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ABSTRACT

Automated feature engineering (AutoFE) liberates data scientists from the burden
of manual feature construction. The semantic information of datasets contains rich
context information for feature engineering but has been underutilized in many
existing AutoFE works. We present PromptFE, a novel AutoFE framework that
leverages large language models (LLMs) to automatically construct features in a
compact string format and generate semantic explanations based on dataset de-
scriptions. By learning the performance of constructed features in context, the
LLM iteratively improves feature construction. We demonstrate through exper-
iments on real-world datasets the superior performance of PromptFE over state-
of-the-art AutoFE methods. We verify the impact of dataset semantic information
and provide comprehensive study on the LLM-based feature construction process.

1 INTRODUCTION

Tabular data, a form of structured data comprising instances and attributes, have extensive use across
a broad range of domains including credit assessment, market prediction, and quality control. Tra-
ditional machine learning models, especially tree-based models (Breiman, 2001; Ke et al.l [2017),
have strong performance on tabular datasets of small and medium sizes (Grinsztajn et al., [2022])
and good interpretability. Feature engineering refers to the construction of features to enhance the
performance of downstream models, which is crucial for traditional ML models as new features ex-
tract useful information for target prediction by capturing complex non-linear relationships. Feature
engineering by hand demands domain expertise to relieve significant human labor.

Automated feature engineering (AutoFE) employs meta algorithms and models to automate feature
engineering process for performance comparable to domain experts. Prior approaches like (Zhu
et al., 2022azb}, |[Zhang et al., |2023)) construct and evaluate enormous features in a trial-and-error
manner. While some methods learn to optimize the utility of features during the FE process, they
do not utilize domain knowledge to guide feature search. The need to search features from scratch
for new datasets and downstream models hampers their efficacy and efficiency. Furthermore, these
methods cannot offer explanation of the engineered features, undermining the interpretability.

The text descriptions of tabular datasets provide
rich context for feature engineering. Domain performance @
. .. evaluation

experts consult attribute descriptions to select

relevant feature attributes and compute new fea-
tures useful for target prediction. For example,
the square footage of a house times the aver-
age housing price per square foot in the neigh-
borhood may be a good predictor of the market
value of the house. Pretrained on large volumes 4
of data, large language models (LLMs) (Rad- o
ford et al., 2019 Brown et al., 2020; (OpenAl, Figure 1: Overview of PromptFE: (1) instructing the
2023}, [Touvron et al.} 2023aib) handle general | 'M (o construct new features by providing dataset
language processing tasks and encapsulate ex-  gescriptions and example features; (2) evaluating the
tensive domain knowledge. Under proper in- constructed features; (3) updating the prompt with top-
structions, an LLM can process dataset seman- performing features and scores; and (4) selecting a set
tic information and utilize its knowledge to au- of constructed features to add to the dataset.
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tomatically construct features in a manner similar to domain experts. The work by Hollmann et al.
(2023)) demonstrates the potential of such research direction but is not sufficiently effective in fea-
ture search. Similarly, the work by |Nam et al.|(2024) suffers from large search space. The works by
Han et al.|(2024) and |Zhang et al.|(2024b)) do not involve feature learning and improvement.

We present AutoFE by Prompting (PromptFE), a novel AutoFE framework that leverages LLMs for
effective, efficient, and interpretable feature engineering, as illustrated in Figure[I] With dataset de-
scriptions and example features in canonical Reverse Polish Notation (cCRPN), we prompt the LLM
to construct new features. After evaluation, we update the prompt with top-performing features with
the evaluation scores and instruct the LLM to construct further features. Iteratively, the LLM ex-
plores the feature space and improves solutions by learning good examples in context. The dataset
semantic information not only guides feature search, but helps the LLM understand the patterns in
example features. Applying domain knowledge, the LLM generates semantically meaningful fea-
tures and explains their usefulness. Experiments on real-world datasets demonstrate that PromptFE
yields over 5% mean performance gain for three downstream models and significantly outperforms
state-of-the-art baselines. Furthermore, we show in ablation study the effects of dataset semantic
context and proposed feature canonicalization scheme. We also comprehensively study the behavior
of the LLM-based feature construction process.

Our main contributions are: (1) We introduce a novel LLM-based AutoFE framework utilizing
dataset semantic information for automated feature construction, which is the first method capable
of generating features in the RPN format while providing semantic explanations. (2) We benchmark
the performance of our approach against state-of-the-art baselines using both GPT-3.5 and GPT-4.
(3) We investigate the impact of semantic context and study the behavior of the LLM-based feature
construction process, providing a comprehensive view of our approach.

2 RELATED WORK

Large Language Models. LLMs are large-scale general-purpose neural networks pretrained on vast
corpora of text data, typically built with transformer-based architectures (Vaswani et al.,2017)). Gen-
erative LLMs, such as the GPT family (Radford et al.,2019; Brown et al.,|2020; OpenAlL [2023) and
the LLaMA family (Touvron et al.,|2023ajb)), are pretrained to successively generate the next token
given the text input and can be finetuned using reinforcement learning from human feedback (Ziegler
et al.,2019; |Ouyang et al.} [2022). By this means, they acquire the syntactic and semantic knowl-
edge of natural languages and achieve state-of-the-art performance on various tasks including text
generation, summarization, and question answering. Prompting techniques (Liu et al., 2023)) have
been developed to adapt LLMs to downstream tasks without modifying model weights. Few-shot
learning (Brown et al.| [2020) includes examples in the prompt for the language model to learn in
context. Leveraging such capability, an LLM may function as a problem solver (Yang et al., [2024)
that iteratively improves candidate solutions according to the task description and performance feed-
back. Chain-of-thought (Wei et al., [2022; |Kojima et al., 2022) strengthens reasoning performance
of LLMs through the elicitation of intermediate reasoning steps.

Automated Feature Engineering. AutoFE complements the input dataset with engineered fea-
tures to enhance the performance of downstream models. Traditional AutoFE approaches include
expansion-reduction (Kanter & Veeramachaneni, 2015; Horn et al., [2020; |Zhang et al., [2023)), evo-
lutionary algorithms (Smith & Bull, 2005} |Zhu et al.| 2022a)), and reinforcement learning (Khu-
rana et al., 2018} L1 et al., 2023} Wang et al., [2023)). DIFER (Zhu et al., |2022b)) utilizes encoder-
decoder neural networks to learn the utility of features and optimize features in the embedding
space. OpenFE (Zhang et al) 2023)) develops a feature boost algorithm to speedup feature eval-
uation. Nonetheless, these traditional approaches do not incorporate the semantic information of
datasets, which hampers the efficacy and interpretability of engineered features.

AutoFE with Domain Knowledge. The benefits of incorporating domain knowledge in AutoFE
include: (1) improving the effectiveness; and (2) reducing the cost of feature search, especially
the feature evaluation overhead. One direction in prior works is to learn transferrable knowledge.
LFE (Nargesian et al.| 2017)) represents features with quantile sketches transferable across datasets
and inputs them to a feature transformation recommendation model. FETCH (Li et al.l [2023) is an
RL-based AutoFE framework that takes tabular data as the state and is generalizable to new data. E-
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AFE (Wang et al.,|2023) pretrains a feature evaluator to help efficiently train the RL-based AutoFE
model. The other direction is to leverage the semantic information of datasets. KAFE (Galhotra
et al.|[2019) employs knowledge graphs to identify semantically informative features relevant to the
prediction task. CAAFE (Hollmann et al., 2023)) manipulates datasets using the code generated from
an LLM based on dataset descriptions. FeatLLM (Han et al., 2024) generates first-order rules for
classification tasks. ELF-Gym (Zhang et al., 2024b) generates first feature descriptions and then
feature code. Neither approach involves feature learning and improvement. OCTree (Nam et al.,
2024)) relies on external decision tree algorithms to represent features and suffers from large search
space. Differently, we adopt a compact form of feature representation in cRPN with pre-defined
transformation operators. Our approach reduces the search space and helps the LLM learn the
patterns of useful features, leading to stronger and more robust performance.

3 NOTATIONS

We denote a tabular dataset as D = (X, y), where X = {@1,..., x4} is the set of raw features with
x; € R"fori=1,...,dand y € R" is the target. We construct a new feature & = t(x;,,...,x;,)
by transforming existing features x;, , ..., x;, via some operator t € R” x ... x R"™ — R" of arity
o. Given a set of transformation operators T, we define the feature space Xt recursively as: for any
& € Xp, either & € X; or 3t € T, s.t., & = t(xj,,...,&;,), where &;,,...,&;, € Xr. To measure
feature complexity, we compute the order of a feature © € Xr as:

o(F) = 0 ifz € X, 0
o 1+ max; o(@;) ife =t(x,,,...,x;,)3teT.

The constrained feature space with the order upper bounded by k is denoted as Xj(rk) ={z € Xr |
a(E) < k}.

We denote the performance of a downstream machine learning model algorithm M on the dataset
as Ex (X, y). The objective of AutoFE is to augment the dataset with a set of constructed features
X* to optimize the model performance, specifically:

X* = argmax Ey (XUX, y). (2)
XXy

4 METHODOLOGY

In this section, we present PromptFE, a novel AutoFE framework leveraging the power of LLMs,
particularly, the GPT models (Radford et al., 2019; |Brown et al., [2020; |(OpenAlL [2023)). The high-
level idea is to provide the LLM with descriptive information of the dataset in the prompt and guide
it to search for effective features using examples.

We represent features in a compact form in our
prompt. A feature € € Xy is expressible as a

d 3 canonicalize + -
tree, where the leaf nodes are raw features and ©°°2 _— \ col-2
the internal nodes are operators. However, the col-1  col-0 col-0  col
expression trees of features containing commu- 1 1
tative operators (like addition and multiplication) ¢el-2, col-1, col-0, +, * [col-0, col1, +, col-2, * |

are not unique since the child nodes of these op-
erators are unordered. We introduce a canonical-
ization scheme: arranging operator nodes before
feature nodes for left skewness and lexicographically sorting the nodes within each group. We then
serialize the canonical expression tree into the postorder depth-first traversal string, i.e., canonical
reverse Polish notation (cCRPN), ensuring the one-to-one mapping between features and string rep-
resentations. We denote the feature corresponding to an RPN string f as 7 and the set of features

corresponding to a set of RPN strings [ as Xp. We make further discussions in Appendix@

Figure 2: We obtain canonical RPN (cRPN) by re-
ordering the nodes of a feature expression tree.

Our prompt contains: (1) a meta description of the dataset; (2) an indexed list of the dataset at-
tributes, with attribute types, value ranges, and descriptions; (3) lists of transformation operators
with descriptions, grouped by the arity; (4) a ranked list of example features with performance eval-
uation scores; (5) feedback of previously constructed features; and (6) an output template of new
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(1) Dataset description:

This dataset contains information on default payments, demographic factors, credit data, and history of payment of credit card clients ...

(2) Dataset contains the following columns:

col-0 (int) [10000, 800000]: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit

col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female) ...

col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)

(3) We have the following unary operators:

sqrt_abs: taking the square root of the absolute value ...

We have the following binary operators:

+: summing two columns ...

Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset. Each feature string constructs an extra
column that is useful for the downstream model Random Forests to predict the target col-23. The model will be trained on the dataset with the
constructed columns and evaluated on a holdout set. The best columns will be selected.

(4) Below are feature strings arranged in ascending order based on their performance scores. Higher scores are better.

(5) Previous feature:

col-4,col-5,col-6,+,col-12,col-16,-,*

Error: invalid RPN expression

Give me a new feature string that is different from all strings above and has a higher score. Use no more than five operators. Make sure all
columns and operators exist and do not include the target column. Follow the syntax of RPN.

(6) Output format:

Feature

(Feature description)

Usefulness

(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset description)

Figure 3: Prompt template. Sections containing dataset information are marked in blue. The ranked list of
feature examples and scores is marked in . The feedback message is marked in gray.

Feature

col-11,col-11,col-12,-,log,*

This feature calculates the log of the difference between the September bill statement (col-11) and the August bill statement (col-12), then
multiplies it by the September bill amount.

Usefulness

This feature captures the change in the bill amount from August to September in a logarithmic scale, which can effectively highlight significant
changes in spending patterns. Large fluctuations in credit card bills could be indicative of financial distress, which may impact the likelihood of
defaulting on payments, while the logarithmic transformation allows for handling potential skewness in the data distribution. By incorporating
this feature, the model can better understand how temporal changes in spending behavior relate to the probability of default, providing richer
contextual information beyond static features.

Figure 4: The LLM constructs a new feature in RPN and explains its usefulness from the semantic perspective.

features and explanations. Figure [3] outlines the structure of our prompt. The descriptions of the
dataset and attributes provide contextual information for the LLM to understand the data and apply
domain knowledge. The value ranges of attributes are useful for selecting appropriate feature trans-
formations, e.g., min-max normalization when the scale is too large. We include the descriptions of
transformation operators as they help the LLM parse example features in RPN syntax and construct
syntactically valid feature strings. The output template not only structures the output but instructs
the LLM to reason about the usefulness of the constructed features and offer semantic explanations,
utilizing the chain-of-thought technique (Wei et al., 2022} [Kojima et al., [2022). We additionally
add a constraint instruction to use no more than a certain number of operators, which reduces the
search space and regularizes the solutions. Figure [4] shows an example LLM output. The prompt
may further include dataset statistics like mean, standard deviation, and skewness of the attributes.

