu-
 150 tative operators (like addition and multiplication)
 151 are not unique since the child nodes of these
 152 operators are unordered. We introduce a canonical-
 153 ization scheme: arranging operator nodes before
 154 feature nodes for left skewness and lexicographically
 155 sorting the nodes within each group. We then
 156 serialize the canonical expression tree into the postorder depth-first traversal string, i.e., canonical
 157 reverse Polish notation (cRPN), ensuring the one-to-one mapping between features and string
 158 representations. We denote the feature corresponding to an RPN string f as $\tilde{\mathbf{x}}_f$ and the set of features
 159 corresponding to a set of RPN strings \mathbb{F} as $\tilde{\mathbb{X}}_{\mathbb{F}}$. We make further discussions in Appendix A.

160 Our prompt contains: (1) a meta description of the dataset; (2) an indexed list of the dataset at-
 161 tributes, with attribute types, value ranges, and descriptions; (3) lists of transformation operators
 162 with descriptions, grouped by the arity; (4) a ranked list of example features with performance eval-
 163 uation scores; (5) feedback of previously constructed features; and (6) an output template of new



164 **Figure 2:** We obtain canonical RPN (cRPN) by
 165 re-ordering the nodes of a feature expression tree.

(1) Dataset description:
 This dataset contains information on default payments, demographic factors, credit data, and history of payment of credit card clients ...
 (2) Dataset contains the following columns:
 col-0 (int) [10000, 800000]: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
 col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female) ...
 col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)
 (3) We have the following **unary operators**:
 sqrt.abs: taking the square root of the absolute value ...
 We have the following **binary operators**:
 +: summing two columns ...
 Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset. Each feature string constructs an extra column that is useful for the downstream model **Random Forests** to predict the target **col-23**. The model will be trained on the dataset with the constructed columns and evaluated on a holdout set. The best columns will be selected.
 (4) Below are **feature strings** arranged in ascending order based on their performance scores. Higher scores are better.
 Feature
 col-17,col-21,*,col-20,+,sqrt.abs
 Score
 0.0011 ...
 Feature
 col-4,col-6,*,col-12,col-16,-,sqrt.abs,*
 Score
 0.0014
 (5) Previous feature:
 col-4,col-5,col-6,+,col-12,col-16,-,*
 Error: invalid RPN expression
 Give me a new feature string that is different from all strings above and has a higher score. Use no more than five operators. Make sure all columns and operators exist and do not include the target column. Follow the syntax of RPN.
 (6) Output format:
 Feature
 (Feature description)
 Usefulness
 (Explanation why this adds useful real world knowledge to predict the target **col-23** according to dataset description)

Figure 3: Prompt template. Sections containing dataset information are marked in **blue**. The ranked list of feature examples and scores is marked in **orange**. The feedback message is marked in **gray**.

Feature
 col-11,col-11,col-12,-,log,*
 This feature calculates the log of the difference between the September bill statement (col-11) and the August bill statement (col-12), then multiplies it by the September bill amount.
 Usefulness
 This feature captures the change in the bill amount from August to September in a logarithmic scale, which can effectively highlight significant changes in spending patterns. Large fluctuations in credit card bills could be indicative of financial distress, which may impact the likelihood of defaulting on payments, while the logarithmic transformation allows for handling potential skewness in the data distribution. By incorporating this feature, the model can better understand how temporal changes in spending behavior relate to the probability of default, providing richer contextual information beyond static features.

Figure 4: The LLM constructs a new feature in RPN and explains its usefulness from the semantic perspective.

features and explanations. Figure 3 outlines the structure of our prompt. The descriptions of the dataset and attributes provide contextual information for the LLM to understand the data and apply domain knowledge. The value ranges of attributes are useful for selecting appropriate feature transformations, e.g., min-max normalization when the scale is too large. We include the descriptions of transformation operators as they help the LLM parse example features in RPN syntax and construct syntactically valid feature strings. The output template not only structures the output but instructs the LLM to reason about the usefulness of the constructed features and offer semantic explanations, utilizing the chain-of-thought technique (Wei et al., 2022; Kojima et al., 2022). We additionally add a constraint instruction to use no more than a certain number of operators, which reduces the search space and regularizes the solutions. Figure 4 shows an example LLM output. The prompt may further include dataset statistics like mean, standard deviation, and skewness of the attributes.

We initialize the prompt with k random features from the constrained feature space $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_k \in \mathbb{X}_{\mathbb{T}}^{(2)}$ represented in cRPN for demonstration, where the feature attributes are sampled per the softmax probabilities of feature importance by fitting the downstream model on the training data. This lets the LLM start search from a small feature space where it is easier to identify the basic patterns of promising features. Optionally, we can import external example features. We prompt the LLM to construct a fixed number of m new features in an iteration. For each constructed feature string f , we first try to obtain the cRPN expression f^c to check whether f^c is syntactically valid and not a duplicate of candidate features. If both criteria are met, we evaluate the performance score of adding the single feature to the dataset $s = \mathcal{E}_M(\mathbb{X} \cup \{\tilde{\mathbf{x}}_{f^c}\}, \mathbf{y})$ through cross validation on the training data and add $\langle f^c, s \rangle$ to the candidate set \mathbb{F}_{cand} . When f^c is among the top- k candidate features in terms of the score s , we update prompt examples with the top- k pairs $\langle f', s' \rangle \in \mathbb{F}_{\text{cand}}$ ranked in the ascending order, taking score increment $s' - \mathcal{E}_M(\mathbb{X}, \mathbf{y})$ from the baseline. We also provide the feedback of previously constructed features with scores or error messages for improvement. We then instruct the LLM to construct additional features using the updated prompt. To select candidate features,

216 **Algorithm 1:** AutoFE by Prompting

217 **Input** : Dataset $D = (\mathbb{X}, \mathbf{y})$, downstream model M , large language model LLM , and optionally an external set of features with
 218 evaluation scores \mathbb{F}_{ext}
 219 **Output:** A set of engineered features \mathbb{F}
 220 1 Initialize prompt P with dataset descriptions and example features; $\mathbb{F}_{cand} \leftarrow \mathbb{F}_{ext}$ if \mathbb{F}_{ext} is available, otherwise $\mathbb{F}_{cand} \leftarrow \emptyset$; $\mathbb{F}_{set} \leftarrow \emptyset$
 221 2 **repeat**
 222 3 $\mathbb{F}_{LLM} = \{f_1, \dots, f_m\} \leftarrow LLM(P)$ ▷ Feature generation
 223 4 **for** each $f \in \mathbb{F}_{LLM}$ **do**
 224 5 $f^c \leftarrow$ Canonicalize f
 225 6 **if** f^c is valid and $f^c \notin \mathbb{F}_{cand}$ **then** ▷ Feature evaluation
 226 7 Evaluate cross validation performance $s \leftarrow \mathcal{E}_M(\mathbb{X} \cup \{x_{f^c}\}, \mathbf{y})$
 227 8 $\mathbb{F}_{cand} \leftarrow \mathbb{F}_{cand} \cup \{(f^c, s)\}$
 228 9 **end**
 229 10 **end**
 230 11 Update P such that P contains the top- k $\langle f', s' \rangle \in \mathbb{F}_{cand}$ as ordered by s'
 231 12 **if** feature selection **then** ▷ Feature selection
 232 13 **for** $n \leftarrow 1$ to $|\mathbb{F}_{cand}|$ **do**
 233 14 $\mathbb{F}_n \leftarrow$ The top- n features in \mathbb{F}_{cand} as ordered by s
 234 15 Evaluate validation performance $s_n \leftarrow \mathcal{E}_M(\mathbb{X} \cup \mathbb{X}_{\mathbb{F}_n}, \mathbf{y})$
 235 16 **end**
 236 17 $\mathbb{F}_{set} \leftarrow \mathbb{F}_{set} \cup \{(\mathbb{F}_{n^*}, s_{n^*})\}$, with $n^* \leftarrow \text{argmax}_n s_n$
 237 18 **end**
 238 19 **until** stopping criteria are met
 239 20 **return** \mathbb{F} in \mathbb{F}_{set} with the maximum validation score

240 we successively add candidate features to the dataset from the best to the worst and determine the
 241 optimal number of features to add based on validation performance, which is evaluated over sets of
 242 candidate features and thus takes feature interactions into account.

243 Algorithm 1 summarizes our methodology. The size of the prompt scales linearly with the number
 244 of features in the dataset d and the number of example features k and stays roughly constant across
 245 feature construction iterations. Thus, the cost of an LLM generation step in line 3 is almost constant.
 246 The computation cost of feature evaluation in line 7 is also constant, preserving the efficiency and
 247 scalability of our algorithm. The evaluations in line 7 and at lines 13-16 are parallelizable.

248 In our algorithm, the LLM is instructed to perform as a problem solver (Yang et al., 2024). Analogous
 249 to evolutionary algorithms that generate new solutions through crossover and mutations on
 250 high-fitness candidates (Smith & Bull, 2005; Zhu et al., 2022a; Morris et al., 2024), we provide
 251 top-performing features in the prompt. By learning examples and scores in-context (Brown et al.,
 252 2020), the LLM recognizes the patterns of promising features and generates new features that are
 253 likely to be useful. It can make analogies to, modify, or combine example features in the prompt
 254 (Appendix F.3). Early in the search, we expect greater exploration due to the diversity of initial
 255 examples. As iterations progress, the LLM exploits promising feature spaces more, gradually re-
 256 refining the search until convergence. The dataset semantic information enhances the effectiveness
 257 of feature search through the guidance as a prior. The LLM’s temperature can be adjusted to bal-
 258 ance exploration and exploitation, with higher temperatures encouraging more diverse solutions and
 259 lower temperatures favoring incremental changes to example features.

260 We adopt the same set of transformation operators \mathbb{T} as those in (Zhu et al., 2022b), including:

261 • Unary transformations: logarithm, reciprocal, square root, and min-max normalization;
 262 • Binary transformations: addition, subtraction, multiplication, division, and modulo.

263 In min-max normalization, we take the statistics from the training data. Other transformations re-
 264 quire only the information of a single instance. Hence, all transformations can be performed on an
 265 individual test instance without leaking other instances’ information. Data leakage (Overman et al.,
 266 2024) is an issue that has not been properly addressed in many existing AutoFE works.

267 **5 EXPERIMENTS**

268 **5.1 EXPERIMENTAL SETUP**

269 We benchmark performance on public real-world datasets from Kaggle and UCI repositories cov-
 270 ering different domains (Appendix D.1). The descriptive information of datasets and attributes is
 271 retrieved from the sources without further processing. The downstream models we evaluate include
 272 linear models (LASSO for regression tasks and logistic regression for classification tasks), Random

Table 1: Comparison of overall performance. For each compared method, the left and right columns show the performance without and with post AutoFE parameter tuning of downstream model algorithms, respectively. The best results are boldfaced, and the second best results are underlined.

Model	Raw	DIFER		OpenFE		CAAFE			OCTree		PromptFE (ours)				
						GPT-3.5		GPT-4		GPT-4		GPT-3.5		GPT-4	
Linear Model	0.5636 14.00	0.6248 9.17	0.6369 5.83	0.5871 10.58	0.5866 9.92	0.5946 10.00	0.5941 9.50	0.5945 10.50	0.5946 9.83	0.6038 8.25	0.6044 7.33	0.6485 5.08	0.6487 3.50	0.6532 <u>3.33</u>	0.6526 <u>3.17</u>
Random Forests	0.7252 12.71	0.7400 8.29	0.7411 5.86	0.7380 8.07	0.7376 8.64	0.7387 6.29	0.7378 7.50	0.7357 9.00	0.7352 10.79	0.7348 9.14	0.7346 10.79	0.7408 <u>4.43</u>	0.7412 <u>4.57</u>	0.7392 6.29	0.7393 7.64
Light-GBM	0.7364 10.43	0.7504 8.86	0.7531 6.29	0.7454 9.50	0.7476 9.14	0.7457 9.07	0.7461 8.14	0.7405 9.00	0.7457 8.50	0.7409 11.21	0.7403 12.21	0.7522 5.71	0.7558 <u>3.57</u>	0.7542 4.79	0.7538 <u>3.57</u>
Mean	0.6806	0.7091	0.7140	0.6953	0.6958	0.6979	0.6976	0.6950	0.6967	0.6976	0.6975	0.7171	0.7185	0.7187	0.7183
Mean Rank	12.30	8.75	6.00	9.33	9.20	8.38	8.33	9.45	9.70	9.60	10.25	5.08	3.90	<u>4.45</u>	5.30

Forests (Breiman, 2001), and LightGBM (Ke et al., 2017). For linear models, we target-encode categorical features and min-max scale all features. We tune downstream model algorithm parameters by randomized search prior to and post AutoFE, because the model may need reconfiguration to accommodate the added features. Data are randomly split into training (64%), validation (16%), and test (20%) sets. We evaluate regression performance with $1 - (relative\ absolute\ error)^1$ and classification performance with accuracy. A higher evaluation score indicates better performance.

We compare PromptFE with the following state-of-the-art AutoFE methods: (1) DIFER (Zhu et al., 2022b): A neural network-based method that optimizes features in the embedding space using LSTMs to encode and decode features; (2) OpenFE (Zhang et al., 2023): An expansion-reduction method that evaluates features up to a certain order using a feature boost algorithm; (3) CAAFE (Hollmann et al., 2023): An LLM-based method that produces Python code to manipulate datasets stored in Pandas data frames; (4) OCTree (Nam et al., 2024): An LLM-based method that generates rules to manipulate datasets and encodes features using decision tree algorithms.

We employ `gpt-3.5-turbo-0125`² and `gpt-4-0613`² as the LLMs. For PromptFE, we include $k = 10$ example features in the prompt and set the temperature of LLMs to 1 based on validation. We instruct the LLM to construct $m = 1$ feature in each generation step for the best control of feature generation. We perform feature selection each time 10 new candidate features are constructed and terminate the algorithm once we have 200 candidate features. Parameters of the baseline methods are initialized per the corresponding papers. We make five repeated runs.

