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Abstract
TabPFN has emerged as a promising in-context
learning model for tabular data, capable of di-
rectly predicting the labels of test samples given
labeled training examples. It has demonstrated
competitive performance, particularly on small-
scale classification tasks. However, despite its
effectiveness, TabPFN still requires further refine-
ment in several areas, including handling high-
dimensional features, aligning with downstream
datasets, and scaling to larger datasets. In this
paper, we revisit existing variants of TabPFN
and observe that most approaches focus either
on reducing bias or variance, often neglecting
the need to address the other side, while also
increasing inference overhead. To fill this gap,
we propose BETA (Bagging and Encoder-based
Fine-tuning for TabPFN Adaptation), a novel and
effective method designed to minimize both bias
and variance. To reduce bias, we introduce a
lightweight encoder to better align downstream
tasks with the pre-trained TabPFN. By increas-
ing the number of encoders in a lightweight man-
ner, BETA mitigate variance, thereby further im-
proving the model’s performance. Additionally,
bootstrapped sampling is employed to further
reduce the impact of data perturbations on the
model, all while maintaining computational effi-
ciency during inference. Our approach enhances
TabPFN’s ability to handle high-dimensional data
and scale to larger datasets. Experimental results
on over 200 benchmark classification datasets
demonstrate that BETA either outperforms or
matches state-of-the-art methods.

1. Introduction
Tabular data is one of the most widely used data formats
across various domains, including finance (Cao & Tay,
2001), healthcare (Hassan et al., 2020), e-commerce (Ned-
erstigt et al., 2014), and medical analysis (Schwartz et al.,
2007; Subasi, 2012). Despite its ubiquity, modeling tabular
data with deep learning methods remains a challenge due

to its heterogeneous nature (Borisov et al., 2024). Yet re-
cent advancements have led to the development of tabular
foundation models (van Breugel & van der Schaar, 2024) ,
such as TabPFN (Tabular Prior-Fitted Networks) (Hollmann
et al., 2023; 2025). TabPFN operates in two stages: pre-
training and inference. During the pre-training stage, the
model is pre-trained on a diverse set of synthetic datasets.
In the inference stage, given a new task and a set of labeled
examples as a “prompt,” TabPFN directly predicts the labels
of test samples using in-context learning, without requiring
further parameter updates. This approach enables TabPFN
to achieve performance comparable to or even surpass tree-
based methods, particularly on small tabular datasets (McEl-
fresh et al., 2023).

TabPFN has shown potential across a wide range of applica-
tions, including tabular data generation (Ma et al., 2024a),
data augmentation (Margeloiu et al., 2024), and time series
forecasting (Hoo et al., 2025). These use cases highlight the
versatility of TabPFN, positioning it as a model worthy of
further exploration. However, alongside application-driven
studies, there is a growing interest in improving TabPFN’s
performance from various perspectives (Feuer et al., 2024;
Thomas et al., 2024; Xu et al., 2025; den Breejen et al.,
2024; Ma et al., 2024b). While previous research has re-
ported performance improvements, the underlying reasons
driving these gains remain unclear. These advancements
are often fragmented, with each approach focusing on a
specific aspect, and some methods even sacrifice efficiency
for enhanced performance, without a comprehensive under-
standing of how to improve TabPFN systematically.

In this paper, we adopt the bias-variance decomposition
framework introduced by Nagler (2023) to analyze the gen-
eralization error of TabPFN and its variants. This frame-
work allows us to revisit and categorize existing methods,
revealing that performance improvements typically arise
from addressing either bias or variance. However, these
approaches often neglect the other aspect, leading to subop-
timal performance. Therefore, there is a need for a method
that simultaneously addresses both bias and variance to im-
prove performance.

To this end, we propose a novel, efficient, and scalable
approach, BETA. Our method enhances TabPFN’s per-
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formance by introducing a fine-tuning stage, enabling
parameter-efficient adaptation that aligns the downstream
dataset distribution with the pre-trained TabPFN to mitigate
bias. To further reduce variance BETA maps raw data into
multiple latent spaces and employs computationally efficient
bootstrapped sampling during inference. Beyond perfor-
mance improvements, BETA offers a lightweight and scal-
able solution that effectively handles high-dimensional data
and large datasets while maintaining inference efficiency.

BETA improves performance by refining both the fine-tuning
and inference stages to reduce bias and variance. In the fine-
tuning phase, we employ a lightweight encoder module as
an input feature adapter, which transforms datasets with
arbitrary dimensionality into multiple fixed-dimensional
representations, thereby naturally enabling dimensionality
reduction. To further enhance generalization, we integrate
Batch Ensemble (Wen et al., 2020; Gorishniy et al., 2025)
to increase the number of encoders in a lightweight man-
ner, which introduces diversity in learned representations
and reduces variance. These enhancements enable BETA to
improve robustness and scalability, ensuring better adap-
tation to downstream datasets. In the inference phase, we
introduce bootstrapped sampling, a technique that has been
largely overlooked in previous TabPFN variants. By gener-
ating multiple subsets of the dataset as support sets for the
context composition, BETA reduces variance and improves
robustness. Furthermore, BETA seamlessly integrates with
Error-Correcting Output Codes (ECOC) to effectively han-
dle multiclass classification tasks with more than 10 classes.

Experimental results on multiple benchmark datasets, in-
cluding over 200 classification tasks, demonstrate that our
method significantly improves TabPFN’s performance. We
describe our main contributions below.

1. We introduce an adaptation method for TabPFN that
addresses key limitations related to dataset size, high-
dimensional features, and multiclass classification tasks.

2. By analyzing the generalization error of existing TabPFN
variants through bias-variance decomposition and exper-
iments on real-world datasets, we developed BETA, a
method that effectively mitigates both bias and variance.

3. We achieve state-of-the-art performance on the largest
benchmark datasets to date, demonstrating the robustness
and scalability of our method for real-world tabular tasks.

Remark. We have noticed that the latest release of TabPFN-
v2 (Hollmann et al., 2025) has partially alleviated some of
the limitations previously discussed. Specifically, TabPFN-
v2 incorporates design improvements that enable it to handle
larger datasets and more features. However, it is important to
highlight that TabPFN-v2 is a concurrent work, and while it
partially mitigates these limitations, it does not fully resolve
the challenges posed by dataset size and feature count. Thus,
many of the improvements proposed in this paper are gen-

eral enhancements that can complement TabPFN-v2 and po-
tentially further its applicability to a broader range of tasks.

2. BETA

To address both bias and variance issues of TabPFN ob-
served during the previous experiments, we propose a uni-
fied strategy for improving the performance of TabPFN. In
addition to the inference stage, we introduce a fine-tuning
stage. Our approach improves performance in both fine-
tuning and inference, as shown in Figure 1. During fine-
tuning, we refine input representations to better align the
downstream data distribution with the pre-trained TabPFN,
reducing both bias and variance. In the inference stage, we
incorporate bootstrapped sampling to further reduce vari-
ance without additional computational overhead.

Minimizing Bias with Encoder-Based Fine-Tuning. Our
analysis in subsection B.3 highlights the importance of min-
imizing bias for improved generalization. To achieve this,
we introduce a lightweight encoder while keeping the pre-
trained TabPFN parameters frozen. This encoder transforms
raw input features into a latent space that better aligns the
model’s prior with the downstream data distribution.

