Learning to Ask: When LLLM Agents Meet Unclear Instruction

Anonymous ACL submission

Abstract

Equipped with the capability to call functions,
modern LLM agents can leverage external tools
for addressing a range of tasks unattainable
through language skills alone. However, the
effective execution of these tools relies heav-
ily not just on the advanced capabilities of
LLM agents but also on precise user instruc-
tions, which often cannot be ensured in the
real world. To evaluate the performance of
LLM agents tool-use under imperfect instruc-
tions, we meticulously examine the real-world
instructions queried from users, analyze the er-
ror patterns, and build a challenging tool-use
benchmark called Noisy ToolBench (Noisy-
ToolBench). We find that due to the next-token
prediction training objective, LLM agents tend
to arbitrarily generate the missed argument,
which may lead to hallucinations and risks.
To address this issue, we propose a novel
framework, Ask-when-Needed (AwN), which
prompts LLM agents to ask questions to users
whenever they encounter obstacles due to un-
clear instructions. Moreover, to reduce the man-
ual labor involved in user-LLM interaction and
assess LLM agents’ performance in tool utiliza-
tion from both accuracy and efficiency perspec-
tives, we design an automated evaluation tool
named ToolEvaluator. Our experiments demon-
strate that the AwN significantly outperforms
existing frameworks for tool learning in the
NoisyToolBench. We will release all related
code and datasets to support future research.

1 Introduction

LLMs have undergone remarkable development
since OpenAl introduced ChatGPT-3.5 (Bang et al.,
2023). This model demonstrates a significant ad-
vancement in solving multiple tasks, including
code generation (Dong et al., 2023; Sakib et al.,
2023; Feng et al., 2023), machine translation (Jiao
et al., 2023; Peng et al., 2023), even game play-
ing (Wu et al., 2024). However, despite their im-
pressive capabilities, LLMs often struggle with

complex computations and delivering accurate,
timely information (Qu et al., 2024). Tool learn-
ing emerges as a promising solution to mitigate
these limitations of LLMs by enabling dynamic
interaction with external tools (Schick et al., 2024).

The incorporation of tool usage capabilities
marks a pivotal step towards enhancing the intelli-
gence of LLMs, pushing them closer to exhibiting
human-like intelligence. The integration of tool
usage allows LLMs to perform a broader array of
complex and varied tasks. For example, LLMs
can perform complex calculations using a calcula-
tor tool, access real-time weather updates through
weather APIs, and execute programming code via
interpreters (Qin et al., 2023a; Schick et al., 2024;
Mialon et al., 2023; Yang et al., 2023a). Tool-
former (Schick et al., 2024) is a pioneering work
in empowering language models with self-learning
capabilities for tool usage. Then, significant re-
search efforts have been directed toward accessing
a wider variety of tools or using multiple tools si-
multaneously to resolve a single query, such as
Gorilla(Patil et al., 2023), RestGPT (Song et al.,
2023) and ToolLLM (Qin et al., 2023b).

Despite the significant strides made, existing
frameworks and benchmarks often operate under
the assumption that user instructions are always
explicit and unambiguous, a premise that diverges
from real-world scenarios (Qin et al., 2023a; Song
etal., 2023; Patil et al., 2023). Due to the feature of
API calls, it requires precise user instructions since
the arguments for the function call can hardly toler-
ate ambiguity. We find that due to the next-token
prediction training objective, LLMs tend to arbitrar-
ily generate the missed argument, which may lead
to hallucinations and risks (as the example shown
in Figure 1a). Furthermore, as the tasks assigned to
LLMs grow in complexity, multiple and sequential
API calls are needed to resolve a single task. This
complexity amplifies the challenge, as any error in
the sequence of API calls can culminate in an out-

i

H ﬂ API retrieved
0.9
==y The user did not provide
the location. Anyway, let
- me just fill in New York.
(] ©,0

weather_for_now_api

as (location="New York”)

(a) The execution process of previous frameworks.

The user did not provide

H ﬂ API retrieved
the location. Let’s ask

E
= the user for clarification.
ion? @
‘ Location? API call
> 50

= (location="London")
as London .

—o—i;

weather_for_now_api

(b) The execution process of our framework.

Figure 1: The motivating example of our Ask-when-Needed (AwN) framework.

come that strays from the user’s original intention.
Hence, LLMs tool-use under unclear instruction is
an important but rarely investigated direction.

To address this oversight, we conduct a system-
atic analysis of actual user instructions, identifying
and categorizing potential issues into several key
areas. These include instructions lacking essen-
tial information, instructions with ambiguous ref-
erences, instructions containing inaccuracies, and
instructions that are unfeasible for LLMs to execute
due to the limitations of the tools available. Build-
ing on this observation, we meticulously design
a noisy instruction benchmark, named NoisyTool-
Bench, which is pimarily used for assessing the
capability of LLMs to detect ambiguities in user
queries and to pose relevant questions for clarifi-
cation accordingly. Specifically, NoisyToolBench
includes a collection of provided APIs, ambiguous
queries, anticipated questions for clarification, and
the corresponding responses.