5.2 PERFORMANCE COMPARISON

Table 1 compares the overall performance between PromptFE and the baseline methods. Full results are presented in Appendix D.5³. PromptFE attains the best mean performance score and the lowest mean rank for all three downstream models, yielding over 5% mean performance gain and over 15% gain for linear models. We observe the greatest gain for linear models because unlike Random Forests and LightGBM, they cannot learn non-linear relationships themselves. The performance margin between PromptFE and baselines other than DIFER is statistically significant with $p < 0.01$ by Friedman-Nemenyi test. PromptFE consistently outperforms CAAFE and OCTree, showing the robustness of PromptFE that reduces the search space with pre-defined operators and represents features in compact cRPN. Post-AutoFE parameter tuning brings the greatest performance improvement to DIFER, as it adds the most features to datasets (Appendix D.9). Compared with DIFER evaluating over 2000 candidate features during feature search, PromptFE evaluates only 200 candidate features (Appendix D.10). The higher efficiency of PromptFE is brought by the construction of semantically meaningful and effective features with the guidance of dataset semantic information.

We note that in PromptFE, using GPT-4 yields better performance for linear models but slightly worse performance for Random Forests than GPT-3.5. We speculate this is because the stronger in-context learning capability of GPT-4 increases the tendency of overfitting example features. One way to address this is to include more example features in the prompt to fully leverage GPT-4’s enhanced in-context learning capability (Appendix D.8).

¹ $1 - \frac{\sum_i |y_i - \hat{y}_i|}{\sum_i |y_i - \bar{y}|}$, y is the target and \hat{y} is the prediction.

²<https://platform.openai.com/docs/models>

³We were unable to complete the OCTree evaluations using GPT-3.5 as it easily got stuck with iteratively generating rules that triggered errors in our experiments.

Table 2: Comparison of PromptFE with ablated versions. For each compared version, the left and middle columns show the performance without and with post AutoFE parameter tuning of downstream model algorithms, respectively, and the right column shows the number of LLM generations. Statistical significance of performance difference by Friedman-Nemenyi test is indicated with * for $p < 0.05$ and ** for $p < 0.01$.

	Model	w/o Semantic Context			w/o Canonicalization			PromptFE		
GPT-3.5	Linear Model	0.6411	0.6433	443.4	0.6471	0.6486	349.1	0.6485	0.6487	356.7
	Random Forests	0.7326**	0.7328**	472.5	0.7372	0.7373	358.0	0.7408	0.7412	370.4
	LightGBM	0.7479*	0.7494	490.0	0.7485	0.7490	348.9	0.7522	0.7558	360.2
	Mean	0.7105**	0.7118**	469.9	0.7141	0.7148	352.2	0.7171	0.7185	362.7
GPT-4	Linear Model	0.6437	0.6461	253.9	0.6462	0.6463	323.6	0.6532	0.6526	326.3
	Random Forests	0.7285*	0.7288*	262.9	0.7366	0.7366	315.7	0.7392	0.7393	333.0
	LightGBM	0.7420**	0.7437	250.7	0.7461*	0.7480	328.5	0.7542	0.7538	335.7
	Mean	0.7078**	0.7092**	255.9	0.7128**	0.7135*	322.5	0.7187	0.7183	331.9

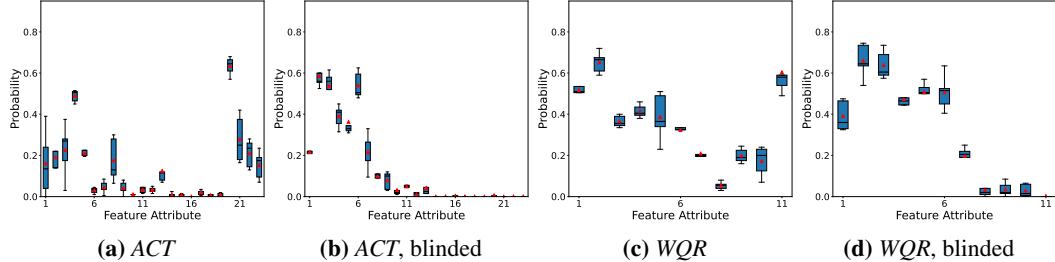


Figure 6: Distributions of feature attribute selection in the constructed features for linear models with GPT-4.

5.3 EFFECT OF SEMANTIC CONTEXT

We compare with the blinded version without dataset semantic information (Appendix C.2). From Table 2, PromptFE outperforms the blinded version for all downstream models with statistical significance. The performance difference is more pronounced for Random Forests and LightGBM, likely because the inclusion of non-semantically meaningful features by the blinded version consumes model capacity and causes greater overfitting to the training data. GPT-4 constructs features more efficiently than GPT-3.5 due to stronger capabilities. The incorporation of dataset semantic context improves the feature construction efficiency of GPT-3.5 but reduces that of GPT-4, as it guides to more focused feature spaces that increase the chances of duplication with candidate features.

5.4 EFFECT OF FEATURE EXPRESSION CANONICALIZATION

We compare with the ablated version without canonicalization of feature expressions. From Table 2, PromptFE outperforms the ablated version for all downstream models. Without canonicalization, we observe a slight decrease in the number of LLM generations. Since a feature can be represented in different expressions, the chances of duplication with the expressions of candidate features during feature search are reduced. However, the effectiveness of the features constructed by the LLM degrades in this setting due to increased difficulty in learning optimal feature patterns.

5.5 FEATURE ATTRIBUTE SELECTION

Figure 6 shows the distributions of feature attributes in the constructed features for linear models using GPT-4. Without semantic context, the LLM tends to prioritize earlier feature attributes in the dataset while paying less attention to later ones. In comparison, PromptFE is informed by the semantic context. Specifically, Attribute 20 *CD4 at baseline* in *ACT* and Attribute 11 *alcohol* in *WQR*, which contain critical information for predicting the respective targets *censoring indicator* and *quality*, are consistently among the most frequent ones. This illustrates how the LLM leverages dataset semantic information to construct semantically meaningful and effective features in PromptFE.

5.6 PERFORMANCE ANALYSIS

We study the performance for linear models with GPT-3.5 from ten repeated runs. Figures 7-10 display the slope and p -value from one-tailed t-tests in OLS regressions, with the shaded area showing one standard deviation above and below the mean curve.

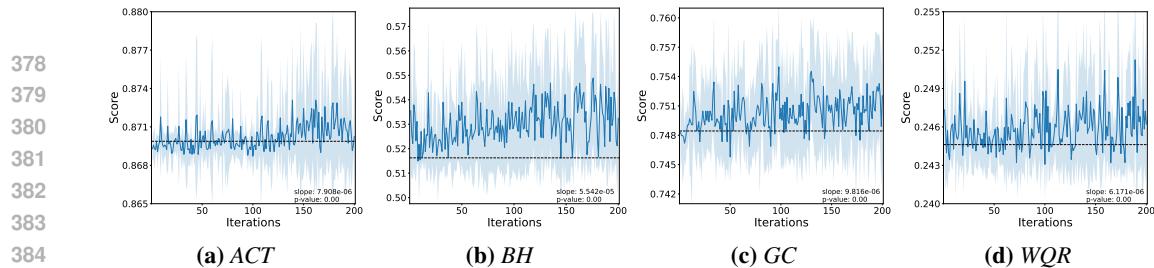


Figure 7: The cross validation score of candidate features on training data across iterations. The baseline cross validation score with raw dataset features is indicated with the dash line.

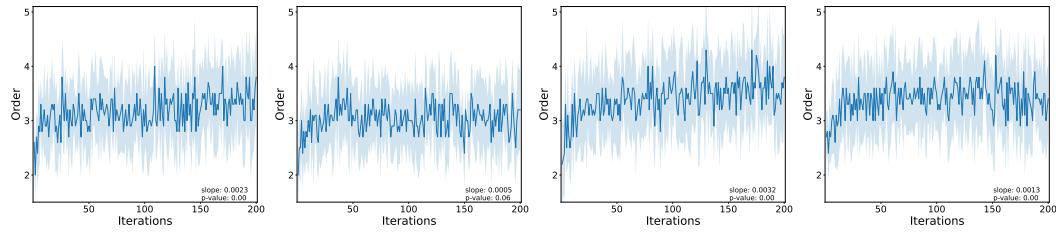


Figure 8: The order of candidate features across iterations.

Feature Learning. We examine the cross validation score of candidate features across iterations. Figure 7 shows a significantly upward trend in the score, with most constructed features improving the performance. This demonstrates that PromptFE effectively improves the quality of constructed features through in-context learning of top-performing examples during feature search.

Feature Complexity. We examine the order of candidate features across iterations. Figure 8 shows that the feature order increases rapidly in early iterations and stabilizes over time. PromptFE effectively constructs complex features within promising feature spaces. Moreover, our constraint instruction offers regularization that prevents the construction of overly complex features.

Feature Divergence. We analyze the divergence of a new candidate feature from previous ones during feature search. We compute the edit distance between canonical feature expression trees using the algorithm by Zhang & Shasha (1989) and normalize the distance by the total number of nodes in both trees. Figure 9 shows the mean normalized tree edit distance between the current candidate feature and the previous five features across iterations. The observed downward trend indicates that feature search converges over iterations.

Feature Construction Efficiency. We examine the number of LLM generations needed to construct new candidate features across iterations. Figure 10 shows a slightly upward trend in the number of LLM generations, due to increasing difficulty of constructing non-duplicate features and higher likelihood of producing syntactical errors as features become more complex. Since the increase is non-significant, PromptFE remains scalable to a large number of iterations.

5.7 HYPERPARAMETER EFFECT

Number of Examples in Prompt. Table 3 reports the maximum validation score across iterations along with the number of LLM generations by varying the number of example features provided

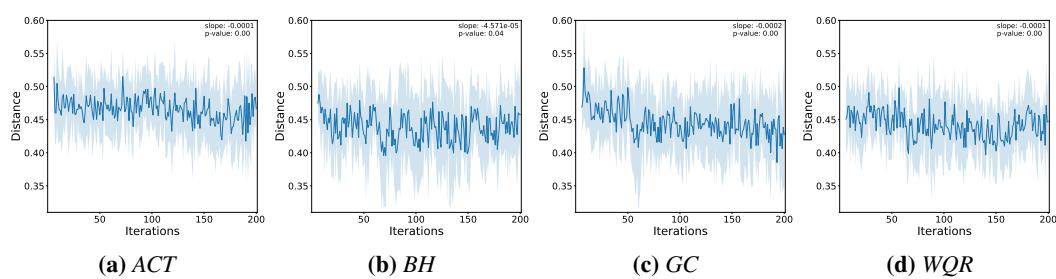


Figure 9: The mean normalized edit distance between a candidate feature and previous five features.

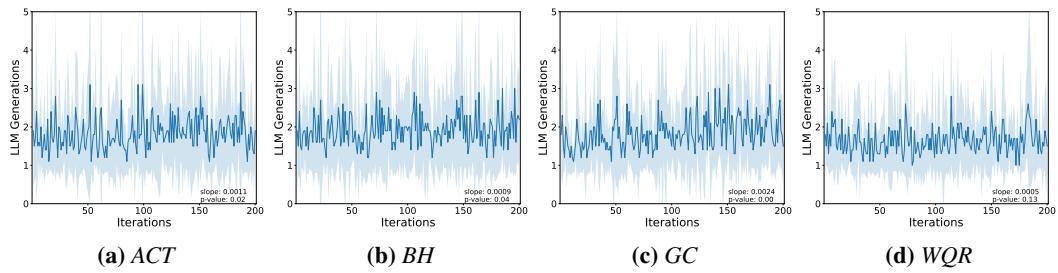


Figure 10: The number of LLM generations to construct a new candidate feature across iterations.

Table 3: Effect of the number of example features in the prompt with GPT-3.5. For each compared setting, the left column shows the validation score, and the right column shows the number of LLM generations.

Model	Dataset	Number of Examples		
		1	5	10
RF	AF	0.7895	507.2	0.7930
	WQR	0.3897	339.4	0.3937
	CD	0.8212	480.2	0.8213
LGBM	AF	0.8421	440.4	0.8433
	WQR	0.4248	346.0	0.4294
	CD	0.8228	449.4	0.8224
Mean		0.6817	427.1	0.6839
			368.5	0.6840
			360.1	0.6833
				347.0

in the prompt. We observe that the best performance is achieved with 10 examples. Additionally, feature construction efficiency improves as the number of examples increases, as more examples can help the LLM reduce errors and generate more diverse features. Nonetheless, too many examples hinder the in-context learning of optimal feature patterns, as shown by the performance decline. The performance difference with 10 examples and with 1 example is statistically significant with $p < 0.05$ by one-tailed paired t-tests.

Temperature. Table 4 reports the maximum validation score across iterations with the number of LLM generations under different LLM temperatures. We observe the best performance and efficiency when the temperature is around 1. Lower temperatures increase the likelihood of the LLM repeating previously constructed features, while higher temperatures make the LLM more prone to producing errors in the generations, both reducing feature construction efficiency. A temperature at 1 provides the best tradeoff between exploration and exploitation in feature search. The performance difference with the temperature at 1 and at 0.5 is statistically significant with $p < 0.01$ by one-tailed paired t-tests.

Table 4: Effect of the LLM temperature with GPT-3.5.

Model	Dataset	Temperature		
		0.5	1	1.5
RF	AF	0.7875	794.4	0.7914
	CD	0.8211	823.2	0.8219
LGBM	AF	0.8365	1313.2	0.8430
	CD	0.8225	519.8	0.8226
Mean		0.8169	862.7	0.8197
				368.9
				0.8194
				643.0

6 CONCLUSION

In this paper, we present a novel LLM-based AutoFE framework for effective, efficient, and interpretable feature engineering that leverages the semantic information of datasets. It features an elegant approach to instructing the LLM to generate semantically meaningful features with explanations by providing dataset descriptions and example features in cRPN expressions. The LLM iteratively explores the feature space and improves feature construction by learning top-performing examples in context. We have demonstrated in extensive experiments that our approach significantly outperforms state-of-the-art AutoFE methods. The incorporation of semantic context from dataset descriptions and the proposed feature canonicalization scheme both contribute to performance improvement. We have also provided comprehensive analysis on the LLM-based feature construction process. Our work opens up new possibilities for further LLM-driven applications on automated machine learning methodologies and underscores the potential of utilizing semantic information. A future direction is to introduce adaptive methods for prompt design.

