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Abstract
Timely nowcasting is critical for public safety during fast-evolving
storms, where even short delays can trigger cascading failures—as
in the October 2024 Spain flash flood that claimed over 90 lives
within minutes. While radar offers reliable real-time sensing of
atmospheric structure, models that collapse 3D volumes into 2D
slices inevitably discard vertical information essential for captur-
ing storm growth, phase transitions, and collapse. We introduce
StormMind, a physically grounded framework that forecasts con-
vective evolution by modeling causal interactions across stratified
atmospheric layers. StormMind addresses two fundamental chal-
lenges: (1) the nonlinear, asynchronous coupling between low-, mid-
, and high-level processes; and (2) reflectivity uncertainty, where
storms with distinct vertical structures may appear deceptively
similar on radar, masking their true phase and intensity. To tackle
these issues, StormMind designs: i) a Convection Dynamics Extractor
that models storm evolution from two complementary perspec-
tives—horizontal morphology, capturing the spatial organization
of physical processes within individual atmospheric layers, and
vertical coupling, modeling energy exchanges across layers; and ii)
a Convection Manifestation Reconstructor that adaptively fuses intra-
and inter-layer signals, conditioned on the evolving storm state,
to infer phase transitions (e.g., initiation, intensification, dissipa-
tion). Evaluated on the large-scale 3D-NEXRAD dataset (2020–2022,
U.S.), StormMind outperforms strong baselines, achieving a 14.71%
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gain in CSI40. In real-world deployment with the Guangzhou Mete-
orological Bureau (Mar–May 2025), it improves CSI40 by 9.39% and
boosts early-warning accuracy (98.33%).
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1 Introduction
Weather nowcasting serves as the first line of defense against at-
mospheric threats, supporting time-critical decisions in transporta-
tion [28] and emergency response [12]—where even short delays
can cascade into large-scale disasters. On October 29, 2024, a fast-
intensifying rainstorm swept across Spain [15]. Warnings came
too late. Cities were unprepared. Within hours, flash floods surged
through streets, claiming over 90 lives. This was not an exception—it
was a warning we cannot afford to miss again [38].

Existing nowcasting systems are largely dominated by radar echo
extrapolation, which frames the task as a visual forecasting problem:
predicting future reflectivity frames from past observations using
optical flow [32], ConvLSTM [22], Transformer [29], or diffusion-
based models [35]. While effective, these methods collapse vertical
radar structure through operations like maximum-value projec-
tions [22] or Gaussian-smoothed composites [31]. This flattening

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3770854.3783926
https://doi.org/10.1145/3770854.3783926


KDD ’26, August 09–13, 2026, Jeju Island, Republic of Korea Jun Chen et al.

erases critical distinctions: an intensifying storm with deepening up-
drafts and a dissipating cell with collapsing cores may appear equally
bright in projection, yet follow opposite physical trajectories.

This assumption disregards the vertically stratified nature of
atmospheric convection, where processes in the lower, middle, and
high troposphere interact asynchronously to shape storm evolu-
tion [8]. Each layer contributes distinct but complementary physical
cues to this evolution: Near-surface layers capture moisture con-
vergence and gust-front initiation [1]; mid-levels govern updraft
dynamics and storm organization [19]; high levels reveal outflows,
divergence, and dissipation [4]. Together, these layers encode how
storms breathe, intensify, and eventually collapse.

Despite sounding conceptually straightforward, modeling atmo-
spheric convection across vertical layers introduces two fundamen-
tal challenges. First, convective processes unfold through nonlin-
ear, asynchronous interactions across the troposphere (C1).
Moisture convergence in the boundary layermay initiate lifting [39],
triggering mid-level updrafts and latent heat release [11], which in
turn feed back into high-altitude divergence that either reinforces
or suppresses development depending on stratification [13]. Second,
even when the patterns of vertical interaction are known, their
impact on reflectivity remain highly uncertain (C2). For in-
stance, strong low-level convergence may fail to initiate convection
when capped by dry mid-level air [17]; transient elevated storms
and sustained surface-based systems may exhibit similar reflectiv-
ity signatures [9]; and cold pool lifting may or may not succeed
depending on environmental shear and inhibition [26].

To address these challenges, we introduce StormMind, a physi-
cally grounded framework that forecasts convective evolution by
explicitly modeling causal interactions across vertically stratified
atmospheric layers. To address C1, StormMind designs Convec-
tion Dynamics Extractor, which models storm dynamics from two
complementary angles: (i) Horizontal Morphology Encoder captures
the development of convective patterns within each layer, model-
ing phenomena such as storm expansion, advection, and splitting;
and (ii) Vertical Coupling Encoder captures cross-layer interactions,
including low-level convergence, mid-level latent heating, and high-
level divergence. To address C2, StormMind implements Convection
Manifestation Reconstructor, which adaptively fuses multi-level sig-
nals to infer reflectivity forecasting: (i)Conditional Experts Integrator
integrates intra-layer and inter-layer cues—ranging from gravity
wave triggers and mid-level destabilization to radiative cooling and
vertical feedbacks; (ii) Physical Reasoning Decoder mimics mesoscale
causal chains (e.g., inflow triggering, lifting, ventilation), enabling
phase-aware reasoning under varying atmospheric regimes.