To improve the performance of LLMs tool-use
under unclear instructions, we propose a novel
framework called Ask-when-Needed (AwN). Our
key insight is encouraging LLMs to proactively ask
questions to seek clarifications from users when
uncertainties arise during instruction execution. By
facilitating dialogue throughout the process, our
method aims to ensure the accurate invocation of
functions (See Figure 1b)

To evaluate the performance of LLMs tool-use
under unclear instruction, we design several inno-
vative metrics from the accuracy and efficiency
perspectives. For accuracy, we measure the LLMs’
proficiency in asking appropriate clarifying ques-
tions, their ability to execute the correct function
calls, and their success in delivering final responses
that meet the users’ needs. For efficiency, we calcu-
late the average number of redundant asked ques-

tions and the average number of actions required to
complete the instruction. An ideal LLM should
achieve higher accuracy with fewer number of
queries. Recognizing the labour-intensive nature of
manually communicating with LLMs and verifying
all execution results, we also innovatively design
an automatic evaluation system, ToolEvaluator, to
streamline the whole process. ToolEvaluator lever-
ages the advanced problem-solving capabilities of

GPT-40 to communicate with LLMs and automati-

cally evaluate the performance of LLMs’ tool-using

under unclear instructions. Our experiments on 8

LLMs and 2 tool-using frameworks demonstrate

that the AwN significantly outperforms existing

baseline methods.
The contributions are summarized as follows:

* We conduct a systematic study on real-world user
instruction for tool utilization and categorize the
prevalent issues into four distinct categories.

* We create and release a novel benchmark, Noisy-
ToolBench, which can be used to evaluate the
performance of LLMs’ tool-using under imper-
fect user instruction.

* We design five evaluation metrics from both ac-
curacy and efficiency perspectives and introduce
an automatic evaluation system, ToolEvaluator,
that can proxy users to interact and assess LLMs.

¢ We introduce a novel framework, named AwN
method, to prompt LLMs to actively ask ques-
tions to request clarifications from users when
facing uncertainties. Experimental results show
that AwN can significantly improve the LLMs’
tool-using under unclear instructions.

2 Related Works

Tool Learning for LLMs. LLMs have recently
made significant advancements, with ChatGPT be-
ing recognized as a major step towards achieving

AGI (Wu et al., 2023; Lund and Wang, 2023; Jiao
et al., 2023). However, to progress further to-
wards AGI, it is crucial for LLMs to master the
utilization of tools. Toolformer is the first innova-
tive Al model designed to use several specialized
tools, such as a web browser, a code interpreter,
and a language translator, within a single frame-
work (Schick et al., 2023). The model’s ability
to seamlessly switch between these tools and ap-
ply them contextually represents a significant ad-
vancement in Al capabilities. Recent studies like
RestGPT (Song et al., 2023) and ToolLLM (Qin
et al., 2023b), have connected LLLMs with real-life
Application Programming Interfaces (APIs), allow-
ing them to sequentially employ multiple external
tools to solve user queries. The tool-augmented
approach empowers LLMs to use various kinds
of tools to do more sophisticated tasks, showcas-
ing an enhanced level of capability compared to
pure LLMs. Besides, API-Bank (Li et al., 2023),
ToolAlpaca (Tang et al., 2023), ToolBench (Qin
et al., 2023b), ToolQA (Zhuang et al., 2023) and
RestBench (Song et al., 2023) are exemplary bench-
marks to systematically evaluate the performance
of tool-augmented LLMs performance in response
to user’s queries. However, current models often
ignore the situations in which users might not give
exact instructions, which can result in the tools not
working properly. Thus, our study aims to tackle
this specific challenge by developing a new bench-
mark specifically for ambiguous instructions.

Prompting LL.Ms for Decision Making. In cer-
tain situations, addressing user queries may re-
quire more than a single API call. This necessi-
tates the effective division of the overarching task
into smaller, more manageable components, which
presents a significant challenge. Prior research has
focused extensively on enhancing LL.Ms’s ability
to effectively plan and execute complex tasks. The
’Chain of Thought’ prompting approach facilitates
advanced reasoning by introducing intermediate
steps in the reasoning process (Wei et al., 2022).
The ReAct methodology improves the integration
of reasoning and action, enabling LLMs to take
informed actions based on environmental feedback
(Yao et al., 2022). Meanwhile, Reflexion is de-
signed to reduce errors in the reasoning process
by revisiting and learning from previous mistakes
(Shinn et al., 2023). DFSDT expands upon Re-
flexion, allowing LLMs to evaluate various options
and choose the most viable path (Qin et al., 2023b).
In our work, we innovatively involve users in the

process of executing instructions. Our approach, re-
ferred to as AwN, motivates LLMs to consider the
necessity of requesting further information from
users during each tool invocation round. This strat-
egy aims at clarifying users’ ambiguous instruc-
tions to help execute the tasks in alignment with
the users’ intentions.

Learning to Ask. Since user queries may not al-
ways be clear, and the execution of LLMs may
encounter uncertainties and ambiguities, learning
to ask questions has emerged as a challenging yet
crucial research area (Rao and Daumé III, 2018;
Kuhn et al., 2022; Andukuri et al., 2024). For
example, some researchers introduce a learning
framework that empowers an embodied visual nav-
igation agent to proactively seek assistance(Zhang
et al., 2023). Recently, similar ideas have been
adopted in the software engineering, leveraging a
communicator to enhance the reliability and quality
of generated code (Wu, 2023). Our work focuses
on the tool-learning scenario, which is more sensi-
tive to the user’s unclear query. A concurrent study
(Qian et al., 2024) also focuses on the reliability
of tool-learning systems under unclear instruction.
However, they did not systematically examine real-
world user behavior, leading to the limited and bi-
ased nature of their dataset that doesn’t accurately
capture user errors. Additionally, Qian’s method-
ology depends significantly on human manual in-
teraction and assessment of LLM performances,
which is time-consuming and hard to reproduce.