Let xi ∈ Rd denote the raw feature vector, and let EΦ

represent the encoder with parameters Φ. To enhance ex-
pressiveness and incorporate nonlinearity, these layers are
constructed using a sequence of operations as described
by Gorishniy et al. (2021):

EΦ(x) = Linear (Dropout (ReLU (Linear (x)))) . (1)

This transformation can be extended by stacking multiple
such blocks, allowing the encoder to learn hierarchical rep-
resentations suited for complex downstream tasks.

Given a query set Xq and a support set (Xs,ys), we define
their respective latent representations as:

Zq = EΦ(Xq), Zs = EΦ(Xs). (2)

The posterior predictive distribution over the query labels is
then expressed as:

qθ (yq | Zq, (Zs,ys)) . (3)

This formulation ensures that the encoder effectively maps
raw features into a structured space, enabling TabPFN to
better capture relevant patterns while mitigating bias.

This fine-tuning method provides a lightweight and effec-
tive approach to reduce bias by better aligning the model’s
prior with the downstream tasks. It enables end-to-end
fine-tuning, facilitating a more efficient adaptation of the
pre-trained TabPFN to the downstream tasks.

Mitigating Variance with Multiple Encoders. To further
mitigate variance, we introduce multiple encoders, each
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Figure 1: Overview of the proposed method, BETA, which consists of the fine-tuning stage and the inference stage.

learning a distinct transformation of the input data. By
jointly training these encoders while keeping the pre-trained
TabPFN parameters θ frozen, the model captures diverse
feature representations, reducing variance.

For each encoderk, the support and query set representations
are encoded as follows:

Z(k)
s =

[
E

(k)
Φ (x(i)

s )
]Ns

i=1
, Z(k)

q =
[
E

(k)
Φ (x(i)

q )
]Nq

i=1
,

where Ns and Nq denote the number of samples in the
support set and the query set, respectively. The multiple
encoders are trained jointly by minimizing the sum of the
individual losses across all encoders. The optimization
objective for the fine-tuning phase is:

min
Φ

Ltotal = −
K∑

k=1

log
(
qθ

(
yq | Z(k)

q ,
(
Z(k)

s ,ys

)))
.

(4)
Minimizing Ltotal in Equation 4 jointly trains all encoders
to generate TabPFN-compatible latent representations, with
the different encoder initializations encouraging diverse rep-
resentations and thereby reducing variance and providing
more stable predictions.

Enhancing Performance with Batch Ensemble for Com-
putational Efficiency. To further enhance performance
without introducing additional computational cost, we inte-
grate the Batch Ensemble technique into the encoder. Specif-
ically, we replace the linear layers in EΦ with Batch En-
semble versions, allowing the model to maintain diversity
while avoiding the overhead of training multiple indepen-
dent encoders. This technique introduces shared weight

matrices and member-specific scaling factors, reducing the
number of trainable parameters while preserving the benefits
of ensembling.

The output of the k-th base model for encoder layer l is
given by:

lk(x) = sk ⊙ (W (rk ⊙ x)) + bk (5)

where W is shared across all base models, and rk, sk, bk
are specific to each base model (Wen et al., 2020).

Bootstrapped Sampling for Variance Reduction in Infer-
ence Stage. To further reduce variance during inference, we
apply bootstrapped sampling, generating random subsets of
the training set as support sets. These are used to compute
predictions across multiple encoders, and their aggregation
stabilizes the final output without additional computational
overhead. For each encoder k, the bootstrapped support set
is D(k)

bootstrap = (X
(k)
bootstrap,Y

(k)
bootstrap). The final prediction is

obtained by averaging over all encoders:

ŷ =
1

K

K∑
k=1

qθ

(
EΦ(xtest),

(
E

(k)
Φ (X

(k)
bootstrap),Y

(k)
bootstrap

))
.

This approach reduces variance while maintaining computa-
tional efficiency, ensuring scalability and robustness.

Expanding to MultiClass Tasks Beyond 10 Classes. To
address TabPFN’s limitation in handling tasks with more
than 10 classes, we integrate an Error-Correcting Output
Code (ECOC) (Dietterich & Bakiri, 1995) strategy. Instead
of training separate classifiers, distinct encoders within a sin-
gle model handle individual binary classification tasks, en-
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Figure 2: The critical difference diagrams based on the
Wilcoxon-Holm test with a significance level of 0.05 to de-
tect pairwise significance for TALENT datasets with fewer
than 10 classes.

abling efficient multiclass classification without additional
computational overhead.

Summary of Our Approach. Our method reduces bias
using a lightweight encoder to align input representations
with the pre-trained TabPFN, which is effective for high-
dimensional data. Variance is reduced through Bagging
with bootstrapped sampling, enabling better generalization
on large datasets. For multiclass tasks, we integrate
Error-Correcting Output Codes (ECOC) to efficiently
handle more than two classes. Additionally, we preserve
PFN-style batching, ensuring inference efficiency and
scalability for large-scale and high-dimensional datasets.

3. Experiments
3.1. BETA: State-of-the-Art Performance

We conducted pairwise significance testing using the
Wilcoxon-Holm test (Demsar, 2006) among BETA and all
the compared methods. To ensure a fair comparison, we
selected 186 datasets from TALENT with fewer than 10
classes, as TabPFN and its variants are not capable of han-
dling datasets with more than 10 classes. From Figure 2,
it is evident that BETA outperforms other methods, even
without hyper-parameter tuning. This includes methods
based on nearest neighbors such as TabR and ModernNCA,
ensemble-based approaches like TabM, traditional tree mod-
els, and other TabPFN variants. These results underscore the
significant potential of pre-trained models for tabular data
and demonstrate the effectiveness of our proposed method
in adapting to downstream datasets.

Handling High-Dimensional Datasets. To assess the ef-
fectiveness of BETA on high-dimensional datasets, we con-
ducted experiments on 20 datasets with extremely high fea-
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Figure 3: Average ranks of methods on 17 high-dimensional
datasets. We compare BETA with TabM, KNN, MLP,
XGBoost (XGB), RandomForest (RForest), ProtoGate
(Pgate) (Jiang et al., 2024), and ModernNCA (MNCA).
Lower ranks indicate better performance.

ture dimensions, as detailed in Table 2. These datasets were
selected to evaluate the scalability and adaptability of differ-
ent methods in complex feature spaces. The average ranks
of the compared methods are summarized in Figure 3. The
results show that BETA achieves the best performance, at-
taining the lowest average rank and outperforming all other
methods. TabM and MLP also demonstrate competitive
results, ranking second and third, respectively. In contrast,
traditional models such as RandomForest and XGBoost,
as well as deep learning-based ModernNCA, exhibit lower
ranks, highlighting their limitations in high-dimensional set-
tings. Due to memory constraints, we were unable to com-
pare with methods such as FT-T and TabR in this setting.