Our main contributions are listed as follows:

• We introduce a paradigm shift: from 2D reflectivity extrapola-
tion to 3D storm-structure reasoning—viewing radar not just
as a snapshot of reflectivity, but as a vertically layered sensor
capturing how storms grow, organize, and collapse.

• StormMind designs two physically grounded components: i) Con-
vection Dynamics Extractor disentangles convective evolution
into horizontal morphology and vertical thermodynamic ex-
change, enabling structured reasoning aligned with mesoscale
dynamics; and ii) Convection Manifestation Reconstructor adap-
tively integrates intra- and inter-layer signals—conditioned on

evolving storm states—to infer phase transitions (e.g., initiation,
intensification, dissipation) under varying regimes.

• We conduct extensive evaluations on the large-scale 3D-NEXRAD
dataset (2020–2022, U.S.),where StormMind achieves a 14.71% im-
provements in CSI40 over strong baselines. Furthermore, StormMind
is deployed in collaboration with the Guangzhou Meteorolog-
ical Bureau, yielding a 9.393% gain in CSI40 and achieving an
early-warning accuracy of 98.33% during Mar–May 2025.

2 Related Work
2.1 Video-based Echo Extrapolation
Radar echo extrapolation is commonly formulated as a video pre-
diction task—forecasting reflectivity maps frame-by-frame. Early
approaches adopt recurrent architectures such as ConvLSTM [23],
which fuses convolution with LSTM units to model local spatiotem-
poral features, and PhyDNet [7], which adds physics-based con-
straint to capture long-term storm evolution. To improve scalability
and spatial fidelity, recurrent-free models have gained prominence.
SimVP [6] separates spatial and temporal learning through pure
convolutions, while Earthformer [23] and EarthFarseer [33] utilize
transformers for long-range context integration. AlphaPre [14]
further enhances structure by disentangling spatial features in
the frequency domain, while Diffcast [36] reframes forecasting
as a diffusion-based generative process. Despite effectiveness, most
methods operate on vertically collapsed radar inputs, e.g., maximum-
intensity projections [22]. This erases critical physical distinctions:
an intensifying storm with deepening updrafts and a dissipating cell
with collapsing cores may appear equally bright in projection, yet
follow opposite physical trajectories.

2.2 Vertical Structure of Convection System
Convective systems exhibit strong vertical heterogeneity, typically
organized into three layers: a lower layer driven by boundary-layer
processes such as cold pool dynamics and surface convergence,
a mid-layer dominated by deep convection and vertical updrafts,
and an high layer characterized by cirrus outflow and anvil spread-
ing [20, 24]. Each layer hosts distinct physical mechanisms, operat-
ing at different spatial and temporal scales [10]. Importantly, these
layers are dynamically coupled: high-altitude divergence can rein-
force mid-level ascent, while cold pool outflows at the surface often
trigger new convective cells [2]. These interactions are nonlinear,
delayed, and modulated by mesoscale feedbacks and synoptic forc-
ing—together forming a vertically integrated system that governs
convective initiation, maintenance, and decay [8]. Despite decades
of meteorological understanding, existing ML-based approaches
still overlook this structure: they either focus on surface or mid-
layer signals, or ingest vertically stacked radar volumes without
accounting for layer-specific roles and inter-layer causality [38].

3 Methodology
3.1 Problem Formulation
We re-formulate radar echo extrapolation as a physically grounded
forecasting task that models causal interactions across vertically
stratified atmospheric layers. Given radar reflectivity sequences
X = {X𝐿,X𝑀 ,X𝐻 }, where each X𝑖 = {X𝑖1, . . . ,X𝑖𝑇 } corresponds
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to a different atmospheric layer 𝑖 ∈ {𝐿,𝑀,𝐻 }—representing low
(0.5–2 km), mid (2–5 km), and high (5+ km) altitudes—our objective
is to learn a function F𝜃 that captures cross-layer interactions to
forecast the future 𝐾-step reflectivity in a target layer. Formally,

Ŷ 𝑗 = F𝜃 (X), where Ŷ 𝑗 = {Y𝑗
𝑇+1, . . . ,Y

𝑗

𝑇+𝐾 }, 𝑗 ∈ {𝐿,𝑀,𝐻 }.
(1)

3.2 Overall Architecture
To model causal interactions across vertically stratified convec-
tion, we introduce StormMind a physically grounded framework
composed of two complementary components (see Figure 1):
• Convection Dynamics Extractor models convective evolu-
tion by disentangling intra-layer dynamics and inter-layer feed-
backs—yielding structured representations of horizontal storm
organization and vertical thermodynamic exchanges, with an
inductive bias grounded in physical convection principles.

• Convection Manifestation Reconstructor adaptively fuses
intra-layer and inter-layer signals—conditioned on evolving con-
vective states—to infer reflectivity forecasting.

3.3 Convection Dynamics Extractor
Convection Dynamics Extractor models convective evolution through
two complementary modules: (i) Horizontal Morphology Encoder
captures intra-layer dynamicswithin each atmospheric level, model-
ing storm expansion, advection, and splitting; (ii) Vertical Coupling
Encoder captures cross-layer thermodynamic exchanges, including
moisture ascent, latent heat release, downdraft-driven cooling.