We initialize the prompt with k£ random features from the constrained feature space Z1,...,Z; €

X%z) represented in cRPN for demonstration, where the feature attributes are sampled per the soft-
max probabilities of feature importance by fitting the downstream model on the training data. This
lets the LLM start search from a small feature space where it is easier to identify the basic patterns
of promising features. Optionally, we can import external example features. We prompt the LLM to
construct a fixed number of m new feature in an iteration. For each constructed feature string f, we
first try to obtain the cRPN expression f€ to check whether f€ is syntactically valid and not a dupli-
cate of candidate features. If both criteria are met, we evaluate the performance score of adding the
single feature to the dataset s = £y (XU{& s }, y) through cross validation on the training data and
add (f¢, s) to the candidate set F.,,4. When f€ is among the top-k candidate features in terms of
the score s, we update prompt examples with the top-k pairs (f’, s’} € F.qnq ranked in the ascend-
ing order, taking score increment s’ — E,;(X, y) from the baseline. We also provide the feedback
of previously constructed features with scores or error messages for improvement. We then instruct
the LLM to construct additional features using the updated prompt. To select candidate features,
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Algorithm 1: AutoFE by Prompting

Input : Dataset D = (X, y), downstream model M, large language model L L M, and optionally an external set of features with
evaluation scores Fe ¢

Output: A set of engineered features F

Initialize prompt P with dataset descriptions and example features; Feqna < Fext if Fegy is available, otherwise Fegnag + 0; Fger < 0

repeat

Froam ={f1,---,fm} < LLM(P) > Feature generation

for each f € Frp s do

f¢ <« Canonicalize f

if f¢is valid and f© & Fcana then > Feature evaluation

Evaluate cross validation performance s <— Enr (XU {zfec }, y)

Feand < Feand U {<f07 3)}

end

end

Update P such that P contains the top-k {f’, s’) € Feqna as ordered by s’

if feature selection then

forn < 1to [Fegnaql do > Feature selection
F,, < The top-n features in F.q4,,q as ordered by s

Evaluate validation performance s,, < Ep (X U X[pn ,Y)

end
Foer < Foct U {(Fpx, sp* )}, withn® < argmax,, s,

end
until stopping criteria are met
return I in F;.; with the maximum validation score

we successively add candidate features to the dataset from the best to the worst and determine the
optimal number of features to add based on validation performance, which is evaluated over sets of
candidate features and thus takes feature interactions into account.

Algorithm [T] summarizes our methodology. The size of the prompt scales linearly with the number
of features in the dataset d and the number of example features k£ and stays roughly constant across
feature construction iterations. Thus, the cost of an LLM generation step in line 3 is almost constant.
The computation cost of feature evaluation in line 7 is also constant, preserving the efficiency and
scalability of our algorithm. The evaluations in line 7 and at lines 13-16 are parallelizable.

In our algorithm, the LLM is instructed to perform as a problem solver (Yang et al., [2024). Anal-
ogous to evolutionary algorithms that generate new solutions through crossover and mutations on
high-fitness candidates (Smith & Bull, 2005} |Zhu et al.| |2022a; Morris et al., [2024), we provide
top-performing features in the prompt. By learning examples and scores in-context (Brown et al.,
2020), the LLM recognizes the patterns of promising features and generates new features that are
likely to be useful. It can make analogies to, modify, or combine example features in the prompt
(Appendix [F3). Early in the search, we expect greater exploration due to the diversity of initial
examples. As iterations progress, the LLM exploits promising feature spaces more, gradually re-
fining the search until convergence. The dataset semantic information enhances the effectiveness
of feature search through the guidance as a prior. The LLM’s temperature can be adjusted to bal-
ance exploration and exploitation, with higher temperatures encouraging more diverse solutions and
lower temperatures favoring incremental changes to example features.

We adopt the same set of transformation operators T as those in (Zhu et al.| 2022b)), including:
* Unary transformations: logarithm, reciprocal, square root, and min-max normalization;
* Binary transformations: addition, subtraction, multiplication, division, and modulo.

In min-max normalization, we take the statistics from the training data. Other transformations re-
quire only the information of a single instance. Hence, all transformations can be performed on an
individual test instance without leaking other instances’ information. Data leakage (Overman et al.,
2024)) is an issue that has not been properly addressed in many existing AutoFE works.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We benchmark performance on public real-world datasets from Kaggle and UCI repositories cov-
ering different domains (Appendix [D.T)). The descriptive information of datasets and attributes is
retrieved from the sources without further processing. The downstream models we evaluate include
linear models (LASSO for regression tasks and logistic regression for classification tasks), Random
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Table 1: Comparison of overall performance. For each compared method, the left and right columns show the
performance without and with post AutoFE parameter tuning of downstream model algorithms, respectively.
The best results are boldfaced, and the second best results are underlined.

PromptFE (ours)
GPT-3.5 GPT-4

Model ‘ Raw ‘ DIFER ‘

OpenFE ‘ CAAFE ‘

GPT-3.5

OCTree ‘

GPT-4 GPT-4

Linear
Model

0.5636
14.00

0.6248
9.17

0.6369
5.83

0.5871
10.58

0.5866
9.92

0.5946
10.00

0.5941
9.50

0.5945
10.50

0.5946
9.83

0.6038
8.25

0.6044
733

0.6485
5.08

0.6487
3.50

0.6532

0.6526
3.17

Random
Forests

0.7252
12.71

0.7400
8.29

0.7411
5.86

0.7380
8.07

0.7376
8.64

0.7387
6.29

0.7378
7.50

0.7357
9.00

0.7352
10.79

0.7348
9.14

0.7346
10.79

0.7408
443

0.7412
4.57

0.7392
6.29

0.7393
7.64

Light-
GBM

0.7364
10.43

0.7504
8.86

0.7531
6.29

0.7454
9.50

0.7476
9.14

0.7457
9.07

0.7461
8.14

0.7405
9.00

0.7457
8.50

0.7409
11.21

0.7403
12.21

0.7522
5.71

0.7558
3.57

0.7542
3.57

0.7538
4.79

Mean
Mean Rank

0.6806
12.30

0.7091
8.75

0.7140
6.00

0.6953
9.33

0.6958
9.20

0.6979
8.38

0.6976
8.33

0.6950
9.45

0.6967
9.70

0.6976
9.60

0.6975
10.25

0.7171
5.08

0.7185
3.90

0.7187
445

0.7183
5.30

Forests (Breiman, 2001), and LightGBM (Ke et al.,|2017). For linear models, we target-encode cat-
egorical features and min-max scale all features. We tune downstream model algorithm parameters
by randomized search prior to and post AutoFE, because the model may need reconfiguration to
accommodate the added features. Data are randomly split into training (64%), validation (16%),
and test (20%) sets. We evaluate regression performance with 1 — (relative absolute error and
classification performance with accuracy. A higher evaluation score indicates better performance.

We compare PromptFE with the following state-of-the-art AutoFE methods: (1) DIFER (Zhu
et al., 2022b): A neural network-based method that optimizes features in the embedding space
using LSTMs to encode and decode features; (2) OpenFE (Zhang et all [2023): An expansion-
reduction method that evaluates features up to a certain order using a feature boost algorithm; (3)
CAAFE (Hollmann et al., [2023): An LLM-based method that produces Python code to manipulate
datasets stored in Pandas data frames; (4) OCTree (Nam et al., [2024): An LLM-based method that
generates rules to manipulate datasets and encodes features using decision tree algorithms.

We employ gpt—-3.5-turbo-0125"and gpt-4-061 3 as the LLMs. For PromptFE, we in-
clude £ = 10 example features in the prompt and set the temperature of LLMs to 1 based on
validation. We instruct the LLM to construct m = 1 feature in each generation step for the best
control of feature generation. We perform feature selection each time 10 new candidate features are
constructed and terminate the algorithm once we have 200 candidate features. Parameters of the
baseline methods are initialized per the corresponding papers. We make five repeated runs.

5.2 PERFORMANCE COMPARISON

are presented in Appendix PromptFE attains the best mean performance score and the low-
est mean rank for all three downstream models, yielding over 5% mean performance gain and over
15% gain for linear models. We observe the greatest gain for linear models because unlike Random
Forests and LightGBM, they cannot learn non-linear relationships thenselves. The performance
margin between PromptFE and baselines other than DIFER is statistically significant with p < 0.01
by Friedman-Nemenyi test. PromptFE consistently outperforms CAAFE and OCTree, showing the
robustness of PromptFE that reduces the search space with pre-defined operators and represents
features in compact cRPN. Post-AutoFE parameter tuning brings the greatest performance improve-
ment to DIFER, as it adds the most features to datasets (Appendix [D.9). Compared with DIFER
evaluating over 2000 candidate features during feature search, PromptFE evaluates only 200 candi-
date features (Appendix [D.10). The higher efficiency of PromptFE is brought by the construction of
semantically meaningful and effective features with the guidance of dataset semantic information.

Table[T|compares the overall performance between PromptFE and the baseline methods. Full results
EEIH

We note that in PromptFE, using GPT-4 yields better performance for linear models but slightly
worse performance for Random Forests than GPT-3.5. We speculate this is because the stronger
in-context learning capability of GPT-4 increases the tendency of overfitting example features. One
way to address this is to include more example features in the prompt to fully leverage GPT-4’s
enhanced in-context learning capability (Appendix D.8§).

>oilyi—gl°
https://platform.openai.com/docs/models
3We were unable to complete the OCTree evaluations using GPT-3.5 as it easily got stuck with iteratively
generating rules that triggered errors in our experiments.

11— Zalviziil s the target and § is the prediction.
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Table 2: Comparison of PromptFE with ablated versions. For each compared version, the left and middle
columns show the performance without and with post AutoFE parameter tuning of downstream model algo-
rithms, respectively, and the right column shows the number of LLM generations. Statistical significance of
performance difference by Friedman-Nemenyi test is indicated with * for p < 0.05 and ** for p < 0.01.

Model ‘ w/o Semantic Context ‘ w/o Canonicalization ‘ PromptFE
0 Linear Model 0.6411 0.6433 4434 | 0.6471 0.6486 349.1 | 0.6485  0.6487 3567
©  Random Forests 0.7326™*  0.7328%* 4725 | 0.7372 0.7373 358.0 | 0.7408  0.7412  370.4
£ LightGBM 0.7479* 0.7494 490.0 | 0.7485 0.7490 3489 | 07522 0.7558  360.2
©  Mean 0.7105%*  0.7118%* 4699 | 0.7141 0.7148 3522 | 07171  0.7185  362.7
., Lincar Model 0.6437 0.6461 2539 | 0.6462 0.6463 3236 | 0.6532  0.6526 3263
[, Random Forests | 0.7285* 0.7288* 262.9 | 0.7366 0.7366 3157 | 07392 07393 333.0
& LightGBM 0.7420%*  0.7437 250.7 | 0.7461* 0.7480 328.5 | 0.7542  0.7538 3357

Mean 0.7078**  0.7092** 2559 | 0.7128**  0.7135% 3225 | 07187 07183 3319
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Figure 6: Distributions of feature attribute selection in the constructed features for linear models with GPT-4.
5.3 EFFECT OF SEMANTIC CONTEXT

We compare with the blinded version without dataset semantic information (Appendix [C.2)). From
Table[2] PromptFE outperforms the blinded version for all downstream models with statistical signif-
icance. The performance difference is more pronounced for Random Forests and LightGBM, likely
because the inclusion of non-semantically meaningful features by the blinded version consumes
model capacity and causes greater overfitting to the training data. GPT-4 constructs features more
efficiently than GPT-3.5 due to stronger capabilities. The incorporation of dataset semantic context
improves the feature construction efficiency of GPT-3.5 but reduces that of GPT-4, as it guides to
more focused feature spaces that increase the chances of duplication with candidate features.

5.4 EFFECT OF FEATURE EXPRESSION CANONICALIZATION

We compare with the ablated version without canonicalization of feature expressions. From Table[2}
PromptFE outperforms the ablated version for all downstream models. Without canonicalization, we
observe a slight decrease in the number of LLM generations. Since a feature can be represented in
different expressions, the chances of duplication with the expressions of candidate features during
feature search are reduced. However, the effectiveness of the features constructed by the LLM
degrades in this setting due to increased difficulty in learning optimal feature patterns.

5.5 FEATURE ATTRIBUTE SELECTION

Figure [6] shows the distributions of feature attributes in the constructed features for linear models
using GPT-4. Without semantic context, the LLM tends to prioritize earlier feature attributes in the
dataset while paying less attention to later ones. In comparison, PromptFE is informed by the se-
mantic context. Specifically, Attribute 20 CD4 at baseline in ACT and Attribute 11 alcohol in WOR,
which contain critical information for predicting the respective targets censoring indicator and qual-
ity, are consistently among the most frequent ones. This illustrates how the LLM leverages dataset
semantic information to construct semantically meaningful and effective features in PromptFE.