4. Conclusion
In this paper, we propose BETA, a novel approach that
enhances the performance of TabPFN by simultaneously
addressing both bias and variance. Through a combination
of lightweight encoder-based fine-tuning and bootstrapped
sampling, BETA significantly improves TabPFN’s adaptabil-
ity to high-dimensional, large-scale, and multiclass clas-
sification tasks. Our method efficiently reduces bias by
aligning downstream data distributions with the pre-trained
TabPFN and reduces variance through diverse latent rep-
resentations and robust inference techniques. Experimen-
tal results on over 200 benchmark datasets demonstrate
that BETA consistently outperforms or matches state-of-the-
art methods, highlighting its potential to handle complex
tabular data tasks with enhanced scalability and robustness.
These contributions provide a scalable and effective solution
for leveraging TabPFN in real-world applications, ensuring
its success across a broad range of tabular data challenges.
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The Appendix consists of four sections:

1. Appendix A: Related work.

2. Appendix B: Preliminary.

3. Appendix C: Datasets and implementation details.

4. Appendix D: Hardware and limitations.

5. Appendix E: Additional experiments

A. Related Work
A.1. Tabular Data Learning

Tabular data is one of the most widely used dataset types in machine learning. Gradient-boosted decision trees
(GBDTs) (Chen & Guestrin, 2016; Prokhorenkova et al., 2018; Ke et al., 2017), remain a strong baseline for tabular tasks
due to their efficiency and high performance. As an ensemble-based method, GBDTs construct multiple decision trees to
iteratively minimize the residual loss. With the advancement of deep learning, an increasing number of studies have explored
using deep learning methods for tabular data prediction. These approaches include MLP variants (Klambauer et al., 2017;
Gorishniy et al., 2021; 2022; Holzmüller et al., 2024), neural networks specifically designed for tabular structures (Wang
et al., 2017; 2021; Chen et al., 2023a), attention-based models (Song et al., 2019; Huang et al., 2020; Gorishniy et al., 2021;
Chen et al., 2024), methods incorporating regularization (Ye et al., 2024a; Alan et al., 2023; Wu et al., 2024), tree-mimic
methods (Arik & Pfister, 2021; Popov et al., 2020; Badirli et al., 2020), and context-based methods (Gorishniy et al., 2024;
Ye et al., 2025). Despite these advancements, recent benchmarks (Grinsztajn et al., 2022; McElfresh et al., 2023; Ye et al.,
2024b) have consistently demonstrated that gradient-boosted decision trees (GBDTs) outperform deep learning in tabular
prediction tasks. The superior performance of GBDTs can be attributed to two main factors: (1) their ability to handle
heterogeneous tabular datasets, which often describe high-frequency target functions (Basri et al., 2020; Grinsztajn et al.,
2022), and (2) the ensemble nature of GBDTs. Prior attempts to introduce ensemble-like mechanisms into tabular deep
learning (Badirli et al., 2020; Popov et al., 2020; Chen et al., 2023c), have not been widely successful (Grinsztajn et al.,
2022; Ye et al., 2024b). However, recent works like TabM (Gorishniy et al., 2025) integrate Batch Ensemble (Wen et al.,
2020) techniques into the tabular domain, showing how efficient ensembling can be achieved with deep learning models.

A.2. Tabular Foundation Models

While tabular foundation models (TFMs) are not as developed as foundation models in other domains, such as computer
vision (Saharia et al., 2022) and natural language processing (Brown et al., 2020), recent efforts have introduced various
architectures to bridge this gap (van Breugel & van der Schaar, 2024). Some approaches aim to explore model components
that can be shared across datasets (Liu et al., 2022; Zhu et al., 2023), while others focus on utilizing the semantic information
inherent in tabular datasets (Wang & Sun, 2022; Yan et al., 2024; Gardner et al., 2024; Kim et al., 2024; Yang et al.,
2024; Kasneci & Kasneci, 2024). As a Transformer-based model, TabPFN (Hollmann et al., 2023; 2025) stands out
for its exceptional performance and efficiency on small datasets. By leveraging the in-context learning capability of
transformer (Brown et al., 2020), it can make predictions for unseen instances without parameter updates. However, TabPFN
faces limitations related to dataset size and feature dimensionality. To address these challenges, some studies have explored
improvements in its architecture and training paradigm (den Breejen et al., 2024; Ma et al., 2024b), while others focus
on adaptation techniques that expand TabPFN’s applicability to a broader range of downstream tabular datasets (Feuer
et al., 2024; Thomas et al., 2024). Our work falls into the latter category, offering a straightforward, efficient, and effective
approach to align TabPFN with downstream datasets.

A.3. Parameter-efficient Fine-Tuning

Some approaches for adapting Tabular Foundation Models (TFMs) to downstream tasks simply fine-tune the entire
model (Thomas et al., 2024; den Breejen et al., 2024), which leads to performance improvements but incurs high computa-
tional and storage costs. Parameter-efficient fine-tuning (PEFT) offers a solution to the challenge by enabling adaptation
with a minimal number of trainable parameters (Lialin et al., 2023). Based on their operational mechanisms, PEFT methods
can be broadly categorized into four paradigms (Han et al., 2024):
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• Additive Methods. These methods incorporate additional lightweight modules into the model architecture, such as
adapters (Houlsby et al., 2019; Zhang et al., 2020; Xu et al., 2025) or soft prompts (Li & Liang, 2021; Feuer et al., 2024).

• Selective Methods. Instead of introducing new parameters, selective methods strategically identify and update the most
relevant parameters while freezing the rest (Fu et al., 2023; He et al., 2023).

• Reparameterized Methods. These methods employ low-rank decomposition or equivalent transformations to reduce the
parameter space during fine-tuning (Aghajanyan et al., 2021; Hu et al., 2022; Valipour et al., 2023).

• Hybrid Methods. By combining the strengths of multiple PEFT strategies, hybrid methods create a unified framework
that enhances fine-tuning performance while maintaining efficiency (Mao et al., 2022; Chen et al., 2023b).

Our proposed method adopts parameter-efficient tuning focused on input feature adaptation. This design is motivated by the
unique characteristics of tabular data: Tabular datasets are inherently heterogeneous, with varying structures and feature
distributions across different datasets (Zhou et al., 2023; Ye et al., 2023; Borisov et al., 2024). Adapting TabPFN through
input feature alignment effectively mitigates the constraints on input dimensionality, enhancing its applicability across a
wider range of tasks. By employing parameter-efficient fine-tuning, we align TabPFN with downstream datasets, addressing
its existing limitations (Hollmann et al., 2023).

B. Preliminary
In this section, we provide a brief overview of TabPFN and analyze its properties, while also revisiting existing variants.

B.1. TabPFN

We consider a tabular dataset consisting of N examples and d features. Each instance xi ∈ Rd is represented by d feature
values, where xi,j denotes the j-th feature of instance xi. These features can be numerical (xnum

i,j ∈ R) or categorical (xcat
i,j),

with categorical values often encoded as integers. Each instance is associated with a label yi, where yi ∈ [C] = {1, . . . , C}
for classification task, and yi ∈ R for regression task. Given a training dataset, Dtrain = {(x(i)

train,y
(i)
train)}

Ntrain
i=1 , and test

samples, Xtest = [x
(i)
test]

Ntest
i=1 , the goal is to predict the corresponding labels, Ytest = [y

(i)
test]

Ntest
i=1 , as accurately as possible.

TabPFN follows a two-stage process: a pre-training stage, where the model is trained on synthetic datasets by minimizing
the discrepancy between the predicted label of the test instance and its true label, and an inference stage, where it directly
predicts the labels of test samples given a set of labeled training examples.