3.3.1 Horizontal Morphology Encoder. To capture both localized
convection and large-scale stratiform structures, we first apply a
multi-scale inception module (MSIM) 𝜙MSIM (·) [25] to each radar
slice X𝑖𝑡 ∈ R1×𝑉 ×𝑊 from the 𝑙-th layer. MSIM uses strided convo-
lutions with varying kernel sizes to jointly perform patchification
and multi-scale feature extraction, while an average pooling branch
preserves low-frequency background signals. This design mirrors
the multi-scale nature of convective morphology and enables the
Horizontal Morphology Encoder to better represent heterogeneous
storm systems. The output F(𝑖,𝑝 )𝑡 ∈ R𝐶out encodes the patch-level
representation for spatial region 𝑝 :

F(𝑖,𝑝 )𝑡 = 𝜙MSIM (X𝑖𝑡 )

=
∑︁

𝑘∈{3,...,𝑛}
Conv2D𝑘×𝑘 (Conv2D1×1 (𝑋 𝑖𝑡 )) + AvgPool(𝑋 𝑖𝑡 ) .

(2)

To model temporal dynamics, we apply a localized cross-attention
mechanism [27] across each patch token’s time series:

Z(𝑖,𝑝 )
𝑇 :𝑇+𝐾 = 𝐸𝑖→𝑖 (F(𝑖,𝑝 )1:𝑇 ) = CrossAttn(𝑄 (𝑖,𝑝 )

𝑇 :𝑇+𝐾 ;𝐾
(𝑖,𝑝 )
1:𝑇 ,𝑉

(𝑖,𝑝 )
1:𝑇 ), (3)

where keys and values are generated via aMLP, i.e.,(𝐾 (𝑖,𝑝 )
1:𝑇 ,𝑉

(𝑖,𝑝 )
1:𝑇 ) =

MLP(F(𝑖,𝑝 )1:𝑇 ), and 𝑄 (𝑖,𝑝 )
𝑇 :𝑇+𝐾 denote future-oriented query composed

of time positional embeddings.

3.3.2 Vertical Coupling Encoder. Motivated by mesoscale meteo-
rology [2], Vertical Coupling Encoder models canonical cross-layer
pathways observed in convective development:

• 𝐸𝑀→𝐻 : Mid-to-High ascent reinforcement—Moisture convergence
and latent heat release inmid-levels intensify updrafts, enhancing
buoyancy and accelerating parcel ascent into higher layers.

• 𝐸𝐻→𝑀 : High-to-Mid feedback—Cloud-top processes (e.g., anvil
spreading and radiative cooling) may stabilize mid-levels, or
gravity waves triggered aloft can perturb local thermodynamics
and, under favorable conditions, trigger secondary convection.

• 𝐸𝑀→𝐿 : Mid-levelmodulation of near-surface inflows—Descending
air and intrusions disrupt boundary-layer thermodynamics and
reshape near-surface convergence structures.

• 𝐸𝐿→𝑀 : Surface-driven mid-level initiation—Boundary-layer heat-
ing and moistening reduce convective inhibition, lifting parcels
into mid-levels to trigger deep convection.
To encode these directional pathways, we design an expert-

driven Mixture-of-Experts (MoE) component (see Figure 2). The
process begins by encoding each tropospheric layer using MSIM:
F𝑖𝑡 = 𝜙MSIM (X𝑖𝑡 ), 𝑖 ∈ {𝐿,𝑀,𝐻 }. Each expert 𝐸𝑖→𝑗 (·), built upon a
Transformer backbone, specializes in learning how signals from
source layer 𝑖 modulate the future evolution of target layer 𝑗 :

Z𝑖→𝑗

𝑇 :𝑇+𝐾 = 𝐸𝑖→𝑗 (F𝑖1:𝑇 ), 𝑖 ≠ 𝑗 (4)

To capture evolving local thermodynamic context, we apply
condition-aware normalization via AdaLN [18] on target-layer fea-
tures. For each feature sequence {F𝑖𝑡 }𝑇𝑡=1, AdaLN predicts adaptive
scaling and bias parameters:

C𝑖→𝑗
𝑡 = AdaLN(Z𝑖→𝑗

𝑡 , F𝑗1:𝑇 ) = 𝛾
( 𝑗 )
𝑡 · LayerNorm(Z𝑖→𝑗

𝑡 ) + 𝛽 ( 𝑗 )𝑡

𝛾
( 𝑗 )
𝑡 , 𝛼

( 𝑗 )
𝑡 , 𝛽

( 𝑗 )
𝑡 = MLP(F𝑗1:𝑇 , 𝑄𝑡 )

(5)

The final prediction is decoded by a Swish Transformer module
(SwiTM) [21], fusing directional cues and contextual background,
which combines a Transformer backbone with Swish activation
to fuse directional cues and contextual background, while stably
modeling long-range dependencies and fine-grained spatial details:

X̂𝑗
𝑡 = 𝛼

( 𝑗 )
𝑡 · SwiTM(C𝑖→𝑗

𝑡 ) (6)

Each expert is trained with a directional reconstruction loss:

L𝑖→𝑗 =
1
𝐾

𝑇+𝐾∑︁
𝑡=𝑇




X̂𝑗
𝑡 − X𝑗

𝑡




2
2
, 𝑡 ∈ [𝑇,𝑇 + 𝐾] (7)

3.4 Convection Manifestation Reconstructor
Convection Manifestation Reconstructor adaptively integrates multi-
scale convection signal—combining intra-layer triggers (e.g., gravity
wave forcing, mid-level destabilization) and inter-layer feedbacks
(e.g., radiative cooling, vertical coupling)—to reason about the initi-
ation, evolution, and decay of convection.

