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Abstract

The emergence of Large Language Models
(LLMs), such as ChatGPT, has revolutionized
general natural language preprocessing (NLP)
tasks. However, their expertise in the finan-
cial domain lacks a comprehensive evalua-
tion. To assess the ability of LLMs to solve
financial NLP tasks, we present FinLMEval,
a framework for Financial Language Model
Evaluation, comprising nine datasets designed
to evaluate the performance of language mod-
els. This study compares the performance of
encoder-only language models and the decoder-
only language models. Our findings reveal that
while some decoder-only LLMs demonstrate
notable performance across most financial tasks
via zero-shot prompting, they generally lag be-
hind the fine-tuned expert models, especially
when dealing with proprietary datasets. We
hope this study provides foundation evaluations
for continuing efforts to build more advanced
LLMs in the financial domain.

1 Introduction

Recent progress in natural language processing
(NLP) demonstrates that large language models
(LLMs), like ChatGPT, achieve impressive results
on various general domain NLP tasks. Those
LLMs are generally trained by first conducting
self-supervised training on the unlabeled text (Rad-
ford et al., 2019; Brown et al., 2020; Touvron
et al., 2023a) and then conducting instruction tun-
ing (Wang et al., 2023; Taori et al., 2023) or rein-
forcement learning from human feedback (RLHF)
(Ouyang et al., 2022) to let them perform tasks
following human instructions.

Financial NLP, in contrast, demands specialized
knowledge and specific reasoning skills to tackle
tasks within the financial domain. However, for
general language models like ChatGPT, their self-
supervised training is performed on the text from
various domains, and the reinforcement learning
feedback they receive is generated by non-expert

workers. Therefore, how much essential knowledge
and skills are acquired during the learning process
remains uncertain. As a result, a comprehensive
investigation is necessary to assess its performance
on financial NLP tasks.

To fill this research gap, we are motivated to
evaluate language models on financial tasks com-
prehensively. For doing so, we propose a frame-
work for Financial Language Model Evaluation
(FinLMEval). We collected nine datasets on fi-
nancial tasks, five from public datasets evaluated
before. However, for those public datasets, it is
possible that their test sets are leaked during the
training process or provided by the model users
as online feedback. To eliminate this issue, We
used four proprietary datasets on different financial
tasks: financial sentiment classification (FinSent),
environmental, social, and corporate governance
classification (ESG), forward-looking statements
classification (FLS), and question-answering clas-
sification (QA) for evaluation.

In the evaluation benchmark, we evaluate the
encoder-only language models with supervised
fine-tuning, with representatives of BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), FinBERT
(Yang et al., 2020) and FLANG (Shah et al., 2022).
We then compare the encoder-only models with the
decoder-only models, with representatives of Chat-
GPT (Ouyang et al., 2022), GPT-4 (OpenAI, 2023),
PIXIU (Xie et al., 2023), LLAMA2-7B (Touvron
et al., 2023b) and Bloomberg-GPT (Wu et al., 2023)
by zero-shot prompting. Besides, we evaluate the
efficacy of in-context learning of ChatGPT with
different in-context sample selection strategies.

Experiment results show that (1) the fine-tuned
task-specific encoder-only model generally per-
forms better than decoder-only models on the fi-
nancial tasks, even if decoder-only models have
much larger model size and have gone through
more pre-training and instruction tuning or RLHF;
(2) when the supervised data is insufficient, the
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Figure 1: The framework of financial language model evaluation (FinLMEval).

zero-shot decoder-only models have more advan-
tages than fine-tuned encoder-only models; (3) the
performance gap between fine-tuned encoder-only
models and zero-shot decoder-only models is more
significant on private datasets than the publicly
available datasets; (4) in-context learning is only
effective under certain circumstances.

To summarize, we propose an evaluation frame-
work for financial language models. Compared to
previous benchmarks in the financial domain like
FLUE (Shah et al., 2022), our evaluation includes
four new datasets and involves more advanced
LLMs like ChatGPT. We show that even the most
advanced LLMs still fall behind the fine-tuned ex-
pert models. We hope this study contributes to the
continuing efforts to build more advanced LLMs
in the financial domain.

2 Related Works

The utilization of language models in financial NLP
is a thriving research area. While some general do-
main language models, like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), GPT (Brown
et al., 2020; OpenAI, 2023) and LLAMA (Tou-
vron et al., 2023a,b) have been applied to finan-
cial NLP tasks, financial domain models like Fin-
BERT (Araci, 2019; Yang et al., 2020; Huang et al.,
2023), FLANG (Shah et al., 2022), PIXIU (Xie
et al., 2023), InvestLM (Yang et al., 2023) and
BloombergGPT (Wu et al., 2023) are specifically
designed to contain domain expertise and generally

perform better in financial tasks. Recent work such
as FLUE (Shah et al., 2022) has been introduced to
benchmark those language models in the finance
domain. However, the capability of more advanced
LLMs, like ChatGPT and GPT-4, has not been
benchmarked, especially on proprietary datasets.
In this work, in addition to the public tasks used
in FLUE, we newly include four proprietary tasks
in FinLMEval and conduct comprehensive evalua-
tions for those financial language models.