Following pre-training, TabPFN takes the entire training dataset Dtrain = (Xtrain,ytrain) and the features of query points Xq
as context to make predictions. This is done using PFN-Style Batching (Hollmann et al., 2023), where Ntest test samples are
batched into a single “prompt,” as illustrated in Figure 4. Since TabPFN is trained with a fixed input dimensionality, typically
set to a predefined value dmax (e.g., 100), datasets with fewer features (d < dmax) need to be extended via zero-padding
before being processed. Formally, given an input instance xi ∈ Rd, the padded input x̃i ∈ Rdmax is obtained as:

x̃i = [xi,0] ∈ Rdmax , (6)

where 0 ∈ Rdmax−d represents the zero-padding applied to match the required input dimensionality. However, if a
dataset exceeds this limit (d > dmax), TabPFN cannot directly process such datasets, as its architecture is not designed to
accommodate higher-dimensional inputs.

TabPFN outputs a probability distribution over possible labels yq ∈ {1, . . . , C}. Specifically, let qθ denote the logits
produced by TabPFN, where θ represents the parameters of the pre-trained model. The posterior predictive distribution is
given by:

pθ(yq | Xq, Dtrain) =
exp(qθ(X̃q, D̃train)[yq])∑C
c=1 exp(qθ(X̃q, D̃train)[c])

, (7)

where D̃train denotes the zero-padded training dataset, acting as the support set for the context composition. Since TabPFN
performs inference directly, the model typically applies multiple rounds of feature shuffling on the original features, followed
by prediction. The final prediction is obtained by averaging the results from these multiple inferences. For more details
about how the model processes inputs, please refer to Appendix C.5.
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d

Ntrain

Ntest

X

Ntrain

Y

TabPFN

Training Set

Test Set

Y

Figure 4: The prediction process of TabPFN. The training set and test set are concatenated, with the training labels added to
the input sequence. TabPFN then performs a single forward pass to generate predictions for all test samples.

B.2. TabPFN Variants

Existing research to improve the performance of TabPFN has primarily focused on two different strategies, stemming from
its dependency on qθ and Dtrain in Equation 7. One approach optimizes context selection, refining Dtrain to provide more
informative support examples. The other concentrates on fine-tuning TabPFN, improving qθ to better adapt to downstream
tasks. These two strategies offer complementary solutions for enhancing TabPFN’s overall performance. Context Selection
for Scaling TabPFN. The transformer architecture in TabPFN inherently leads to quadratic growth in memory usage as the
context length increases. As a result, the size of the support set used as context in each prediction is limited. Meanwhile,
a well-chosen Dtrain provides more relevant support examples, improving generalization. A simple approach is random
subsampling (McElfresh et al., 2023), but this can degrade performance, especially on large datasets (Ma et al., 2024c).
More structured methods include sketching techniques, such as CoreSet, K-Means, and Data Distillation (Ma et al., 2024c),
which aim to compress large datasets into representative subsets while preserving essential information (Feuer et al., 2023).
TuneTables (Feuer et al., 2024), on the other hand, attempts to encode the dataset into a compact learned representation,
reducing memory overhead. Another class of methods selects sample-specific contexts instead of a fixed support set. For
instance, MixturePFN (Xu et al., 2025) partitions the training set into multiple subsets and assigns the most relevant one to
each test sample. Similarity, LocalPFN (Thomas et al., 2024) and TabDPT (Ma et al., 2024b), instead use nearest neighbors
to dynamically construct the support set Dtrain for each query (KNN-based selection). While these approaches improve
TabPFN’s performance by refining Dtrain, they disrupt PFN-style batching, significantly reducing inference efficiency.

Fine-tuning Strategies for Enhancing TabPFN Performance. The second approach to improving TabPFN’s performance
focuses on fine-tuning the pre-trained model to better adapt to downstream datasets. As shown in Equation 7, the predictive
distribution pθ(yq | Xq, Dtrain) depends on both the training set Dtrain and the model parameters θ. While optimizing Dtrain
improves the quality of support examples, fine-tuning enhances qθ, enabling better alignment with downstream tasks. A
straightforward approach is to fine-tune all model parameters, as seen in TabForestPFN (den Breejen et al., 2024) and
LocalPFN (Thomas et al., 2024), which improves performance by adapting TabPFN’s learned prior to specific datasets.
However, full fine-tuning incurs substantial computational costs due to the large number of model parameters. To mitigate
this, TuneTables (Feuer et al., 2024) offers a more efficient alternative by either fine-tuning the entire model or applying
prompt-tuning (Lester et al., 2021), which adjusts only a small set of parameters, reducing resource consumption. Another
efficient approach is adapter-based fine-tuning, as employed in MixturePFN (Xu et al., 2025), which fine-tunes additional
adapter layers (Houlsby et al., 2019) rather than modifying the entire model. This strategy provides a balance between
computational efficiency and performance improvement, allowing the model to adapt while preserving the efficiency of
the original pre-trained TabPFN. A detailed related work is presented in Appendix A.
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(a) Generalization error on the Adult Dataset.
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(b) Bias on the Adult Dataset.
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(c) Variance on the Adult Dataset.
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(d) Generalization Error on the Bank Dataset.
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(e) Bias on the Bank Dataset.
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Figure 5: Generalization Error, Bias, and Variance for different methods on the Adult and Bank datasets. The methods shown
include TabPFN-1000 (subsample size = 1000), TabPFN, TabPFN-en-16, TabPFN-Bagging, KNN-PFN, TabPFN-finetune,
and Ours (BETA). The legend is located in the top-right plot for clarity.

B.3. Generalization Analysis of TabPFN Variants

While various TabPFN variants have been proposed to enhance performance, their underlying mechanisms remain insuffi-
ciently understood. In this section, we leverage the bias-variance decomposition framework, as described in Equation 12,
which is introduced by Nagler (2023), to analyze the generalization error of TabPFN and its variants on two real-world
datasets: Adult (Barry & Ronny, 1996) and Bank (S. et al., 2014). To assess the impact of different strategies, and based on
our previous analysis, we evaluate the original TabPFN (without context length restrictions) alongside several representative
variants. These include TabPFN-1000 (random subsampling of 1000 samples), TabPFN-en-16 (randomly sample once and
perform feature shuffling 16 times to form an ensemble of 16 predictions), TabPFN-KNN (KNN-based context selection),
TabPFN-finetune (full model fine-tuning), and TabPFN-Bagging (bootstrapped sampling with 16 varying contexts). TabPFN-
Bagging, unlike ensemble methods that require training multiple independent models, employs bootstrapped sampling to
construct diverse support sets within a single inference process. A detailed description of its implementation is provided in
Appendix C.6.

To further contextualize these findings, we compare all evaluated methods against our proposed approach, BETA. The
experimental results, presented in Figure 5, reveal several key trends in the bias-variance tradeoff across different TabPFN
variants. As shown in Figure 5 (b,c,e,f), increasing context length reduces variance while bias plateaus, consistent with prior
findings (Nagler, 2023). Similarly, KNN-based context selection reduces bias but increases variance compared to using the
full dataset, as it relies on localized subsets. Since these trends align with previous work, we focus on additional findings.

