
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

TabPFN Unleashed: A Scalable and Effective Solution to
Tabular Classification Problems

Anonymous Authors1

Abstract
TabPFN has emerged as a promising in-context
learning model for tabular data, capable of di-
rectly predicting the labels of test samples given
labeled training examples. It has demonstrated
competitive performance, particularly on small-
scale classification tasks. However, despite its
effectiveness, TabPFN still requires further refine-
ment in several areas, including handling high-
dimensional features, aligning with downstream
datasets, and scaling to larger datasets. In this
paper, we revisit existing variants of TabPFN
and observe that most approaches focus either
on reducing bias or variance, often neglecting
the need to address the other side, while also
increasing inference overhead. To fill this gap,
we propose BETA (Bagging and Encoder-based
Fine-tuning for TabPFN Adaptation), a novel and
effective method designed to minimize both bias
and variance. To reduce bias, we introduce a
lightweight encoder to better align downstream
tasks with the pre-trained TabPFN. By increas-
ing the number of encoders in a lightweight man-
ner, BETA mitigate variance, thereby further im-
proving the model’s performance. Additionally,
bootstrapped sampling is employed to further
reduce the impact of data perturbations on the
model, all while maintaining computational effi-
ciency during inference. Our approach enhances
TabPFN’s ability to handle high-dimensional data
and scale to larger datasets. Experimental results
on over 200 benchmark classification datasets
demonstrate that BETA either outperforms or
matches state-of-the-art methods.

1. Introduction
Tabular data is one of the most widely used data formats
across various domains, including finance (Cao & Tay,
2001), healthcare (Hassan et al., 2020), e-commerce (Ned-
erstigt et al., 2014), and medical analysis (Schwartz et al.,
2007; Subasi, 2012). Despite its ubiquity, modeling tabular
data with deep learning methods remains a challenge due

to its heterogeneous nature (Borisov et al., 2024). Yet re-
cent advancements have led to the development of tabular
foundation models (van Breugel & van der Schaar, 2024) ,
such as TabPFN (Tabular Prior-Fitted Networks) (Hollmann
et al., 2023; 2025). TabPFN operates in two stages: pre-
training and inference. During the pre-training stage, the
model is pre-trained on a diverse set of synthetic datasets.
In the inference stage, given a new task and a set of labeled
examples as a “prompt,” TabPFN directly predicts the labels
of test samples using in-context learning, without requiring
further parameter updates. This approach enables TabPFN
to achieve performance comparable to or even surpass tree-
based methods, particularly on small tabular datasets (McEl-
fresh et al., 2023).

TabPFN has shown potential across a wide range of applica-
tions, including tabular data generation (Ma et al., 2024a),
data augmentation (Margeloiu et al., 2024), and time series
forecasting (Hoo et al., 2025). These use cases highlight the
versatility of TabPFN, positioning it as a model worthy of
further exploration. However, alongside application-driven
studies, there is a growing interest in improving TabPFN’s
performance from various perspectives (Feuer et al., 2024;
Thomas et al., 2024; Xu et al., 2025; den Breejen et al.,
2024; Ma et al., 2024b). While previous research has re-
ported performance improvements, the underlying reasons
driving these gains remain unclear. These advancements
are often fragmented, with each approach focusing on a
specific aspect, and some methods even sacrifice efficiency
for enhanced performance, without a comprehensive under-
standing of how to improve TabPFN systematically.

In this paper, we adopt the bias-variance decomposition
framework introduced by Nagler (2023) to analyze the gen-
eralization error of TabPFN and its variants. This frame-
work allows us to revisit and categorize existing methods,
revealing that performance improvements typically arise
from addressing either bias or variance. However, these
approaches often neglect the other aspect, leading to subop-
timal performance. Therefore, there is a need for a method
that simultaneously addresses both bias and variance to im-
prove performance.

To this end, we propose a novel, efficient, and scalable
approach, BETA. Our method enhances TabPFN’s per-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

formance by introducing a fine-tuning stage, enabling
parameter-efficient adaptation that aligns the downstream
dataset distribution with the pre-trained TabPFN to mitigate
bias. To further reduce variance BETA maps raw data into
multiple latent spaces and employs computationally efficient
bootstrapped sampling during inference. Beyond perfor-
mance improvements, BETA offers a lightweight and scal-
able solution that effectively handles high-dimensional data
and large datasets while maintaining inference efficiency.