3 Methods

We compare two types of models in FinLMEval:
the Transformers encoder-only models that require
fine-tuning on the labeled dataset, and decoder-only
models that are prompted with zero-shot or few-
shot in-context instructions. Figure 1 provides an
outline of evaluation methods of FinLMEval.

3.1 Encoder-only Models

Our experiments explore the performance of vari-
ous notable encoder-only models: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), FinBERT
(Yang et al., 2020) and FLANG (Shah et al., 2022).
BERT and RoBERTa are pre-trained on general
domain corpora, while FinBERT and FLANG are
pre-trained on a substantial financial domain cor-
pus. We fine-tune the language models on specific
tasks. Following the fine-tuning process, inference
can be performed on the fine-tuned models for spe-
cific applications.



# train # test source description
FinSent 8996 1000 - Financial sentiment classification dataset from analyst reports.
FPB 2453 1000 (Malo et al., 2014) Sentiment classification dataset from financial news.
FiQA SA 973 200 (FiQA) Aspect-based financial sentiment analysis.
ESG 3000 1000 - Environmental, social, and corporate governance classification dataset.
FLS 2600 1000 - Forward-looking statements classification dataset from corporate reports.
QA 868 200 - Classification on the validity of question-answering pairs.
Headlines 9570 1000 (Sinha and Khandait, 2020) Mulitple tasks classification dataset from news headlines.
NER 14041 1000 (Alvarado et al., 2015) Named entity recognition on financial agreements.
FOMC 1831 450 (Shah et al., 2023) Hawkish-dovish monetary policy classification from FOMC documents.

Table 1: The summarization of nine datasets in FinLMEval. FPB, FiQA SA, Headlines, NER and FOMC are from
public datasets, and FinSent, ESG, FLS and QA are newly collected and not released before.

3.2 Decoder-only Models

We also evaluate the performance of various pop-
ular decoder-only language models: ChatGPT
(Ouyang et al., 2022), GPT-4 (OpenAI, 2023),
PIXIU (Xie et al., 2023), LLAMA2-7B (Touvron
et al., 2023b) and Bloomberg-GPT (Wu et al.,
2023). ChatGPT and GPT-4, developed by Ope-
nAI, are two advanced LLMs that showcase ex-
ceptional language understanding and generation
abilities. The models are pre-trained on a wide
array of textual data and reinforced by human feed-
back. PIXIU is a financial LLM based on fine-
tuning LLAMA (Touvron et al., 2023a) with in-
struction data. LLAMA2 is a popular open-sourced
LLM pre-trained on extensive online data, and
BloombergGPT is an LLM for finance trained on
a wide range of financial data. As the model size
of the evaluated decoder-only models is extremely
large, they usually do not require fine-tuning the
whole model on downstream tasks. Instead, the
decoder-only models provide answers via zero-shot
and few-shot in-context prompting.

We conduct zero-shot prompting for all decoder-
only models. We manually write the prompts for
every task. An example of prompts for the senti-
ment classification task is provided in Figure 1, and
the manual prompts for other tasks are provided
in Appendix A. Furthermore, to evaluate whether
few-shot in-context learning can improve the model
performance, we also conduct in-context learning
experiments on ChatGPT. We use two strategies
to select the in-context examples for few-shot in-
context learning: random and similar. The former
strategy refers to random selection, and the lat-
ter selects the most similar sentence regarding the
query sentence. All in-context examples are se-
lected from the training set, and one example is
provided from each label class.

4 Datasets

Our evaluation relies on nine datasets designed
to evaluate the financial expertise of the models
from diverse perspectives. Table 1 overviews the
number of training and testing samples and the
source information for each dataset. Below, we
provide an introduction to each of the nine datasets.

FinSent is a newly collected sentiment classifica-
tion dataset containing 10,000 manually annotated
sentences from analyst reports of S&P 500 firms.

FPB Sentiment Classification (Malo et al.,
2014) is a classic sentiment dataset of sentences
from financial news. The dataset consists of 4840
sentences divided by the agreement rate of 5-8 an-
notators. We use the subset of 75% agreement.

FiQA SA (FiQA) is a aspect-based financial sen-
timent analysis dataset. Following the "Sentences
for QA-M" method in (Sun et al., 2019), for each
(sentence, target, aspect) pair, we transform the
sentence into the form "what do you think of the
{aspect} of {target}? {sentence}" for classification.