1) Fine-Tuning and its Impact: Figure 5 (b,e) shows that fine-tuning (TabPFN-finetune) effectively reduces bias by aligning
the model’s prior with the characteristics of the dataset. However, it also increases variance, especially when the training set
is small, where overfitting amplifies prediction variability, as shown in Figure 5 (c,f). These results suggest that fine-tuning
requires careful regularization to balance bias and variance.

2) Ensemble Strategy and Bias-Variance Tradeoff: Figure 5 (b,c) indicates that ensemble-based methods (TabPFN-en-16)
reduce variance but may increase bias due to unsupervised feature transformations. This observation highlights that ensemble
methods, while helpful in reducing variance, may require additional bias-reducing strategies to optimize overall model
performance.

3) Effectiveness of Bagging: As shown in Figure 5 (c,f), Bagging significantly reduces variance while maintaining stable
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Table 1: Comparison of TabPFN and related methods in terms of their impact on bias and variance, as well as their effective-
ness in handling large datasets, high-dimensional features, adaptability to multiclass classification, and inference efficiency.
The compared methods include TabPFN (Hollmann et al., 2023), TuneTables (Feuer et al., 2024), TabForestPFN (den
Breejen et al., 2024), LocalPFN (Thomas et al., 2024), and MixturePFN (Xu et al., 2025). Our proposed method (BETA)
is distinguished for its ability to balance bias and variance while maintaining efficient scaling, adaptability to multiclass
classification, and lightweight fine-tuning. Different row colors indicate the strategies used for improving performance ( ),
scalability ( ), and efficiency ( ).

BETA (Ours) TabPFN TuneTables TabForestPFN LocaLPFN MixturePFN

Reduces Bias ✓ ✗ ✓ ✓ ✓ ✓
Reduces Variance ✓ ✗ ✗ ✗ ✗ ✗
Scales to Large Datasets ✓ ✗ ✓ ✗ ✓ ✓
Handles High-Dimensional Data ✓ ✗ ✗ ✗ ✗ ✗
Adapts to More Than 10 Classes ✓ ✗ ✓ ✗ ✗ ✗
No Additional Inference Cost ✓ ✓ ✓ ✓ ✗ ✗
Fine-Tuning lightweight encoder ✗ prompt & backbone backbone backbone adapter

bias. By introducing diversity through bootstrapped sampling, it achieves variance reduction comparable to ensemble
methods but at a lower computational cost. These results highlight Bagging as a simple yet effective approach for improving
TabPFN’s performance.

The results above, based on additional findings not covered in (Nagler, 2023), indicate that TabPFN variants typically impact
either bias or variance, but rarely both simultaneously. For instance, KNN-based context selection reduces bias but increases
variance, while the original ensemble strategy in Hollmann et al. (2023) (TabPFN-en-16) lowers variance but may increase
bias. These observations highlight the need for a method that jointly optimizes both aspects, motivating the development
of BETA.

Existing approaches to improving TabPFN focus on context selection or fine-tuning, but often introduce trade-offs in
computational efficiency, scalability, and adaptability. A comparison in Table 1 highlights how different strategies affect
bias, variance, and their ability to handle large datasets and high-dimensional features efficiently.

C. Datasets and implementation details
In this section, we outline the descriptions of the datasets used in the experiments and the preprocessing steps applied to
them before training. Additionally, we will describe the implementation details of BETA and the comparison methods.

C.1. Experiment Setup

Datasets. In our experiments, we evaluate BETA on one of the largest publicly available tabular benchmark TALENT (Ye
et al., 2024b), which includes 120 binary classification datasets and 80 multi-class classification datasets. These datasets are
collected from various sources such as UCI, OpenML, Kaggle, and others. To ensure fairness, we remove two datasets,
“PizzaCutter3” and “PieChart3,” as they overlap with TabPFN’s validation set. In addition, to validate the ability of BETA to
handle high-dimensional feature datasets, we also include 20 high-dimensional datasets sourced from the scikit-feature
repository.

Evaluation. For the TALENT datasets, we follow the evaluation protocol from (Gorishniy et al., 2021). Each dataset is
randomly split into training, validation, and test sets with proportions of 64%, 16%, and 20%, respectively. For each dataset,
we train each model using 15 different random seeds and calculate the average performance on the test set. We report
accuracy as the evaluation metric, where higher accuracy indicates better performance. For a more detailed comparison with
other TabPFN variants, we separately evaluate datasets with fewer than 10 classes, those with more than 10 classes, and
high-dimensional datasets. Further details on the experimental setup, are provided in Appendix C.

Methods Compared. We compare BETA against five categories of methods to evaluate its effectiveness comprehensively:
(1) Classical Machine Learning Algorithms: This category includes widely used classical approaches such as Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), and tree-based methods like Random Forest (RForest) (Breiman,
2001), XGBoost (XGB) (Chen & Guestrin, 2016), CatBoost (CatB) (Prokhorenkova et al., 2018), and LightGBM
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(LightG) (Ke et al., 2017). (2) Tabular Deep Learning Models: We consider state-of-the-art deep learning models for
tabular data, including MLP, ResNet, FT-Transformer (FT-T) (Gorishniy et al., 2021), MLP-PLR (Gorishniy et al., 2022),
DCNv2 (Wang et al., 2021), AutoInt (Song et al., 2019), SNN (Klambauer et al., 2017), ExcelFormer (ExcelF) (Chen
et al., 2024), DANets (Chen et al., 2022), TabTransformer (TabT) (Huang et al., 2020), and TabNet (Arik & Pfister, 2021).
(3) Neighborhood-Based Methods: To explore neighbor-based strategies, we evaluate TabR (Gorishniy et al., 2024) and
ModernNCA (MNCA) (Ye et al., 2025). (4) Ensemble-Based Methods: We include methods that leverage ensemble
strategies, such as TabM (Gorishniy et al., 2025), NODE, and GrowNet. (5) TabPFN and Its Variants: Lastly, we
compare with TabPFN and its recent variants, including knnPFN (Thomas et al., 2024), LocalPFN (Thomas et al., 2024),
MixturePFN (Xu et al., 2025), and TuneTables (Feuer et al., 2024).

Implementation Details. All datasets are pre-processed following the methodology outlined in Gorishniy et al. (2021).
For deep learning-based methods, we set the batch size to 1024. Hyper-parameters for the compared methods are tuned
using Optuna (Akiba et al., 2019), performing over 100 trials. The search ranges for hyper-parameters are determined
based on Gorishniy et al. (2021); Liu et al. (2024) and the official implementations of each method. Once the optimal
hyper-parameters are identified, they are fixed for the final evaluation using 15 random seeds. To ensure a fair comparison,
all TabPFN variants, including BETA, are evaluated using their default hyper-parameters without additional tuning.
More details can be found in Appendix C.

C.2. Datasets information

For both the main experiments and the classification tasks with more than 10 categories, we use the current largest tabular
benchmark (Ye et al., 2024b), which includes 120 binary classification datasets and 80 multiclass classification datasets,
spanning diverse domains such as healthcare, biology, finance, education, and physics. For more detailed information about
these datasets, please refer to Ye et al. (2024b).