3 Noisy ToolBench

Several tool-learning benchmarks have been intro-
duced to assess LLMs’ ability in tool utilization.
However, these benchmarks overlook the potential
ambiguity in users’ instruction, which might hin-
der LLMs from executing tasks as intended by the
user. For instance, as depicted in Figure 1a, if a
user inquires, "How is today’s weather" without
specifying the location, LL.Ms cannot accurately
activate the APIs to fetch the correct weather in-
formation. This scenario underscores the critical
role of interaction between users and LLMs in exe-
cuting instructions accurately. However, previous
tool-learning benchmarks only contain perfect user
instruction in a one-query-one-execution manner.
To create a realistic benchmark for ambiguous
instructions, the initial step involves a systematic
examination of the common errors in user instruc-
tions that could complicate correct execution by

LLMs. Therefore, we first collect real-world user
instructions that are problematic. Then, we classify
these instructions into various categories based on
their characteristics. Lastly, we manually create
our dataset, ensuring it reflects the distribution of
errors found in the real-world user instructions.

3.1 User Instruction Analysis

To analyze the issues in real-world user instruc-
tion, we recruit human annotators to write user
queries according to the API provided. Firstly, we
select 100 APIs from the ToolBench (Qin et al.,
2023b), containing real-world RESTful APIs span-
ning 49 categories, ranging from sports to finance.
Secondly, we hire 10 volunteers, who have a Bach-
elor’s degree, are proficient in English, and have
experience using LLMs. We provide them with the
100 APIs, and then ask them to write down an in-
struction to prompt LLMs to call each API, ending
up with 1000 user queries. Finally, we manually
identify the problematic user queries and catego-
rized them as follows.

* Instructions Missing Key Information (IMKI):
These are user instructions that omit crucial de-
tails necessary for the successful execution of a
function. An example of IMKI would be, "Set
an alarm to wake me up" without providing a
specific time. Asking for more information is
needed when encountering this issue.

* Instructions with Multiple References (IMR):
These user instructions include elements that can
be interpreted in several ways, potentially lead-
ing to confusion for LLMs in understanding the
user’s actual intent. For example, an IMR in-
stance is "] want to know the director of the
movie 'The Matrix’," where the ambiguity arises
because there are multiple versions of *The Ma-
trix’, each possibly having a different director.
This issue is similar to IMKI but is more subtle
and difficult to detect. Pointing out potential ref-
erences and asking for clarification are needed
when encountering this issue.

¢ Instructions with Errors (IWE): This category
consists of user instructions that contain the nec-
essary information for executing a function, but
the information is incorrect. An example of IWE
is, "Please help me to log in to my Twitter. My
user account is “abcde @ gmail.com’ and the pass-
word is *123456’," where the user might have
provided the wrong account details or password
due to typographical errors. Asking for the cor-
rect information is needed when encountering

Type of Issue Ratio
Instructions Missing Key Information (IMKI) 56.0%
Instructions with Multiple References (IMR) 11.3%
Instructions with Errors (IWE) 17.3%
Instructions Beyond Tool Capabilities (IBTC) 15.3%

Table 1: Distribution of problematic instructions.

this issue.
¢ Instructions Beyond Tool Capabilities (IBTC):

These are user instructions that request actions or
answers beyond what LLMs can achieve with the
available APIs. In such cases, the existing tool-
augmented LLM frameworks might randomly
choose an available API, leading to an incorrect
function call. This scenario highlights the need
for LLMs to recognize their limitations in tool
usage. Telling the user that the query is beyond
the capabilities and refusing to generate API calls
are needed when encountering this issue.

Table 1 shows the ratio of the four issues, where
the most common issue in the instructions is "In-
structions Missing Key Information", with a sig-
nificant 56.0% of all errors. This issue is a clear
indication that users often do not provide adequate
information to effectively use the APIs. Addition-
ally, issues such as "Instructions with Errors" and
"Instructions Beyond Tool Capabilities" were iden-
tified at rates of 17.3% and 15.3%, respectively.

3.2 Data Construction

Our user instruction analysis reveals that there are
four kinds of instruction issues that may lead to
LLMs’ tool utilization failures: Instructions Miss-
ing Key Information (IMKI), Instructions with Mul-
tiple References (IMR), Instructions with Errors
(IwWE), and Instructions Beyond Tool Capabilities
(IBTC). So, we build our benchmark with the four
issues by intentionally modifying the problem-free
instructions from well-established datasets to prob-
lematic ones. We first select 200 data with problem-
free instruction from ToolBench and then manually
modify the user instructions to make them suffer
from the four kinds of instruction issues. Then
we annotate the expected questions that LLMs
should ask when facing each imperfect user query,
which will be used to measure whether LLMs can
ask the right questions, as well as the answer to
the question, which will be used to proxy the hu-
man responses. We conduct a two-round cross-
verification to ensure the quality of the annotation.
Each data is annotated and verified by different peo-
ple and any disagreement data will be re-annotated

CoT/ReAct

Instruction

CoT/ReAct + QwN

Instruction

single
element

single
element

Figure 2: The comparison of our QwWN prompting com-
pared with original CoT/ReAct Prompting

until reach a consensus. Finally, each data entry
in NoisyToolBench has the following five compo-
nents: the imperfect user query, the available APIs,
the questions that LLMs should ideally ask, the an-
swers to these questions, and the expected function
calls along with their respective arguments.