3.4.1 Conditional Experts Integrator.

Zinter
𝑡 =

{
Z𝑀→𝐻
𝑡 ,Z𝐻→𝑀

𝑡 ,Z𝑀→𝐿
𝑡 ,Z𝐿→𝑀

𝑡

}
E (𝑖, inter)
𝑡 = 𝜎

(
W(𝑖 )

1 · Zinter
𝑡 + b(𝑖 )1

)
◦ Zinter

𝑡

(8)

The inter-layer expertise suggestion is then concatenated with intra-
layer expert latent featureM (𝑖 )

𝑡 =

{
E (𝑖,expert)
𝑡 ,Z(𝑖 )

𝑡

}
, 𝑖 ∈ {𝐿,𝐻,𝑀},

and is modulated as the refined clues.

E (𝑖 )
𝑡 = 𝜎

(
W(𝑖 )

2 · M (𝑖 )
𝑡 + b(𝑖 )2

)
◦M (𝑖 )

𝑡 . (9)
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3.4.2 Physical Reasoning Decoder. Convective systems do not evolve
randomly but follow structured, physically-governed trajectories in-
volving thermodynamic, kinematic, and microphysical interactions.
To mirror this structure, we first extract the evolving environmental
context, followed by adaptive fusion of expert modules specialized
for different convective states:

E𝑡 = AdaLN(E (𝑖 )
𝑡 , F𝑖1:𝑇 ), 𝑖 ∈ {𝐿,𝑀,𝐻 }. (10)

The fused representation is passed through a SwiTM for spatial
reasoning, followed by a shallow projection network (i.e., Ψ) to
produce the final radar reflectivity:

Êout𝑡 = SwiTM(E𝑡 ),
Ŷ𝑖𝑡 = Ψ(Êout𝑡 ). (11)

3.5 Training Objective
We design a dual-level loss function to jointly model vertically strat-
ified dynamics and preserve the overall coherence of the convective
system: i) at the expert level, directional supervision encourages
each expert 𝐸𝑖→𝑗 (·) to faithfully capture cross-layer influences:

Lexpert =
1
𝑁

∑︁
𝑖≠𝑗

L𝑖→𝑗 . (12)

ii) At the system level, a global loss enforces coherence across the
predicted reflectivity fields in all three layers:

Lglobal =
∑︁

𝑖∈{𝐿,𝑀,𝐻 }

𝑇+𝐾∑︁
𝑡=𝑇

∥Ŷ𝑖𝑡 − Y𝑖𝑡 ∥22 . (13)

The final objective combines both terms, modulated by a tunable
expert weight 𝜆expert:

L = Lglobal + 𝜆expertLexpert . (14)

4 Evaluation
This section presents a comprehensive evaluation of our StormMind
by addressing the following key questions:
• RQ1: What is StormMind’s overall performance?
• RQ2: How does each component affect performance?
• RQ3: What is the effect of the major hyperparameters?
• RQ4: How does StormMind perform during storm initiation and
dissipation phases?

• RQ5: What is the real-world impact of deploying StormMind?
• RQ6: What are the computational requirements of StormMind?
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Table 1: Performance comparison across different levels. Best results are in bold, second best are underlined. Final column
shows the relative improvement of the best model over the second best (%).

Level Metric ConvLSTM PredRNNv2 PhyDNet SimVP Earthformer PastNet Earthfarseer AlphaPre StormMind Improv.

High

MAE↓ 2.316 2.224 2.333 2.301 2.296 2.397 2.367 2.475 2.134 4.045%
mCSI↑ 0.291 0.301 0.324 0.294 0.318 0.274 0.328 0.303 0.348 6.098%
CSI20↑ 0.520 0.525 0.549 0.520 0.550 0.517 0.563 0.531 0.578 2.664%
CSI30↑ 0.253 0.262 0.293 0.255 0.286 0.239 0.299 0.270 0.316 5.685%
CSI40↑ 0.101 0.115 0.131 0.105 0.120 0.067 0.123 0.106 0.152 16.031%
SSIM↑ 0.761 0.769 0.743 0.758 0.751 0.723 0.710 0.718 0.781 1.562%
PSNR↑ 22.918 23.192 23.693 22.879 23.660 23.067 23.660 23.546 23.959 1.122%

Mid

MAE↓ 2.983 2.872 2.897 3.030 2.817 2.999 2.957 2.985 2.767 1.773%
mCSI↑ 0.405 0.414 0.431 0.414 0.414 0.401 0.433 0.402 0.463 6.933%
CSI20↑ 0.566 0.573 0.598 0.568 0.587 0.580 0.601 0.584 0.612 1.831%
CSI30↑ 0.451 0.460 0.490 0.458 0.477 0.451 0.484 0.451 0.507 3.469%
CSI40↑ 0.198 0.209 0.205 0.216 0.179 0.171 0.214 0.172 0.269 24.537%
SSIM↑ 0.714 0.725 0.699 0.703 0.722 0.681 0.669 0.695 0.736 1.517%
PSNR↑ 21.452 21.666 22.323 21.375 22.268 21.710 22.277 22.221 22.472 0.667%