For each dataset, we randomly select 20% of the instances to form the test set. The remaining 80% is further split, with 20%
reserved as a validation set. This validation set is used for hyperparameter tuning (for the comparison methods) and early stop-
ping. The hyperparameters that yield the best performance on the validation set are selected for final evaluation on the test set.

Remark: BETA are based on pre-trained models TabPFN (Hollmann et al., 2023). To ensure a fair comparison, we do
not perform hyperparameter search, and instead use the default hyperparameters for all methods.

For high-dimensional datasets, we obtained the data from scikit-feature repository, and excluded those with more than
10 classes. This resulted in a final set of 20 datasets, as shown in Table 2. The dataset splitting follows the same approach
as in the main experiments, but due to the smaller number of instances in these datasets, we use the default hyperparameters
for the experiments and do not perform hyperparameter search. The validation set is only used for early stopping. For
each dataset, we perform five random splits and run all methods three times on each split using three different seeds (0,
1, 2), resulting in a total of 15 runs per dataset. The final results are reported as the mean of these 15 runs.

Table 2: Dataset Information for High-Dimensional Data Experiments: A collection of 20 datasets with varying numbers of
instances, features, and classes used in our high-dimensional experiments.

Dataset #Instances #Features #Classes Dataset #Instances #Features #Classes

BASEHOCK 1993 4862 2 lung_discrete 73 325 7
PCMAC 1943 3289 2 warpPIE10P 210 2420 10
RELATHE 1427 4322 2 orlraws10P 100 10304 10
ALLAML 72 7129 2 Prostate_GE 102 5966 2
CLL_SUB_111 111 11340 3 SMK_CAN_187 187 19993 2
colon 62 2000 2 warpAR10P 130 2400 10
GLI_85 85 22283 2 arcene 200 10000 2
GLIOMA 50 4434 4 gisette 7000 5000 2
leukemia 72 7070 2 madelon 2600 500 2
lung 203 3312 5 TOX_171 171 5748 4
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C.3. Dataset Pre-processing

Unless otherwise specified, we adopt the data preprocessing pipeline outlined by Gorishniy et al. (2021). For numerical
features, we standardize by subtracting the mean and scaling the values to unit variance. Categorical features are converted
into a model-compatible format using one-hot encoding.

C.4. Implementations

BETA. For all experiments except for the ablation study, we set the context size to 1000 and fixed the number of bootstrap
sampling iterations to 16. For the feature transformation encoder, the main structure is a two-layer MLP, with both the
hidden and output dimensions set to 100, using the ReLU activation function. In addition, to enhance the expressive power
of the encoder, we also apply periodic activation (Gorishniy et al., 2022). The initialization of Batch Ensemble is inspired
by Gorishniy et al. (2025). During fine-tuning, we use the pre-trained model checkpoint1, and fine-tuning is performed
using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 0.003, weight decay of 1e-5, and a batch
size of 1024. In the fine-tuning phase, only the encoder parameters are updated, while the pre-trained TabPFN parameters
are frozen. For experiments on high-dimensional datasets, due to the large number of features and the limitations of device
memory, we do not use periodic activation. In the classification experiments with more than 10 classes, we use a code
length of 32, which means there are 32 paths in the encoder. Additionally, we observed that for certain datasets, simply
adjusting the output dimension of the pre-trained model and fine-tuning it can yield strong results (Feuer et al., 2024). Based
on validation set performance, we choose between ECOC and fine-tuning the output layer MLP approaches.

TabPFN and its variants. For TabPFN, we use the implementation from TALENT (Liu et al., 2024); For TuneTables, we
adopt the official code2 and use the prompt tuning mode without performing full model fine-tuning; For LocalPFN, since the
code has not been released, we replicate the hyperparameters provided in the original paper. Specifically, we set the number
of neighbors k = 1000. During our experiments, we found that fine-tuning LocalPFN with a smaller learning rate yields
better performance, so we set the learning rate to 1e-5; For MixturePFN, we reproduce the model using the hyperparameters
recommended in the original paper. The number of training samples in the prompt is set to B = 3000, and the number of
experts is set to the training set size divided by B, rounded up to the nearest integer.

Other Methods from TALENT. For the other methods in TALENT, we either use the results provided (Ye et al., 2024b) or
perform a hyperparameter search using the hyperparameters provided by TALENT. In the case of hyperparameter tuning, we
conduct 100 trials of hyperparameter search for each method3. For each search, we run the experiments using 15 different
seeds and report the average results across these runs.

C.5. Details of TabPFN

In the original TabPFN approach, the model processes the input data in two phases: pre-training and inference. The
pre-training phase involves training the model on synthetic data, while the inference phase is used to make predictions on
new, unseen data.

For the input, we consider a training dataset Dtrain = (Xtrain, ytrain), where Xtrain ∈ RNtrain×d represents the feature matrix,
and ytrain ∈ RNtrain represents the corresponding labels. Here, Ntrain denotes the number of training samples, and d is the
number of features. For datasets with fewer features than the fixed input dimensionality dmax, zero-padding is applied to
extend the feature vectors to the required size dmax. Specifically, each feature vector Xi ∈ Rd is padded with zeros to form
X̃i ∈ Rdmax , as follows:

X̃i = [Xi,0] ∈ Rdmax .

The zero-padded feature matrix X̃train is then used during inference for making predictions.

For inference, we consider a support set S containing the training examples and a query set Q containing the new, unseen
instances for which we wish to make predictions. The query set Q consists of Ntest test samples, and the goal is to predict
the corresponding labels ytest.

1https://github.com/automl/TabPFN/blob/tabpfn_v1/tabpfn/models_diff/prior_diff_real_checkpoint_n_0_epoch_42.cpkt
2https://github.com/penfever/TuneTables
3https://github.com/qile2000/LAMDA-TALENT/tree/main/LAMDA_TALENT/configs
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TabPFN uses PFN-style batching for inference, where both the support set S and query set Q are batched together into a
single prompt, which is then fed into the pre-trained model for prediction. This batching process allows the model to utilize
the support set as context for making predictions on the query set.

During the processing, the features of both the support set and the query set are transformed into token representations. The
support tokens Lsupport are obtained as:

Lsupport = X̃supportWx + ysupportw
T
y ,

where X̃support ∈ R|S|×dmax is the zero-padded feature matrix of the support set, Wx ∈ Rdmax×dtoken is the embedding matrix
for the features, and wy ∈ Rdtoken is the embedding matrix for the labels. The query tokens Lquery are similarly transformed
as:

Lquery = XqueryWx,

where Xquery ∈ R|Q|×dmax represents the query set of test samples.

These token representations are then passed through a standard transformer model, which includes a special attention
mechanism. The attention mask ensures that the support tokens can only attend to other support tokens, and query tokens
can attend to both the support tokens and themselves. Query tokens do not attend to other query tokens, preventing any
information leakage between query samples during inference. Finally, the output tokens corresponding to the test instances
are extracted and mapped to 10-class logits for classification.

C.6. Implementation of TabPFN-Bagging

TabPFN-Bagging is a variance reduction technique that leverages bootstrapped sampling to create diverse support sets
for model inference. Unlike standard ensemble approaches, which require training multiple independent models, TabPFN-
Bagging generates multiple resampled versions of Dtrain within a single inference process, reducing variance without
additional computational overhead.