5.6 PERFORMANCE ANALYSIS

We study the performance for linear models with GPT-3.5 from ten repeated runs. Figures[7{10|dis-
play the slope and p-value from one-tailed t-tests in OLS regressions, with the shaded area showing
one standard deviation above and below the mean curve.
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Figure 7: The cross validation score of candidate features on training data across iterations. The baseline cross
validation score with raw dataset features is indicated with the dash line.
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Figure 8: The order of candidate features across iterations.

Feature Learning. We examine the cross validation score of candidate features across iterations.
Figure [7]shows a significantly upward trend in the score, with most constructed features improving
the performance. This demonstrates that PromptFE effectively improves the quality of constructed
features through in-context learning of top-performing examples during feature search.

Feature Complexity. We examine the order of candidate features across iterations. Figure [§]shows
that the feature order increases rapidly in early iterations and stabilizes over time. PromptFE ef-
fectively constructs complex features within promising feature spaces. Moreover, our constraint
instruction offers regularization that prevents the construction of overly complex features.

Feature Divergence. We analyze the divergence of a new candidate feature from previous ones
during feature search. We compute the edit distance between canonical feature expression trees
using the algorithm by Zhang & Shasha| (1989) and normalize the distance by the total number of
nodes in both trees. Figure [9] shows the mean normalized tree edit distance between the current
candidate feature and the previous five features across iterations. The observed downward trend
indicates that feature search converges over iterations.

Feature Construction Efficiency. We examine the number of LLM generations needed to construct
new candidate features across iterations. Figure[I0|shows a slightly upward trend in the number of
LLM generations, due to increasing difficulty of constructing non-duplicate features and higher
likelihood of producing syntactical errors as features become more complex. Since the increase is
non-significant, PromptFE remains scalable to a large number of iterations.

5.7 HYPERPARAMETER EFFECT

Number of Examples in Prompt. Table 3| reports the maximum validation score across iterations
along with the number of LLM generations by varying the number of example features provided

o slope: -0.0001 o slope: -4.571e-05 o slope: -0.0002 o \ lope: unmu
Paller0.00 Palier 0,04 panero0 | | plae

0.55 0.55 0.55 0.55

o
@
°
I
3
o
@
3
°
I
3

° \ I i Pw
|l f!“ il Mw ¥ 'k MW\‘”‘M uvﬁ\ f“"\w

I\

|
Nl i
[ ‘WW i W h ‘!‘N il W‘EW “*ﬂf&"ﬁﬁ‘

|

W‘M W\ Mn‘,

Distance

o

Y

&
Distance

o

&
Distance

o

S

&
Distance

o

&

\PM i “Y‘ N MW 'HM M’ ﬂ Nw‘rwm\\uw ?

°
=
3

0.40

°
=
3
°
=
3

0.35 035 0.35 035
50 160 150 200 50 160 150 200 50 160 150 200 50 160 150 200
Iterations Iterations Iterations Iterations
(a) ACT (b) BH (¢) GC (d) WOR

Figure 9: The mean normalized edit distance between a candidate feature and previous five features.

8



Under review as a conference paper at ICLR 2026

w IS

LLM Generations
~

Hﬂl Mp\u“ I

|
Mr “}‘ ‘}M /Nf VMM“ Iy N”‘

slope: 0.0011
pvalue: 0.02

N w Iy

LLM Generations

Al g

iy

N‘ ‘Nm

slope: 0.0009
p-value: 0.0

IS

w

~

I WA ¢

LLM Generations

M h M‘ VM M I )V ‘“‘\‘ Hr\‘ | u!‘»“‘“

slope: 0.0024
pvalue: 0.00

w Iy

LLM Generations

I M il 'M i "Nw"‘ Iy
1

\
\M H

slope: 0.0005
prvalue:0.13

50 100

Iterations

(a) ACT

150

200

100
Iterations

(b) BH

50

150

200

50

100
Iterations

(¢) GC

150

100
Iterations

(d) WOR

200 50

150

200
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Table 3: Effect of the number of example features in the prompt with GPT-3.5. For each compared setting, the
left column shows the validation score, and the right column shows the number of LLM generations.

Model

Dataset ‘

Number of Examples

1 5 10 20
AF 0.7895  507.2  0.7930  409.2  0.7914 3932 0.7860  372.8
RF WQR 0.3897 3394 03937 3298 03948 362.6 03940  330.0
CD 0.8212 4802  0.8213 371.2 0.8219 3498 08218 343.2
AF 0.8421 4404  0.8433 4046 0.8430 380.2 0.8420 3842
LGBM  WQR 0.4248  346.0 04294 3348 04301 322.8 0.4333 3304
CD 0.8228 4494  0.8224 3612 0.8226 3522  0.8228  321.2
Mean [ 0.6817 427.1 0.6839 3685  0.6840  360.1 0.6833  347.0

in the prompt. We observe that the best performance is achieved with 10 examples. Additionally,
feature construction efficiency improves as the number of examples increases, as more examples can
help the LLM reduce errors and generate more diverse features. Nonetheless, too many examples
hinder the in-context learning of optimal feature patterns, as shown by the performance decline.
The performance difference with 10 examples and with 1 example is statistically significant with
p < 0.05 by one-tailed paired t-tests.

Temperature. Table {4| reports the max-
imum validation score across iterations
with the number of LLM generations un-

Table 4: Effect of the LLM temperature with GPT-3.5.

der different LLM temperatures. We ob- ~ Model  Dataset 05 Temperature s
serve the best performgnce and efficiency RF AF ‘ 07875 7944 07914 3932 07916  609.2
when the temperature is around 1. Lower cD 08211 8232  0.8219 3498 08218 6726
temperatures increase the likelihood of | .\, AF ‘ 08365 13132 08430 380.2 08418 6276
the LLM repeating previously constructed D 0.8225 5198 08226 3522 08223 6626
Mean [ 08169 8627 08197 3689 08194 6430

features, while higher temperatures make
the LLM more prone to producing errors in the generations, both reducing feature construction effi-
ciency. A temperature at 1 provides the best tradeoff between exploration and exploitation in feature
search. The performance difference with the temperature at 1 and at 0.5 is statistically significant
with p < 0.01 by one-tailed paired t-tests.

6 CONCLUSION

In this paper, we present a novel LLM-based AutoFE framework for effective, efficient, and in-
terpretable feature engineering that leverages the semantic information of datasets. It features an
elegant approach to instructing the LLM to generate semantically meaningful features with expla-
nations by providing dataset descriptions and example features in cRPN expressions. The LLM
iteratively explores the feature space and improves feature construction by learning top-performing
examples in context. We have demonstrated in extensive experiments that our approach significantly
outperforms state-of-the-art AutoFE methods. The incorporation of semantic context from dataset
descriptions and the proposed feature canonicalization scheme both contribute to performance im-
provement. We have also provided comprehensive analysis on the LLM-based feature construction
process. Our work opens up new possibilities for further LLM-driven applications on automated
machine learning methodologies and underscores the potential of utilizing semantic information. A
future direction is to introduce adaptive methods for prompt design.
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A DISCUSSION ON CANONICAL RPN FEATURE REPRESENTATION

A.1 WHY RPN

RPN (Hamblinl [1962)) provides a compact and unambiguous form of feature representation. In con-
trast, infix expression requires extra information such as brackets to determine operator precedence.
Without brackets, the feature in infix expression col-0 — ( col-1 + col-2 ) would be indistinguish-
able from the feature ( col-0 — col-1) + col-2, while both features are distinctively encoded in RPN.
Such compactness and unambiguity of RPN facilitate sequential modeling since there is no need to
model the extra information, e.g., the positions of brackets.

Compared with other forms of feature representation such as prefix expression of depth-first traversal
or breadth-first traversal, RPN better encodes the recursive structure of the expression tree. The
bottom-up enumeration of tree nodes makes it easy for the LLM to evaluate the feature expression
by scanning the sequence from left to right, for instance, ((col-O col-1 —) col-2 +) (parentheses
denote recursion). Using the prefix expression (4 (— col-0 col-1) col-2) or breadth-first expression
(+ (— [co0l-2] col-0 col-1)), however, the LLM always needs to look back to find the operator, which
undermines sequential modeling. We find in our experiments that when switching to prefix feature
expressions, the LLM encounters difficulty in generating syntactically valid feature expressions.

A.2 WHY CANONICALIZATION

Although there is one-to-one mapping between feature expression trees and RPN expressions, a fea-
ture that contains commutative operators (like addition and multiplication) can be represented by
different RPN expressions, since the child nodes of these operators are unordered. We introduce a
canonicalization scheme: arranging operator nodes before feature nodes and lexicographically sort-
ing the nodes within each group. Through canonicalization, we create one-to-one mapping between
features and cRPN expressions. This ensures the consistency of our feature representations and
facilitates the in-context learning of feature patterns.

By arranging operator nodes before feature nodes, we also introduce left skewness to the expres-
sion tree that enhances the clarity of the recursive structure in cRPN. As illustrated in Figure 2] the
original feature expression (col-2 (col-1 col-0 +) *) becomes ((col-0 col-1 +) col-2 x) after canoni-
calization, so that the LLM does not need to look back for col-2 when evaluating the expression.

B CONVERSION BETWEEN FEATURE EXPRESSION TREE AND RPN

Algorithms [2| and [3| detail the process of conversion between a feature expression tree and an RPN
feature string. We check the RPN syntactical validity of a feature string in Algorithm 3|by checking
whether there is enough child node in the stack in line 6 and the size of the stack is exactly one (the
root) in line 13 returning the output.
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Algorithm 2: Feature Expression Tree to RPN

Input : A feature expression tree T’

Output: An RPN feature string f

r < the root of 7'

Initialize string f < e, stack S < [r], and visited < ()

repeat

u + S.peek()

if u € visited then

f.append(u)

S.pop()

end

else

for each child v of u in the reverse order do
| S.push(v)

end

visited < visited U {u}

end
until S is empty
return f

Algorithm 3: RPN to Feature Expression Tree

Input : An RPN feature string f
Output: The root of a feature expression tree 1’
Initialize stack S < []
fori < 1to |f|do
u < the i-th element of f
if u is an operator then
o0 < the arity of u
for j < 1toodo
v < S.pop()
Prepend v to the list of children of u
end
end
S.push(u)

end
return S.pop()

C EXAMPLE PROMPTS

C.1 COMPLETE PROMPT

Figure[TT]shows an example of complete prompts used in our main experiments.

Figure 11: Example complete prompt on the Credit Default dataset.

Dataset description:

This dataset contains information on default payments, demographic factors, credit data, history of
payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.

Dataset contains the following columns:

col-0 (int) [10000, 800000]: LIMIT_-BAL: Amount of given credit in NT dollars (includes individual and
family/supplementary credit

col-1 (category) {1, 2}: SEX: Gender (1=male, 2=female)

col-2 (category) {0, 1, 2, 3, 4, 5, 6}: EDUCATION: (l=graduate school, 2=university, 3=high school,
4=others, S=unknown, 6=unknown)

col-3 (category) {0, 1, 2, 3}: MARRIAGE: Marital status (1=married, 2=single, 3=others)

col-4 (int) [21, 79]: AGE: Age in years

col-5 (category) {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8}: PAY_0: Repayment status in September, 2005 (-1=pay
duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight
months, 9=payment delay for nine months and above)

14
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col-23 (category) {0, 1}: default.payment.next.month: Default payment (1=yes, 0=no)

‘We have the following unary operators:

log: element-wise logarithm of the absolute value

sqrt_abs: element-wise square root of the absolute value

min_max: element-wise min-max normalization

reciprocal: element-wise reciprocal

We have the following binary operators:

+: element-wise addition of two columns

—: element-wise subtraction of two columns

x: element-wise multiplication of two columns

/: element-wise division of two columns

mod_column: element-wise modulo of two columns

Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
Each feature string constructs an extra column that is useful for the downstream model Random Forests
to predict the target col-23. The model will be trained on the dataset with the constructed columns and
evaluated on a holdout set. The best columns will be selected.

Below are feature strings arranged in ascending order based on their performance scores. Higher scores
are better.

Feature
col-17,col-21,*,col-20,+,sqrt_abs
Score

0.0011

Feature
col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
Score

0.0014

Previous feature:
col-4,col-5,col-6,+,col-12,col-16,-,*
Error: invalid RPN expression

Give me a new feature string that is different from all strings above and has a higher score. Use
no more than five operators. Make sure all columns and operators exist and do not include the target
column. Follow the syntax of RPN.

Output format:
Feature

(Feature name and description)
Usefulness

(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
description)

C.2 SEMANTICALLY BLINDED PROMPT

Figure[T2]shows an example of semantically blinded prompts used in our experiments in Section[5.3}

Figure 12: Example semantically blinded prompt on the Credit Default dataset.