BETA improves performance by refining both the fine-tuning
and inference stages to reduce bias and variance. In the fine-
tuning phase, we employ a lightweight encoder module as
an input feature adapter, which transforms datasets with
arbitrary dimensionality into multiple fixed-dimensional
representations, thereby naturally enabling dimensionality
reduction. To further enhance generalization, we integrate
Batch Ensemble (Wen et al., 2020; Gorishniy et al., 2025)
to increase the number of encoders in a lightweight man-
ner, which introduces diversity in learned representations
and reduces variance. These enhancements enable BETA to
improve robustness and scalability, ensuring better adap-
tation to downstream datasets. In the inference phase, we
introduce bootstrapped sampling, a technique that has been
largely overlooked in previous TabPFN variants. By gener-
ating multiple subsets of the dataset as support sets for the
context composition, BETA reduces variance and improves
robustness. Furthermore, BETA seamlessly integrates with
Error-Correcting Output Codes (ECOC) to effectively han-
dle multiclass classification tasks with more than 10 classes.

Experimental results on multiple benchmark datasets, in-
cluding over 200 classification tasks, demonstrate that our
method significantly improves TabPFN’s performance. We
describe our main contributions below.

1. We introduce an adaptation method for TabPFN that
addresses key limitations related to dataset size, high-
dimensional features, and multiclass classification tasks.

2. By analyzing the generalization error of existing TabPFN
variants through bias-variance decomposition and exper-
iments on real-world datasets, we developed BETA, a
method that effectively mitigates both bias and variance.

3. We achieve state-of-the-art performance on the largest
benchmark datasets to date, demonstrating the robustness
and scalability of our method for real-world tabular tasks.

Remark. We have noticed that the latest release of TabPFN-
v2 (Hollmann et al., 2025) has partially alleviated some of
the limitations previously discussed. Specifically, TabPFN-
v2 incorporates design improvements that enable it to handle
larger datasets and more features. However, it is important to
highlight that TabPFN-v2 is a concurrent work, and while it
partially mitigates these limitations, it does not fully resolve
the challenges posed by dataset size and feature count. Thus,
many of the improvements proposed in this paper are gen-

eral enhancements that can complement TabPFN-v2 and po-
tentially further its applicability to a broader range of tasks.

2. BETA

To address both bias and variance issues of TabPFN ob-
served during the previous experiments, we propose a uni-
fied strategy for improving the performance of TabPFN. In
addition to the inference stage, we introduce a fine-tuning
stage. Our approach improves performance in both fine-
tuning and inference, as shown in Figure 1. During fine-
tuning, we refine input representations to better align the
downstream data distribution with the pre-trained TabPFN,
reducing both bias and variance. In the inference stage, we
incorporate bootstrapped sampling to further reduce vari-
ance without additional computational overhead.

Minimizing Bias with Encoder-Based Fine-Tuning. Our
analysis in subsection B.3 highlights the importance of min-
imizing bias for improved generalization. To achieve this,
we introduce a lightweight encoder while keeping the pre-
trained TabPFN parameters frozen. This encoder transforms
raw input features into a latent space that better aligns the
model’s prior with the downstream data distribution.

Let xi ∈ Rd denote the raw feature vector, and let EΦ

represent the encoder with parameters Φ. To enhance ex-
pressiveness and incorporate nonlinearity, these layers are
constructed using a sequence of operations as described
by Gorishniy et al. (2021):

EΦ(x) = Linear (Dropout (ReLU (Linear (x)))) . (1)

This transformation can be extended by stacking multiple
such blocks, allowing the encoder to learn hierarchical rep-
resentations suited for complex downstream tasks.

Given a query set Xq and a support set (Xs,ys), we define
their respective latent representations as:

Zq = EΦ(Xq), Zs = EΦ(Xs). (2)

The posterior predictive distribution over the query labels is
then expressed as:

qθ (yq | Zq, (Zs,ys)) . (3)

This formulation ensures that the encoder effectively maps
raw features into a structured space, enabling TabPFN to
better capture relevant patterns while mitigating bias.

This fine-tuning method provides a lightweight and effec-
tive approach to reduce bias by better aligning the model’s
prior with the downstream tasks. It enables end-to-end
fine-tuning, facilitating a more efficient adaptation of the
pre-trained TabPFN to the downstream tasks.