Bootstrapped Sampling in TabPFN. Given a training dataset Dtrain = {(xi,yi)}Ntrain
i=1 , we generate K bootstrapped support

sets D(k)
train, where each set is constructed by randomly sampling Nsub instances with replacement:

D
(k)
train =

{(
x
(k)
i ,y

(k)
i

)}Nsub

i=1
, k = 1, . . . ,K. (8)

Each D
(k)
train serves as an alternative context set for model inference, introducing diversity into the prediction process.

Prediction Aggregation. For each test instance xq, we compute the posterior predictive distribution using the bootstrapped
support sets. Given the pre-trained TabPFN model parameterized by θ, the predictive probability for label yq is computed as:

p
(k)
θ (yq | xq, D

(k)
train) =

exp(qθ(xq, D
(k)
train)[yq])∑C

c=1 exp(qθ(xq, D
(k)
train)[c])

. (9)

where qθ denotes the logits produced by TabPFN for the given support set D(k)
train.

To obtain the final prediction, we aggregate the results across all bootstrapped support sets using either uniform averaging:

pθ(yq | xq, Dtrain) =
1

K

K∑
k=1

p
(k)
θ (yq | xq, D

(k)
train), (10)

or a weighted aggregation method, where weights wk are assigned based on the confidence of each individual model:

pθ(yq | xq, Dtrain) =

K∑
k=1

wkp
(k)
θ (yq | xq, D

(k)
train),

K∑
k=1

wk = 1. (11)
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Figure 6: The relative improvement of LocalPFN (Thomas
et al., 2024), MixturePFN (Xu et al., 2025), and BETA (Ours)
over TabPFN across 173 tabular datasets sorted by dataset
size (number of rows). The curves represent smoothed results
to better illustrate trends in performance improvement as
dataset size increases.
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Figure 7: Comparison of the mean accuracy across 12 classifi-
cation datasets with more than 10 classes. Since the original
TabPFN cannot process classification tasks with more
than ten categories, we compare BETA against alternative
methods, including TabM, KNN, MLP, XGBoost (XGB),
RandomForest (RForest), and ModernNCA (MNCA).

Computational Efficiency. Since bootstrapped sampling only modifies the selection of Dtrain without altering the model
architecture, TabPFN-Bagging incurs no additional computational cost beyond standard inference with ensemble. Unlike
ensemble-based methods that require multiple independent model evaluations, all computations occur within a single
forward pass of the pre-trained TabPFN. This makes TabPFN-Bagging an efficient and scalable variance reduction strategy.

D. Hardware and limitations
D.1. Hardware

Most of the experiments were performed with four NVIDIA 4090 GPUs and four NVIDIA A6000 GPUs.

D.2. Limitations

While our approach significantly improves the scalability and adaptability of TabPFN, it has certain limitations that present
opportunities for future research. Due to the current design of TabPFN, our method has been evaluated solely on classification
tasks, and extending it to regression tasks remains an open challenge. As tabular foundation models continue to evolve, we
anticipate that our approach can be adapted to support regression, broadening its applicability to a wider range of real-world
problems. Additionally, our experiments assume that training and test instances are drawn from the same underlying
distribution. However, in practical applications, distribution shifts such as covariate shift or concept drift may occur, which
could impact model performance. Addressing such shifts requires robust adaptation strategies or specialized training
techniques, which are beyond the scope of this work. Importantly, we emphasize that handling non-IID scenarios is not a
trivial extension of existing methods but rather a distinct challenge that necessitates dedicated research efforts. Future work
should explore how TabPFN-based models can be adapted to regression tasks and how their robustness to distributional
shifts can be enhanced to ensure broader applicability in real-world settings.

E. Additional Experiments
Scale to Large Datasets. We evaluated BETA and the variants of TabPFN on 173 tabular datasets, excluding those with
more than 100 features, which TabPFN cannot handle. These datasets were sorted by the number of rows in ascending
order, and the relative improvement of these methods over TabPFN was shown in Figure 6. The results clearly show that
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the performance improvement by BETA becomes more pronounced as the dataset size increases, highlighting the scalability
and effectiveness of our approach in handling larger datasets. Notably, on the largest datasets in the benchmark, LocalPFN
slightly outperforms BETA in terms of accuracy. However, on more other datasets, BETA demonstrates superior performance.

E.1. Performance on MultiClass Classification Tasks with More Than 10 Classes.

In addition, we further investigated the performance of BETA on classification tasks with more than 10 categories. We
selected 12 classification datasets with more than 10 classes from TALENT (Ye et al., 2024b) and compared BETA with other
methods. We report the mean accuracy of each method across the 12 datasets in Figure ?? and find that BETA outperforms
the compared methods, demonstrating its superiority on multiclass classification tasks with a larger number of categories.

E.2. Bias-Variance Analysis, Ablation Study, and Efficiency Comparison

To evaluate the effectiveness of BETA in addressing bias and variance, we conduct comprehensive experiments across
diverse dataset sizes. Our findings reveal that BETA consistently achieves lower generalization error than existing methods,
demonstrating robust performance regardless of dataset scale. Bias is effectively reduced through encoder-based fine-tuning,
aligning TabPFN with downstream data distributions, while variance reduction is achieved via Bagging and the introduction
of multiple encoders. Importantly, our method remains effective even on small datasets, where excessive fine-tuning may
otherwise increase bias. In addition, we perform an ablation study to examine the contributions of key components, including
the number of encoder paths, periodic activation, Batch Ensemble, and partial parameter tuning. Our results indicate that
each of these design elements plays a crucial role in enhancing BETA’s performance. Lastly, we compare the inference time
and parameter count of BETA against other methods to highlight its efficiency. A comprehensive analysis of bias-variance
trends, ablation experiments, and efficiency comparisons, including inference time and parameter count, is provided in
Appendix E.4, Appendix E.5, and Appendix E.6.

E.3. Performance on MultiClass Classification Tasks with More Than 10 Classes

To evaluate the effectiveness of BETA on multiclass classification tasks, we conducted experiments on 12 datasets containing
more than 10 classes, sourced from TALENT(Ye et al., 2024b). These datasets were selected to assess the scalability
and adaptability of different methods in handling more complex classification problems beyond the 10-class limitation of
TabPFN. Figure 7 presents the mean accuracy of each method across these datasets. We compare BETA against several
strong baselines, including KNN, XGBoost (Chen & Guestrin, 2016), RandomForest (Breiman, 2001), MLP (Gorishniy
et al., 2021), ModernNCA (Ye et al., 2025), and TabM (Gorishniy et al., 2025). All methods, including BETA, were evaluated
using their default hyperparameters without any tuning, ensuring a fair comparison of out-of-the-box performance.

From the results, BETA achieves the highest mean accuracy across all datasets, demonstrating superior generalization ability
in high-category classification settings. This advantage stems from our integration of the Error-Correcting Output Codes
(ECOC) framework, which effectively decomposes multiclass problems into multiple binary subproblems. This enables
TabPFN to handle classification tasks with more than 10 classes efficiently, without requiring significant modifications or
additional computational overhead. Notably, tree-based methods like XGBoost and RandomForest exhibit a decline in
performance as the number of categories increases.