Dataset contains the following columns:
col-0
col-1
col-2
col-3
col-4
col-5

col-23
We have the following unary operators:
log: element-wise logarithm of the absolute value

15
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sqrt_abs: element-wise square root of the absolute value

min_max: element-wise min-max normalization

reciprocal: element-wise reciprocal

We have the following binary operators:

+: element-wise addition of two columns

—: element-wise subtraction of two columns

x: element-wise multiplication of two columns

/: element-wise division of two columns

mod_column: element-wise modulo of two columns

Feature strings are reverse Polish notation (RPN) expressions that operate on the columns of our dataset.
Each feature string constructs an extra column that is useful for the downstream model Random Forests
to predict the target col-23. The model will be trained on the dataset with the constructed columns and
evaluated on a holdout set. The best columns will be selected.

Below are feature strings arranged in ascending order based on their performance scores. Higher scores
are better.

Feature
col-17,col-21,*,col-20,+,sqrt_abs
Score

0.0011

Feature
col-4,col-6,*,col-12,col-16,-,sqrt_abs,*
Score

0.0014

Previous feature:
col-4,col-6,*,col-12,co0l-16,-,sqrt_abs,*
Error: duplication with candidate features

Give me a new feature string that is different from all strings above and has a higher score. Use
no more than five operators. Make sure all columns and operators exist and do not include the target
column. Follow the syntax of RPN.

Output format:
Feature

(Feature name and description)
Usefulness

(Explanation why this adds useful real world knowledge to predict the target col-23 according to dataset
description)

16
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D EXPERIMENTAL DETAILS

D.1 DATASETS

Tables [5] and [] summarize the statistics and sources of datasets used in our experiments. Datasets
are selected such that they cover different domains and both regression and classification tasks, most
of which have been used in previous works (Zhu et al., 2022a3bj; Zhang et al.|[2023; |Hollmann et al.,
2023).

Table 5: Statistics of datasets. The datasets cover different domains and tasks and vary in sizes.

Name Task # Samples  # Features  # Numerical # Categorical
Airfoil (AF) Regression 1,503 5 5 0
Boston Housing (BH) Regression 506 13 12 1
Bikeshare (BS) Regression 731 10 6 4
Wine Quality Red (WQR) Regression 1,599 11 11 0
AIDS Clinical Trials (ACT) Classification 2,139 23 9 14
Credit Default (CD) Classification 30,000 23 14 9
German Credit (GC) Classification 1,000 20 10 10

Table 6: Sources of datasets. The descriptive information of datasets and attributes is retrieved from the sources
without further processing.

Name Source

Airfoil (AF) https://archive.ics.uci.edu/dataset/291/airfoil+self+noise

Boston Housing (BH) https://www.kaggle.com/datasets/arunjangir245/boston-housing-dataset
Bikeshare (BS) https://www.kaggle.com/datasets/marklvl/bike-sharing-dataset

Wine Quality Red (WQR) https://archive.ics.uci.edu/dataset/186/wine+quality

AIDS Clinical Trials (ACT) https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175
Credit Default (CD) https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
German Credit (GC) https://archive.ics.uci.edu/dataset/573/south+germant+credit+update

D.2 EXPERIMENTAL PLATFORM

All experiments are conducted on the Ubuntu 22.04.4 LTS operating system, 16 Intel(R) Core(TM)
17-7820X CPUs, and 4 NVIDIA GeForce RTX 2080 Ti GPUs, with the framework of Python 3.11.9
and PyTorch 1.12.1.

D.3 FEATURE TRANSFORMATION OPERATORS

We list the details of all feature transformation operators below.

Unary transformations:

* Logarithm: Element-wise logarithm of the absolute value;
* Reciprocal: Element-wise reciprocal;
* Square root: Element-wise square root of the absolute value;

* Min-max normalization: Element-wise min-max normalization using the min and max val-
ues from the training data.

Binary transformations:

¢ Addition: Element-wise addition;
¢ Subtraction: Element-wise subtraction;
* Multiplication: Element-wise multiplication;

e Division: Element-wise division;

Modulo: Element-wise modulo.
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D.4 PARAMETER TUNING OF DOWNSTREAM MODELS

We tune the parameters of downstream models prior to and post AutoFE using randomized search
implemented in an Sklearn packageﬂ Tablelists the configurations of parameter tuning for each
downstream model. We set the number of randomized search iterations to 100.

Table 7: Hyperparameter search space for downstream models.

Model Parameter Search Space”

Linear Model  regularization loguniform(0.00001, 100)

num estimators randint(5, 250)

Random max depth randint(1, 250)

Forests max features uniform(0.01, 0.99)
max samples uniform(0.1, 0.9)
num estimators randint(10, 1000)
num leaves randint(8, 64)
learning rate loguniform(0.001, 1)

LightGBM bagging fraction  uniform(0.1, 0.9)

feature fraction uniform(0.1, 0.9)
reg lambda loguniform(0.001, 100)

* As defined in the scipy.stats documentation https:
//docs.scipy.org/doc/scipy/reference/
stats.htmll

D.5 FULL RESULTS

Tables [BH{T0] detail the full experimental results corresponding to the results in Tables [[|and 2} Ta-
bles report the sample standard deviations corresponding to the experimental results in Ta-
bles [8}]10] and Tables [3{f4] respectively.

D.6 RELATIVE PERFORMANCE IMPROVEMENT

Tables |16] and [17] report the percentage performance improvement of PromptFE over the baseline
methods with GPT-3.5 and GPT-4, respectively, corresponding to the experimental results in Tables|T]
and

D.7 STATISTICAL TESTS

We perform the Friedman test (Friedman, [1937) to determine whether there is statistically signifi-
cant difference among the compared AutoFE methods. The Friedman test p-values for the results
in Tables [ and 2] are 4.26 x 107°C and 3.95 x 10734, respectively. Hence, we can reject the null
hypothesis that the performance is the same for all methods. We perform the Nemenyi post-hoc
test (Nemenyi, |1963) to further determine which AutoFE methods have different performance. Ta-
bles and 21| summarize the p-values for the pairwise comparisons in Tables [T|and[2] From
Table [I8] the performance difference between our method PromptFE and baseline methods other
than DIFER (Zhu et al., [2022b) is statistically significant at the p = 0.01 level. From Table the
performance difference between the full version of PromptFE and the semantically blinded version
is statistically significant at the p = 0.01 level. From Table [21] the performance difference is sta-
tistically significant at the p = 0.05 level for the cases with GPT-3.5 and post-AutoFE parameter
tuning as well as GPT-4 without post-AutoFE parameter tuning.

To examine the performance difference when using Random Forests and LightGBM, we perform
additional statistical tests for the results in Table[I]excluding the linear model results. The Friedman
test p-value is 1.28 x 1072, Table [19] summarizes the p-values from the Nemenyi post-hoc test
for pairwise comparison. We observe that PromptFE with GPT-3.5 and post-AutoFE parameter

4https ://scikit-learn.org/l.5/modules/generated/sklearn.model__
selection.RandomizedSearchCV.html
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Table 8: Full experimental results of Tablecomparison of overall performance. For each compared method,
the left and right columns show the results without and with parameter tuning of the downstream model algo-
rithm post AutoFE, respectively. The best results are boldfaced, and the second best results are underlined.

Model Dataset | Raw ‘ DIFER OpenFE ‘ CAAFE OCTree PromptFE (ours)
GPT-3.5 GPT-4 GPT-4 GPT-3.5 GPT-4
AF 03474 | 0.5870 0.6090 | 04300 04303 | 04011 04016 04376 04378 | 04698 04698 | 0.6612 0.6616 0.6649 0.6647
BH 03776 | 0.5013 04994 | 0.3900 03880 | 0.4788 04765 04503 04506 | 0.4480 04545 | 0.4995 0.5025 05184 0.5289
BS 1.0000 - -

Linear

Model WQR 0.2696 | 0.2475 0.2630 | 0.2713  0.2736 | 0.2742 02757 0.2776 0.2776 | 0.2774 0.2778 | 0.2722 0.2745 02713 0.2748
ACT 0.8505 | 0.8715 0.8799 | 0.8729 0.8729 | 0.8519 0.8514 0.8565 0.8570 | 0.8724 0.8720 | 0.8729 0.8794 0.8766 0.8762

CD 0.8267 | 0.8273  0.8280 | 0.8265 0.8268 | 0.8265 0.8267 0.8238 0.8238 | 0.8270 0.8272 | 0.8282 0.8282 0.8288  0.8288
GC 0.7100 | 0.7140  0.7420 | 0.7320  0.7280 | 0.7350  0.7330  0.7210  0.7210 | 0.7280 0.7250 | 0.7570  0.7460  0.7590  0.7420
Mean 0.5636 | 0.6248 0.6369 | 0.5871 0.5866 | 0.5946 0.5941 0.5945 0.5946 | 0.6038 0.6044 | 0.6485 0.6487 0.6532 0.6526
Mean Rank | 1400 | 9.17 5.83 | 1058 9.92 | 10.00 9.50 10.50 9.83 | 825 733 | 5.08 3.50 333 3.17
AF 0.7677 | 0.7650 0.7786 | 0.7579 0.7682 | 0.7711 0.7693 0.7696 0.7720 | 0.7603  0.7655 | 0.7709 0.7787 0.7681  0.7749
BH 0.5426 | 0.5718 0.5701 | 0.5658 0.5620 | 0.5556 0.5556 0.5512 0.5492 | 0.5519 0.5497 | 0.5549 0.5533 0.5543 0.5522
BS 0.9446 | 0.9865 0.9871 | 0.9901 0.9901 | 0.9916 0.9916 0.9818 0.9816 | 0.9924 0.9922 | 0.9873 0.9881 0.9845 0.9848

Random WQR | 03662 | 0.3838 0.3832 | 03753 03729 | 0.3718 03718 03693 0.3693 | 0.3655 03656 | 0.3862 03845 03810 0.3810
ACT | 0.8808 | 0.8897 0.8897 | 0.8832 0.8841 | 0.8827 0.8855 0.8827 0.8827 | 0.8864 0.8822 | 0.8925 0.8921 0.8893 0.8864

CD 0.8293 | 0.8285 0.8291 | 0.8287 0.8285 | 0.8291 0.8289 0.8294 0.8287 | 0.8291 0.8289 | 0.8295 0.8294 0.8295 0.8276
GC 0.7450 | 0.7550  0.7500 | 0.7650  0.7570 | 0.7690 0.7620  0.7660  0.7630 | 0.7580 0.7580 | 0.7640  0.7620 0.7680  0.7680
Mean 0.7252 | 0.7400 0.7411 | 0.7380 0.7376 | 0.7387 0.7378 0.7357 0.7352 | 0.7348 0.7346 | 0.7408 0.7412 0.7392  0.7393
Mean Rank | 1271 | 829 586 | 807 8.64 | 6.29 7.50 9.00 1079 | 9.14 1079 | 443 4.57 6.29 7.64
AF 0.8375 | 0.8285 0.8411 | 0.8188 0.8244 | 0.8364 0.8348 0.8430 0.8426 | 0.8234 0.8190 | 0.8311 0.8392 0.8366 0.8395
BH 0.5537 | 0.5607 0.5636 | 0.5693 0.5618 | 0.5540 0.5571 0.5478 0.5501 | 0.5442 0.5438 | 0.5619 0.5644 0.5642 0.5595
Light- BS 0.9429 | 0.9763 0.9786 | 0.9751 0.9797 | 0.9555 0.9565 0.9449 0.9487 | 0.9690 09731 | 0.9737 0.9754 0.9801 0.9813
GEM WQR 0.3825 | 04145 0.4182 | 0.3898 0.3884 | 0.4131 0.4035 0.3902 0.3952 | 0.3877 03834 | 04118 04171 04021 0.4042
ACT 0.8832 | 0.8794 0.8827 | 0.8808 0.8799 | 0.8822 0.8860 0.8827 0.8818 | 0.8879 0.8822 | 0.8888 0.8925 0.8902  0.8925
CD 0.8300 | 0.8283  0.8277 | 0.8293  0.8287 | 0.8296 0.8298 0.8301 0.8294 | 0.8293  0.8292 | 0.8301 0.8297 0.8303 0.8294
GC 0.7250 | 0.7650 0.7600 | 0.7550 0.7700 | 0.7490 0.7550 0.7450 0.7720 | 0.7450 0.7510 | 0.7680 0.7720 0.7760  0.7700
Mean 0.7364 | 0.7504 0.7531 | 0.7454 0.7476 | 0.7457 0.7461 0.7405 0.7457 | 0.7409 0.7403 | 0.7522 0.7558 0.7542 0.7538
Mean Rank 10.43 8.86 6.29 9.50 9.14 9.07 8.14 9.00 8.50 11.21 12.21 5.71 3.57 3.57 4.79
Mean 0.6806 | 0.7091 0.7140 | 0.6953  0.6958 | 0.6979 0.6976 0.6950 0.6967 | 0.6976 0.6975 | 0.7171 0.7185 0.7187 0.7183
Mean Rank 1230 8.75 6.00 9.33 9.20 8.38 8.33 9.45 9.70 9.60 10.25 5.08 3.90 445 5.30

Table 9: Full experimental results of Table performance comparison of PromptFE with and without dataset
semantic context. For each compared version, the left and middle columns show the results without and with
parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the
number of LLM generations. The results where the full version outperforms the blinded version are boldfaced.