Mitigating Variance with Multiple Encoders. To further
mitigate variance, we introduce multiple encoders, each

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

E1(Xq)

E1(Xs)

Xq

Xs

TabPFN

Loss1
Loss2

Loss3

Loss

Train Set

Encoder E

Query Set

Support Set

Xq

Xs

Repeat

Repeat

Fine-tuning Stage

E1(Xtest)

Xs
1

Xtest

E1(Xs
1)

Mean

TabPFN

Train Set

Test Set

Support Set (Bagging)

Xtest

Repeat

Inference Stage

: Frozen: Trainable : Element-wise add: Concatenate

ys ys ys

ys
1 ys

2 ys
3

𝑦 1 𝑦 2 𝑦 3

𝑦 1 𝑦 2 𝑦 3

Encoder E

Figure 1: Overview of the proposed method, BETA, which consists of the fine-tuning stage and the inference stage.

learning a distinct transformation of the input data. By
jointly training these encoders while keeping the pre-trained
TabPFN parameters θ frozen, the model captures diverse
feature representations, reducing variance.

For each encoderk, the support and query set representations
are encoded as follows:

Z(k)
s =

[
E

(k)
Φ (x(i)

s)
]Ns

i=1
, Z(k)

q =
[
E

(k)
Φ (x(i)

q)
]Nq

i=1
,

where Ns and Nq denote the number of samples in the
support set and the query set, respectively. The multiple
encoders are trained jointly by minimizing the sum of the
individual losses across all encoders. The optimization
objective for the fine-tuning phase is:

min
Φ

Ltotal = −
K∑

k=1

log
(
qθ

(
yq | Z(k)

q ,
(
Z(k)

s ,ys

)))
.

(4)
Minimizing Ltotal in Equation 4 jointly trains all encoders
to generate TabPFN-compatible latent representations, with
the different encoder initializations encouraging diverse rep-
resentations and thereby reducing variance and providing
more stable predictions.

Enhancing Performance with Batch Ensemble for Com-
putational Efficiency. To further enhance performance
without introducing additional computational cost, we inte-
grate the Batch Ensemble technique into the encoder. Specif-
ically, we replace the linear layers in EΦ with Batch En-
semble versions, allowing the model to maintain diversity
while avoiding the overhead of training multiple indepen-
dent encoders. This technique introduces shared weight

matrices and member-specific scaling factors, reducing the
number of trainable parameters while preserving the benefits
of ensembling.

The output of the k-th base model for encoder layer l is
given by:

lk(x) = sk ⊙ (W (rk ⊙ x)) + bk (5)

where W is shared across all base models, and rk, sk, bk
are specific to each base model (Wen et al., 2020).

Bootstrapped Sampling for Variance Reduction in Infer-
ence Stage. To further reduce variance during inference, we
apply bootstrapped sampling, generating random subsets of
the training set as support sets. These are used to compute
predictions across multiple encoders, and their aggregation
stabilizes the final output without additional computational
overhead. For each encoder k, the bootstrapped support set
is D(k)

bootstrap = (X
(k)
bootstrap,Y

(k)
bootstrap). The final prediction is

obtained by averaging over all encoders:

ŷ =
1

K

K∑
k=1

qθ

(
EΦ(xtest),

(
E

(k)
Φ (X

(k)
bootstrap),Y

(k)
bootstrap

))
.

This approach reduces variance while maintaining computa-
tional efficiency, ensuring scalability and robustness.

Expanding to MultiClass Tasks Beyond 10 Classes. To
address TabPFN’s limitation in handling tasks with more
than 10 classes, we integrate an Error-Correcting Output
Code (ECOC) (Dietterich & Bakiri, 1995) strategy. Instead
of training separate classifiers, distinct encoders within a sin-
gle model handle individual binary classification tasks, en-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

1357911131517192123252729

Beta(Ours)

TabR

MNCA

RealMLP

CatB

LightG

LocalPFN

TabM

XGB

MixturePFN
FT-T

MLP-PLR

knnPFN

ResNet
DCNv2

RForest

AutoInt

MLP

TuneTables

TabPFN

SNN

ExcelF

DANets

NODE

TabT

KNN

SVM

GrowNet

TabNet

12

Figure 2: The critical difference diagrams based on the
Wilcoxon-Holm test with a significance level of 0.05 to de-
tect pairwise significance for TALENT datasets with fewer
than 10 classes.

abling efficient multiclass classification without additional
computational overhead.