ESG evaluates an organization’s considerations
on environmental, social, and corporate gover-
nance. We collected 2,000 manually annotated
sentences from firms’ ESG reports and annual re-
ports.

FLS, the forward-looking statements, are beliefs
and opinions about a firm’s future events or re-
sults. FLS dataset, aiming to classify whether a
sentence contains forward-looking statements, con-
tains 3,500 manually annotated sentences from the
Management Discussion and Analysis section of
annual reports of Russell 3000 firms.

QA contains question-answering pairs extracted
from earnings conference call transcripts. The goal
of the dataset is to identify whether the answer is
valid to the question.

Headlines (Sinha and Khandait, 2020) is a
dataset for the commodity market that analyzes



Datasets
Encoder-only Models Decoder-only Models

BERT RoBERTa FinBERT
FLANG-

BERT
ChatGPT GPT-4 PIXIU

LLAMA2-
7B

Bloomberg-
GPT

FinSent 0.841 0.871 0.851 0.849 0.782 0.809 0.800 0.243 -
FPB 0.914 0.934 0.912 0.881 0.869 0.905 0.965 0.339 0.511

FiQA SA 0.750 0.875 0.805 0.695 0.898 0.920 0.930 0.480 0.751
ESG 0.931 0.956 0.958 0.925 0.477 0.626 0.509 0.209 -
FLS 0.875 0.862 0.882 0.861 0.652 0.565 0.275 0.365 -
QA 0.865 0.825 0.825 0.785 0.695 0.775 0.680 0.625 -

Headlines-PDU 0.937 0.947 0.956 0.940 0.889 0.878 0.842 0.411 -
Headlines-PDC 0.978 0.979 0.981 0.978 0.936 0.947 0.702 0.053 -
Headlines-PDD 0.954 0.961 0.960 0.956 0.896 0.900 0.763 0.382 -

Headlines-PI 0.974 0.964 0.976 0.977 0.225 0.105 0.753 0.966 -
Headlines-AC 0.996 0.993 0.997 0.995 0.806 0.838 0.902 0.346 -
Headlines-FI 0.976 0.964 0.976 0.974 0.711 0.780 0.981 0.048 -
Headlines-PS 0.905 0.918 0.924 0.906 0.630 0.811 0.776 0.546 -

NER 0.980 0.981 0.964 0.978 0.748 0.707 0.749 0.714 0.608
FOMC 0.587 0.611 0.602 0.602 0.633 0.729 0.522 0.349 -
Average 0.897 0.909 0.905 0.907 0.723 0.753 0.739 0.405 -

Table 2: The results of fine-tuned encoder-only models and zero-shot decoder-only models in 9 financial datasets.
The results, except the NER dataset, are measured in micro-F1 score. NER is measured in accuracy. Although some
zero-shot decoder-only models can achieve considerate results in most cases, the fine-tuned encoder-only models
usually perform better than decoder-only models.

news headlines across multiple dimensions. The
tasks include the classifications of Price Direction
Up (PDU), Price Direction Constant (PDC), Price
Direction Down (PDD), Asset Comparison(AC),
Past Information (PI), Future Information (FI), and
Price Sentiment (PS).

NER (Alvarado et al., 2015) is a named entity
recognition dataset of financial agreements.

FOMC (Shah et al., 2023) aims to classify the
stance for the FOMC documents into the tightening
or the easing of the monetary policy.

Among the datasets, FinSent, ESG, FLS, and
QA are newly collected proprietary datasets.

5 Experiments

This section introduces the experiment setups and
reports the evaluation results.

5.1 Model Setups
Encoder-only models setups. We use the BERT
(base,uncased), RoBERTa (base), FinBERT (pre-
train), and FLANG-BERT from Huggingface1, and
the model fine-tuning is implemented via Trainer 2.
For all tasks, we fix the learning rate as 2× 10−5,
weight decay as 0.01, and the batch size as 48. We
randomly select 10% examples from the training
set as the validation set for model selection and

1https://huggingface.co/
2https://huggingface.co/docs/transformers/

main_classes/trainer

fine-tune the model for three epochs. Other hyper-
parameters remain the default in Trainer.

Decoder-only models setups. In the zero-shot
setting, for ChatGPT and GPT-4, We use the "gpt-
3.5-turbo" and "gpt-4" model API from OpenAI,
respectively. We set the temperature and top_p
as 1, and other hyperparameters default by Ope-
nAI API. The ChatGPT results are retrieved from
the May 2023 version, and the GPT-4 results
are retrieved in August 2023. For PIXIU and
LLAMA2, we use the "ChanceFocus/finma-7b-
nlp" and "meta-llama/Llama-2-7b" models from
Huggingface. The model responses are generated
greedily. All prompts we used in the zero-shot
setting are shown in Appendix A. Besides, as the
BloombergGPT (Wu et al., 2023) is not publicly
available, we directly adopt the results from the
original paper.