4 Ask-when-Needed Prompting

Previous approaches to tool-using often overlooked
the importance of user engagement during the
reasoning and planning stages. To address this
oversight, we introduce a new prompting strategy
named Ask-when-Needed (AwN). The key insight
is prompting LLMs to detect the potential flaws in
user instructions and proactively seek clarifications
by asking questions before generating the API call.

AwN is built upon widely-used tool-using meth-
ods, such as CoT and ReAct. As in Figure 2, we
introduce an additional step before the generation
of API calls. This step involves presenting all avail-
able information to the LLMs, including the user
query and API guideline, and prompting them to
determine the adequacy and correctness of user in-
struction. If LLMs identify any missing argument
needed for function execution based on the API’s
requirements, they are encouraged to ask questions
to the user for this information. AwN prompts
LLMs not to generate any API call until obtaining
all the necessary information. In other words, only
if no further information is needed, they can bypass
the query step and directly initiate the API call. We
also provide various kinds of specific instructions
and demonstration examples for different kinds of
instruction issues.

You are AutoGPT, tasked with processing user
requests through a variety of APIs you have
access to. Sometimes, the information provided
by wusers may be unclear, incomplete, or
incorrect. Your main responsibility is to
determine if the user’s instructions are
sufficiently clear and detailed for effective
use of the APIs. Here’s your strategy:

1. If user instructions are missing crucial
details for the APIs, pose a question to obtain
the necessary information.

2. If the user’s instructions appear to be
incorrect, delve deeper by asking questions to
clarify and rectify the details.

3. If the user’s request falls outside the
capabilities of your current APIs, notify them
that you’re unable to meet the request by
stating: ”Due to the limitation of the toolset,
I cannot solve the question”.

S Experiments

In this section, we evaluate the performance of our
Ask-when-Needed (AwN) prompting technique on
the NoisyToolBench dataset. We first introduce
the evaluation metrics, where we specify the crite-
ria used to assess the effectiveness of AwN. Then,
we describe the evaluation pipeline, detailing the
step-by-step process employed to measure AwN’s
performance. Lastly, we discuss the main experi-
ments, presenting the results and findings from our
comprehensive testing of the AwN technique.

5.1 Evaluation Metrics

We evaluate the performance of LLMs’ tool-using
under unclear instructions from two perspectives:
accuracy and efficiency. The accuracy assessment
aims to measure the LLMs’ capability to make
correct decisions during the instruction execution
phase and to generate accurate final answers. In
contrast, the efficiency assessment focuses on the
number of redundant decisions made by the LLMs,
considering that unnecessary communication could
lead to a waste of processing time. Specifically, we
design the following five metrics:

* Accuracy 1 (Al). Al evaluates the capability
of LLMs to ask the anticipated questions that
pinpoint the ambiguous elements in user instruc-
tions. Al is considered a success if the LLMs
manage to ask the correct questions at any point.
Conversely, it is deemed a failure if they do not.

e Accuracy 2 (A2). A2 assesses the ability of
LLMs to use all available information to invoke
the correct API calls. It is deemed a success
if the LLMs call all the anticipated APIs with
the correct arguments. If they fail to do so, it is
considered a failure.

clear? Does user provide enough

information for further process?

User: Provide me with the
profile information of my
TikTok account.

LLM’s reflection: Is user’s intention

G

Ny

[Expected Question]
in dataset
" g
-~
LLM’s question: XXXXX? I:>

: :) Sentence
Transformer
No

e

=

Proxy User: | cannot
provide additional
information about this.

1
'
I
'
1
'
I
I
1
'
'
I
'
'
'
1
'
I
'
1
'
I
'
1
'
'
I
'
Proxy User: i
[Pre-Defined Answer] H

Automatic Interaction |

Figure 3: Illustration of the Auto-Interaction module.

* Accuracy 3 (A3). A3 measures the ability of
LLMs to extract the anticipated information from
previous API calls to fulfill the user’s instruc-
tions. This is achieved and considered a success
if the user’s instructions are successfully exe-
cuted. If not, it is regarded as a failure.

* Average Redundant Asked questions (Re).
This metric evaluates the quantity of irrelevant
or redundant questions asked by LLMs during
the instruction process. Irrelevant questions are
those that do not meet the initial expectations of
the query, and redundant questions include those
that are repetitive or have previously been asked.
This metric is crucial for assessing the LLMs’
ability to precisely identify the ambiguous as-
pects of user instructions and to formulate ap-
propriate questions to clarify these uncertainties.
The larger the value, the worse the performance.

* Steps. Steps quantifies the average number of
actions required to complete an instruction, in-
cluding inference generation, asking questions,
and conducting API calls. A smaller number in-
dicates fewer unnecessary steps in the instruction
execution process, signifying a more efficient
and direct approach to accomplishing the task.

5.2 Auto-Evaluation Pipeline

To assess how LLMs perform under unclear instruc-
tions, interacting with LLMs and making assess-
ments are needed. Previous work employs individ-
uals to interact with and evaluate LLMs throughout
the entire evaluation process, which is inefficient
and not reproducible. To address this, we design
an automated evaluation method named ToolEval-
uator to proxy this process. ToolEvaluator can
automatically interact with LLMs and assess their
performances.