E.4. Performance on Real Datasets: Bias and Variance

The generalization error of TabPFN can be attributed to two primary components: bias and variance. These components
are influenced by the model’s architecture, pretraining assumptions, and dataset characteristics. Mathematically, the
generalization error can be decomposed by analyzing the discrepancy between the model’s predictions, qθ(y | x,Dn), and
the true conditional distribution, p0(y | x). Specifically, it can be expressed as:

qθ (y | x,Dn)− p0(y | x) = qθ (y | x,Dn)− EDn∼pn
0
[qθ (y | x,Dn)]︸ ︷︷ ︸

Variance

+EDn∼pn
0
[qθ (y | x,Dn)]− p0(y | x)︸ ︷︷ ︸

Bias

.
(12)

Here, E[·] denotes the expectation over training datasets Dn sampled from the true distribution p0. Understanding these
error components is crucial for addressing the limitations of TabPFN and improving its performance across diverse tabular
datasets.

Revisiting the results shown in Figure 2, we observe several key phenomena that highlight the effectiveness of BETA in
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reducing generalization error across varying dataset sizes:

Lowest Generalization Error Across All Dataset Sizes: Our method consistently achieves the smallest generalization
error, demonstrating robust performance regardless of dataset size.

Impact of Fine-Tuning on Small Datasets: For small datasets (e.g., with only a few hundred samples), fine-tuning the
encoder may slightly increase bias. This occurs because the limited data volume can lead to overfitting during fine-tuning.

Mechanisms of Bias and Variance Reduction: The bias reduction is primarily attributed to the fine-tuned encoder, which
aligns TabPFN with the downstream dataset distribution, improving compatibility between the pre-trained model and the
target task. Variance reduction, on the other hand, is not solely due to Bagging. The learning of multiple encoders also
contributes significantly. When dataset sizes are small (e.g., fewer than 1000 samples), where each bootstrap sample covers
the entire training set, training multiple encoders still introduces diversity in representations, further reducing variance.

These findings highlight the effectiveness of BETA in addressing the bias-variance tradeoff, making it a robust and scalable
solution for real-world tabular learning.

E.5. Ablation Study

Influence of Encoder Path Count on Performance Improvement over TabPFN. Figure 6 (a) presents the results of an
ablation experiment designed to investigate the impact of different encoder path counts on the performance of the model.
The primary goal is to explore how the number of encoder paths influences the model’s relative improvement over TabPFN.
We display the relative improvement for various methods with different encoder path configurations. From the plot, we
observe that as the number of encoder paths (denoted by K) increases, the relative performance improvement of BETA over
TabPFN becomes more pronounced. This trend indicates that a higher number of encoder paths contributes positively to the
model’s ability to outperform TabPFN, suggesting that more encoder paths enhance the model’s expressive power and its
ability to capture more complex patterns in the data.

Impact of Periodic Activation, Batch Ensemble, and Partial Parameter Tuning on Model Performance. Figure 6 (b)
visualizes the effect of three key components—periodic activation, Batch Ensemble, and partial parameter tuning—on
the relative performance improvement of BETA over TabPFN. In this experiment, we compare the original BETA with
three variations: one without periodic activation, one without Batch Ensemble, and one with full parameter tuning. The
plot reveals that each of these components contributes positively to the model’s performance. Specifically, removing
any of these elements leads to a noticeable decline in relative improvement over TabPFN, highlighting that all parts are
essential for achieving the best performance. Notably, the variation without partial parameter tuning (PPT) shows the
highest upper-bound improvement, but it also incurs significantly higher computational costs. Moreover, the median relative
improvement decreases compared to BETA , further emphasizing the superior efficiency of our approach. This suggests
that periodic activation, Batch Ensemble, and partial parameter tuning each play a crucial role in enhancing the model’s
ability to outperform TabPFN, and the absence of any of these components compromises the model’s ability to leverage
its full potential while also increasing computational resource usage.

E.6. Comparison of inference time and the number of learnable parameters.

We compared the inference time (in seconds) of BETA with other methods, as well as the average rank in the main experiment.
Additionally, the number of learnable parameters was roughly estimated by the size of the stored checkpoint. The results
confirm that BETA not only delivers state-of-the-art classification accuracy but also maintains low inference time and reduced
memory overhead, making it highly scalable and efficient for various tabular classification tasks.

Table 3: Comparison of Inference Time, Average Rank, and Number of Learnable Parameters. All metrics are computed as
the mean values across multiple datasets.

Metric BETA TabPFN LocalPFN MixturePFN FT-T TabR
Inference Time (s) 0.91 0.78 12.51 3.24 0.36 0.38
Average Rank 6.76 15.63 12.15 12.86 13.27 9.26
Checkpoint Size (MB) 0.60 0 98.65 21.42 7.15 14.07
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Figure 8: (a) The box plot demonstrates the effect of varying the number of encoder paths, K, on the relative improvement
over TabPFN. The horizontal axis represents the relative improvement in performance, while the vertical axis lists numbers
of different encoder path settings; (b) This box plot illustrates the effect of different components—periodic activation
(PA), Batch Ensemble (BE), and partial parameter tuning (PPT)—on the relative improvement of BETA over TabPFN.
The plot compares the original BETAmodel with three variations: (1) BETA with partial parameter tuning (w/o PPT),
(2) BETA without periodic activation (w/o PA), and (3) BETA without Batch Ensemble (w/o BE).

E.7. Visialzation results

To gain deeper insights into the properties of BETA, we visualize the learned embeddings EΦ(x) for BETA, MLP, Mod-
ernNCA, and TabR using T-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 9, we present the embeddings of
three datasets (Bank, KDD, and Spambase), comparing different methods as well as the representations learned by different
encoder paths within BETA.

All deep tabular methods effectively transform the feature space, making it more conducive for classification compared to
raw input features. MLP produces well-separated clusters, grouping same-class samples into distinct, compact regions. In
contrast, TabR and ModernNCA form multiple clusters for the same class, positioning similar samples closer to each other
while maintaining local class separability. Unlike these methods, BETA does not enforce strict clustering of same-class
samples into single compact groups. This behavior aligns with TabPFN’s pretraining paradigm, where the model does not
require fully separable embeddings to make accurate predictions.

Moreover, we observe that different encoder paths in BETA map raw features into diverse representation spaces, contributing
to variance reduction and improved robustness. The variation among encoder paths enhances the diversity of the
learned representations, which is a key factor in BETA’s superior generalization. The visualization further confirms
that BETA preserves the flexibility of the feature space while effectively adapting to downstream classification tasks.
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(a) Bank Raw Feature (b) Bank MLP (c) Bank ModernNCA (d) Bank TabR

(e) Bank BETA 1 (f) Bank BETA 2 (g) Bank BETA 3 (h) Bank BETA 4

(a) KDD Raw Feature (b) KDD MLP (c) KDD ModernNCA (d) KDD TabR

(e) KDD BETA 1 (f) KDD BETA 2 (g) KDD BETA 3 (h) KDD BETA 4

(a) Spambase Raw Feature (b) Spambase MLP (c) Spambase ModernNCA (d) Spambase TabR

(e) Spambase BETA 1 (f) Spambase BETA 2 (g) Spambase BETA 3 (h) Spambase BETA 4

Figure 9: Visualization of the embedding space of different methods.
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