GPT-3.5 GPT-4
Model - Dataset ‘ Raw ‘ w/o Semantic Context PromptFE w/o Semantic Context PromptFE
AF 0.3474 | 0.6613  0.6602 450.0 | 0.6612 0.6616 339.8 | 0.6678 0.6672 2750 | 0.6649 0.6647 3714
BH 0.3776 | 04678 04794 438.0 | 0.4995 0.5025 378.6 | 04869 0.4996 2956 | 0.5184 0.5289 3354
_ BS 1.0000 | - - - - - - - - - - - -
Ve WQR | 02696 | 02643 02733 442.8 | 0.2722 02745 3284 | 0.2645 02702 244.6 | 02713 02748 312.6
ACT | 0.8505 | 0.8790 0.8799 442.8 | 0.8729 0.8794 3722 | 0.8720 0.8729 238.8 | 0.8766 0.8762 377.4
CD 0.8267 | 0.8283 0.8283 454.8 | 0.8282 0.8282 342.0 | 0.8282 0.8289 2382 | 0.8288 0.8288 250.4
GC 0.7100 | 0.7460 0.7390 4322 | 0.7570  0.7460  379.0 | 0.7430 07410 2312 | 0.7590 0.7420 310.6
Mean 0.5636 | 0.6411 0.6433 4434 | 0.6485 0.6487 3567 | 0.6437 0.6461 2539 | 0.6532 0.6526 3263
AF 07677 | 0.7644  0.7743 4252 | 0.7709 0.7787 393.2 | 0.7610 0.7690 2742 | 0.7681 0.7749 3142
BH 0.5426 | 0.5483 0.5483 4792 | 0.5549 0.5533 3744 | 05507 05491 2384 | 0.5543 0.5522 2786
andom BS 0.9446 | 0.9628 0.9628 510.0 | 0.9873 0.9881 386.8 | 0.9535 09543 247.4 | 0.9845 0.9848 255.0
Foress WQR | 03662 | 03749 03738 4614 | 0.3862 0.3845 362.6 | 03666 03674 2530 | 0.3810 0.3810 2832
ACT | 0.8808 | 0.8864 0.8841 4758 | 0.8925 0.8921 357.6 | 0.8874 0.8841 2224 | 0.8893 0.8864 424.0
CD 0.8293 | 0.8283 0.8282 497.0 | 0.8295 0.8294 349.8 | 0.8291 0.8286 3752 | 0.8295 0.8276 304.0
GC 0.7450 | 0.7630 0.7580 459.2 | 0.7640 0.7620 368.2 | 0.7510 0.7490 229.6 | 0.7680 0.7680 4718
Mean 0.6806 | 0.7326 0.7328 4725 | 0.7408 0.7412 3704 | 07285 0.7288 2629 | 0.7392 0.7393 333.0
AF 0.8375 | 0.8304 0.8356 479.6 | 0.8311 0.8392 380.2 | 0.8185 0.8266 284.6 | 0.8366 0.8395 360.6
BH 0.5537 | 05503 0.5467 490.8 | 0.5619 0.5644 342.0 | 05500 0.5609 2384 | 0.5642 0.5595 345.6
Lgn.  BS 0.9429 | 0.9693 09691 480.2 | 0.9737 0.9754 380.0 | 0.9539 09536 312.6 | 0.9801 0.9813 236.8
G WQR | 03825 | 04087 04151 4930 | 0.4118 04171 322.8 | 04057 04050 2468 | 04021 04042 2936
ACT | 0.8832 | 0.8864 0.8883 513.0 | 0.8888 0.8925 367.4 | 0.8813 0.8748 229.0 | 0.8902 0.8925 359.6
CD 0.8300 | 0.8284 0.8292 490.8 | 0.8301 0.8297 3522 | 0.8295 0.8299 2186 | 0.8303 0.8294 3712
GC 0.7250 | 0.7620  0.7620 ~ 482.4 | 0.7680 0.7720 376.6 | 0.7550 0.7550 225.0 | 0.7760 0.7700 3822
Mean 0.6806 | 0.7479 0.7494 490.0 | 0.7522 0.7558 360.2 | 07420 0.7437 2507 | 0.7542 0.7538 3357
Mean [0.6806 | 0.7105 0.7118 469.9 | 0.7171 0.7185 362.7 | 0.7078 0./092 2559 | 0.7187 0.7183 331.9

tuning significantly outperforms all baselines other than DIFER at the p = 0.05 level. With GPT-
4, the performance difference between PromptFE and CAAFE (Hollmann et al.| [2023) as well as
OCTree (Nam et al., | 2024) is statistically significant at the p = 0.05 level.
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Table 10: Full experimental results of Table [2| performance comparison of PromptFE with and without RPN
canonicalization. For each compared version, the left and middle columns show the results without and with
parameter tuning of the downstream model algorithm post AutoFE, respectively, and the right column shows the
number of LLM generations. The results where the full version outperforms the reduced version are boldfaced.

GPT-3.5 GPT-4
Model  Dataset ‘ Raw ‘ w/o Canonicalization PromptFE w/o Canonicalization PromptFE
AF 0.3474 | 0.6679 0.6688 338.6 | 0.6612 0.6616 339.8 | 0.6538 0.6529 3212 | 0.6649 0.6647 371.4
BH 0.3776 | 0.5048 0.5076 351.2 | 04995 0.5025 378.6 | 04987 0.5030 310.8 | 0.5184 0.5289 3354
BS 1.0000 - - - - - - - - - - - -
ﬁzz: WQR 0.2696 | 0.2702 02735 336.2 | 0.2722 0.2745 3284 | 0.2690 0.2706 279.0 | 0.2713  0.2748 312.6
ACT 0.8505 | 0.8748 0.8794 366.4 | 0.8729 0.8794 3722 | 0.8738 0.8752 298.0 | 0.8766 0.8762 377.4
CD 0.8267 | 0.8280 0.8290 350.4 | 0.8282 0.8282 342.0 | 0.8270 0.8271 2854 | 0.8288 0.8288 250.4
GC 0.7100 | 0.7370 0.7330  352.0 | 0.7570 0.7460 379.0 | 0.7550 0.7490 4472 | 0.7590 0.7420 310.6
Mean 0.5636 | 0.6471 0.6486 349.1 | 0.6485 0.6487 356.7 | 0.6462 0.6463 323.6 | 0.6532 0.6526 326.3
AF 0.7677 | 0.7628 0.7762 358.0 | 0.7709 0.7787 393.2 | 0.7743 0.7843 3402 | 0.7681 0.7749 314.2
BH 0.5426 | 0.5573  0.5573 364.0 | 0.5549 0.5533 374.4 | 0.5491 0.5460 322.4 | 0.5543 0.5522 278.6
Random BS 0.9446 | 0.9804 09807 372.2 | 0.9873 0.9881 386.8 | 0.9778 09777 284.4 | 0.9845 0.9848 255.0
Forests ~ WQR 0.3662 | 0.3776 03726  334.6 | 0.3862 0.3845 362.6 | 0.3739 03719 269.8 | 0.3810 0.3810 283.2
ACT 0.8808 | 0.8879 0.8841 353.4 | 0.8925 0.8921 357.6 | 0.8841 0.8864 327.6 | 0.8893 0.8864 424.0
CD 0.8293 | 0.8283 0.8285 381.6 | 0.8295 0.8294 349.8 | 0.8290 0.8287 297.2 | 0.8295 0.8276  304.0
GC 0.7450 | 0.7660 0.7620 342.2 | 0.7640 0.7620 368.2 | 0.7680 0.7610 368.2 | 0.7680 0.7680 471.8
Mean 0.6806 | 0.7372 0.7373 358.0 | 0.7408 0.7412 370.4 | 0.7366 0.7366 315.7 | 0.7392 0.7393  333.0
AF 0.8375 | 0.8322 0.8365 343.6 | 0.8311 0.8392 380.2 | 0.8280 0.8350 376.0 | 0.8366 0.8395 360.6
BH 0.5537 | 0.5599 0.5556 339.2 | 0.5619 0.5644 342.0 | 0.5577 0.5548 3152 | 0.5642 0.5595 345.6
Light. BS 0.9429 | 0.9643 09664 368.8 | 0.9737 0.9754 380.0 | 0.9597 0.9609 276.2 | 0.9801 0.9813 236.8
GEM WQR 0.3825 | 0.4075 0.4042 3464 | 04118 0.4171 322.8 | 04036 0.4032 2882 | 0.4021 0.4042 293.6
ACT 0.8832 | 0.8813 0.8860 342.4 | 0.8888 0.8925 367.4 | 0.8822 0.8879 313.2 | 0.8902 0.8925 359.6
CD 0.8300 | 0.8302 0.8291 3558 | 0.8301 0.8297 352.2 | 0.8295 0.8291 301.6 | 0.8303 0.8294 371.2
GC 0.7250 | 0.7640 0.7650 346.2 | 0.7680 0.7720 376.6 | 0.7620 0.7650 428.8 | 0.7760 0.7700  382.2
Mean 0.6806 | 0.7485 0.7490 3489 | 0.7522 0.7558 360.2 | 0.7461 0.7480 328.5 | 0.7542 0.7538 335.7
Mean 0.6806 | 0.7141 0.7148 3522 | 0.7171 0.7185 362.7 | 0.7128 0.7135 322.5 | 0.7187 0.7183 331.9

Table 11: Standard deviations of Table [8|comparison of overall performance.

Model ~ Dataset Raw‘ DIFER OpenFE - CAAFE OCTree PromptFE (ours)
GPT-3.5 GPT-4 GPT-4 GPT-3.5 GPT-4
AF — | 02559 02012 | 0.0015 0.0014 | 0.0099 00102 00511 00513 | 0.0199 00199 | 0.0101 0.0100 0.0267 0.0268
BH — | 00092 00153 | 0.0169 00188 | 0.0196 0.0184 0.0408 0.0419 | 0.0502 0.0516 | 0.0111 0.0149 0.0254 0.0184
Linr ~ WQR — | 00305 00223 | 0.0058 0.0055 | 0.0046 0.0038 0.0060 0.0060 | 0.0045 0.0041 | 0.0135 0.0112 0.0068 0.0044
Model  ACT — | 00179 00073 | 0.0140 00105 | 0.0035 0.0021 0.0054 0.0053 | 0.0148 0.0148 | 0.0085 0.0051 0.0040 0.0062
cD — | 0.0014 0.0006 | 0.0006 0.0002 | 0.0006 0.0007 0.0057 0.0051 | 0.0002 0.0003 | 0.0013 0.0007 0.0006 0.0009
GC ~ | 00272 00104 | 0.0097 0.0076 | 0.0100 0.0125 00134 00108 | 0.0084 0.0079 | 0.0120 0.0213 00108 0.0152
AF — | 0.0054 00044 | 0.0032 0.0036 | 0.0032 0.0034 00108 0.0084 | 0.0084 0.0075 | 0.0090 0.0086 0.0059 0.0095
BH - | 00142 00131 | 0.0034 0.0068 | 0.0050 0.0050 0.0084 0.0113 | 0.0052 0.0050 | 0.0057 0.0077 0.0059 0.0046
ondom BS — | 00128 00113 | 0.0003 0.0003 | 0.0003 0.0003 0.0208 0.0207 | 0.0016 0.0014 | 0.0088 0.0070 0.0157 0.0154
Random WQR ~ | 00108 00109 | 0.0030 0.0076 | 0.0022 0.0022 0.0051 0.0051 | 0.0039 0.0040 | 0.0034 0.0069 0.0022 0.0026
ACT — | 0.0048 0.0058 | 0.0037 0.0087 | 0.0030 0.0055 0.020 0.0030 | 0.0063 0.0035 | 0.0055 0.0051 0.0043 0.0054
cD — | 00010 00011 | 0.0003 0.0004 | 0.0005 0.0004 0.0008 0.0001 | 0.0009 0.0006 | 0.00I1 0.0010 0.0009 0.0017
GC — | 00184 00177 | 00154 00110 | 0.0082 0.0076 0.0065 0.0164 | 0.0160 0.0130 | 0.0114 0.0067 0.0097 0.0097
AF — | 00029 0.0029 | 0.0058 0.0036 | 0.0067 0.0027 0.0072 0.0077 | 0.0107 0.0104 | 0.0129 0.0054 0.0061 0.0041
BH — | 00147 00260 | 0.0128 00150 | 0.0114 00111 00145 00188 | 0.0127 0.0170 | 0.0169 0.0076 0.0134 0.0073
Law.  BS — | 00092 00070 | 0.0007 0.0004 | 0.0159 0.0198 0.0056 00139 | 0.0162 00174 | 0.0151 0.0139 0.0033 0.0034
oo WOR — | 00134 00164 | 0.0072 00133 | 0.0084 0.0080 00116 0.0134 | 0.0099 0.0113 | 0.0123 0.0085 0.0097 0.0092
ACT — | 0.0048 0.0042 | 0.0068 0.0094 | 0.0061 0.0045 0.0045 0.0027 | 0.0017 0.0054 | 0.0027 0.0017 0.0050 0.0077
cD ~ | 00009 00013 | 0.0004 0.0010 | 0.0008 0.0005 0.0010 0.0007 | 0.0005 0.0007 | 0.0004 0.0004 0.0004 0.0008
GC — | 00141 00184 | 0.0184 00184 | 0.0222 00166 0.0079 00199 | 0.0146 0.0152 | 0.0076 0.0045 0.0096 0.0146
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Table 12: Standard deviations of Table |§| performance comparison of PromptFE with and without dataset
semantic context.