Auto-Interaction. ToolEvaluator can proxy

the user’s communication with LLMs. When
LLMs post a question, ToolEvaluator calculates
the semantic similarity between the asked ques-
tion and the expected question by the sentence-
transformer (Reimers and Gurevych, 2019). If the
similarity is higher than a threshold, ToolEvaluator
replies with the predefined answer to the LLMs.
Otherwise, this question is treated as an irrelevant
question and ToolEvaluator replies with a standard
reply of "Sorry, I cannot provide additional infor-
mation about this.". This approach streamlines the
evaluation process by reducing the need for human
interaction with LLMs, as illustrated in Figure 3.

Auto-Assessment. ToolEvaluator can also auto-
matically assess how well LLMs perform under
ambiguous instructions according to the five met-
rics introduced above. Al measures whether LLMs
can ask the right question. ToolEvaluator calculates
the semantic similarity between the LLMs-asked
question and the expected question to asses Al. A2
measures whether LLMs can conduct correct API
calls. Following the previous works (Yang et al.,
2023b; Chiang and yi Lee, 2023; Wang et al., 2023;
Yuan et al., 2023), ToolEvaluator adopts GPT-40
as a judge to identify whether the generated API
calls are the same as the expected API calls. A3
measures whether LLMs can correctly generate the
final answer. ToolEvaluator adopts GPT-40 as a
judge to identify whether the final answer aligns
with the user’s intent. For measuring the efficiency,
ToolEvaluator counts the number of generated irrel-
evant questions as Re and counts the total number
of actions during the process as Steps.

5.3 The Effectiveness of ToolEvaluator

Since ToolEvaluator is an automatic evaluation
method, the evaluation can be inaccurate due to
the imperfect nature of Al techniques, such as sen-

IMKI IMR IwWE IBTC
Model Framework
Al(%) A2(%) A3(%) Al(%) A2(%) A3(%) Al(%) A2(%) A3(%) Al(%)
CoT 074 036 022 020 024 0.12 0.5 024 0.16 0.38
opt-3.5 + AWN 0.74 044 024 08 046 020 074 048 028 048
DFSDT 0.64 0.16 0.12 060 0.18 0.16 048 0.14 0.14 046
+ AWN 0.88 052 046 088 056 048 072 042 036 0.64
CoT 074 048 032 072 052 036 052 026 024 034
apt-4 + AWN 094 062 050 076 044 038 048 034 034 094
DFSDT 0.82 0.16 0.16 070 028 026 054 0.12 0.10 054
+ AWN 0.80 056 048 080 050 044 052 038 036 094
CoT 052 048 034 018 028 0.16 0.12 0.12 0.10 0.10
apt-4o + AwN 090 058 036 080 046 030 0.60 044 032 092
DFSDT 058 020 0.18 026 0.18 0.16 0.18 0.06 0.04 0.08
+ AwN 0.88 0.60 046 090 052 036 0.64 046 038 094
CoT 044 040 020 024 028 024 010 0.14 0.14 030
+ AwN 070 052 036 070 054 046 040 030 026 098
deepseek-v3
DFSDT 042 030 026 060 020 018 022 0.2 012 048
+ AwN 072 052 042 082 052 048 054 038 036 098
CoT 022 018 0.10 022 010 002 008 0.12 0.06 0.52
. + AWN 0.86 040 0.18 074 024 008 058 028 022 0.68
gemini-1.5
DFSDT 0.62 0.02 0.02 0.6 0.08 004 036 006 002 048
+ AwN 0.82 040 0.12 076 028 0.04 066 036 026 0.70
CoT 024 026 020 0.12 028 024 008 026 024 030
+ AWN 0.54 0.5 0.5 032 030 024 034 034 026 088
claude-3.5
DFSDT 026 0.18 0.14 0.12 0.18 018 012 020 0.18 0.62
+ AwN 052 044 042 032 030 018 036 036 030 0.86
CoT 0.00 0.16 0.16 0.00 0.16 0.14 0.00 0.04 0.04 0.00
.. + AWN 078 054 052 076 054 048 058 042 032 040
0O3-mini
DFSDT 0.00 0.16 0.16 000 0.16 010 000 0.06 0.02 0.00
+ AWN 0.80 054 052 076 058 054 058 038 036 048
CoT 0.10 022 0.16 0.02 028 0.12 0.00 0.08 0.06 0.00
+ AWN 0.80 052 034 060 054 022 050 034 022 084
DeepSeek-R1
DFSDT 0.02 020 0.18 0.04 026 0.14 0.00 0.08 0.04 0.00
+ AWN 086 0.62 042 062 042 026 054 038 022 0.76

Table 2: Assessing the accuracy of various LLMs using different prompting methods in our benchmark.

tence transformer or GPT-4o as the judge. In this
section, we conduct a human annotation to validate
the effectiveness of ToolEvaluator. Specifically,
we randomly select 50 cases and ask annotators
to assess the accuracy and efficiency, according to
the evaluation metrics mentioned above. Then we
compare the assessment results from ToolEvalua-
tor and human annotators. ToolEvaluator achieves
90% accuracy, indicating its effectiveness.