486 ETHICAL STATEMENT
487488 All datasets used in this work are publicly available, free of personal information, and intended for
489 research purposes only. Our use of GPT models complies with the terms and conditions of OpenAI.
490491 REPRODUCIBILITY STATEMENT
492493 The anonymized source code of this work can be accessed at https://anonymous.4open.science/r/PromptFE_share-8F26.
494495 496 USE OF LARGE LANGUAGE MODELS
497498 Large language models are not used in paper writing.
499500 501 REFERENCES
502503 Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.504 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
505 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
506 are few-shot learners. In *Proceedings of Advances in neural information processing systems*,
507 volume 33, pp. 1877–1901, 2020.508 Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of
509 variance. *Journal of the american statistical association*, 32(200):675–701, 1937.
510511 Sainyam Galhotra, Udayan Khurana, Oktie Hassanzadeh, Kavitha Srinivas, and Horst Samu-
512 lowitz. Kafe: Automated feature enhancement for predictive modeling using external knowl-
513 edge. In *Proceedings of NeurIPS 2019 Workshop: Knowledge Representation & Reasoning Meets*
514 *Machine Learning*, 2019. URL https://kr2ml.github.io/2019/papers/KR2ML_2019_paper_17.pdf.515 516 Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
517 deep learning on typical tabular data? In *Proceedings of the thirty-sixth Conference on Neural*
518 *Information Processing Systems Datasets and Benchmarks Track*, 2022.519 Charles L Hamblin. Translation to and from polish notation. *The Computer Journal*, 5(3):210–213,
520 1962.
521522 Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can auto-
523 matically engineer features for few-shot tabular learning. In *International Conference on Machine*
524 *Learning*, pp. 17454–17479. PMLR, 2024.525 Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
526 science: Introducing CAAFE for context-aware automated feature engineering. In *Proceedings*
527 *of the thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=9WSxQZ9mG7>.528 529 Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
530 engineering and selection. In *Proceedings of Machine Learning and Knowledge Discovery in*
531 *Databases*, pp. 111–120. Springer, 2020.532 533 James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
534 science endeavors. In *Proceedings of 2015 IEEE international conference on data science and*
535 *advanced analytics (DSAA)*, pp. 1–10. IEEE, 2015.536 537 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qi-
538 wei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision
539 tree. In *Proceedings of Advances in Neural Information Processing Systems*, volume 30,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

540 Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
 541 eling using reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelli-*
 542 *gence*, volume 32, 2018.

543 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 544 language models are zero-shot reasoners. In *Advances in Neural Information Processing Systems*,
 545 2022. URL <https://openreview.net/forum?id=e2TbB5y0yFf>.

546 Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and Junbo Zhao. Learning
 547 a data-driven policy network for pre-training automated feature engineering. In *Proceedings of*
 548 *the eleventh International Conference on Learning Representations*, 2023.

549 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 550 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 551 cessing. *ACM Comput. Surv.*, 55(9), 2023. URL <https://doi.org/10.1145/3560815>.

552 Clint Morris, Michael Jurado, and Jason Zutty. Llm guided evolution - the automation of models
 553 advancing models. In *Proceedings of the Genetic and Evolutionary Computation Conference*,
 554 GECCO '24, pp. 377–384, New York, NY, USA, 2024. Association for Computing Machinery.
 555 URL <https://doi.org/10.1145/3638529.3654178>.

556 Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin. Opti-
 557 mized feature generation for tabular data via llms with decision tree reasoning. *Advances in*
 558 *Neural Information Processing Systems*, 37:92352–92380, 2024.

559 Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
 560 Learning feature engineering for classification. In *Proceedings of International Joint Conference*
 561 *on Artificial Intelligence*, volume 17, pp. 2529–2535, 2017.

562 Peter Bjorn Nemenyi. *Distribution-free multiple comparisons*. Princeton University, 1963.

563 OpenAI. Gpt-4 technical report, 2023. URL <https://cdn.openai.com/papers/gpt-4.pdf>.

564 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
 565 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
 566 models to follow instructions with human feedback. In *Proceedings of Advances in Neu-*
 567 *ral Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc.,
 568 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

569 Tom Overman, Diego Klabjan, and Jean Utke. Iife: Interaction information based automated feature
 570 engineering, 2024. URL <https://arxiv.org/abs/2409.04665>.

571 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
 572 guage models are unsupervised multitask learners, 2019. URL <https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf>.

573 Matthew G Smith and Larry Bull. Genetic programming with a genetic algorithm for feature con-
 574 struction and selection. *Genetic Programming and Evolvable Machines*, 6:265–281, 2005.

575 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 576 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 577 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 578 language models, 2023a. URL <https://arxiv.org/abs/2302.13971>.

579 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 580 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 581 tion and fine-tuned chat models, 2023b. URL <https://arxiv.org/abs/2307.09288>.

582 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
 583 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceed- *584 *ings of Advances in Neural Information Processing Systems*, volume 30, 2017. URL
 585 https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf**

594 Kafeng Wang, Pengyang Wang, and Chengzhong Xu. Toward efficient automated feature engineer-
 595 ing. In *Proceedings of 2023 IEEE 39th International Conference on Data Engineering (ICDE)*,
 596 pp. 1625–1637, 2023. doi: 10.1109/ICDE55515.2023.00128.

597 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
 598 Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large lan-
 599 guage models. In *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.

600 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 601 Chen. Large language models as optimizers. In *Proceedings of the twelfth International Confer-
 602 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Bb4VGOWELI>.

603 Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees
 604 and related problems. *SIAM J. Comput.*, 18:1245–1262, 12 1989. doi: 10.1137/0218082.

605 Tianping Zhang, Zheyu Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao, and
 606 Jian Li. Openfe: automated feature generation with expert-level performance. In *Proceedings of
 607 the 40th International Conference on Machine Learning*, ICML’23, 2023.

608 Xinhao Zhang, Jinghan Zhang, Banafsheh Rekabdar, Yuanchun Zhou, Pengfei Wang, and Kunpeng
 609 Liu. Dynamic and adaptive feature generation with llm. *arXiv preprint arXiv:2406.03505*, 2024a.

610 Yanlin Zhang, Ning Li, Quan Gan, Weinan Zhang, David Wipf, and Minjie Wang. Elf-gym: Evalu-
 611 ating large language models generated features for tabular prediction. In *Proceedings of the 33rd
 612 ACM International Conference on Information and Knowledge Management*, pp. 5420–5424,
 613 2024b.

614 Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
 615 feature engineering. In *Proceedings of Pacific Rim International Conference on Artificial Intelli-
 616 gence*, pp. 574–586. Springer, 2022a.

617 Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: Differentiable automated
 618 feature engineering. In *Proceedings of the first International Conference on Automated Machine
 619 Learning*, volume 188 of *Proceedings of Machine Learning Research*, pp. 17/1–17. PMLR, 25–27
 620 Jul 2022b. URL <https://proceedings.mlr.press/v188/zhu22a.html>.

621 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 622 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2019.
 623 URL <https://arxiv.org/abs/1909.08593>.

624

A Discussion on Canonical RPN Feature Representation	13
A.1 Why RPN	13
A.2 Why Canonicalization	13
B Conversion between Feature Expression Tree and RPN	13
C Example Prompts	14
C.1 Complete Prompt	14
C.2 Semantically Blinded Prompt	15
D Experimental Details	17
D.1 Datasets	17
D.2 Experimental Platform	17
D.3 Feature Transformation Operators	17
D.4 Parameter Tuning of Downstream Models	18
D.5 Full Results	18
D.6 Relative Performance Improvement	18
D.7 Statistical Tests	18
D.8 Additional Hyperparameter Effect	24
D.9 Number of Selected Features	25
D.10 Computation Cost	26

648	E Experiments on Proprietary Datasets	26
649		
650	F Additional Analysis	28
651	F.1 Feature Analysis	28
652	F.2 Feature Importance	29
653	F.3 Feature Search Example	30
654	F.4 Potential Failure Modes	31
655		
656	G More Discussion on Differences from Existing Works	31
657		
658	H Practical Significance	32
659		
660		
661		

A DISCUSSION ON CANONICAL RPN FEATURE REPRESENTATION

A.1 WHY RPN

RPN (Hamblin, 1962) provides a compact and unambiguous form of feature representation. In contrast, infix expression requires extra information such as brackets to determine operator precedence. Without brackets, the feature in infix expression $col-0 - (col-1 + col-2)$ would be indistinguishable from the feature $(col-0 - col-1) + col-2$, while both features are distinctively encoded in RPN. Such compactness and unambiguity of RPN facilitate sequential modeling since there is no need to model the extra information, e.g., the positions of brackets.

Compared with other forms of feature representation such as prefix expression of depth-first traversal or breadth-first traversal, RPN better encodes the recursive structure of the expression tree. The bottom-up enumeration of tree nodes makes it easy for the LLM to evaluate the feature expression by scanning the sequence from left to right, for instance, $((col-0 col-1 -) col-2 +)$ (parentheses denote recursion). Using the prefix expression $(+ (- col-0 col-1) col-2)$ or breadth-first expression $(+ (- [col-2] col-0 col-1))$, however, the LLM always needs to look back to find the operator, which undermines sequential modeling. We find in our experiments that when switching to prefix feature expressions, the LLM encounters difficulty in generating syntactically valid feature expressions.

A.2 WHY CANONICALIZATION

Although there is one-to-one mapping between feature expression trees and RPN expressions, a feature that contains commutative operators (like addition and multiplication) can be represented by different RPN expressions, since the child nodes of these operators are unordered. We introduce a canonicalization scheme: arranging operator nodes before feature nodes and lexicographically sorting the nodes within each group. Through canonicalization, we create one-to-one mapping between features and cRPN expressions. This ensures the consistency of our feature representations and facilitates the in-context learning of feature patterns.

By arranging operator nodes before feature nodes, we also introduce left skewness to the expression tree that enhances the clarity of the recursive structure in cRPN. As illustrated in Figure 2, the original feature expression $(col-2 (col-1 col-0 +) *)$ becomes $((col-0 col-1 +) col-2 *)$ after canonicalization, so that the LLM does not need to look back for $col-2$ when evaluating the expression.

B CONVERSION BETWEEN FEATURE EXPRESSION TREE AND RPN

Algorithms 2 and 3 detail the process of conversion between a feature expression tree and an RPN feature string. We check the RPN syntactical validity of a feature string in Algorithm 3 by checking whether there is enough child node in the stack in line 6 and the size of the stack is exactly one (the root) in line 13 returning the output.

702 **Algorithm 2:** Feature Expression Tree to RPN

703 **Input** : A feature expression tree T
 704 **Output**: An RPN feature string f

705 1 $r \leftarrow$ the root of T
 706 2 Initialize string $f \leftarrow \epsilon$, stack $S \leftarrow [r]$, and $visited \leftarrow \emptyset$
 707 3 **repeat**
 708 4 $u \leftarrow S.\text{peek}()$
 709 5 **if** $u \in visited$ **then**
 710 6 $f.\text{append}(u)$
 711 7 $S.\text{pop}()$
 712 8 **end**
 713 9 **else**
 714 10 **for** each child v of u in the reverse order **do**
 715 11 $S.\text{push}(v)$
 716 12 **end**
 717 13 $visited \leftarrow visited \cup \{u\}$
 718 14 **end**
 719 15 **until** S is empty
 720 16 **return** f

720 **Algorithm 3:** RPN to Feature Expression Tree

721 **Input** : An RPN feature string f
 722 **Output**: The root of a feature expression tree T

723 1 Initialize stack $S \leftarrow []$
 724 2 **for** $i \leftarrow 1$ **to** $|f|$ **do**
 725 3 $u \leftarrow$ the i -th element of f
 726 4 **if** u is an operator **then**
 727 5 $o \leftarrow$ the arity of u
 728 6 **for** $j \leftarrow 1$ **to** o **do**
 729 7 $v \leftarrow S.\text{pop}()$
 730 8 Prepend v to the list of children of u
 731 9 **end**
 732 10 **end**
 733 11 $S.\text{push}(u)$
 734 12 **end**
 735 13 **return** $S.\text{pop}()$

736 C EXAMPLE PROMPTS

737 C.1 COMPLETE PROMPT

740 Figure 11 shows an example of complete prompts used in our main experiments.

741

742 Figure 11: Example complete prompt on the Credit Default dataset.

743

744 **Dataset description:**745 This dataset contains information on default payments, demographic factors, credit data, history of
 746 payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.747 Dataset contains the following **columns**:748 col-0 (int) [10000, 800000]: LIMIT.BAL: Amount of given credit in NT dollars (includes individual and
 749 family/supplementary credit)

750 col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female)

751 col-2 (category) {0, 1, 2, 3, 4, 5, 6}: EDUCATION: (1=graduate school, 2=university, 3=high school,
 752 4=others, 5=unknown, 6=unknown)

753 col-3 (category) {0, 1, 2, 3}: MARRIAGE: Marital status (1=married, 2=single, 3=others)

754 col-4 (int) [21, 79]: AGE: Age in years

755 col-5 (category) {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}: PAY_0: Repayment status in September, 2005 (-1=pay
 756 duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight
 757 months, 9=payment delay for nine months and above)

758 ...

756 col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)
 757 We have the following **unary operators**:
 758 log: element-wise logarithm of the absolute value
 759 sqrt_abs: element-wise square root of the absolute value
 760 min_max: element-wise min-max normalization
 761 reciprocal: element-wise reciprocal
 762 We have the following **binary operators**:
 763 +: element-wise addition of two columns
 764 -: element-wise subtraction of two columns
 765 *: element-wise multiplication of two columns
 766 /: element-wise division of two columns
 767 mod_column: element-wise modulo of two columns
 768 Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
 769 Each feature string constructs an extra column that is useful for the downstream model Random Forests
 770 to predict the target col-23. The model will be trained on the dataset with the constructed columns and
 771 evaluated on a holdout set. The best columns will be selected.
 772 Below are **feature strings** arranged in ascending order based on their performance scores. Higher scores
 773 are better.
 774
 775 Feature
 776 col-17,col-21,*,col-20,+,sqrt_abs
 777 Score
 778 0.0011
 779 ...
 780 Feature
 781 col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
 782 Score
 783 0.0014
 784 Previous feature:
 785 col-4,col-5,col-6,+,col-12,col-16,-,*
 786 Error: invalid RPN expression
 787
 788 Give me a new feature string that is different from all strings above and has a higher score. Use
 789 no more than five operators. Make sure all columns and operators exist and do not include the target
 790 column. Follow the syntax of RPN.
 791
 792 **Output format:**
 793 Feature
 794 (Feature name and description)
 795 Usefulness
 796 (Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
 797 description)
 798

C.2 SEMANTICALLY BLINDED PROMPT

Figure 12 shows an example of semantically blinded prompts used in our experiments in Section 5.3.

Figure 12: Example semantically blinded prompt on the Credit Default dataset.