Low

MAE↓ 2.732 2.622 2.610 2.713 2.653 2.714 2.560 2.771 2.480 3.125%
mCSI↑ 0.374 0.388 0.400 0.391 0.379 0.364 0.399 0.370 0.427 6.750%
CSI20↑ 0.528 0.540 0.564 0.536 0.550 0.540 0.566 0.546 0.575 1.590%
CSI30↑ 0.418 0.431 0.451 0.434 0.431 0.406 0.441 0.404 0.473 4.880%
CSI40↑ 0.177 0.194 0.187 0.204 0.158 0.145 0.190 0.161 0.234 14.706%
SSIM↑ 0.723 0.734 0.723 0.724 0.715 0.691 0.718 0.700 0.754 2.722%
PSNR↑ 21.745 21.980 22.605 21.741 22.578 22.020 22.583 22.523 22.804 0.880%

4.1 Evaluation Settings.
4.1.1 Datasets. Weevaluate StormMind on the 3D-NEXRDA dataset,
a large-scale benchmark of high-resolution volumetric radar scans
capturing severe convective storms across the continental United
States [3]. Spanning January 2020 to December 2022, each event
in the dataset is represented as a 25-frame sequences sampled at
5-minute intervals. Each volume offers a horizontal resolution of
512×512 and 28 vertical levels from 0.5 km to 22 km altitude.

4.1.2 Baselines. We compare StormMind with eight baselines:

• ConvLSTM [22] models radar evolution as a seq-to-seq video
prediction task to capture local spatiotemporal dependencies.

• PredRNN-V2 [30] extends ConvLSTMwith spatiotemporalmem-
ory cells to better model long-term dependencies.

• PhyDNet [7] implements a physics-inspired architecture that
disentangles motion and content via dedicated encoders.

• SimVP [6] adopts a minimalist two-stage architecture that sepa-
rates spatial encoding and temporal forecasting.

• Earthformer [5] employs cuboid self-attention to efficiently
capture short-range spatiotemporal dependencies.

• PastNet [34] employs a multi-path encoder infused with physics-
informed inductive biases to strike a balance between prediction
accuracy and computational cost.

• Earthfarseer [33] advances Earthformer with causality-aware
modules and hierarchical fusion for long-range modeling.

• AlphaPre [14] improves spatial detail preservation by disentan-
gling amplitude and phase components in the frequency domain.

4.2 Implementation Details.
StormMind is trained on a single NVIDIA A800 GPU for 200 epochs
with a batch size of 8, utilising the PyTorch framework. During train-
ing, we incorporate a pretext task of predicting the input frames. A
warmup phase with 20 epochs is introduced to ensure the effective
model learning, during which the weight of the input prediction
loss is set to 1 and is fixed at 1 × 10−4 thereafter.

4.2.1 Metrics. To assess the quantitative accuracy and physical
realism of predicted radar fields, we adopt a comprehensive set of
metrics: (1)MeanAbsolute Error (MAE)measures pointwise devi-
ation; lower values indicate higher numerical precision. (2)Critical
Success Index (CSI), computed at 20, 30, and 40 dBZ thresholds
(and averaged), evaluates event-based skill in detecting convec-
tive structures; higher values reflect more reliable storm localiza-
tion. (3) Structural Similarity Index (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) assess spatial and perceptual consistency;
higher values indicate sharper, more physically plausible forecasts.

4.3 Overall Performance (RQ1)
Table 1 shows our layer-wise evaluation and reveals three insights:

• CSI-optimalmodels vary by both layer and intensity thresh-
old. Recurrent-based models (e.g., PhyDNet) consistently achieve
top CSI30 in the mid and low layers, where storm organization
benefits from temporally coherent modeling. These models also
lead on CSI40 in the upper layer, suggesting that physically con-
strained recurrence generalizes better to sparse, vertically driven
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Table 2: Ablation results grouped by level (high, mid, low).

Level Method MAE ↓ mCSI ↑ CSI20 ↑ CSI30 ↑ CSI40 ↑ SSIM ↑ PSNR ↑ SNR ↑

High

Ours 2.134 0.348 0.578 0.316 0.152 0.781 23.959 6.273
StormMind w/o VCE 2.187 0.330 0.560 0.298 0.133 0.775 23.765 6.079
StormMind w/o Merge 2.276 0.326 0.558 0.298 0.122 0.764 23.632 5.946
StormMind w/ 𝐸𝑖 (𝐸𝑀→𝐻 ) 2.193 0.331 0.553 0.298 0.141 0.775 23.555 5.868