GPT-3.5 GPT-4
Model - Dataset ‘ Raw ‘ w/o Semantic Context PromptFE w/o Semantic Context PromptFE
AF - 0.0147  0.0156 36.1 | 0.0101 0.0100 28.8 | 0.0162 0.0161 25.8 | 0.0267 0.0268 92.3
BH - 0.0444  0.0519 39.0 | 0.0111 0.0149 422 | 0.0161 0.0131 66.7 | 0.0254 0.0184  58.6
Linear WQR - 0.0133  0.0032 489 | 0.0135 0.0112 153 | 0.0128 0.0046 23.5 | 0.0068 0.0044 80.6
Model ACT - 0.0088  0.0107 154 | 0.0085 0.0051 17.5 | 0.0056 0.0085 15.5 | 0.0040 0.0062 54.8
CD - 0.0014  0.0003 27.6 | 0.0013 0.0007 13.1 | 0.0021 0.0011 13.2 | 0.0006 0.0009 14.8
GC - 0.0114  0.0042 323 | 0.0120 0.0213 143 | 0.0125 0.0114 11.0 | 0.0108 0.0152 36.4
AF - 0.0086  0.0058 60.3 | 0.0090 0.0086 47.3 | 0.0092 0.0079 27.9 | 0.0059 0.0095 93.6
BH - 0.0068 0.0068 453 | 0.0057 0.0077 14.5 | 0.0142 0.0132 24.7 | 0.0059 0.0046  23.0
Random BS - 0.0186 0.0181 112.1 | 0.0088 0.0070 47.8 | 0.0103 0.0088 38.8 | 0.0157 0.0154 39.2
Foress ~ WQR - 0.0078  0.0081 40.5 | 0.0034 0.0069 18.5 | 0.0092 0.0075 19.1 | 0.0022 0.0026 452
ACT - 0.0099  0.0035 33.7 | 0.0055 0.0051 13.1 | 0.0100 0.0093 16.6 | 0.0043 0.0054 85.7
CD - 0.0015  0.0008 533 | 0.0011 0.0010 14.5 | 0.0005 0.0008 83.4 | 0.0009 0.0017 56.9
GC - 0.0067  0.0057 28.9 | 0.0114 0.0067 17.3 | 0.0210 0.0143 12.8 | 0.0097 0.0097 113.1
AF - 0.0104 0.0060  66.8 | 0.0129 0.0054 21.7 | 0.0142 0.0155 39.6 | 0.0061 0.0041 73.1
BH - 0.0131 0.0170  60.7 | 0.0169 0.0076 20.7 | 0.0119 0.0121 25.7 | 0.0134  0.0073 36.1
Light- BS - 0.0152  0.0178 76.3 | 0.0151 0.0139 31.8 | 0.0048 0.0049 74.5 | 0.0033 0.0034 32.1
GBM WQR - 0.0151  0.0028 36.9 | 0.0123 0.0085 17.3 | 0.0195 0.0190 21.1 | 0.0097  0.0092 46.3
ACT - 0.0021  0.0030 442 | 0.0027 0.0017 28.5 | 0.0042 0.0128 15.7 | 0.0050  0.0077 49.6
CD - 0.0011  0.0011 59.4 | 0.0004 0.0004 15.7 | 0.0007 0.0010 5.6 | 0.0004 0.0008 85.7
GC - 0.0130 0.0148  41.7 | 0.0076 0.0045 23.0 | 0.0117 0.0094 13.7 | 0.0096 0.0146  46.9

Table 13: Standard deviations of Tableperforrnance comparison of PromptFE with and without RPN canon-
icalization.

GPT-3.5 GPT-4
Model  Dataset ‘ Raw ‘ w/o Canonicalization PromptFE w/o Canonicalization PromptFE
AF - 0.0117 0.0111 24.8 | 0.0101 0.0100 28.8 | 0.0112 0.0106 17.3 | 0.0267 0.0268  92.3
BH - 0.0081 0.0138 22.1 | 0.0111 0.0149 422 | 0.0249 0.0294  60.6 | 0.0254 0.0184  58.6
Linear ~ WQR - 0.0127 0.0083 34.7 | 0.0135 0.0112 153 | 0.0179 0.0070  42.0 | 0.0068 0.0044  80.6
Model ACT - 0.0069 0.0084 13.9 | 0.0085 0.0051 17.5 | 0.0074 0.0069  22.3 | 0.0040 0.0062  54.8
CD - 0.0008 0.0014 24.7 | 0.0013 0.0007 13.1 | 0.0016 0.0012  22.0 | 0.0006 0.0009 14.8
GC - 0.0246  0.0091 14.3 | 0.0120 0.0213 14.3 | 0.0132 0.0042  99.5 | 0.0108 0.0152 364
AF - 0.0079 0.0121  27.7 | 0.0090 0.0086 47.3 | 0.0080 0.0036  32.9 | 0.0059 0.0095  93.6
BH - 0.0054  0.0054 31.1 | 0.0057 0.0077 14.5 | 0.0095 0.0055  56.1 | 0.0059 0.0046  23.0
Random BS - 0.0180 0.0174 11.9 | 0.0088 0.0070 47.8 | 0.0211 0.0210  25.6 | 0.0157 0.0154  39.2
Foress ~ WQR - 0.0036  0.0051 17.5 | 0.0034 0.0069 185 | 0.0081 0.0099  27.7 | 0.0022 0.0026  45.2
ACT - 0.0055 0.0094 152 | 0.0055 0.0051 13.1 | 0.0039 0.0056  29.2 | 0.0043 0.0054  85.7
CD - 0.0009 0.0007 21.1 | 0.0011 0.0010 14.5 | 0.0013 0.0008  36.0 | 0.0009 0.0017  56.9
GC - 0.0219 0.0182 27.2 | 0.0114 0.0067 17.3 | 0.0148 0.0055 19.7 | 0.0097 0.0097 113.1
AF - 0.0157 0.0102 21.4 | 0.0129 0.0054 21.7 | 0.0078 0.0066  62.1 | 0.0061 0.0041 73.1
BH - 0.0125 0.0096 183 | 0.0169 0.0076 20.7 | 0.0098 0.0090  32.4 | 0.0134 0.0073  36.1
Licht- BS - 0.0202 0.0190 21.5 | 0.0151 0.0139 31.8 | 0.0115 0.0115 49.9 | 0.0033 0.0034  32.1
GEM WQR - 0.0083 0.0181 10.3 | 0.0123 0.0085 17.3 | 0.0100 0.0092 262 | 0.0097 0.0092 463
ACT - 0.0078  0.0065 12.6 | 0.0027 0.0017 28.5 | 0.0048 0.0029  21.3 | 0.0050 0.0077  49.6
CD - 0.0005 0.0011 14.9 | 0.0004 0.0004 15.7 | 0.0003 0.0005 223 | 0.0004 0.0008  85.7
GC - 0.0096 0.0184 14.7 | 0.0076 0.0045 23.0 | 0.0368 0.0194 126.6 | 0.0096 0.0146  46.9

Table 14: Standard deviations of Table |3|effect of the number of example features in the prompt.

Number of Examples
Model  Dataset 1 5 10 20
AF 0.0054 55.8 0.0035 450 0.0042 473 0.0056 24.0
RF WQR 0.0088 19.6 0.0038 11.4 0.0027 18.5 0.0096 29.6
CD 0.0005 46.5 0.0007 19.1 0.0004 145 0.0006 17.8
AF 0.0065 103.2 0.0031 21.6 0.0044 21.7 0.0044 56.4
LGBM WQR 0.0048 16.9 0.0057 324 0.0064 173 0.0064 26.5
CD 0.0003 71.2  0.0002 39.0 0.0007 15.7 0.0005 17.5
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Table 15: Standard deviations of Tableeffect of temperature.

Temperature
Model Dataset‘ 05 1 15
RF AF 0.0071 160.9 0.0042 47.3 0.0040 34.7
CD 0.0005 3243 0.0004 14.5 0.0005 64.1
LGBM

AF ‘0.0042 5233 0.0044 21.7 0.0022 59.8

CD 0.0008 174.7 0.0007 15.7 0.0005 73.0

Table 16: Percentage performance improvement of PromptFE over the baseline methods with GPT-3.5. For
each compared method, the left and right columns show the results without and with parameter tuning of the
downstream model algorithm post AutoFE, respectively.

Model ~ Dataset | Raw | DIFER | OpenFE | CAAFE
AF 90.34 9046 | 12.65 8.64 | 53.77 53.77 | 64.86 64.76
BH 3227 33.06 | -0.37 0.61 | 28.06 29.51 4.32 5.46
Linear WQR 0.96 1.80 9.97 437 0.35 032 | -0.74 -0.46
Model ACT 2.64 341 0.16 -0.05 0.00 0.75 2.47 3.29
CD 0.18 0.19 0.10  0.03 0.21 0.17 0.20 0.19
GC 6.62 5.07 6.02 054 342 2.47 2.99 1.77
Mean 22.17 22.33 476 236 | 1430 14.50 | 1235 12.50
AF 0.42 1.44 0.78  0.02 1.72 1.37 | -0.02 1.23
BH 2.26 197 | 295 -295 | -192 -1.55| -0.13 -041
Random BS 4.52 4.60 008 0.10 | -029 -0.21 | -043 -0.35
Random  WQR | 544 500 | 061 034 | 280 311 | 38 342
ACT 1.33 1.27 032 0.26 1.06 0.90 1.11 0.74
CD 0.02 0.01 0.12  0.04 0.09 0.10 0.05 0.06
GC 2.55 2.28 1.19 1.60 | -0.13 0.66 | -0.65 0.00
Mean 2.36 2.37 0.02 -0.08 0.49 0.63 0.54 0.67
AF -0.76 0.20 032 -0.23 1.51 1.80 | -0.63 0.53
BH 1.48 1.94 0.21 0.14 | -1.30 0.47 1.42 1.32
Light- BS 3.27 345 | -0.27 -032 | -0.15 -043 1.91 1.98
GEM WQR 7.67 9.04 | -0.63 -0.27 5.66 7.40 | -0.29 3.36
ACT 0.63 1.06 1.06 1.11 0.90 1.43 0.74 0.74
CD 0.02 -0.04 022 025 0.10 0.12 0.06 -0.01
GC 5.93 6.48 0.39 1.58 1.72 0.26 2.54 2.25
Mean 2.60 3.16 0.18 0.32 1.21 1.58 0.82 1.45
Mean 839 863 ] 150 079 ] 48 512] 418 449

Table 17: Percentage performance improvement of PromptFE over the baseline methods with GPT-4. For
each compared method, the left and right columns show the results without and with parameter tuning of the
downstream model algorithm post AutoFE, respectively.

Model  Dataset | Raw | DIFER | OpenFE | CAAFE OCTree
AF 9140 9134 | 13.27 9.14 | 54.62 54.48 | 51.94 51.82 | 41.52 4147
BH 37.28 40.06 341 590 | 3292 3633 | 15.14 17.39 | 1573 1637
Linear WQR 0.64 1.94 9.62 451 0.03 046 | -225 -099 | -2.18 -1.07
Model ACT 3.08 3.02 0.59 -0.42 0.43 0.37 235 224 0.48 0.48
CD 0.26 0.26 0.18 0.10 0.28 0.25 0.61 0.61 0.22 0.20
GC 6.90 451 6.30  0.00 3.69 1.92 5.27 291 4.26 2.34
Mean 2326 2352 556 321 | 1533 15.64 | 12.17 12.33 | 10.00 9.97
AF 0.05 0.93 041 -047 1.35 0.86 | -0.20 0.37 1.02 1.22
BH 2.16 1.76 | -3.05 -3.15 | -2.02 -1.76 0.56 0.54 0.44 0.45
Random BS 4.23 425 | -020 -0.23 | -0.57 -0.54 0.28 032 | -0.79 -0.75
Random  woR | 403 403 | -074 058 | 151 216 | 317 317 | 425 422
ACT 0.95 0.64 | -0.05 -0.37 0.69 0.26 0.74 0.42 0.32 0.48
CD 0.02 -0.20 0.13  -0.18 0.10 -0.11 0.02 -0.13 0.05 -0.15
GC 3.09 3.09 172 240 0.39 1.45 0.26 0.66 1.32 1.32
Mean 2.08 207 | -0.26 -0.37 0.21 0.33 0.69 0.76 0.94 0.97
AF -0.11 0.24 098 -0.19 2.18 1.84 | -0.75 -0.36 1.61 2.51
BH 1.90 1.04 0.63 -0.74 | -0.80 -041 3.00 1.70 3.68 2.88
Light- BS 3.94 4.08 038 0.28 0.51 0.17 3.72 3.44 1.14 0.84
GBM WQR 5.12 567 | 298 -3.35 3.16 4.08 3.04 2.28 3.71 542
ACT 0.79 1.06 1.22 1.11 1.06 1.43 0.85 1.22 0.26 1.17
CD 0.04 -0.07 024 021 0.12 0.08 0.03 0.00 0.12 0.02
GC 7.03 6.21 1.44 1.32 2.78 0.00 416 -0.26 4.16 253
Mean 2.67 2.60 027 -0.19 1.27 1.03 2.01 1.15 2.10 2.20
Mean [ 864 860 167 076 512 5I7] 460 437 406 410
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Table 18: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Tablem Results that
are significant at the p = 0.05 confidence level are boldfaced.