800 Dataset contains the following **columns**:
 801 col-0
 802 col-1
 803 col-2
 804 col-3
 805 col-4
 806 col-5
 807 ...
 808 col-23
 809 We have the following **unary operators**:
 log: element-wise logarithm of the absolute value

```

810
811     sqrt_abs: element-wise square root of the absolute value
812     min_max: element-wise min-max normalization
813     reciprocal: element-wise reciprocal
814     We have the following binary operators:
815     +: element-wise addition of two columns
816     -: element-wise subtraction of two columns
817     *: element-wise multiplication of two columns
818     /: element-wise division of two columns
819     mod_column: element-wise modulo of two columns
820     Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
821     Each feature string constructs an extra column that is useful for the downstream model Random Forests
822     to predict the target col-23. The model will be trained on the dataset with the constructed columns and
823     evaluated on a holdout set. The best columns will be selected.
824     Below are feature strings arranged in ascending order based on their performance scores. Higher scores
825     are better.
826
827     Feature
828     col-17,col-21,*,col-20,+,sqrt_abs
829     Score
830     0.0011
831     ...
832     Feature
833     col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
834     Score
835     0.0014
836
837     Previous feature:
838     col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
839     Error: duplication with candidate features
840
841     Give me a new feature string that is different from all strings above and has a higher score. Use
842     no more than five operators. Make sure all columns and operators exist and do not include the target
843     column. Follow the syntax of RPN.
844
845     Output format:
846     Feature
847
848     (Feature name and description)
849
850     Usefulness
851     (Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
852     description)
853
854
855
856
857
858
859
860
861
862
863

```

864 **D EXPERIMENTAL DETAILS**865 **D.1 DATASETS**

866
 867
 868
 869 Tables 5 and 6 summarize the statistics and sources of datasets used in our experiments. Datasets
 870 are selected such that they cover different domains and both regression and classification tasks, most
 871 of which have been used in previous works (Zhu et al., 2022a;b; Zhang et al., 2023; Hollmann et al.,
 872 2023).

873 **Table 5:** Statistics of datasets. The datasets cover different domains and vary in sizes.

Name	Task	# Samples	# Features	# Numerical	# Categorical
Airfoil (AF)	Regression	1,503	5	5	0
Boston Housing (BH)	Regression	506	13	12	1
Bikeshare (BS)	Regression	731	10	6	4
Wine Quality Red (WQR)	Regression	1,599	11	11	0
AIDS Clinical Trials (ACT)	Classification	2,139	23	9	14
Credit Default (CD)	Classification	30,000	23	14	9
German Credit (GC)	Classification	1,000	20	10	10

874 **Table 6:** Sources of datasets. The descriptive information of datasets and attributes is retrieved from the sources
 875 without further processing.

Name	Source
Airfoil (AF)	https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
Boston Housing (BH)	https://www.kaggle.com/datasets/arunjangir245/boston-housing-dataset
Bikeshare (BS)	https://www.kaggle.com/datasets/marklvl/bike-sharing-dataset
Wine Quality Red (WQR)	https://archive.ics.uci.edu/dataset/186/wine+quality
AIDS Clinical Trials (ACT)	https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
Credit Default (CD)	https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
German Credit (GC)	https://archive.ics.uci.edu/dataset/573/south+german+credit+update

894 **D.2 EXPERIMENTAL PLATFORM**

895 All experiments are conducted on the Ubuntu 22.04.4 LTS operating system, 16 Intel(R) Core(TM)
 896 i7-7820X CPUs, and 4 NVIDIA GeForce RTX 2080 Ti GPUs, with the framework of Python 3.11.9
 897 and PyTorch 1.12.1.

900 **D.3 FEATURE TRANSFORMATION OPERATORS**

901 We list the details of all feature transformation operators below.

902 Unary transformations:

- 903 • Logarithm: Element-wise logarithm of the absolute value;
- 904 • Reciprocal: Element-wise reciprocal;
- 905 • Square root: Element-wise square root of the absolute value;
- 906 • Min-max normalization: Element-wise min-max normalization using the min and max val-
 907 ues from the training data.

908 Binary transformations:

- 909 • Addition: Element-wise addition;
- 910 • Subtraction: Element-wise subtraction;
- 911 • Multiplication: Element-wise multiplication;
- 912 • Division: Element-wise division;
- 913 • Modulo: Element-wise modulo.

918 D.4 PARAMETER TUNING OF DOWNSTREAM MODELS
919920 We tune the parameters of downstream models prior to and post AutoFE using randomized search
921 implemented in an `Sklearn` package⁴. Table 7 lists the configurations of parameter tuning for each
922 downstream model. We set the number of randomized search iterations to 100.923
924 **Table 7:** Hyperparameter search space for downstream models.
925

Model	Parameter	Search Space [*]
Linear Model	regularization	loguniform(0.00001, 100)
Random Forests	num estimators	randint(5, 250)
	max depth	randint(1, 250)
	max features	uniform(0.01, 0.99)
	max samples	uniform(0.1, 0.9)
LightGBM	num estimators	randint(10, 1000)
	num leaves	randint(8, 64)
	learning rate	loguniform(0.001, 1)
	bagging fraction	uniform(0.1, 0.9)
	feature fraction	uniform(0.1, 0.9)
	reg lambda	loguniform(0.001, 100)

937 * As defined in the `scipy.stats` documentation <https://docs.scipy.org/doc/scipy/reference/stats.html>.
938
939940 D.5 FULL RESULTS
941943 Tables 8-10 detail the full experimental results corresponding to the results in Tables 1 and 2. Ta-
944 bles 11-15 report the sample standard deviations corresponding to the experimental results in Ta-
945 bles 8-10 and Tables 3-4, respectively.
946947 D.6 RELATIVE PERFORMANCE IMPROVEMENT
948949 Tables 16 and 17 report the percentage performance improvement of PromptFE over the baseline
950 methods with GPT-3.5 and GPT-4, respectively, corresponding to the experimental results in Tables 1
951 and 8.
952953 D.7 STATISTICAL TESTS
954955 We perform the Friedman test (Friedman, 1937) to determine whether there is statistically signifi-
956 cant difference among the compared AutoFE methods. The Friedman test p -values for the results
957 in Tables 1 and 2 are 4.26×10^{-50} and 3.95×10^{-34} , respectively. Hence, we can reject the null
958 hypothesis that the performance is the same for all methods. We perform the Nemenyi post-hoc
959 test (Nemenyi, 1963) to further determine which AutoFE methods have different performance. Ta-
960 bles 18, 20, and 21 summarize the p -values for the pairwise comparisons in Tables 1 and 2. From
961 Table 18, the performance difference between our method PromptFE and baseline methods other
962 than DIFER (Zhu et al., 2022b) is statistically significant at the $p = 0.01$ level. From Table 20, the
963 performance difference between the full version of PromptFE and the semantically blinded version
964 is statistically significant at the $p = 0.01$ level. From Table 21, the performance difference is sta-
965 tistically significant at the $p = 0.05$ level for the cases with GPT-3.5 and post-AutoFE parameter
966 tuning as well as GPT-4 without post-AutoFE parameter tuning.
967968 To examine the performance difference when using Random Forests and LightGBM, we perform
969 additional statistical tests for the results in Table 1 excluding the linear model results. The Friedman
970 test p -value is 1.28×10^{-25} . Table 19 summarizes the p -values from the Nemenyi post-hoc test
971 for pairwise comparison. We observe that PromptFE with GPT-3.5 and post-AutoFE parameter972 ⁴https://scikit-learn.org/1.5/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

Table 8: Full experimental results of Table 1 comparison of overall performance. For each compared method, the left and right columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively. The best results are boldfaced, and the second best results are underlined.

Model	Dataset	Raw	DIFER		OpenFE		CAAFE			OCTree		PromptFE (ours)		
							GPT-3.5		GPT-4	GPT-4		GPT-3.5		GPT-4
Linear Model	AF	0.3474	0.5870	0.6090	0.4300	0.4303	0.4011	0.4016	0.4376	0.4378	0.4698	0.4698	0.6612	0.6616
	BH	0.3776	0.5013	0.4994	0.3900	0.3880	0.4788	0.4765	0.4503	0.4506	0.4480	0.4545	0.4995	0.5025
	BS	1.0000	—	—	—	—	—	—	—	—	—	—	—	—
	WQR	0.2696	0.2475	0.2630	0.2713	0.2736	0.2742	0.2757	0.2776	0.2776	0.2774	0.2778	0.2722	0.2745
	ACT	0.8505	0.8715	0.8799	0.8729	0.8729	0.8519	0.8514	0.8565	0.8570	0.8724	0.8720	0.8729	0.8794
	CD	0.8267	0.8273	0.8280	0.8265	0.8268	0.8265	0.8267	0.8238	0.8238	0.8270	0.8272	0.8282	0.8282
Mean	GC	0.7100	0.7140	0.7420	0.7320	0.7280	0.7350	0.7330	0.7210	0.7210	0.7280	0.7250	0.7570	0.7460
	Mean	0.5636	0.6248	0.6369	0.5871	0.5866	0.5946	0.5941	0.5945	0.5946	0.6038	0.6044	0.6485	0.6532
Mean Rank		14.00	9.17	5.83	10.58	9.92	10.00	9.50	10.50	9.83	8.25	7.33	5.08	3.50
Mean Rank		12.71	8.29	5.86	8.07	8.64	6.29	7.50	9.00	10.79	9.14	10.79	4.43	4.57
Mean Rank		10.43	8.86	6.29	9.50	9.14	9.07	8.14	9.00	8.50	11.21	12.21	5.71	3.57
Mean		0.6806	0.7091	0.7140	0.6953	0.6958	0.6979	0.6976	0.6950	0.6967	0.6976	0.6975	0.7171	0.7185
Mean Rank		12.30	8.75	6.00	9.33	9.20	8.38	8.33	9.45	9.70	9.60	10.25	5.08	3.90

Table 9: Full experimental results of Table 2 performance comparison of PromptFE with and without dataset semantic context. For each compared version, the left and middle columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the number of LLM generations. The results where the full version outperforms the blinded version are boldfaced.

Model	Dataset	Raw	GPT-3.5					GPT-4						
			w/o Semantic Context			PromptFE		w/o Semantic Context			PromptFE			
Linear Model	AF	0.3474	0.6613	0.6602	450.0	0.6612	0.6616	339.8	0.6678	0.6672	275.0	0.6649	0.6647	371.4
	BH	0.3776	0.4678	0.4794	438.0	0.4995	0.5025	378.6	0.4869	0.4996	295.6	0.5184	0.5289	335.4
	BS	1.0000	—	—	—	—	—	—	—	—	—	—	—	—
	WQR	0.2696	0.2643	0.2733	442.8	0.2722	0.2745	328.4	0.2645	0.2702	244.6	0.2713	0.2748	312.6
	ACT	0.8505	0.8790	0.8799	442.8	0.8729	0.8794	372.2	0.8720	0.8729	238.8	0.8766	0.8762	377.4
	CD	0.8267	0.8283	0.8283	454.8	0.8282	0.8282	342.0	0.8282	0.8289	238.2	0.8288	0.8288	250.4
Mean	GC	0.7100	0.7460	0.7390	432.2	0.7570	0.7460	379.0	0.7430	0.7410	231.2	0.7590	0.7420	310.6
	Mean	0.5636	0.6411	0.6433	443.4	0.6485	0.6487	356.7	0.6437	0.6461	253.9	0.6532	0.6526	326.3
Random Forests	AF	0.7677	0.7644	0.7743	425.2	0.7709	0.7787	393.2	0.7610	0.7690	274.2	0.7681	0.7749	314.2
	BH	0.5426	0.5483	0.5483	479.2	0.5549	0.5533	374.4	0.5507	0.5491	238.4	0.5543	0.5522	278.6
	BS	0.9446	0.9628	0.9628	510.0	0.9873	0.9881	386.8	0.9535	0.9543	247.4	0.9845	0.9848	255.0
	WQR	0.3662	0.3749	0.3738	461.4	0.3862	0.3845	362.6	0.3666	0.3674	253.0	0.3810	0.3810	283.2
	ACT	0.8808	0.8864	0.8841	475.8	0.8925	0.8921	357.6	0.8874	0.8841	222.4	0.8893	0.8864	424.0
	CD	0.8293	0.8283	0.8282	497.0	0.8295	0.8294	349.8	0.8291	0.8286	375.2	0.8295	0.8276	304.0
Mean	GC	0.7450	0.7630	0.7580	459.2	0.7640	0.7620	368.2	0.7510	0.7490	229.6	0.7680	0.7680	471.8
	Mean	0.6806	0.7326	0.7328	472.5	0.7408	0.7412	370.4	0.7285	0.7288	262.9	0.7392	0.7393	333.0
Light-GBM	AF	0.8375	0.8304	0.8356	479.6	0.8311	0.8392	380.2	0.8185	0.8266	284.6	0.8366	0.8395	360.6
	BH	0.5537	0.5503	0.5467	490.8	0.5619	0.5644	342.0	0.5500	0.5609	238.4	0.5642	0.5595	345.6
	BS	0.9429	0.9693	0.9691	480.2	0.9737	0.9754	380.0	0.9539	0.9536	312.6	0.9801	0.9813	236.8
	WQR	0.3825	0.4087	0.4151	493.0	0.4118	0.4171	322.8	0.4057	0.4050	246.8	0.4021	0.4042	293.6
	ACT	0.8832	0.8864	0.8883	513.0	0.8888	0.8925	367.4	0.8813	0.8748	229.0	0.8902	0.8925	359.6
	CD	0.8300	0.8284	0.8292	490.8	0.8301	0.8297	352.2	0.8295	0.8299	218.6	0.8303	0.8294	371.2
Mean	GC	0.7250	0.7620	0.7620	482.4	0.7680	0.7720	376.6	0.7550	0.7550	225.0	0.7760	0.7700	382.2
	Mean	0.6806	0.7479	0.7494	490.0	0.7522	0.7558	360.2	0.7420	0.7437	250.7	0.7542	0.7538	335.7
Mean		0.6806	0.7105	0.7118	469.9	0.7171	0.7185	362.7	0.7078	0.7092	255.9	0.7187	0.7183	331.9

tuning significantly outperforms all baselines other than DIFER at the $p = 0.05$ level. With GPT-4, the performance difference between PromptFE and CAAFE (Hollmann et al., 2023) as well as OCTree (Nam et al., 2024) is statistically significant at the $p = 0.05$ level.

Table 10: Full experimental results of Table 2 performance comparison of PromptFE with and without RPN canonicalization. For each compared version, the left and middle columns show the results without and with parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the number of LLM generations. The results where the full version outperforms the reduced version are boldfaced.