5.4 Experimental Setup

We evaluated the performance of AwN against two
baseline methods, chain-of-thought (CoT) (Wei
et al., 2022) and depth-first search-based decision
tree (DFSDT) (Qin et al., 2023b), which are two

widely-used tool-learning methods. All the ex-
periments are conducted with several LLMs as
engines, gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-
09, gpt-40-2024-11-20, deepseek-v3, gemini-1.5-
flash-latest and claude-3-5-haiku-20241022, using
the default setting. Since an ideal reaction under
Instructions Beyond Tool Capabilities IBTC) is
telling the user that the query is beyond the ca-
pabilities and refusing to generate API calls, its
performance in A2 and A3 are measured neither.

5.5 Main Result

We evaluate the performance of AwN as well as the
baseline methods on our NoisyToolBench dataset.
The accuracy-related results are shown in Table 2

IMKI IMR IwE IBTC

Re Steps

Model FrWork

Re Steps Re Steps Re Steps

CoT - 446 - 402 - 39 - 210
+AwN 0.66 5.36 1.10 598 0.76 5.08 1.10 2.40

DFSDT - 1282 - 1280 - 1382 - 550
+AwN 1.44 1694 098 11.24 094 11.68 1.70 3.94

CoT - 400 - 398 - 334 - 204
+AwN 0.16 394 020 394 036 346 0.04 1.16

DFSDT - 8396 - 21.04 - 2240 - 4.06
+AwN 048 9.82 0.74 13.08 0.62 942 0.16 2.10

CoT - 300 - 298 - 248 - 128
+AwN 0.62 3.86 0.70 3.96 0.46 3.18 0.00 1.10

DFSDT - 598 - 958 - 578 - 898
+AwN 086 6.70 1.18 7.68 0.88 8.56 0.00 1.14

CoT - 420 - 352 - 312 - 118
+AwN 0.20 3.88 0.06 3.60 0.04 292 0.02 1.10

DFSDT - 59.08 - 41.70 - 2424 - 11.64
+AwN 1.16 1586 1.80 24.60 1.20 11.82 0.04 1.32

CoT - 400 - 412 - 286 - 452
+AwN 042 644 0.68 636 048 4.54 046 1.46

DFSDT 750.80 685.00 725.14 559.78
+ AWN 5.34 445.16 9.08 532.56 1.94 411.18 0.46 1.46

CoT - 264 - 340 - 304 - 190
+AwN 0.18 3.74 033 1.03 036 3.76 0.10 1.68

DFSDT - 334 - 964 - 598 - 426
+AwN 0.76 6.74 0.80 17.46 1.04 13.08 0.14 2.76

CoT - 188 308 - 272 - 1.08
+AwN 042 3.54 052 3.82 044 3.66 030 1.54

DFSDT - 204 - 436 - 288 - 104
+AwN 044 3.62 040 4.10 048 4.16 024 1.54

CoT - 130 - 122 - 130 - 1.00
+AwN 0.16 2.50 020 194 0.12 2.00 0.02 1.02

DFSDT - 126 - 216 - 216 - 116
+AwN 0.22 254 036 4.08 04 3.66 0.00 1.02

gpt-3.5

gpt-4

gpt-40

gemini-1.5 | deepseek-v3

claude-3.5

0O3-mini

DeepSeek-R1

Table 3: Assessing the efficiency of various LLMs using
different prompting methods in our benchmark.

and the efficiency-related results are in Table 3.

AwN enhances the capability of LLM Agents
to ask pertinent questions across different is-
sues. For example, as is shown in Table 2, AwWN
improved the Al scores from 0.52 to 0.90, from
0.18 to 0.80, from 0.12 to 0.60, and from 0.10 to
0.92 for gpt-4o-based CoT as well as from 0.58 to
0.88, from 0.26 to 0.90, from 0.18 to 0.64 and from
0.08 to 0.94 for gpt-4o0-based DFSDT.

Asking the right question leads to the better
generation and execution of API calls. Besides
the significant improvements on Al, AwN also
achieves considerable performance in generating
correct API calls (A2) and returning the expected
final answer (A3). For example, AwWN improved
the A2 scores from 0.48 to 0.58, from 0.28 to 0.46,
from 0.12 to 0.44 for gpt-4o-based CoT as well as
from 0.20 to 0.60, from 0.18 to 0.52, from 0.06 to
0.46 for gpt-4o-based DFSDT.

AwN can also improve the performance of
reasoning models. Experimental results on two
recently released strong reasoning models, Ope-
nAl O3-mini and DeepSeek R1, showing that 1)
vanilla models still cannot achieve good perfor-
mance under unclear user instruction; 2) although
vanilla reasoning models do not ask questions, it
can sometimes produce the correct function call
(A2 > Al), due to their powerful reasoning abilities;
3) AwN can significantly improve the performance
by prompting LLMs to ask good questions.

AwN can improve most of the LLM agents
without generating excessive unnecessary ques-
tions. As is shown in Table 3, AwN only leads
to 0.16, 0.20, and 0.36 redundant questions for
gpt-4-based-CoT, as well as 0.48, 0.74, and 0.62
redundant questions for gpt-4-based-DFSDT.

However, a few LLM agents tend to ask more
irrelevant or redundant questions, as indicated by
the higher Re scores in Table 3. For example, in
Gemini-1.5-based DFSDT, where the average num-
ber of redundant questions is 5.34, 9.08, and 1.94.
This suggests that while the AwN aids in identify-
ing and addressing ambiguities in user instructions,
it also leads to a less efficient querying process.