For in-context learning, we conduct two strate-
gies for in-context sample selection: random and
similar. We select one example from each label
with equal probability weighting for random sam-
ple selection. For similar sample selection, we get
the sentence embeddings by SentenceTransformer
(Reimers and Gurevych, 2019) "all-MiniLM-L6-
v2" model3 and use cosine similarity as the measure
of similarity. Then, we select the sentences with
the highest similarity with the query sentence as the

3https://www.sbert.net/

https://huggingface.co/
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://www.sbert.net/


Datasets
ChatGPT

zero ic-ran ic-sim

FinSent 0.782 0.761 0.761
FPB 0.869 0.832 0.844

FiQA SA 0.898 0.891 0.891
ESG 0.477 0.726 0.800
FLS 0.652 0.673 0.636
QA 0.695 0.660 0.675

Headlines-PDU 0.889 0.839 0.765
Headlines-PDC 0.936 0.323 0.413
Headlines-PDD 0.896 0.816 0.788

Headlines-PI 0.225 0.768 0.844
Headlines-AC 0.806 0.576 0.597
Headlines-FI 0.711 0.606 0.592
Headlines-PS 0.630 0.690 0.729

NER 0.748 0.784 0.793
FOMC 0.633 0.672 0.650
Average 0.723 0.708 0.719

Table 3: The results of ChatGPT in zero-shot and in-
context few-shot learning. Zero, ic-ran, and ic-sim repre-
sent zero-shot learning, in-context learning with random
sample selection, and in-context learning with similar
sample selection. The zero-shot and few-shot perfor-
mances are comparable in most cases.

in-context examples. The prompts for in-context
learning are directly extended from the correspond-
ing zero-shot prompts, with the template shown in
Figure 1.

5.2 Main Results

Table 2 compares the results of the fine-tuned
encoder-only models and zero-shot decoder-only
models in 9 financial datasets. We have the follow-
ing findings:

In 6 out of 9 datasets, fine-tuned encoder-
only models can perform better than decoder-
only models. The decoder-only models, especially
those that have experienced RLHF or instruction-
tuning, demonstrate considerable performance on
zero-shot settings on the financial NLP tasks. How-
ever, their performance generally falls behind the
fine-tuned language models, implying that these
large language models still have the potential to im-
prove their financial expertise. On the other hand,
fine-tuned models are less effective when the
training examples are insufficient (FiQA SA) or
imbalanced (FOMC).

The performance gaps between fine-tuned
models and zero-shot LLMs are larger on pro-

prietary datasets than publicly available ones.
For example, the FinSent, FPB, and FiQA SA
datasets are comparable and all about financial sen-
timent classification. However, zero-shot LLMs
perform the worst on the proprietary dataset Fin-
Sent. The performance gaps between fine-tuned
models and zero-shot LLMs are also more signifi-
cant on other proprietary datasets (ESG, FLS, and
QA) than the public dataset.

Table 3 compares the zero-shot and in-context
few-shot learning of ChatGPT. In ChatGPT, the
zero-shot and few-shot performances are com-
parable in most cases. When zero-shot prompting
is ineffective, adding demonstrations can improve
ChatGPT’s performance by clarifying the task, as
the results of ESG and Headlines-PI tasks show.
Demonstrations are ineffective for easy and well-
defined tasks, such as sentiment classifications and
Headlines (PDU, PDC, PDD, AC, and FI), as the
zero-shot prompts clearly instruct ChatGPT.

6 Conclusions

We present FinLMEval, an evaluation framework
for financial language models. FinLMEval com-
prises nine datasets from the financial domain, and
we conduct the evaluations on various popular lan-
guage models. Our results show that fine-tuning
expert encoder-only models generally perform bet-
ter than the decoder-only LLMs on the financial
NLP tasks, and adding in-context demonstrations
barely improves the results. Our findings sug-
gest that there remains room for enhancement for
more advanced LLMs in the financial NLP field.
Our study provides foundation evaluations for con-
tinued progress in developing more sophisticated
LLMs within the financial sector.

7 Limitations

This paper has several limitations to improve in
future research. First, our evaluation is limited
to some notable language models, while other ad-
vanced LLMs may exhibit different performances
from our reported models. Also, as the LLMs keep
evolving and improving over time, the future ver-
sions of the evaluated models can have different
performance from the reported results. Second,
FinLMEval only focuses on financial classification
tasks, and the analysis of the generation ability of
the LLMs still needs to be included. Future work
can be done toward developing evaluation bench-
marks on generation tasks in the financial domain.
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