Model	Dataset	Raw	GPT-3.5						GPT-4					
			w/o Canonicalization			PromptFE			w/o Canonicalization			PromptFE		
Linear Model	AF	0.3474	0.6679	0.6688	338.6	0.6612	0.6616	339.8	0.6538	0.6529	321.2	0.6649	0.6647	371.4
	BH	0.3776	0.5048	0.5076	351.2	0.4995	0.5025	378.6	0.4987	0.5030	310.8	0.5184	0.5289	335.4
	BS	1.0000	—	—	—	—	—	—	—	—	—	—	—	—
	WQR	0.2696	0.2702	0.2735	336.2	0.2722	0.2745	328.4	0.2690	0.2706	279.0	0.2713	0.2748	312.6
	ACT	0.8505	0.8748	0.8794	366.4	0.8729	0.8794	372.2	0.8738	0.8752	298.0	0.8766	0.8762	377.4
	CD	0.8267	0.8280	0.8290	350.4	0.8282	0.8282	342.0	0.8270	0.8271	285.4	0.8288	0.8288	250.4
	GC	0.7100	0.7370	0.7330	352.0	0.7570	0.7460	379.0	0.7550	0.7490	447.2	0.7590	0.7420	310.6
Random Forests	Mean	0.5636	0.6471	0.6486	349.1	0.6485	0.6487	356.7	0.6462	0.6463	323.6	0.6532	0.6526	326.3
	AF	0.7677	0.7628	0.7762	358.0	0.7709	0.7787	393.2	0.7743	0.7843	340.2	0.7681	0.7749	314.2
	BH	0.5426	0.5573	0.5573	364.0	0.5549	0.5533	374.4	0.5491	0.5460	322.4	0.5543	0.5522	278.6
	BS	0.9446	0.9804	0.9807	372.2	0.9873	0.9881	386.8	0.9778	0.9777	284.4	0.9845	0.9848	255.0
	WQR	0.3662	0.3776	0.3726	334.6	0.3862	0.3845	362.6	0.3739	0.3719	269.8	0.3810	0.3810	283.2
	ACT	0.8808	0.8879	0.8841	353.4	0.8925	0.8921	357.6	0.8841	0.8864	327.6	0.8893	0.8864	424.0
	CD	0.8293	0.8283	0.8285	381.6	0.8295	0.8294	349.8	0.8290	0.8287	297.2	0.8295	0.8276	304.0
Light-GBM	GC	0.7450	0.7660	0.7620	342.2	0.7640	0.7620	368.2	0.7680	0.7610	368.2	0.7680	0.7680	471.8
	Mean	0.6806	0.7372	0.7373	358.0	0.7408	0.7412	370.4	0.7366	0.7366	315.7	0.7392	0.7393	333.0
	AF	0.8375	0.8322	0.8365	343.6	0.8311	0.8392	380.2	0.8280	0.8350	376.0	0.8366	0.8395	360.6
	BH	0.5537	0.5599	0.5556	339.2	0.5619	0.5644	342.0	0.5577	0.5548	315.2	0.5642	0.5595	345.6
	BS	0.9429	0.9643	0.9664	368.8	0.9737	0.9754	380.0	0.9597	0.9609	276.2	0.9801	0.9813	236.8
	WQR	0.3825	0.4075	0.4042	346.4	0.4118	0.4171	322.8	0.4036	0.4032	288.2	0.4021	0.4042	293.6
	ACT	0.8832	0.8813	0.8860	342.4	0.8888	0.8925	367.4	0.8822	0.8879	313.2	0.8902	0.8925	359.6
GBM	CD	0.8300	0.8302	0.8291	355.8	0.8301	0.8297	352.2	0.8295	0.8291	301.6	0.8303	0.8294	371.2
	GC	0.7250	0.7640	0.7650	346.2	0.7680	0.7720	376.6	0.7620	0.7650	428.8	0.7760	0.7700	382.2
	Mean	0.6806	0.7485	0.7490	348.9	0.7522	0.7558	360.2	0.7461	0.7480	328.5	0.7542	0.7538	335.7
	Mean	0.6806	0.7141	0.7148	352.2	0.7171	0.7185	362.7	0.7128	0.7135	322.5	0.7187	0.7183	331.9

Table 11: Standard deviations of Table 8 comparison of overall performance.

Model	Dataset	Raw	DIFER		OpenFE		CAAFFE			OCTree		PromptFE (ours)				
							GPT-3.5		GPT-4		GPT-4		GPT-3.5			
Linear Model	AF	—	0.2559	0.2012	0.0015	0.0014	0.0099	0.0102	0.0511	0.0513	0.0199	0.0199	0.0101	0.0100	0.0267	0.0268
	BH	—	0.0092	0.0153	0.0169	0.0188	0.0196	0.0184	0.0408	0.0419	0.0502	0.0516	0.0111	0.0149	0.0254	0.0184
	BS	—	0.0305	0.0223	0.0058	0.0055	0.0046	0.0038	0.0060	0.0060	0.0045	0.0041	0.0135	0.0112	0.0068	0.0044
	WQR	—	0.0179	0.0073	0.0140	0.0105	0.0035	0.0021	0.0054	0.0053	0.0148	0.0148	0.0085	0.0051	0.0040	0.0062
	ACT	—	0.0014	0.0006	0.0006	0.0002	0.0006	0.0007	0.0057	0.0051	0.0002	0.0003	0.0013	0.0007	0.0006	0.0009
	CD	—	0.0272	0.0104	0.0097	0.0076	0.0100	0.0125	0.0134	0.0108	0.0084	0.0079	0.0120	0.0213	0.0108	0.0152
	GC	—	0.0184	0.0177	0.0154	0.0110	0.0082	0.0076	0.0065	0.0164	0.0160	0.0130	0.0114	0.0067	0.0097	0.0097
Random Forests	AF	—	0.0054	0.0044	0.0032	0.0036	0.0032	0.0034	0.0108	0.0084	0.0084	0.0075	0.0090	0.0086	0.0059	0.0095
	BH	—	0.0142	0.0131	0.0034	0.0068	0.0050	0.0050	0.0084	0.0113	0.0052	0.0050	0.0057	0.0077	0.0059	0.0046
	BS	—	0.0128	0.0113	0.0003	0.0003	0.0003	0.0003	0.0208	0.0207	0.0016	0.0014	0.0088	0.0070	0.0157	0.0154
	WQR	—	0.0108	0.0109	0.0030	0.0076	0.0022	0.0022	0.0051	0.0051	0.0039	0.0040	0.0034	0.0069	0.0022	0.0026
	ACT	—	0.0048	0.0058	0.0037	0.0087	0.0030	0.0055	0.0020	0.0030	0.0063	0.0035	0.0055	0.0051	0.0043	0.0054
	CD	—	0.0010	0.0011	0.0003	0.0004	0.0005	0.0004	0.0008	0.0001	0.0009	0.0006	0.0011	0.0010	0.0009	0.0017
	GC	—	0.0184	0.0177	0.0154	0.0110	0.0082	0.0076	0.0065	0.0164	0.0160	0.0130	0.0114	0.0067	0.0097	0.0097
Light-GBM	AF	—	0.0029	0.0029	0.0058	0.0036	0.0067	0.0027	0.0072	0.0077	0.0107	0.0104	0.0129	0.0054	0.0061	0.0041
	BH	—	0.0147	0.0260	0.0128	0.0150	0.0114	0.0111	0.0145	0.0188	0.0127	0.0170	0.0169	0.0076	0.0134	0.0073
	BS	—	0.0092	0.0070	0.0007	0.0004	0.0159	0.0198	0.0056	0.0139	0.0162	0.0174	0.0151	0.0139	0.0033	0.0034
	WQR	—	0.0134	0.0164	0.0072	0.0133	0.0084	0.0080	0.0116	0.0134	0.0099	0.0113	0.0123	0.0085	0.0097	0.0092
	ACT	—	0.0048	0.0042	0.0068	0.0094	0.0061	0.0045	0.0045	0.0027	0.0017	0.0054	0.0027	0.0017	0.0050	0.0077
	CD	—	0.0009	0.0013	0.0004	0.0010	0.0008	0.0005	0.0010	0.0007	0.0005	0.0005	0.0004	0.0004	0.0004	0.0008
	GC	—	0.0141	0.0184	0.0184	0.0184	0.0222	0.0166	0.0079	0.0199	0.0146	0.0152	0.0076	0.0045	0.0096	0.0146

1080

1081

Table 12: Standard deviations of Table 9 performance comparison of PromptFE with and without dataset semantic context.

1083

1084

1085

Model	Dataset	Raw	GPT-3.5				GPT-4							
			w/o Semantic Context		PromptFE		w/o Semantic Context		PromptFE					
Linear Model	AF	-	0.0147	0.0156	36.1	0.0101	0.0100	28.8	0.0162	0.0161	25.8	0.0267	0.0268	92.3
	BH	-	0.0444	0.0519	39.0	0.0111	0.0149	42.2	0.0161	0.0131	66.7	0.0254	0.0184	58.6
	WQR	-	0.0133	0.0032	48.9	0.0135	0.0112	15.3	0.0128	0.0046	23.5	0.0068	0.0044	80.6
	ACT	-	0.0088	0.0107	15.4	0.0085	0.0051	17.5	0.0056	0.0085	15.5	0.0040	0.0062	54.8
	CD	-	0.0014	0.0003	27.6	0.0013	0.0007	13.1	0.0021	0.0011	13.2	0.0006	0.0009	14.8
	GC	-	0.0114	0.0042	32.3	0.0120	0.0213	14.3	0.0125	0.0114	11.0	0.0108	0.0152	36.4
Random Forests	AF	-	0.0086	0.0058	60.3	0.0090	0.0086	47.3	0.0092	0.0079	27.9	0.0059	0.0095	93.6
	BH	-	0.0068	0.0068	45.3	0.0057	0.0077	14.5	0.0142	0.0132	24.7	0.0059	0.0046	23.0
	BS	-	0.0186	0.0181	112.1	0.0088	0.0070	47.8	0.0103	0.0088	38.8	0.0157	0.0154	39.2
	WQR	-	0.0078	0.0081	40.5	0.0034	0.0069	18.5	0.0092	0.0075	19.1	0.0022	0.0026	45.2
	ACT	-	0.0099	0.0035	33.7	0.0055	0.0051	13.1	0.0100	0.0093	16.6	0.0043	0.0054	85.7
	CD	-	0.0015	0.0008	53.3	0.0011	0.0010	14.5	0.0005	0.0008	83.4	0.0009	0.0017	56.9
Light-GBM	GC	-	0.0067	0.0057	28.9	0.0114	0.0067	17.3	0.0210	0.0143	12.8	0.0097	0.0097	113.1
	AF	-	0.0104	0.0060	66.8	0.0129	0.0054	21.7	0.0142	0.0155	39.6	0.0061	0.0041	73.1
	BH	-	0.0131	0.0170	60.7	0.0169	0.0076	20.7	0.0119	0.0121	25.7	0.0134	0.0073	36.1
	BS	-	0.0152	0.0178	76.3	0.0151	0.0139	31.8	0.0048	0.0049	74.5	0.0033	0.0034	32.1
	WQR	-	0.0151	0.0028	36.9	0.0123	0.0085	17.3	0.0195	0.0190	21.1	0.0097	0.0092	46.3
	ACT	-	0.0021	0.0030	44.2	0.0027	0.0017	28.5	0.0042	0.0128	15.7	0.0050	0.0077	49.6
	CD	-	0.0011	0.0011	59.4	0.0004	0.0004	15.7	0.0007	0.0010	5.6	0.0004	0.0008	85.7
	GC	-	0.0130	0.0148	41.7	0.0076	0.0045	23.0	0.0117	0.0094	13.7	0.0096	0.0146	46.9

1099

1100

1101

1102

Table 13: Standard deviations of Table 10 performance comparison of PromptFE with and without RPN canonicalization.

1104

1105

1106

Model	Dataset	Raw	GPT-3.5				GPT-4							
			w/o Canonicalization		PromptFE		w/o Canonicalization		PromptFE					
Linear Model	AF	-	0.0117	0.0111	24.8	0.0101	0.0100	28.8	0.0112	0.0106	17.3	0.0267	0.0268	92.3
	BH	-	0.0081	0.0138	22.1	0.0111	0.0149	42.2	0.0249	0.0294	60.6	0.0254	0.0184	58.6
	WQR	-	0.0127	0.0083	34.7	0.0135	0.0112	15.3	0.0179	0.0070	42.0	0.0068	0.0044	80.6
	ACT	-	0.0069	0.0084	13.9	0.0085	0.0051	17.5	0.0074	0.0069	22.3	0.0040	0.0062	54.8
	CD	-	0.0008	0.0014	24.7	0.0013	0.0007	13.1	0.0016	0.0012	22.0	0.0006	0.0009	14.8
	GC	-	0.0246	0.0091	14.3	0.0120	0.0213	14.3	0.0132	0.0042	99.5	0.0108	0.0152	36.4
Random Forests	AF	-	0.0079	0.0121	27.7	0.0090	0.0086	47.3	0.0080	0.0036	32.9	0.0059	0.0095	93.6
	BH	-	0.0054	0.0054	31.1	0.0057	0.0077	14.5	0.0095	0.0055	56.1	0.0059	0.0046	23.0
	BS	-	0.0180	0.0174	11.9	0.0088	0.0070	47.8	0.0211	0.0210	25.6	0.0157	0.0154	39.2
	WQR	-	0.0036	0.0051	17.5	0.0034	0.0069	18.5	0.0081	0.0099	27.7	0.0022	0.0026	45.2
	ACT	-	0.0055	0.0094	15.2	0.0055	0.0051	13.1	0.0039	0.0056	29.2	0.0043	0.0054	85.7
	CD	-	0.0009	0.0007	21.1	0.0011	0.0010	14.5	0.0013	0.0008	36.0	0.0009	0.0017	56.9
Light-GBM	GC	-	0.0219	0.0182	27.2	0.0114	0.0067	17.3	0.0148	0.0055	19.7	0.0097	0.0097	113.1
	AF	-	0.0157	0.0102	21.4	0.0129	0.0054	21.7	0.0078	0.0066	62.1	0.0061	0.0041	73.1
	BH	-	0.0125	0.0096	18.3	0.0169	0.0076	20.7	0.0098	0.0090	32.4	0.0134	0.0073	36.1
	BS	-	0.0202	0.0190	21.5	0.0151	0.0139	31.8	0.0115	0.0115	49.9	0.0033	0.0034	32.1
	WQR	-	0.0083	0.0181	10.3	0.0123	0.0085	17.3	0.0100	0.0092	26.2	0.0097	0.0092	46.3
	ACT	-	0.0078	0.0065	12.6	0.0027	0.0017	28.5	0.0048	0.0029	21.3	0.0050	0.0077	49.6
	CD	-	0.0005	0.0011	14.9	0.0004	0.0004	15.7	0.0003	0.0005	22.3	0.0004	0.0008	85.7
	GC	-	0.0096	0.0184	14.7	0.0076	0.0045	23.0	0.0368	0.0194	126.6	0.0096	0.0146	46.9

1120

1121

1122

1123

1124

Table 14: Standard deviations of Table 3 effect of the number of example features in the prompt.