Raw DIFER OpenFE CAAFE OCTree PromptFE (ours)
GPT-3.5 GPT-4 GPT-4 GPT-3.5 GPT-4
Raw 1.0000  0.0010 0.0010 0.0215 0.0117 0.0010 0.0010 0.0298 0.0140 0.0010 0.0114 0.0010 0.0010 0.0010 0.0010

0.0010  1.0000 0.4574 0.3602  0.4794 0.9000 0.9000 0.2980 0.4462 0.8973 0.4847 0.0674 0.0010 0.0066 0.2267

DIFER 0.0010 04574 1.0000 0.0010 0.0010 00513 0.0500 0.0010 0.0010 00017 0.0010 09000 0.7955 0.9000 0.9000
00215 03602 0.0010 1.0000 09000 09000 0000 09000 09000 0.9000 09000 0.0010 0.0010 0.0010 0.0010

OpenfE 00117 04794 0.0010 09000 1.0000 09000 0.9000 09000 09000 0.9000 09000 0.0010 0.0010 0.0010 0.0010
pras 00010 09000 00513 09000 09000 10000 09000 08922 09000 09000 09000 0.0025 0.0010 0.0010 0.0153

CAATE 0.0010  0.9000 0.0500 09000 0.9000 09000 1.0000 0.8973 09000 0.9000 09000 0.0024 0.0010 0.0010 0.0148
cprs 00298 02980 00010 09000 09000 08922 08973 10000 09000 09000 09000 0.0010 0.0010 0.0010 0.0010

0.0140  0.4462  0.0010 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.0010 0.0010 0.0010 0.0010
0.0010  0.8973  0.0017  0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 0.9000 0.0010 0.0010 0.0010 0.0010
0.0114  0.4847 0.0010 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 0.0010 0.0010 0.0010 0.0010
0.0010 0.0674 0.9000 0.0010 0.0010 0.0025 0.0024 0.0010 0.0010 0.0010 0.0010 1.0000 0.9000  0.9000  0.9000
0.0010  0.0010 0.7955 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.9000 1.0000 0.9000  0.9000
0.0010  0.0066 0.9000 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.9000 0.9000 1.0000  0.9000
0.0010 0.2267 0.9000 0.0010 0.0010 0.0153 0.0148 0.0010 0.0010 0.0010 0.0010 0.9000 0.9000 0.9000  1.0000

OCTree  GPT-4

GPT-3.5
PromptFE
GPT-4

Table 19: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Table |1 excluding
linear model results. Results that are significant at the p = 0.05 confidence level are boldfaced.

) CAAFE OCTree PromptFE (ours)
Raw DIFER OpenFE GPT35 GPT-4 GPT4 GPT35 GPT4
Raw 1.0000  0.0011 0.0010 0.5553 0.4753 0.0010 0.0014 0.44838 0.3036 0.6222 0.9000 0.0010 0.0010 0.0010 0.0010
DIFER 0.0011 1.0000 0.9000 0.7316 0.8107 0.9000 0.9000 0.8350 0.9000 0.6648 0.1552 0.5614 0.0404 0.2187 0.9000
0.0010  0.9000 1.0000 0.0235 0.0357 0.9000 0.9000 0.0404 0.0775 0.0162 0.0010 0.9000 0.8350 0.9000 0.9000
OpenkE 0.5553  0.7316  0.0235 1.0000 0.9000 0.6830 0.7681 0.9000 0.9000 0.9000 0.9000 0.0011 0.0010 0.0010 0.0250

0.4753  0.8107 0.0357 0.9000 1.0000 0.7620 0.8472 0.9000 0.9000 0.9000 0.9000 0.0019 0.0010 0.0010 0.0380
0.0010  0.9000  0.9000 0.6830  0.7620  1.0000 0.9000 0.7864 0.9000 0.6161 0.1267 0.6100 0.0514 0.25838  0.9000
0.0014  0.9000 0.9000 0.7681 0.8472 0.9000 1.0000 0.8715 0.9000 0.7012 0.1783 0.5249 0.0335 0.1912  0.9000
0.4488  0.8350  0.0404 0.9000 0.9000 0.7864 0.8715 1.0000 0.9000 0.9000 0.9000 0.0022 0.0010 0.0010 0.0430
0.3036  0.9000 0.0775 0.9000 0.9000 0.9000 0.9000 0.9000 1.0000 0.9000 0.9000 0.0053 0.0010 0.0010 0.0819
0.6222  0.6648  0.0162 0.9000 0.9000 0.6161 0.7012 0.9000 0.9000 1.0000 0.9000 0.0010 0.0010 0.0010 0.0174
0.9000 0.1552  0.0010  0.9000 0.9000 0.1267 0.1783  0.9000 0.9000 0.9000  1.0000 0.0010  0.0010 0.0010 0.0010
0.0010 0.5614 0.9000 0.0011 0.0019 0.6100 0.5249 0.0022 0.0053 0.0010 0.0010 1.0000 0.9000 0.9000  0.9000
0.0010 0.0404 0.8350 0.0010 0.0010 0.0514 0.0335 0.0010 0.0010 0.0010 0.0010 0.9000 1.0000 0.9000 0.8229
0.0010 0.2187 0.9000 0.0010 0.0010 0.2588 0.1912 0.0010 0.0010 0.0010 0.0010 0.9000 0.9000 1.0000  0.9000
0.0010  0.9000 0.9000 0.0250 0.0380 0.9000 0.9000 0.0430 0.0819 0.0174 0.0010 0.9000 0.8229 0.9000  1.0000

GPT-3.5
CAAFE
GPT-4

OCTree  GPT-4
GPT-3.5

PromptFE
GPT-4

Table 20: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Tableperformance
comparison of PromptFE with and without dataset semantic context. Results that are significant at the p = 0.05
confidence level are boldfaced.

GPT-3.5 GPT+4
Blinded PromptFE Blinded PromptFE

Raw 1.0000  0.0010 0.0010 0.0010 0.0010 0.0017 0.0010 0.0010 0.0010
0.0010 1.0000 0.9000 0.0062 0.0010 0.9000 0.9000 0.0010 0.0057

Raw

crras 000010 09000 10000 0.1775  0.0066 03858 09000 0.0105 0.1677
pompee. 0010 0.0062 0.1775 1.0000 0.9000  0.0010  0.0069  0.9000 0.9000
0.0010  0.0010 0.0066 09000 1.0000 0.0010 0.0010 0.9000 0.9000

iy 00017 09000 03858  0.0010 0.0010 10000 0.9000 0.0010 0.0010

rra 0.0010  0.9000 0.9000 0.0069 0.0010 09000 1.0000 0.0010  0.0062
pompee. 00010 0.0010 0.0105 0.9000  0.9000 | 0.0010 0.0010  1.0000 0.9000

0.0010 0.0057 0.1677 0.9000 0.9000 0.0010 0.0062 0.9000 1.0000

Table 21: The Nemenyi post-hoc test p-values for pairwise comparison of the methods in Tableperformance
comparison of PromptFE with and without RPN canonicalization. Results that are significant at the p = 0.05
confidence level are boldfaced.

GPT-3.5 GPT-4
w/o PromptFE w/o PromptFE

Raw 1.0000  0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
0.0010 1.0000 0.9000 0.2977 0.0060 0.9000 0.9000 0.0224 0.4293

Raw

GPTAS wlo 0.0010 0.9000 1.0000 0.6618 0.0433 0.8811 0.8889 0.1230 0.7871
PromptFE 0.0010 0.2977 0.6618 1.0000 0.9000 0.0341 0.0355 0.9000 0.9000

0.0010  0.0060 0.0433 0.9000 1.0000 0.0010 0.0010 0.9000 0.8028

wio 0.0010 0.9000 0.8811 0.0341 0.0010 1.0000 0.9000 0.0010 0.0635

GPT4 0.0010 0.9000 0.8889 0.0355 0.0010 0.9000 1.0000 0.0010 0.0659

0.0010 0.0224 0.1230 0.9000  0.9000  0.0010 0.0010 1.0000 0.9000

PrompFE 6 0010 0.4293 07871 09000 0.8028 0.0635 0.0659 0.9000 1.0000
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D.8 ADDITIONAL HYPERPARAMETER EFFECT

Number of Iterations. Figure [13|shows the validation scores on the AF and CD datasets, which
contain the smallest and largest numbers of features, respectively, using Random Forests and Light-
GBM. The validation score is evaluated after adding the selected set of candidate features to the
dataset, as denoted by s,+ in line 17 of Algorithm |l We terminate our algorithm once we have
200 candidate features, as constructing additional features does not substantially enhance the per-
formance, but constructing fewer features degrades the performance in some cases.
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Figure 13: The validation score across iterations using Random Forests and LightGBM.

Number of Examples in Prompt with GPT-4. Table 22| reports the maximum validation score
across iterations by varying the number of example features provided in the prompt to GPT-4. We
observe improved performance as the number of example features increases. This suggests that
providing more example features helps fully leverage GPT-4’s enhanced in-context learning capa-
bilities. In our experiments, we set the number of example features to 10 for a fair comparison with
GPT-3.5.

Table 22: Effect of the number of example features in the prompt with GPT-4. For each compared setting, the
left column shows the validation score, and the right column shows the number of LLM generations. The best
results are boldfaced.

Number of Examples
Model  Dataset 1 5 10 20 30
RE AF 0.7864 0.7922 0.7905 0.7897 0.7920
WQR 0.3847 0.3835 0.3839 0.3862 0.3862
CD 0.8219 0.8218 0.8218 0.8219 0.8222
AF 0.8387 0.8413 0.8401 0.8433 0.8411
LGBM WQR 04216 0.4242 0.4290 0.4258 0.4267
CD 0.8231 0.8234 0.8227 0.8229 0.8231
Mean | 0.6794 0.6810 0.6813 0.6816 0.6819
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D.9 NUMBER OF SELECTED FEATURES

Table 23] compares the number of features added to the datasets. Our method PromptFE adap-
tively determines the number of features and selects fewer features than DIFER (Zhu et al., 2022b),
demonstrating the effectiveness of the features generated by our method.

Table 23: Comparison of the number of selected features.

Model Dataset | DIFER  OpenFE PromptFE Blinded PromptFE
GPT-3.5 GPT-4 GPT-3.5 GPT4
AF 310 10 167 165 162 183
BH 156 10 104 141 144 90
Linear WQR 109 10 57 80 43 55
Model ACT 113 10 84 49 85 14
CD 157 10 92 68 74 74
GC 105 10 75 97 120 51
AF 387 10 39 19 15 34
BH 186 10 4 6 19 77
Random BS 46 10 9 7 9 65
Forests WQR 63 10 9 44 39 45
ACT 339 10 55 35 69 61
CD 178 10 97 74 94 89
GC 92 10 68 84 31 59
AF 325 10 30 55 42 24
BH 118 10 15 17 16 25
Light- BS 287 10 119 48 68 116
GBM WQR 454 10 64 29 129 128
ACT 132 10 54 46 16 51
CDh 409 10 68 53 12 50
GC 501 10 61 86 16 35
Mean | 223 10 64 60 60 66
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D.10  COMPUTATION COST

Table 24| compares the number of features evaluated during the feature search process. Guided by
domain knowledge, our method PromptFE evaluates much fewer features than DIFER (Zhu et al.,
2022b) and OpenFE (Zhang et al., 2023)).

Tables and summarize the computation time, with gpt-3.5-turbo-0125 as the LLM. For
PromptFE, the computation time of LLM generation and feature evaluation is relatively stable across
datasets of varying sizes. We note that the LLM generation time can be substantially reduced by in-
structing the LLM to generate multiple features in a generation step.

The sizes of datasets were listed in Table[5] We see that only the feature selection time is sensitive to
dataset sizes. While in general the cost of downstream model evaluations grows proportionally with
the dataset size, the actual cost depends on the hyperparameter of the downstream model, e.g., the
maximum tree depth. Based on the observations in Figure [I0] the LLM generation time is roughly
constant across iterations. The feature evaluation time is also constant. The feature selection time
scales quadratically with the number of candidate features but can be computed in parallel.

Table 24: Comparison of the number of evaluated features during feature search.