AwN can reduce the average cost of LLM’s
tool-using. The average number of steps measures
the cost of LLMs’ tool-using. As is shown in Ta-
ble 3, adopting AwN can reduce the number of ac-
tions, especially for gpt-4-based DFSDT, deepseek-
v3-based-DFSDT and gemini-1.5-based-DFSDT.
Although AwN can lead to a higher cost for a few
LLM agents, such as claude-3.5, considering the
significant performance improvements achieved,
the moderate increase in cost is justifiable.

6 Conclusion

This paper explores how unclear user instruc-
tions hinder LLM agents’ tool usage by proposing:
(1) Noisy ToolBench (NoisyToolBench), a novel
benchmark for evaluating LLM performance un-
der ambiguous instructions; (2) Ask-when-Needed
(AwN), an innovative approach enabling LLMs to
request clarification when uncertain; and (3) an
automated evaluator (ToolEvaluator) to assess ac-
curacy and efficiency. Experimental results show
that the AwN algorithm significantly improves the
performance of LLMs’ tool-using under unclear
user instructions.

Limitations

This paper has two limitations:

1. Although AwN can improve the performance,
there is still a big gap to perfect. We hope that
this work can serve as the first stepping stone,
inspiring future researchers to delve deeper into
this field of study.

2. The automatic evaluation process is not 100%
accurate, leading to some potential false neg-
atives and false positives. In the future, more
efforts are needed to build a more reliable auto-
evaluation method.

References

Chinmaya Andukuri, Jan-Philipp Frinken, Tobias Ger-
stenberg, and Noah D Goodman. 2024. Star-gate:
Teaching language models to ask clarifying questions.
arXiv preprint arXiv:2403.19154.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Cheng-Han Chiang and Hung yi Lee. 2023. Can large
language models be an alternative to human evalu-
ations? In Annual Meeting of the Association for
Computational Linguistics.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.
Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590.

Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally,
Weijian Zheng, Meikang Qiu, and Haihua Chen.
2023. Investigating code generation performance
of chatgpt with crowdsourcing social data. In 2023
IEEE 47th Annual Computers, Software, and Ap-
plications Conference (COMPSAC), pages 876-885.
IEEE.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is chat-
gpt a good translator? yes with gpt-4 as the engine.
arXiv preprint arXiv:2301.08745.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar.
2022. Clam: Selective clarification for ambiguous
questions with generative language models. arXiv
preprint arXiv:2212.07769.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api-
bank: A benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244.

Brady D Lund and Ting Wang. 2023. Chatting about
chatgpt: how may ai and gpt impact academia and
libraries? Library Hi Tech News, 40(3):26-29.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey. Preprint, arXiv:2302.07842.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large lan-
guage model connected with massive apis. Preprint,
arXiv:2305.15334.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most
of chatgpt for machine translation. arXiv preprint
arXiv:2303.13780.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. Tell
me more! towards implicit user intention under-
standing of language model driven agents. Preprint,
arXiv:2402.09205.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023a. Tool learning with foundation
models. Preprint, arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaigiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. arXiv preprint arXiv:2405.17935.

Sudha Rao and Hal Daumé III. 2018. Learning to ask
good questions: Ranking clarification questions using
neural expected value of perfect information. arXiv
preprint arXiv:1805.04655.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
EMNLP.

Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM
Karim. 2023. Extending the frontier of chatgpt:
Code generation and debugging. arXiv preprint
arXiv:2307.08260.

https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,
Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 2023.
Restgpt: Connecting large language models with real-
world restful apis. Preprint, arXiv:2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Jiayin Wang, Weizhi Ma, Peijie Sun, Min Zhang, and
Jian-Yun Nie. 2024. Understanding user experi-
ence in large language model interactions. ArXiv,
abs/2401.08329.

Wenxuan Wang, Zhaopeng Tu, Chang Chen, Youliang
Yuan, Jen-tse Huang, Wenxiang Jiao, and Michael R
Lyu. 2023. All languages matter: On the multilin-
gual safety of large language models. arXiv preprint
arXiv:2310.00905.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Jie JW Wu. 2023. Does asking clarifying questions
increases confidence in generated code? on the com-
munication skills of large language models. Preprint,
arXiv:2308.13507.

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang
Liu, Qing-Long Han, and Yang Tang. 2023. A brief
overview of chatgpt: The history, status quo and
potential future development. IEEE/CAA Journal of
Automatica Sinica, 10(5):1122—-1136.

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li.
2024. Smartplay: A benchmark for llms as intelligent
agents. Preprint, arXiv:2310.01557.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter
Abbeel, and Dale Schuurmans. 2023a. Foundation
models for decision making: Problems, methods, and
opportunities. Preprint, arXiv:2303.04129.

10

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Ruth Pet-
zold, William Yang Wang, Xun Zhao, and Dahua
Lin. 2023b. Shadow alignment: The ease of sub-
verting safely-aligned language models. ArXiv,
abs/2310.02949.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang,
Jen-tse Huang, Pinjia He, Shuming Shi, and
Zhaopeng Tu. 2023. Gpt-4 is too smart to be safe:
Stealthy chat with llms via cipher. arXiv preprint
arXiv:2308.06463.

Jenny Zhang, Samson Yu, Jiafei Duan, and Cheston
Tan. 2023. Good time to ask: A learning framework
for asking for help in embodied visual navigation.
Preprint, arXiv:2206.10606.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolga: A dataset for llm
question answering with external tools. Preprint,
arXiv:2306.13304.