Mid

Ours 2.767 0.463 0.612 0.507 0.269 0.736 22.472 6.338
StormMind w/o VCE 2.837 0.444 0.596 0.489 0.247 0.731 22.175 6.041
StormMind w/o Merge 2.845 0.444 0.601 0.494 0.238 0.729 22.160 6.026
StormMind w/ 𝐸𝑖 (𝐸𝐻→𝑀 ) 2.931 0.448 0.593 0.490 0.261 0.721 21.991 5.858
StormMind w/ 𝐸𝑖 (𝐸𝐿→𝑀 ) 3.035 0.432 0.577 0.478 0.243 0.710 21.633 5.499

Low

Ours 2.480 0.427 0.575 0.473 0.234 0.754 22.804 5.160
StormMind w/o VCE 2.603 0.390 0.542 0.438 0.189 0.744 22.342 4.698
StormMind w/o Merge 2.690 0.413 0.567 0.463 0.208 0.728 22.317 4.673
StormMind w/ 𝐸𝑖 (𝐸𝑀→𝐿) 2.570 0.422 0.572 0.471 0.223 0.742 22.594 4.950

storm tops. In contrast, recurrent-free models (e.g., SimVP, Earth-
farseer) perform best at CSI20 across layers—due to their global
attention and spatial filters being more suited for broad, low-
intensity echoes or localized rain cores.

• Other metrics favor recurrent-based models. PhyDNet and
PredRNN-V2 achieve lower MAE and higher SSIM/PSNR, partic-
ularly in mid and low layers. These layers exhibit richer textures
and denser reflectivity, which benefit from the stepwise memory
and structural regularization provided by recurrence.

• StormMind consistently outperforms all baselines across
layers. StormMind yields the best scores across all sub-tasks,
improving CSI40 by up to 24.537% and reducing MAE by 4.045%.
These results underscore the value of explicitly modeling causal
and vertical physical interactions in stratified radar fields.

4.4 Ablation Study (RQ2)
To evaluate each design, we conduct an ablation study (Table 2):

• StormMind w/o VCE: RemovesVertical Coupling Encoder (Sec. 3.3.2),
disabling top-down and bottom-up context exchange.

• StormMind w/o Merge: Replaces Horizontal Morphology Encoder
(Sec. 3.3.1) with a shared encoder to assess stratified processing.

• StormMind w/ 𝐸𝑖 : For each layer, one expert path (e.g., 𝐸𝐻→𝑀 ,
𝐸𝐿→𝑀 , or 𝐸𝑀→𝐻 ) is retained to assess diverse contextualization.

The results yield several key observations:

• Stratified encoding outperformsmonolithic design. StormMind
w/ Merge resulting drop in performance at all levels highlights
the necessity of preserving vertical heterogeneity, as atmospheric
dynamics differ significantly across altitudes.

• Explicit interactionmodeling is critical. StormMind w/o VCE
shows consistent degradation across all levels—particularly in
mid and low layers, which confirms that explicit modeling of
vertical interactions is essential for capturing contextual depen-
dencies that cannot be learned implicitly through backbone alone.

• Bidirectional expert fusion ensures robust vertical reason-
ing. Retaining only a single expert (e.g., StormMind w/ 𝐸𝐻→𝑀

or StormMind w/ 𝐸𝐿→𝑀 ) reveals nuanced effects: i) at the high

layer, performance remains close to StormMind w/o VCE, sug-
gesting that updraft-related cues from mid layers suffice under
relatively stable high-atmosphere conditions; ii) at the mid layer,
single-directional experts underperform, as mid-level precipi-
tation is influenced by both surface fluxes and high-level dy-
namics—requiring dual-sided contextualization; and iii) at the
low layer, surprisingly, 𝐸𝑀→𝐿 alone performs slightly better
than StormMind w/o VCE, which may stem from dominant down-
ward influence and relatively simpler low-level structure.
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4.5 Sensitivity Analysis (RQ3)
Figure 3 compares performance across lead times (20-100 mins) and
vertical levels using mCSI and PSNR. As forecast horizon increases,
performance gradually degrades—reflecting increased uncertainty
in long-range prediction. Nevertheless, StormMind consistently
outperforms all baselines at every lead time, maintaining both
superior value-level accuracy and structural coherence.

To assess the contribution of cross-layer knowledge, we conduct
a sensitivity study on the expert weighting parameter 𝜆expert (Fig-
ure 4). As 𝜆expert increases, performance first improves—highlighting
the benefit of incorporating information from other layers—but then
declines as the expert signal overwhelms local features. The op-
timal setting at 𝜆expert = 1 suggests that a balanced 1:1 fusion of
cross-layer cues and layer-specific features yields the best results.

4.6 Case Study: Capturing Convective
Development and Dissipation (RQ4)

Figure 5: The Convective Development Case.

To visualize the physical validity of StormMind during storm
evolution, we conduct two case studies representing distinct lifecy-
cle phases: convective intensification and dissipation, selected based
on the Convective Area Variation Rate (CAVR) [16], a physically
grounded indicator of echo dynamics. Figure 5 and Figure 6 present

Figure 6: The Convective Dissipation Case.

mid-tropospheric forecasts (the operational layer), where StormMind
consistently outperforms state-of-the-art baselines. In intensifying
cases (positive CAVR), StormMind accurately captures the emer-
gence and localization of high-intensity cores—often diffused or
missed by competing models. In dissipating cases (negative CAVR),
it preserves fine-grained decay structures and avoids the spatial
drift. These cases highlight StormMind’s ability to track the full con-
vective lifecycle with high spatial and semantic fidelity—addressing
a long-standing challenge in operational nowcasting.