1125

1126

1127

1128

1129

1130

1131

1132

1133

Model	Dataset	Number of Examples			
		1	5	10	20
RF	AF	0.0054	55.8	0.0035	45.0
	WQR	0.0088	19.6	0.0038	11.4
	CD	0.0005	46.5	0.0007	19.1
LGBM	AF	0.0065	103.2	0.0031	21.6
	WQR	0.0048	16.9	0.0057	32.4
	CD	0.0003	71.2	0.0002	39.0

1134

Table 15: Standard deviations of Table 4 effect of temperature.

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

Model	Dataset	Temperature					
		0.5	1	1.5			
RF	AF	0.0071	160.9	0.0042	47.3	0.0040	34.7
	CD	0.0005	324.3	0.0004	14.5	0.0005	64.1
LGBM	AF	0.0042	523.3	0.0044	21.7	0.0022	59.8
	CD	0.0008	174.7	0.0007	15.7	0.0005	73.0

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

Model	Dataset	Raw		DIFER		OpenFE		CAAFFE	
		AF	BH	WQR	ACT	CD	GC	Mean	AF
Linear Model	AF	90.34	90.46	12.65	8.64	53.77	53.77	64.86	64.76
	BH	32.27	33.06	-0.37	0.61	28.06	29.51	4.32	5.46
	WQR	0.96	1.80	9.97	4.37	0.35	0.32	-0.74	-0.46
	ACT	2.64	3.41	0.16	-0.05	0.00	0.75	2.47	3.29
	CD	0.18	0.19	0.10	0.03	0.21	0.17	0.20	0.19
	GC	6.62	5.07	6.02	0.54	3.42	2.47	2.99	1.77
Random Forests	Mean	22.17	22.33	4.76	2.36	14.30	14.50	12.35	12.50
	AF	0.42	1.44	0.78	0.02	1.72	1.37	-0.02	1.23
	BH	2.26	1.97	-2.95	-2.95	-1.92	-1.55	-0.13	-0.41
	BS	4.52	4.60	0.08	0.10	-0.29	-0.21	-0.43	-0.35
	WQR	5.44	5.00	0.61	0.34	2.89	3.11	3.86	3.42
	ACT	1.33	1.27	0.32	0.26	1.06	0.90	1.11	0.74
Light-GBM	CD	0.02	0.01	0.12	0.04	0.09	0.10	0.05	0.06
	GC	2.55	2.28	1.19	1.60	-0.13	0.66	-0.65	0.00
	Mean	2.36	2.37	0.02	-0.08	0.49	0.63	0.54	0.67
	AF	-0.76	0.20	0.32	-0.23	1.51	1.80	-0.63	0.53
	BH	1.48	1.94	0.21	0.14	-1.30	0.47	1.42	1.32
	BS	3.27	3.45	-0.27	-0.32	-0.15	-0.43	1.91	1.98
GBM	WQR	7.67	9.04	-0.63	-0.27	5.66	7.40	-0.29	3.36
	ACT	0.63	1.06	1.06	1.11	0.90	1.43	0.74	0.74
	CD	0.02	-0.04	0.22	0.25	0.10	0.12	0.06	-0.01
	GC	5.93	6.48	0.39	1.58	1.72	0.26	2.54	2.25
	Mean	2.60	3.16	0.18	0.32	1.21	1.58	0.82	1.45
	Mean	8.39	8.63	1.50	0.79	4.88	5.12	4.18	4.49

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Model	Dataset	Raw		DIFER		OpenFE		CAAFFE		OCTree	
		AF	BH	WQR	ACT	CD	GC	Mean	AF	BH	WQR
Linear Model	AF	91.40	91.34	13.27	9.14	54.62	54.48	51.94	51.82	41.52	41.47
	BH	37.28	40.06	3.41	5.90	32.92	36.33	15.14	17.39	15.73	16.37
	WQR	0.64	1.94	9.62	4.51	0.03	0.46	-2.25	-0.99	-2.18	-1.07
	ACT	3.08	3.02	0.59	-0.42	0.43	0.37	2.35	2.24	0.48	0.48
	CD	0.26	0.26	0.18	0.10	0.28	0.25	0.61	0.61	0.22	0.20
	GC	6.90	4.51	6.30	0.00	3.69	1.92	5.27	2.91	4.26	2.34
Random Forests	Mean	23.26	23.52	5.56	3.21	15.33	15.64	12.17	12.33	10.00	9.97
	AF	0.05	0.93	0.41	-0.47	1.35	0.86	-0.20	0.37	1.02	1.22
	BH	2.16	1.76	-3.05	-3.15	-2.02	-1.76	0.56	0.54	0.44	0.45
	BS	4.23	4.25	-0.20	-0.23	-0.57	-0.54	0.28	0.32	-0.79	-0.75
	WQR	4.03	4.03	-0.74	-0.58	1.51	2.16	3.17	3.17	4.25	4.22
	ACT	0.95	0.64	-0.05	-0.37	0.69	0.26	0.74	0.42	0.32	0.48
Light-GBM	CD	0.02	-0.20	0.13	-0.18	0.10	-0.11	0.02	-0.13	0.05	-0.15
	GC	3.09	3.09	1.72	2.40	0.39	1.45	0.26	0.66	1.32	1.32
	Mean	2.08	2.07	-0.26	-0.37	0.21	0.33	0.69	0.76	0.94	0.97
	AF	-0.11	0.24	0.98	-0.19	2.18	1.84	-0.75	-0.36	1.61	2.51
	BH	1.90	1.04	0.63	-0.74	-0.89	-0.41	3.00	1.70	3.68	2.88
	BS	3.94	4.08	0.38	0.28	0.51	0.17	3.72	3.44	1.14	0.84
GBM	WQR	5.12	5.67	-2.98	-3.35	3.16	4.08	3.04	2.28	3.71	5.42
	ACT	0.79	1.06	1.22	1.11	1.06	1.43	0.85	1.22	0.26	1.17
	CD	0.04	-0.07	0.24	0.21	0.12	0.08	0.03	0.00	0.12	0.02
	GC	7.03	6.21	1.44	1.32	2.78	0.00	4.16	-0.26	4.16	2.53
	Mean	2.67	2.60	0.27	-0.19	1.27	1.03	2.01	1.15	2.10	2.20
	Mean	8.64	8.69	1.67	0.76	5.12	5.17	4.60	4.37	4.06	4.10

1188
 1189 **Table 18:** The Nemenyi post-hoc test p -values for pairwise comparison of the methods in Table 1. Results that
 1190 are significant at the $p = 0.05$ confidence level are boldfaced.

	Raw	DIFER		OpenFE		CAAFE		OCTree		PromptFE (ours)			
						GPT-3.5	GPT-4	GPT-4	GPT-4	GPT-3.5	GPT-4	GPT-3.5	GPT-4
Raw	1.0000	0.0010	0.0010	0.0215	0.0117	0.0010	0.0010	0.0298	0.0140	0.0010	0.0114	0.0010	0.0010
DIFER	0.0010	1.0000	0.4574	0.3602	0.4794	0.9000	0.9000	0.2980	0.4462	0.8973	0.4847	0.0674	0.0010
OpenFE	0.0215	0.3602	0.0010	1.0000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.7955	0.9000
	0.0117	0.4794	0.0010	0.9000	1.0000	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	0.0010	0.0010
	0.0010	0.9000	0.0513	0.9000	0.9000	1.0000	0.9000	0.8922	0.9000	0.9000	0.9000	0.0025	0.0010
	0.0010	0.9000	0.0500	0.9000	0.9000	0.9000	1.0000	0.8973	0.9000	0.9000	0.9000	0.0024	0.0010
	0.0298	0.2980	0.0010	0.9000	0.9000	0.8922	0.8973	1.0000	0.9000	0.9000	0.9000	0.0010	0.0010
	0.0140	0.4462	0.0010	0.9000	0.9000	0.9000	0.9000	1.0000	0.9000	0.9000	0.9000	0.0010	0.0010
	0.0010	0.8973	0.0017	0.9000	0.9000	0.9000	0.9000	0.9000	1.0000	0.9000	0.9000	0.0010	0.0010
OCTree	0.0114	0.4847	0.0010	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000	1.0000	0.0010	0.0010	0.0010
	0.0010	0.0674	0.9000	0.0010	0.0025	0.0024	0.0010	0.0010	0.0010	0.0010	1.0000	0.9000	0.9000
PromptFE	0.0010	0.07955	0.0010	0.9000	1.0000	0.9000							
	0.0010	0.0066	0.9000	0.0010	0.9000	1.0000	0.9000						
	0.0010	0.2267	0.9000	0.0010	0.0010	0.0153	0.0148	0.0010	0.0010	0.0010	0.9000	0.9000	1.0000

1201 **Table 19:** The Nemenyi post-hoc test p -values for pairwise comparison of the methods in Table 1 excluding
 1202 linear model results. Results that are significant at the $p = 0.05$ confidence level are boldfaced.

	Raw	DIFER		OpenFE		CAAFE		OCTree		PromptFE (ours)			
						GPT-3.5	GPT-4	GPT-4	GPT-4	GPT-3.5	GPT-4	GPT-3.5	GPT-4
Raw	1.0000	0.0011	0.0010	0.5553	0.4753	0.0010	0.0014	0.4488	0.3036	0.6222	0.9000	0.0010	0.0010
DIFER	0.0011	1.0000	0.9000	0.7316	0.8107	0.9000	0.9000	0.8350	0.9000	0.6648	0.1552	0.5614	0.0404
	0.0010	0.9000	1.0000	0.0235	0.0357	0.9000	0.9000	0.0404	0.0775	0.0162	0.0010	0.9000	0.8350
OpenFE	0.5553	0.7316	0.0235	1.0000	0.9000	0.6830	0.7681	0.9000	0.9000	0.9000	0.9000	0.011	0.0010
	0.4753	0.8107	0.0357	0.9000	1.0000	0.7620	0.8472	0.9000	0.9000	0.6161	0.1267	0.6100	0.0514
	0.0010	0.9000	0.9000	0.6830	0.7620	1.0000	0.9000	0.7864	0.9000	0.8715	0.9000	0.1783	0.5249
	0.0014	0.9000	0.9000	0.7681	0.8472	0.9000	1.0000	0.9000	0.9000	0.9000	0.9000	0.0335	0.1912
	0.0448	0.8350	0.0404	0.9000	0.9000	0.7864	0.8715	1.0000	0.9000	0.9000	0.9000	0.0022	0.0010
	0.3036	0.9000	0.0775	0.9000	0.9000	0.9000	0.9000	0.9000	1.0000	0.9000	0.9000	0.0053	0.0010
	0.6222	0.6648	0.0162	0.9000	0.9000	0.6161	0.7012	0.9000	0.9000	0.9000	1.0000	0.0110	0.0174
OCTree	0.0010	0.1552	0.0010	0.9000	0.9000	0.1267	0.1783	0.9000	0.9000	1.0000	0.9000	0.0010	0.0010
	0.0010	0.5614	0.9000	0.0011	0.0019	0.6100	0.5249	0.0022	0.0053	0.0010	0.0010	1.0000	0.9000
PromptFE	0.0010	0.0404	0.8350	0.0010	0.0010	0.0514	0.0335	0.0010	0.0010	0.0010	0.0010	0.9000	0.8229
	0.0010	0.2187	0.9000	0.0010	0.0010	0.2588	0.1912	0.0010	0.0010	0.0010	0.0010	0.9000	0.9000
	0.0010	0.9000	0.9000	0.0250	0.0380	0.9000	0.9000	0.0430	0.0819	0.0174	0.0174	0.9000	1.0000

1214 **Table 20:** The Nemenyi post-hoc test p -values for pairwise comparison of the methods in Table 2 performance
 1215 comparison of PromptFE with and without dataset semantic context. Results that are significant at the $p = 0.05$
 1216 confidence level are boldfaced.

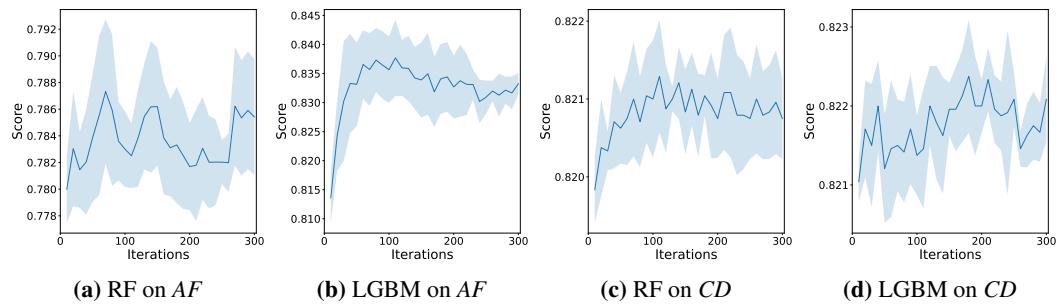
	Raw	GPT-3.5		GPT-4	
		Blinded	PromptFE	Blinded	PromptFE
Raw	1.0000	0.0010	0.0010	0.0010	0.0010
Blinded	0.0010	1.0000	0.9000	0.0062	0.0010
	0.0010	0.9000	1.0000	0.1775	0.0066
GPT-3.5	0.0010	0.0062	0.1775	1.0000	0.9000
	0.0010	0.0010	0.0066	0.9000	1.0000
PromptFE	0.0017	0.9000	0.3858	0.0010	0.0010
	0.0010	0.9000	0.9000	0.0069	0.0010
GPT-4	0.0010	0.9000	0.9000	0.0010	0.9000
	0.0010	0.0010	0.0105	0.9000	0.9000
PromptFE	0.0010	0.0057	0.1677	0.9000	0.0010
	0.0010	0.0010	0.0057	0.9000	0.0062

1228 **Table 21:** The Nemenyi post-hoc test p -values for pairwise comparison of the methods in Table 2 performance
 1229 comparison of PromptFE with and without RPN canonicalization. Results that are significant at the $p = 0.05$
 1230 confidence level are boldfaced.