A Appendix

A.1 AwN Does Not Affect the Performance on
Clear Instructions

Since NoisyToolBench focuses on evaluating the
performance of LLM tool-use agents under unclear
user instructions, the data only contains unclear in-
structions, which can complement existing tool-use
evaluation datasets to assess the performance under
imperfect user instructions. However, evaluating
AwN on clear instructions is also important. So
we select 200 samples from ToolBench, the user
queries of which are clear, and we evaluate the per-
formance of our Awn on this set. As is shown in
Table 4, AwN can significantly improve the perfor-
mance on unclear instructions and does not affect
the performance under clear instructions.

Model Clean Noisy_IMKI Noisy_IMR Noisy_IwE
GPT-40 0.54 0.34 0.16 0.10

+ AwN 0.51 0.36 0.30 0.32
DeepSeek V3 0.64 0.20 0.24 0.14

+ AwN 0.64 0.36 0.46 0.26
Claude 3.5 0.60 0.20 0.24 0.24

+ AwN 0.64 0.50 0.30 0.26
Gemini 1.5 0.36 0.10 0.02 0.06

+ AwN 0.40 0.18 0.08 0.22

Table 4: Assessing the performance of AwWN on both
clear and unclear instructions

https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://api.semanticscholar.org/CorpusID:267028572
https://api.semanticscholar.org/CorpusID:267028572
https://api.semanticscholar.org/CorpusID:267028572
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://api.semanticscholar.org/CorpusID:263620436
https://api.semanticscholar.org/CorpusID:263620436
https://api.semanticscholar.org/CorpusID:263620436
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2306.13304
https://arxiv.org/abs/2306.13304
https://arxiv.org/abs/2306.13304

A.2 Details of the Calculation of Each Metric

ToolEvaluator evaluated the model performance on
Al, Re and Steps by a deterministic, rule-based
algorithm that analyzes the responses. A2 and A3
are evaluated by LLM-as-a-judge.

The following are the details of the calculation
of each metric.

Al: Al is computed by analyzing whether the
LLMs generate valid clarifying questions under am-
biguous instructions in the NoisyToolbench dataset.
A binary flag is given for each instruction; it is set
to 1 if there is a clarifying question identified by
similarity check. Otherwise, it remains 0.

Re: Re is computed by counting the number
of redundant questions asked by LLMs. Similar
to Al situations, each clarifying question raised
by LLM will be classified into relevant questions
for ambiguity resolution or irrelevant questions.
Re here is equal to the number of mis-clarifying
questions raised by LLMs under each instruction.

Steps: Steps are computed by counting the num-
ber of total actions (generate response, ask question
and call API) performed by LLM. The algorithm
will go through the whole conversation history for
each instruction.

A2 and A3: ToolEvaluator adopts LLMs as eval-
uators. We adopt GPT-40 as the evaluator to score
A2 and A3 for objective 1 (whether using the cor-
rect API) and objective 2 (whether returning the
correct answer). The instruction is:

As an evaluator of tool-augmented language
model systems, your responsibility is to assess the
models’ effectiveness in using APIs to gather the
necessary information to fulfill user requests. This
involves reviewing the actual API calls made by the
models against a given set of required API calls, in-
cluding their parameters. Your evaluation focuses
on two main objectives:

Objective 1: Verify the accuracy of the actual
tool calls made by the models against the expected
tool calls, including their arguments. A success-
ful outcome means that the models executed all
required API calls with expected arguments. Then
the score of the Objective 1 should be 1. Otherwise,
it is a failure for Objective 1 and the score should
be 0. Here are some examples ...

Objective 2: Assess whether the model’s final re-
sponse correctly achieve the user’s instruction and
check if the final answer was indeed based on the
data retrieved from these API calls, as opposed to
being generated independently of these tool calls.

11

Success in this objective means the model effec-
tively used the API calls to achieve user’s instruc-
tions. Conversely, failure suggests the response
was not derived from the API data or the user’s
instruction is not achieved. It’s important to note
that any thoughts of the LLMs not based on the
API response, especially regarding makeup infor-
mation, are not considered valid answers. Please
note that if the model does not provide the final
answer, we consider it as a failure case. Here are
some examples ...

A.3 User Experiments

To show the effectiveness of our method, we fol-
low (Wang et al., 2024) to conduct a user experi-
ence study with real-world users. Specifically, we
recruit 5 volunteers in Section 3.1 back, who have
a Bachelor’s degree, are proficient in English, and
have experience using LLMs. We provided them
with 10 APIs, along with the user instructions they
designed to call the APIs, as well as the feedback
AwN generated. Then we ask the following ques-
tions: From 1 (very disagree) to 5 (strongly agree),
how much do you agree that the system’s clarifying
questions are relevant and helpful to solving the
request? We got an average score of 4.2, showing
the effectiveness of AwN from the real-world user
perspectives.

	Introduction
	Related Works
	Noisy ToolBench
	User Instruction Analysis
	Data Construction

	Ask-when-Needed Prompting
	Experiments
	Evaluation Metrics
	Auto-Evaluation Pipeline
	The Effectiveness of ToolEvaluator
	Experimental Setup
	Main Result

	Conclusion
	Appendix
	AwN Does Not Affect the Performance on Clear Instructions
	Details of the Calculation of Each Metric
	User Experiments