4.7 Real-World Deployment (RQ5)
To assess real-world effectiveness, we deployed StormMind in col-
laboration with the Guangzhou Municipal Meteorological Bureau
as part of their operational early-warning system (Figure 7). The
radar system operates at a horizontal resolution of 4412 × 4412
(3600𝑚2 per grid), with vertical range from 500 to 5500 meters and
1-minute update intervals. Between March to May 2025, official
forecasters issued rainfall alerts based on StormMind’s reflectiv-
ity forecasts. In subsequent quality inspection reports, StormMind
achieved the highest hit rate (98.33%) across all signal levels and
enabled alerts issued over one hour in advance. For further vali-
dation, we conducted retrospective experiments using using the
same period’s data. Table 3 shows that StormMind outperforms all
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baselines across key metrics, demonstrating superior accuracy and
storm structure preservation under real-world conditions.

Figure 7: The Deployment of StormMind.

4.8 Real-Time Inference Efficiency (RQ6)
To evaluate the computational efficiency of StormMind , we assess
their memory footprint and inference latency on a single NVIDIA
A800 GPU using the U.S. and Guangzhou datasets, as shown in Ta-
ble 4. Despite incorporating multiple experts, StormMind achieves
a forward inference latency of approximately 100–116 ms per 20
frames, falling well within practical operational constraints and
demonstrating its efficiency and suitability for real-world deploy-
ment.

5 Discussion
In this section, we summarize some insights and lessons learned.
We also discuss the limitations and future directions, followed by
implication and generalization.

5.1 Insights and Lessons Learned
Our comprehensive analysis yields two key insights:
• Radar signals are vertically heterogeneous—no singlemodel
fits all. Low levels exhibit intense, texture-rich echoes shaped by
boundary forcing and terrain; mid levels encode convective cores
dominated by updrafts and latent heat; high levels are sparse and
noisy, indicating storm decay and ice-phase processes. As con-
firmed in Table 2, uniform backbones underperform compared
to our layer-specific design.

• Mid-troposphere serves as the dynamical core of convec-
tive systems.We observe the sharpest performance variations
across models and metrics (CSI, SSIM) in mid levels (Table 2). This
layer concentrates both bottom-up inputs (e.g., surface conver-
gence) and top-down constraints (e.g., shear, divergence)—making
it pivotal for storm growth, structure, and transitions.

5.2 Deployment and Operational Experience
StormMind is deployed on a GPU node with 80 GB memory within
an internal computing cluster, following a layered architecture that
separates data acquisition, model inference, and decision support.
Volumetric X-band radar scans are ingested in real time, undergoing
decoding, quality control, and format standardization before being

forwarded to the StormMind inference engine. Trained on South
China data, themodel delivers 0–60min precipitation forecasts with
an average inference latency of approximately 100 ms per 20-frame
sequence. Forecast results are visualized and disseminated to fore-
casters through the Guangzhou Meteorological Disaster Intelligent
Monitoring Subsystem for operational use.

Real-world deployment exposed several domain-specific chal-
lenges. Radar data quality issues were addressed through atten-
uation correction based on joint 𝑍𝐻–𝐾𝐷𝑃 calibration for X-band
phased-array radars, combined with clutter suppression and ve-
locity de-aliasing[37]. Inter-radar calibration inconsistencies were
mitigated by adaptive normalization within overlapping network
regions, while data latency and missing scans were handled via
real-time, temporally gated interpolation. Together, these strategies
enabled stable system operation under practical constraints.

Continuous deployment yielded several key findings. First, data
quality assurance and consistent preprocessing proved more crit-
ical than marginal gains in model accuracy, as robust calibration
and artefact suppression are essential for reliable forecasts. Second,
layerwise disentanglement of the deployment pipeline improved
both stability and interpretability, facilitating generalization across
heterogeneous radar configurations. Finally, the design principles
of StormMind—physically grounded modularization, expert feed-
back integration, and adaptive real-time processing—extend beyond
precipitation nowcasting and may benefit other environmental AI
applications, such as air quality monitoring and typhoon tracking.
These findings suggest that long-term trust and operational reli-
ability, rather than accuracy alone, are central to the sustainable
deployment of AI systems in scientific practice.

5.3 Limitations and Future Work
While StormMind demonstrates strong performance across two
operational regions (US and China), its current evaluation is lim-
ited to fixed geographic domains and radar-only inputs. Our work
lies in the hierarchical modeling approach, which emphasizes the
interactions within weather systems. And satellite imagery and
surface station data provide complementary information—satellites
capture upper-atmospheric evolution in radar-sparse regions, while
ground stations enhance near-surface observations. Incorporating
these signals represents an important future direction to further
improve vertical continuity and regional coverage. Future work
will explore domain adaptation strategies to improve transferabil-
ity across regions with differing sensor configurations, climates,
and radar calibration schemes. We will also integrate additional
modalities, e.g., automatic weather station, to model radar–rainfall
relationships and further enhance physical grounding.