Model Dataset | DIFER ~ OpenFE  PromptFE

AF 2083 224 200

BH 2081 1167 200

Linear WQR 2083 929 200
Model ACT 2077 4310 200
CD 2088 3385 200

GC 2076 4169 200

AF 2085 224 200

BH 2079 1051 200

Random BS 2082 310 200
Forests WQR 2085 929 200
ACT 2079 1636 200

CD 2086 1801 200

GC 2078 2139 200

AF 2084 224 200

BH 2080 1051 200

. BS 2083 310 200
IélBg};/tI WQR 2084 929 200
ACT 2079 1636 200

CD 2087 1801 200

GC 2078 2139 200

Mean | 2082 1518 200

E EXPERIMENTS ON PROPRIETARY DATASETS

We have conducted experiments on our proprietary real-world dataset containing over 100,000 sam-
ples and over 1,000 features, where most features contain a substantial proportion of missing val-
ues. We select features of top 100 mutual information scores with the target, which filters out
features with too many missing values, and perform AutoFE on those features. With preprocessing,
PromptFE brings significant performance improvements to downstream models on our proprietary
real-world dataset.
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Table 25: Comparison of computation time, in minutes.

Model Dataset | DIFER ~ OpenFE CAAFE  PromptFE
AF 33.49 0.21 1.73 42.80
BH 41.17 0.21 1.18 41.28
Linear WQR 34.94 0.25 1.21 42.33
Model ACT 44.18 0.40 1.25 43.60
CD 433.94 1.49 3.17 57.82
GC 29.30 0.37 1.68 43.71
AF 178.50 0.23 422 63.30
BH 89.07 0.24 5.52 51.70
Random BS 98.50 0.23 4.05 51.13
Forests ~ WQR 298.46 0.29 9.35 63.12
ACT 78.44 0.28 3.82 44.66
CD 571.33 1.12 14.05 94.08
GC 60.41 0.28 3.24 45.06
AF 301.56 0.25 5.81 63.06
BH 62.30 0.24 3.01 44.84
Light- BS 74.59 0.24 2.55 45.23
GBM WQR 361.19 0.29 5.68 58.97
ACT 36.39 0.28 1.73 42.71
CD 102.04 1.07 2.49 46.34
GC 48.63 0.28 297 43.03
Mean 148.92 0.41 3.94 51.44

Table 26: Computation time of different components of PromptFE, in minutes.

Model Dataset ‘ LLM Generation Feature Evaluation  Feature Selection
AF 16.73 22.98 3.08

BH 18.50 20.18 2.60

Linear WQR 19.07 20.24 3.02
Model ACT 18.92 20.97 3.71
CD 16.73 25.14 15.95

GC 17.01 23.24 347

AF 15.34 25.32 22.64

BH 18.60 23.69 9.41

Random BS 15.12 25.16 10.87
Forests WQR 12.75 23.81 26.56
ACT 13.79 21.67 9.20

CD 12.48 25.89 55.71

GC 14.80 21.91 8.35

AF 17.37 21.06 24.63

BH 19.70 20.40 4.74

. BS 17.03 22.18 6.02
]E;é;t[_ WQR 16.27 21.19 21.51
ACT 19.18 20.24 3.29

CD 16.53 21.68 8.13

GC 17.00 20.40 5.63

Mean \ 16.65 22.37 12.43
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F ADDITIONAL ANALYSIS

F.1 FEATURE ANALYSIS

Figure [T4] compares the proportions of generated features selecting each feature attribute across
different datasets and downstream models (linear models and Random Forests) for both the full and
semantically blinded versions of PromptFE. In the blinded version, we observe that the LLM tends to
prioritize earlier feature attributes in the dataset while paying less attention to later ones, reflecting
an inherent bias of the language model. In contrast, in the full version, the selection of feature
attributes is guided by the semantic information of the dataset rather than the positional order of the
attributes. Specifically, Attribute 19 CD4 at baseline in AIDS Clinical Trials (ACT) and Attribute
10 alcohol in Wine Quality Red (WQR), which contain useful information for predicting the targets
censoring indicator and quality, respectively, are included in the majority of the generated features.
This demonstrates the role of dataset semantic information in the LLM-based feature search process.
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Figure 14: Distributions of feature attribute selection in the constructed features with GPT-4.
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F.2 FEATURE IMPORTANCE

Figure[T3|shows the feature importance scores across different datasets and downstream models. We
employ magnitudes of coefficients for linear models, impurity-based feature importance for Random
Forests 2001), and total gains of splits for Light GBM 2017). PromptFE aug-
ments datasets with the constructed features extracting important information for target prediction.
We observe that Random Forests and LightGBM benefit from features of higher orders compared
to linear models, since they are capable of synthesizing simple features internally. Our approach
adapts the feature complexity for different downstream models.
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Figure 15: The blue bars show the normalized feature importance scores. The red dots show the order of
features. The constructed features positioned on the x-axis start at index 0, following raw dataset features.
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F.3 FEATURE SEARCH EXAMPLE

Figure [I6] shows samples of the LLM-based feature search process from a single run. In iteration
155, the generated feature is derived from the combination of three example features. In iteration
158, the generated feature is derived from the combination of two example features, with the fea-
ture attributes modified. Iteration 160 exhibits an instance of modification on the example feature.
Iteration 161 exhibits an instance of analogy of the example feature.

Figure 16: Examples of feature search. The prompt examples that relate to the generated feature

are highlighted in

Iteration 155

Generated feature:

6, 12, division, 18, *, min_max
Prompt examples:

4,log, 13, *, 17, min_max, sqrt_abs, +
6, 12, *, 21, sqrt_abs, +

4,14, +, 18, *, min_max

11, 21, +, 6, *, sqrt_abs

2,4, +, 6, division, log

4,6, +, 16, *, 17, +, min_max

6, 21, division, 17, log, *

12, min_max, 18, *, 5, mod_column
2, 6, mod_column, 17, +, sqrt_abs
2,3, +, 4, sqrt_abs, *

4, 12, division, 16, *, min_max, sqrt_abs

Iteration 158

Generated feature:

5, log, 19, *, 15, +, min_max

Prompt examples:

4, log, 13, *, 17, min_max, sqrt_abs, +
6, 12, *, 21, sqrt_abs, +

4, 14, +, 18, *, min_max

11, 21, +, 6, *, sqrt_abs

2,4, +, 6, division, log

4,6, +, 16, *, 17, +, min_max

6, 21, division, 17, log, *

12, min_max, 18, *, 5, mod_column
2, 6, mod_column, 17, +, sqrt_abs
2,3, +, 4, sqrt_abs, *

4, 12, division, 16, *, min_max, sqrt_abs

Iteration 160

Generated feature:

11, 21, *, 4, +, 14, mod_column
Prompt examples:

4, log, 13, *, 17, min_max, sqrt_abs, +
6, 12, *, 21, sqrt_abs, +

4,14, +, 18, *, min_max

11, 21, +, 6, *, sqrt_abs

2,4, +, 6, division, log

4,6, +, 16, *, 17, +, min_max

6, 21, division, 17, log, *

12, min_max, 18, *, 5, mod_column
2, 6, mod_column, 17, +, sqrt_abs
2,3, +, 4, sqrt_abs, *

4, 12, division, 16, *, min_max, sqrt_abs

Iteration 161

Generated feature:

6, 12, +, 17, *, min_max
Prompt examples:
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6, 12, *, 21, sqrt_abs, +

4,14, +, 18, * min_max

11, 21, *, 4, +, 14, mod_column

11, 21, +, 6, *, sqrt_abs

2,4, +, 6, division, log

4,6, +, 16, * 17, +, min_max

6, 21, division, 17, log, *

12, min_max, 18, *, 5, mod_column
2, 6, mod_column, 17, +, sqrt_abs
2,3, +, 4, sqrt_abs, *

4, 12, division, 16, *, min_max, sqrt_abs

F.4 POTENTIAL FAILURE MODES

One potential failure mode is the generation of features that are duplicates of existing candidate fea-
tures or syntactically invalid. The third column of each configuration in Table 2] reports the number
of LLM generations needed to construct 200 candidate features in our experiments. Specifically,
the proportion of valid new features is around 55% using GPT-3.5 and around 60% using GPT-4
on average. Feature search tends to converge per our feature divergence analysis in Section[5.6]and
could get stuck in local optima when example features in the prompt are highly similar. From Figure
10, the number of LLM generations needed to construct a new candidate feature remains relatively
stable as the algorithm iterates, suggesting low likelihood of getting stuck. Table [3] shows that in-
cluding more example features in the prompt improves the success rate of feature construction on
average by increasing the diversity. Another potential failure mode is that the generated explanation
of a constructed feature may be inaccurate, e.g., the column index may be inconsistent with the
feature name.

G MORE DISCUSSION ON DIFFERENCES FROM EXISTING WORKS

Although our work PromptFE and CAAFE (Hollmann et al., 2023)) both utilize LLMs to construct
new features incorporating dataset semantic information, they differ in several key aspects. We
design PromptFE such that it taps into the in-context learning capability of LLMs and performs
effective feature search. In PromptFE, we provide top-performing constructed features in the prompt
as learning examples, label them with performance scores, and rank them by score. We demonstrate
that the LLM learns to optimize feature construction over the course of algorithm. CAAFE instead
stores all previous instructions and code snippets in the conversation history, which hinders the in-
context learning of optimal feature patterns. It quickly consumes the LLM’s context as the algorithm
iterates, incurring more and more LLM generation costs. In comparison, the LLM generation cost of
PromptFE stays constant across iterations, without a maximum limit on the number of iterations it
can perform. Therefore, our method PromptFE has stronger capability of performing feature search
in large search spaces requiring many iterations, such as datasets with numerous feature attributes.

In PromptFE, we also explore representing features in a different form, i.e., canonical RPN (cRPN).
We refer to Appendix [A] for further detail. Compared with the Python code representation in
CAAFE, cRPN is more compact, which not only reduces LLM generation costs but also makes
the in-context learning of feature patterns easier, and more human interpretable. The use of pre-
defined operators reduces the search space and simplifies the learning process for optimizing feature
construction. Together, our approach gives better control than code representation that helps avoid
undesirable or unexpected LLM outputs. Another advantage of cRPN is that it is convenient to
import external features (as outlined in Algorithm [T) and export the results as individual features,
providing compatibility with other feature engineering methods.

The rules generated by FeatLLM (Han et al.| 2024) are based on a single raw feature, without
considering high-order feature interactions. There is no feedback mechanism to improve the rules
either. In comparison, our approach constructs new features that combine multiple raw features and
iteratively improves feature construction by learning the performance. Furthermore, FeatLLM can
be used for only classification tasks and for a single type of downstream model. Our approach is
effective for both classification and regression tasks, and it adaptively constructs features that are
useful for different downstream models.
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ELF-Gym (Zhang et al., 2024b) first generates feature descriptions using one LLM and then gener-
ates feature code using another LLM, which is less efficient, and it does not have a feedback mecha-
nism to improve the features. Differently, we represent features in the compact form of cRPNs. Our
approach iteratively improves feature construction by learning the performance, where the LLM
simultaneously generates new features and explanations on its own.

Compared with OCTree (Nam et al.| 2024)), our approach represents features concisely in the form
of canonical RPNs without using external modules like decision trees. The processes of feature
encoding, decoding, and validity check detailed in Algorithms 2 and 3 are simple and efficient. We
have demonstrated that cRPNs are effective for the LLMs to understand the structure of features
and construct new features to improve utilities. The LLMs are also able to semantically explain
the constructed features in the context of dataset descriptive information on its own. Our approach
gives better control, such as the number of operators to use to construct features, and facilitates
feature search by reducing the search space with a set of pre-defined operators. Moreover, with
fewer modules used, our approach is more robust and cost efficient.

While LFG (Zhang et al.| [2024a) is also LLM based, it does not utilize the semantic information
of datasets. We have shown in Sections 5.3 and 5.5 that the incorporation of dataset semantic in-
formation enhances the effectiveness of feature construction of our approach. Informed by dataset
semantic information, our approach circumvents exhaustive feature search and evaluates consider-
ably fewer candidate features than traditional approaches, while providing semantic explanations of
the constructed features. Another difference is that we represent features in the compact and unam-
biguous form of cRPNs, which not only reduces LLM generation costs but also facilitates in-context
learning of feature patterns. Furthermore, compared with (Zhang et al., 2024a) , we conduct more
comprehensive experiments by benchmarking against state-of-the-art LLM- and non-LLM-based
AutoFE methods on both regression and classification tasks and perform more detailed performance
analysis, such as feature attribute selection, feature complexity, and feature construction efficiency.

More fundamentally, we demonstrate in this work that general-purpose LLMs like GPTs can effec-
tively model recursive tree structures in the form of cRPN feature expressions and reason about the
structures in the context of semantic information, shedding light on further LLM-driven applica-
tions. We hereby underscore the importance of adopting proper representation for the downstream
task to tap into LLMs’ potential.

H PRACTICAL SIGNIFICANCE

PromptFE constructs semantically meaningful features that significantly boost the performance of
simple predictive models especially linear models and provides semantic explanations. Our cRPN
feature representation is concise and easy to interpret. Using our approach, one can enhance the
performance of simple predictive models without sacrificing their interpretability. Our toolkit is
easy to deploy, requiring only OpenAl APIs.
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