	Raw	GPT-3.5		GPT-4	
		w/o	PromptFE	w/o	PromptFE
Raw	1.0000	0.0010	0.0010	0.0010	0.0010
w/o	0.0010	1.0000	0.9000	0.2977	0.0060
	0.0010	0.9000	1.0000	0.6618	0.0433
GPT-3.5	0.0010	0.2977	0.6618	1.0000	0.9000
	0.0010	0.0060	0.0433	0.9000	1.0000
PromptFE	0.0010	0.9000	0.8811	0.0341	0.0010
	0.0010	0.9000	0.8889	0.0355	0.0010
GPT-4	0.0010	0.9000	0.9000	0.0010	0.9000
	0.0010	0.0224	0.1230	0.9000	0.0010
PromptFE	0.0010	0.4293	0.7871	0.9000	0.8028
	0.0010	0.4293	0.7871	0.9000	0.0635

1242 D.8 ADDITIONAL HYPERPARAMETER EFFECT
1243

1244 **Number of Iterations.** Figure 13 shows the validation scores on the *AF* and *CD* datasets, which
1245 contain the smallest and largest numbers of features, respectively, using Random Forests and Light-
1246 GBM. The validation score is evaluated after adding the selected set of candidate features to the
1247 dataset, as denoted by s_{n^*} in line 17 of Algorithm 1. We terminate our algorithm once we have
1248 200 candidate features, as constructing additional features does not substantially enhance the per-
1249 formance, but constructing fewer features degrades the performance in some cases.



1260 **Figure 13:** The validation score across iterations using Random Forests and LightGBM.
1261
1262

1263 **Number of Examples in Prompt with GPT-4.** Table 22 reports the maximum validation score
1264 across iterations by varying the number of example features provided in the prompt to GPT-4. We
1265 observe improved performance as the number of example features increases. This suggests that
1266 providing more example features helps fully leverage GPT-4’s enhanced in-context learning capa-
1267 bilities. In our experiments, we set the number of example features to 10 for a fair comparison with
1268 GPT-3.5.
1269

1270 **Table 22:** Effect of the number of example features in the prompt with GPT-4. For each compared setting, the
1271 left column shows the validation score, and the right column shows the number of LLM generations. The best
1272 results are boldfaced.
1273

Model	Dataset	Number of Examples				
		1	5	10	20	30
RF	AF	0.7864	0.7922	0.7905	0.7897	0.7920
	WQR	0.3847	0.3835	0.3839	0.3862	0.3862
	CD	0.8219	0.8218	0.8218	0.8219	0.8222
LGBM	AF	0.8387	0.8413	0.8401	0.8433	0.8411
	WQR	0.4216	0.4242	0.4290	0.4258	0.4267
	CD	0.8231	0.8234	0.8227	0.8229	0.8231
Mean		0.6794	0.6810	0.6813	0.6816	0.6819

1296 D.9 NUMBER OF SELECTED FEATURES
12971298 Table 23 compares the number of features added to the datasets. Our method PromptFE adap-
1299 tively determines the number of features and selects fewer features than DIFER (Zhu et al., 2022b),
1300 demonstrating the effectiveness of the features generated by our method.
13011302 **Table 23:** Comparison of the number of selected features.
1303

Model	Dataset	DIFER	OpenFE	PromptFE Blinded		PromptFE	
		GPT-3.5	GPT-4	GPT-3.5	GPT-4	GPT-3.5	GPT-4
Linear Model	AF	310	10	167	165	162	183
	BH	156	10	104	141	144	90
	WQR	109	10	57	80	43	55
	ACT	113	10	84	49	85	14
	CD	157	10	92	68	74	74
	GC	105	10	75	97	120	51
Random Forests	AF	387	10	39	19	15	34
	BH	186	10	4	6	19	77
	BS	46	10	9	7	9	65
	WQR	63	10	9	44	39	45
	ACT	339	10	55	35	69	61
	CD	178	10	97	74	94	89
Light- GBM	GC	92	10	68	84	31	59
	AF	325	10	30	55	42	24
	BH	118	10	15	17	16	25
	BS	287	10	119	48	68	116
	WQR	454	10	64	29	129	128
	ACT	132	10	54	46	16	51
CD	409	10	68	53	12	50	
	GC	501	10	61	86	16	35
Mean		223	10	64	60	60	66

1350
1351

D.10 COMPUTATION COST

1352
1353
1354

Table 24 compares the number of features evaluated during the feature search process. Guided by domain knowledge, our method PromptFE evaluates much fewer features than DIFER (Zhu et al., 2022b) and OpenFE (Zhang et al., 2023).

1355
1356
1357
1358

Tables 25 and 26 summarize the computation time, with *gpt-3.5-turbo-0125* as the LLM. For PromptFE, the computation time of LLM generation and feature evaluation is relatively stable across datasets of varying sizes. We note that the LLM generation time can be substantially reduced by instructing the LLM to generate multiple features in a generation step.

1359
1360
1361
1362
1363
1364
1365

The sizes of datasets were listed in Table 5. We see that only the feature selection time is sensitive to dataset sizes. While in general the cost of downstream model evaluations grows proportionally with the dataset size, the actual cost depends on the hyperparameter of the downstream model, e.g., the maximum tree depth. Based on the observations in Figure 10, the LLM generation time is roughly constant across iterations. The feature evaluation time is also constant. The feature selection time scales quadratically with the number of candidate features but can be computed in parallel.

1366

Table 24: Comparison of the number of evaluated features during feature search.

Model	Dataset	DIFER	OpenFE	PromptFE
Linear Model	AF	2083	224	200
	BH	2081	1167	200
	WQR	2083	929	200
	ACT	2077	4310	200
	CD	2088	3385	200
	GC	2076	4169	200
Random Forests	AF	2085	224	200
	BH	2079	1051	200
	BS	2082	310	200
	WQR	2085	929	200
	ACT	2079	1636	200
	CD	2086	1801	200
	GC	2078	2139	200
Light-GBM	AF	2084	224	200
	BH	2080	1051	200
	BS	2083	310	200
	WQR	2084	929	200
	ACT	2079	1636	200
	CD	2087	1801	200
	GC	2078	2139	200
Mean		2082	1518	200

1388

1389

E EXPERIMENTS ON PROPRIETARY DATASETS

1390

We have conducted experiments on our proprietary real-world dataset containing over 100,000 samples and over 1,000 features, where most features contain a substantial proportion of missing values. We select features of top 100 mutual information scores with the target, which filters out features with too many missing values, and perform AutoFE on those features. With preprocessing, PromptFE brings significant performance improvements to downstream models on our proprietary real-world dataset.

1398

1399

1400

1401

1402

1403

Table 25: Comparison of computation time, in minutes.

Model	Dataset	DIFER	OpenFE	CAAFE	PromptFE
Linear Model	AF	33.49	0.21	1.73	42.80
	BH	41.17	0.21	1.18	41.28
	WQR	34.94	0.25	1.21	42.33
	ACT	44.18	0.40	1.25	43.60
	CD	433.94	1.49	3.17	57.82
	GC	29.30	0.37	1.68	43.71
Random Forests	AF	178.50	0.23	4.22	63.30
	BH	89.07	0.24	5.52	51.70
	BS	98.50	0.23	4.05	51.13
	WQR	298.46	0.29	9.35	63.12
	ACT	78.44	0.28	3.82	44.66
	CD	571.33	1.12	14.05	94.08
Light-GBM	GC	60.41	0.28	3.24	45.06
	AF	301.56	0.25	5.81	63.06
	BH	62.30	0.24	3.01	44.84
	BS	74.59	0.24	2.55	45.23
	WQR	361.19	0.29	5.68	58.97
	ACT	36.39	0.28	1.73	42.71
	CD	102.04	1.07	2.49	46.34
	GC	48.63	0.28	2.97	43.03
	Mean	148.92	0.41	3.94	51.44

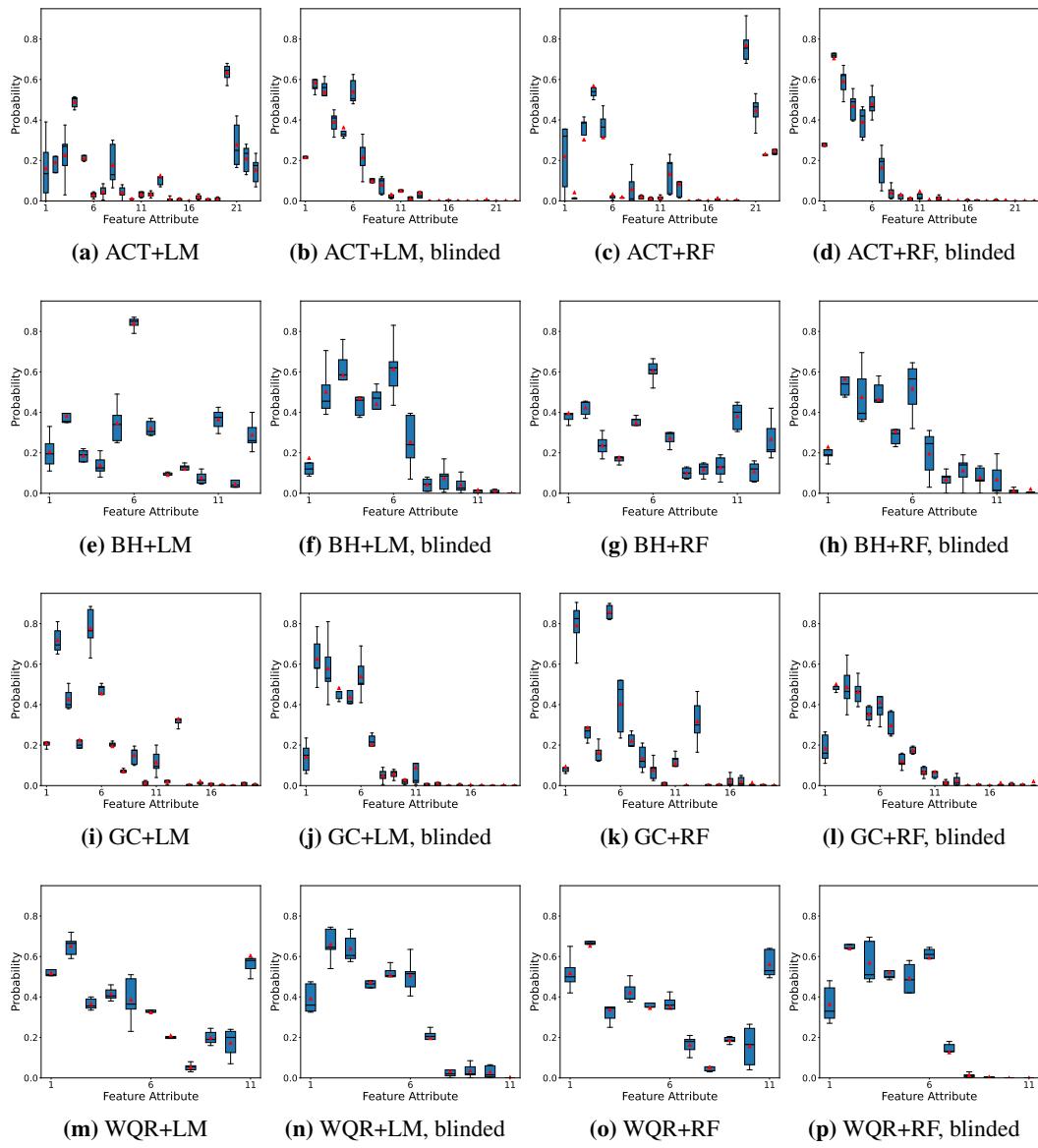
Table 26: Computation time of different components of PromptFE, in minutes.

Model	Dataset	LLM Generation	Feature Evaluation	Feature Selection
Linear Model	AF	16.73	22.98	3.08
	BH	18.50	20.18	2.60
	WQR	19.07	20.24	3.02
	ACT	18.92	20.97	3.71
	CD	16.73	25.14	15.95
	GC	17.01	23.24	3.47
Random Forests	AF	15.34	25.32	22.64
	BH	18.60	23.69	9.41
	BS	15.12	25.16	10.87
	WQR	12.75	23.81	26.56
	ACT	13.79	21.67	9.20
	CD	12.48	25.89	55.71
Light-GBM	GC	14.80	21.91	8.35
	AF	17.37	21.06	24.63
	BH	19.70	20.40	4.74
	BS	17.03	22.18	6.02
	WQR	16.27	21.19	21.51
	ACT	19.18	20.24	3.29
	CD	16.53	21.68	8.13
	GC	17.00	20.40	5.63
	Mean	16.65	22.37	12.43

1458 F ADDITIONAL ANALYSIS

1460 F.1 FEATURE ANALYSIS

1462 Figure 14 compares the proportions of generated features selecting each feature attribute across
 1463 different datasets and downstream models (linear models and Random Forests) for both the full and
 1464 semantically blinded versions of PromptFE. In the blinded version, we observe that the LLM tends to
 1465 prioritize earlier feature attributes in the dataset while paying less attention to later ones, reflecting
 1466 an inherent bias of the language model. In contrast, in the full version, the selection of feature
 1467 attributes is guided by the semantic information of the dataset rather than the positional order of the
 1468 attributes. Specifically, Attribute 19 *CD4 at baseline* in AIDS Clinical Trials (ACT) and Attribute
 1469 10 *alcohol* in Wine Quality Red (WQR), which contain useful information for predicting the targets
 1470 *censoring indicator* and *quality*, respectively, are included in the majority of the generated features.
 1471 This demonstrates the role of dataset semantic information in the LLM-based feature search process.