5.4 Implication and Generalization
By leveraging physically structured priors—such as layerwise con-
vection and vertical causal pathways— StormMind not only im-
proves accuracy but also enhances interpretability and acceptance
by domain experts. This design principle readily generalizes to
other meteorological tasks that require cross-field reasoning, in-
cluding storm lifecycle classification, convective event detection,
and precipitation phase estimation. More broadly, it offers a scalable
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Table 3: Performance comparison on the Guangzhou Meteorological Bureau dataset across different levels.

Level Metric ConvLSTM PredRNNv2 PhyDNet SimVP Earthformer PastNet Earthfarseer AlphaPre StormMind Improv.

High

MAE ↓ 1.785 1.598 2.312 1.730 1.662 1.797 2.338 2.038 1.419 11.199%
mCSI ↑ 0.419 0.442 0.439 0.449 0.417 0.303 0.216 0.407 0.504 12.249%
CSI20 ↑ 0.614 0.650 0.636 0.645 0.641 0.552 0.426 0.633 0.687 5.692%
CSI30 ↑ 0.380 0.413 0.402 0.399 0.380 0.239 0.165 0.382 0.468 13.317%
CSI40 ↑ 0.264 0.261 0.278 0.305 0.229 0.117 0.058 0.206 0.357 17.049%
SSIM ↑ 0.819 0.830 0.619 0.802 0.824 0.820 0.771 0.739 0.859 3.494%
PSNR ↑ 24.122 25.342 24.382 25.113 25.187 24.204 22.536 24.445 26.151 3.192%

Mid

MAE ↓ 2.800 2.496 3.318 2.524 2.484 2.692 2.798 3.148 2.368 4.670%
mCSI ↑ 0.598 0.643 0.625 0.639 0.625 0.582 0.587 0.575 0.674 4.821%
CSI20 ↑ 0.710 0.744 0.742 0.749 0.733 0.705 0.724 0.692 0.754 0.668%
CSI30 ↑ 0.641 0.675 0.666 0.675 0.668 0.615 0.615 0.599 0.709 5.037%
CSI40 ↑ 0.442 0.511 0.468 0.492 0.474 0.426 0.423 0.434 0.559 9.393%
SSIM ↑ 0.764 0.771 0.516 0.763 0.785 0.762 0.733 0.693 0.792 0.892%
PSNR ↑ 20.266 21.557 21.249 21.577 21.274 20.689 20.931 20.687 21.652 0.348%

Low

MAE ↓ 2.849 2.528 3.262 2.525 2.662 2.853 2.986 3.031 2.473 2.059%
mCSI ↑ 0.590 0.636 0.621 0.639 0.602 0.565 0.573 0.584 0.664 3.912%
CSI20 ↑ 0.705 0.740 0.732 0.747 0.722 0.701 0.704 0.707 0.752 0.669%
CSI30 ↑ 0.635 0.675 0.664 0.676 0.639 0.600 0.604 0.622 0.698 3.254%
CSI40 ↑ 0.432 0.493 0.469 0.495 0.446 0.395 0.411 0.422 0.542 9.495%
SSIM ↑ 0.759 0.765 0.545 0.776 0.764 0.746 0.720 0.705 0.779 0.387%
PSNR ↑ 20.096 21.337 21.025 21.420 20.970 20.246 20.230 20.649 21.483 0.294%

Table 4: Memory footprint and inference latency comparison
on different datasets.

Model Static Memory Peak Memory Dynamic Memory Latency

U.S.
Earthfarseer 81.32 607.21 525.89 86.89
Ours 177.81 429.48 251.67 103.60

Guangzhou
Earthfarseer 81.90 670.55 588.65 86.11
Ours 208.51 529.00 320.49 116.29

Note: Static, peak, and dynamic memory are measured in MB. Inference
latency is reported in milliseconds (ms) and corresponds to the average

forward inference time for processing 20 consecutive frames.

paradigm for integrating deep learning into scientific forecasting
systems where physical consistency is critical.

6 Conclusion
This study presents a paradigm shift in radar-based forecasting,
from 2D reflectivity extrapolation to 3D storm-structure reasoning,
treating radar not just as a visual input, but as a dynamic, phys-
ically grounded lens into convective phase transitions. We intro-
duce StormMind, a vertically structured framework for interpretable
nowcasting that explicitly models causal interactions across strati-
fied atmospheric layers. To address the fundamental challenges of
nonlinear vertical coupling and reflectivity uncertainty, StormMind
designs: a Convection Dynamics Extractor that disentangles storm
evolution into horizontal morphology and vertical thermodynamic

exchanges, grounded in mesoscale meteorology; and a Convec-
tion Manifestation Reconstructor that adaptively fuses intra- and
inter-layer cues—conditioned on storm state—to infer critical phase
transitions such as initiation, intensification, and dissipation. Ex-
perimentally, StormMind consistently outperforms strong baselines
on the large-scale 3D-NEXRAD dataset (2020–2022, U.S.), achieving
a 14.71% gain in CSI40, and further proves its operational value in
real-world deployment with the Guangzhou Meteorological Bureau
(Mar–May 2025), improving CSI40 by 9.39% and enabling 98.33%
early-warning accuracy. Together, these results demonstrate that
vertical reasoning is not only physically essential but also prac-
tically transformative—paving the way for reliable, interpretable,
and deployable storm-scale nowcasting.
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