1510 **Figure 14:** Distributions of feature attribute selection in the constructed features with GPT-4.
 1511

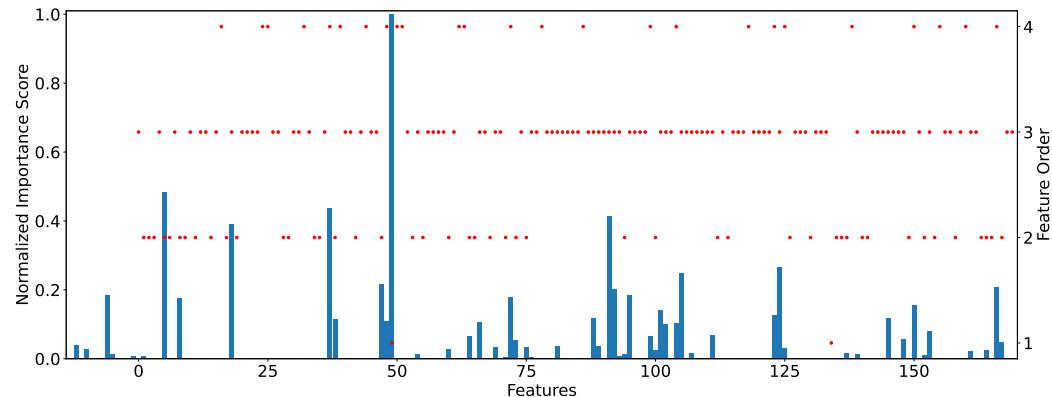
1512

F.2 FEATURE IMPORTANCE

1513

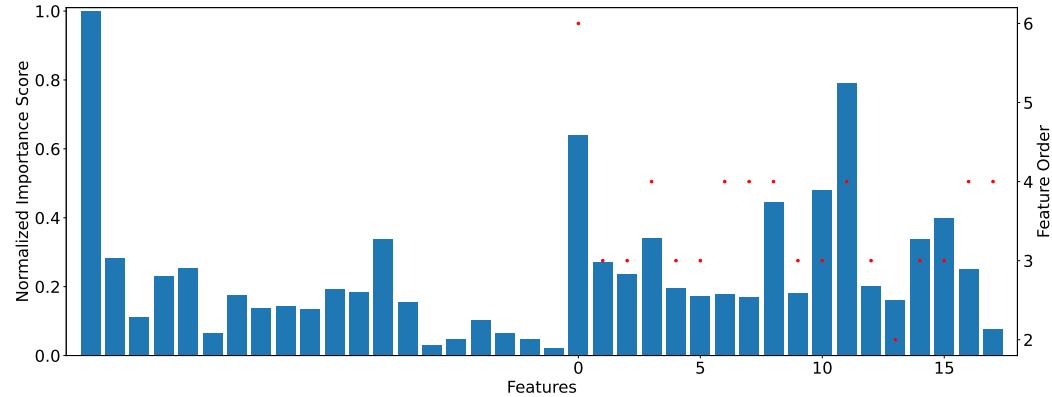
1514 Figure 15 shows the feature importance scores across different datasets and downstream models. We
 1515 employ magnitudes of coefficients for linear models, impurity-based feature importance for Random
 1516 Forests (Breiman, 2001), and total gains of splits for LightGBM (Ke et al., 2017). PromptFE aug-
 1517 ments datasets with the constructed features extracting important information for target prediction.
 1518 We observe that Random Forests and LightGBM benefit from features of higher orders compared
 1519 to linear models, since they are capable of synthesizing simple features internally. Our approach
 1520 adapts the feature complexity for different downstream models.

1521



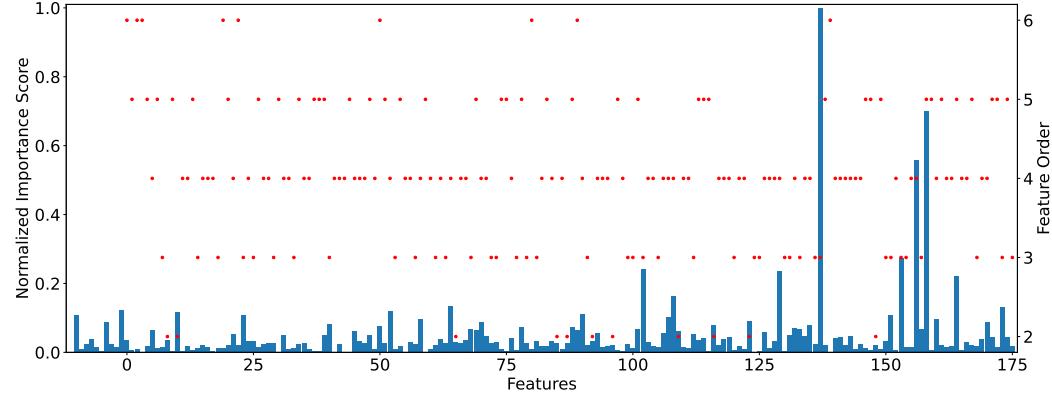
(a) BH+LM. Test performance improves from 0.3776 to 0.5157.

1536



(b) GC+RF. Test performance improves from 0.7450 to 0.7700.

1551



(c) WQR+LGBM. Test performance improves from 0.3825 to 0.4299.

1566

Figure 15: The blue bars show the normalized feature importance scores. The red dots show the order of
 features. The constructed features positioned on the x-axis start at index 0, following raw dataset features.

1566 F.3 FEATURE SEARCH EXAMPLE
15671568 Figure 16 shows samples of the LLM-based feature search process from a single run. In iteration
1569 155, the generated feature is derived from the combination of three example features. In iteration
1570 158, the generated feature is derived from the combination of two example features, with the fea-
1571 ture attributes modified. Iteration 160 exhibits an instance of modification on the example feature.
1572 Iteration 161 exhibits an instance of analogy of the example feature.
15731574 Figure 16: Examples of feature search. The prompt examples that relate to the generated feature
1575 are highlighted in red.1576 Iteration 155
1577 Generated feature:
1578 **6, 12, division, 18, *, min_max**
1579 Prompt examples:
1580 4, log, 13, *, 17, min_max, sqrt_abs, +
1581 **6, 12, *, 21, sqrt_abs, +**
1582 **4, 14, +, 18, *, min_max**
1583 11, 21, +, 6, *, sqrt_abs
1584 2, 4, +, 6, division, log
1585 4, 6, +, 16, *, 17, +, min_max
1586 6, 21, division, 17, log, *
1587 12, min_max, 18, *, 5, mod_column
1588 2, 6, mod_column, 17, +, sqrt_abs
1589 2, 3, +, 4, sqrt_abs, *
1590 **4, 12, division, 16, *, min_max, sqrt_abs**1591 Iteration 158
1592 Generated feature:
1593 **5, log, 19, *, 15, +, min_max**
1594 Prompt examples:
1595 **4, log, 13, *, 17, min_max, sqrt_abs, +**
1596 6, 12, *, 21, sqrt_abs, +
1597 4, 14, +, 18, *, min_max
1598 11, 21, +, 6, *, sqrt_abs
1599 2, 4, +, 6, division, log
1600 **4, 6, +, 16, *, 17, +, min_max**
1601 6, 21, division, 17, log, *
1602 12, min_max, 18, *, 5, mod_column
1603 2, 6, mod_column, 17, +, sqrt_abs
1604 2, 3, +, 4, sqrt_abs, *
1605 4, 12, division, 16, *, min_max, sqrt_abs1606 Iteration 160
1607 Generated feature:
1608 **11, 21, *, 4, +, 14, mod_column**
1609 Prompt examples:
1610 4, log, 13, *, 17, min_max, sqrt_abs, +
1611 6, 12, *, 21, sqrt_abs, +
1612 4, 14, +, 18, *, min_max
1613 **11, 21, +, 6, *, sqrt_abs**
1614 2, 4, +, 6, division, log
1615 4, 6, +, 16, *, 17, +, min_max
1616 6, 21, division, 17, log, *
1617 12, min_max, 18, *, 5, mod_column
1618 2, 6, mod_column, 17, +, sqrt_abs
1619 2, 3, +, 4, sqrt_abs, *
1620 4, 12, division, 16, *, min_max, sqrt_abs1621 Iteration 161
1622 Generated feature:
1623 **6, 12, +, 17, *, min_max**
1624 Prompt examples:

```

1620 6, 12, *, 21, sqrt_abs, +
1621 4, 14, +, 18, *, min_max
1622 11, 21, *, 4, +, 14, mod_column
1623 11, 21, +, 6, *, sqrt_abs
1624 2, 4, +, 6, division, log
1625 4, 6, +, 16, *, 17, +, min_max
1626 6, 21, division, 17, log, *
1627 12, min_max, 18, *, 5, mod_column
1628 2, 6, mod_column, 17, +, sqrt_abs
1629 2, 3, +, 4, sqrt_abs, *
1630 4, 12, division, 16, *, min_max, sqrt_abs

```

1631 F.4 POTENTIAL FAILURE MODES

1633 One potential failure mode is the generation of features that are duplicates of existing candidate fea-
 1634 tures or syntactically invalid. The third column of each configuration in Table 2 reports the number
 1635 of LLM generations needed to construct 200 candidate features in our experiments. Specifically,
 1636 the proportion of valid new features is around 55% using GPT-3.5 and around 60% using GPT-4
 1637 on average. Feature search tends to converge per our feature divergence analysis in Section 5.6 and
 1638 could get stuck in local optima when example features in the prompt are highly similar. From Figure
 1639 10, the number of LLM generations needed to construct a new candidate feature remains relatively
 1640 stable as the algorithm iterates, suggesting low likelihood of getting stuck. Table 3 shows that in-
 1641 cluding more example features in the prompt improves the success rate of feature construction on
 1642 average by increasing the diversity. Another potential failure mode is that the generated explanation
 1643 of a constructed feature may be inaccurate, e.g., the column index may be inconsistent with the
 1644 feature name.

1645 G MORE DISCUSSION ON DIFFERENCES FROM EXISTING WORKS

1648 Although our work PromptFE and CAAFE (Hollmann et al., 2023) both utilize LLMs to construct
 1649 new features incorporating dataset semantic information, they differ in several key aspects. We
 1650 design PromptFE such that it taps into the in-context learning capability of LLMs and performs
 1651 effective feature search. In PromptFE, we provide top-performing constructed features in the prompt
 1652 as learning examples, label them with performance scores, and rank them by score. We demonstrate
 1653 that the LLM learns to optimize feature construction over the course of algorithm. CAAFE instead
 1654 stores all previous instructions and code snippets in the conversation history, which hinders the in-
 1655 context learning of optimal feature patterns. It quickly consumes the LLM’s context as the algorithm
 1656 iterates, incurring more and more LLM generation costs. In comparison, the LLM generation cost of
 1657 PromptFE stays constant across iterations, without a maximum limit on the number of iterations it
 1658 can perform. Therefore, our method PromptFE has stronger capability of performing feature search
 1659 in large search spaces requiring many iterations, such as datasets with numerous feature attributes.

1660 In PromptFE, we also explore representing features in a different form, i.e., canonical RPN (cRPN).
 1661 We refer to Appendix A for further detail. Compared with the Python code representation in
 1662 CAAFE, cRPN is more compact, which not only reduces LLM generation costs but also makes
 1663 the in-context learning of feature patterns easier, and more human interpretable. The use of pre-
 1664 defined operators reduces the search space and simplifies the learning process for optimizing feature
 1665 construction. Together, our approach gives better control than code representation that helps avoid
 1666 undesirable or unexpected LLM outputs. Another advantage of cRPN is that it is convenient to
 1667 import external features (as outlined in Algorithm 1) and export the results as individual features,
 1668 providing compatibility with other feature engineering methods.

1669 The rules generated by FeatLLM (Han et al., 2024) are based on a single raw feature, without
 1670 considering high-order feature interactions. There is no feedback mechanism to improve the rules
 1671 either. In comparison, our approach constructs new features that combine multiple raw features and
 1672 iteratively improves feature construction by learning the performance. Furthermore, FeatLLM can
 1673 be used for only classification tasks and for a single type of downstream model. Our approach is
 1674 effective for both classification and regression tasks, and it adaptively constructs features that are
 1675 useful for different downstream models.

1674 ELF-Gym (Zhang et al., 2024b) first generates feature descriptions using one LLM and then generates
 1675 feature code using another LLM, which is less efficient, and it does not have a feedback mechanism
 1676 to improve the features. Differently, we represent features in the compact form of cRPNs. Our
 1677 approach iteratively improves feature construction by learning the performance, where the LLM
 1678 simultaneously generates new features and explanations on its own.

1679 Compared with OCTree (Nam et al., 2024), our approach represents features concisely in the form
 1680 of canonical RPNs without using external modules like decision trees. The processes of feature
 1681 encoding, decoding, and validity check detailed in Algorithms 2 and 3 are simple and efficient. We
 1682 have demonstrated that cRPNs are effective for the LLMs to understand the structure of features
 1683 and construct new features to improve utilities. The LLMs are also able to semantically explain
 1684 the constructed features in the context of dataset descriptive information on its own. Our approach
 1685 gives better control, such as the number of operators to use to construct features, and facilitates
 1686 feature search by reducing the search space with a set of pre-defined operators. Moreover, with
 1687 fewer modules used, our approach is more robust and cost efficient.

1688 While LFG (Zhang et al., 2024a) is also LLM based, it does not utilize the semantic information
 1689 of datasets. We have shown in Sections 5.3 and 5.5 that the incorporation of dataset semantic in-
 1690 formation enhances the effectiveness of feature construction of our approach. Informed by dataset
 1691 semantic information, our approach circumvents exhaustive feature search and evaluates consider-
 1692 ably fewer candidate features than traditional approaches, while providing semantic explanations of
 1693 the constructed features. Another difference is that we represent features in the compact and unam-
 1694 biguous form of cRPNs, which not only reduces LLM generation costs but also facilitates in-context
 1695 learning of feature patterns. Furthermore, compared with (Zhang et al., 2024a), we conduct more
 1696 comprehensive experiments by benchmarking against state-of-the-art LLM- and non-LLM-based
 1697 AutoFE methods on both regression and classification tasks and perform more detailed performance
 1698 analysis, such as feature attribute selection, feature complexity, and feature construction efficiency.

1699 More fundamentally, we demonstrate in this work that general-purpose LLMs like GPTs can effec-
 1700 tively model recursive tree structures in the form of cRPN feature expressions and reason about the
 1701 structures in the context of semantic information, shedding light on further LLM-driven applica-
 1702 tions. We hereby underscore the importance of adopting proper representation for the downstream
 1703 task to tap into LLMs’ potential.

1704 H PRACTICAL SIGNIFICANCE

1705 PromptFE constructs semantically meaningful features that significantly boost the performance of
 1706 simple predictive models especially linear models and provides semantic explanations. Our cRPN
 1707 feature representation is concise and easy to interpret. Using our approach, one can enhance the
 1708 performance of simple predictive models without sacrificing their interpretability. Our toolkit is
 1709 easy to deploy, requiring only OpenAI APIs.

1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727