Summary of Our Approach. Our method reduces bias
using a lightweight encoder to align input representations
with the pre-trained TabPFN, which is effective for high-
dimensional data. Variance is reduced through Bagging
with bootstrapped sampling, enabling better generalization
on large datasets. For multiclass tasks, we integrate
Error-Correcting Output Codes (ECOC) to efficiently
handle more than two classes. Additionally, we preserve
PFN-style batching, ensuring inference efficiency and
scalability for large-scale and high-dimensional datasets.

3. Experiments
3.1. BETA: State-of-the-Art Performance

We conducted pairwise significance testing using the
Wilcoxon-Holm test (Demsar, 2006) among BETA and all
the compared methods. To ensure a fair comparison, we
selected 186 datasets from TALENT with fewer than 10
classes, as TabPFN and its variants are not capable of han-
dling datasets with more than 10 classes. From Figure 2,
it is evident that BETA outperforms other methods, even
without hyper-parameter tuning. This includes methods
based on nearest neighbors such as TabR and ModernNCA,
ensemble-based approaches like TabM, traditional tree mod-
els, and other TabPFN variants. These results underscore the
significant potential of pre-trained models for tabular data
and demonstrate the effectiveness of our proposed method
in adapting to downstream datasets.

Handling High-Dimensional Datasets. To assess the ef-
fectiveness of BETA on high-dimensional datasets, we con-
ducted experiments on 20 datasets with extremely high fea-

2 3 4 5 6 7
Average Rank

KNN

MNCA

XGB

Pgate

TabM

RForest

MLP

Beta

M
et

ho
ds

6.85

6.24

4.50

4.42

4.03

3.75

3.50

2.62

Figure 3: Average ranks of methods on 17 high-dimensional
datasets. We compare BETA with TabM, KNN, MLP,
XGBoost (XGB), RandomForest (RForest), ProtoGate
(Pgate) (Jiang et al., 2024), and ModernNCA (MNCA).
Lower ranks indicate better performance.

ture dimensions, as detailed in Table 2. These datasets were
selected to evaluate the scalability and adaptability of differ-
ent methods in complex feature spaces. The average ranks
of the compared methods are summarized in Figure 3. The
results show that BETA achieves the best performance, at-
taining the lowest average rank and outperforming all other
methods. TabM and MLP also demonstrate competitive
results, ranking second and third, respectively. In contrast,
traditional models such as RandomForest and XGBoost,
as well as deep learning-based ModernNCA, exhibit lower
ranks, highlighting their limitations in high-dimensional set-
tings. Due to memory constraints, we were unable to com-
pare with methods such as FT-T and TabR in this setting.

4. Conclusion
In this paper, we propose BETA, a novel approach that
enhances the performance of TabPFN by simultaneously
addressing both bias and variance. Through a combination
of lightweight encoder-based fine-tuning and bootstrapped
sampling, BETA significantly improves TabPFN’s adaptabil-
ity to high-dimensional, large-scale, and multiclass clas-
sification tasks. Our method efficiently reduces bias by
aligning downstream data distributions with the pre-trained
TabPFN and reduces variance through diverse latent rep-
resentations and robust inference techniques. Experimen-
tal results on over 200 benchmark datasets demonstrate
that BETA consistently outperforms or matches state-of-the-
art methods, highlighting its potential to handle complex
tabular data tasks with enhanced scalability and robustness.
These contributions provide a scalable and effective solution
for leveraging TabPFN in real-world applications, ensuring
its success across a broad range of tabular data challenges.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

References
Aghajanyan, A., Gupta, S., and Zettlemoyer, L. Intrin-

sic dimensionality explains the effectiveness of language
model fine-tuning. In ACL/IJCNLP (1), pp. 7319–7328.
Association for Computational Linguistics, 2021.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In KDD, pp. 2623–2631, 2019.

Alan, J., Tennison, L., Jonathan, C., Fergus, I., and van der
Schaar Mihaela. Tangos: Regularizing tabular neural
networks through gradient orthogonalization and special-
ization. In ICLR, 2023.

Arik, S. Ö. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. In AAAI, pp. 6679–6687, 2021.

Badirli, S., Liu, X., Xing, Z., Bhowmik, A., and Keerthi,
S. S. Gradient boosting neural networks: Grownet. CoRR,
abs/2002.07971, 2020.

Barry, B. and Ronny, K. Adult. UCI Machine Learning
Repository, 1996.

Basri, R., Galun, M., Geifman, A., Jacobs, D. W., Kasten,
Y., and Kritchman, S. Frequency bias in neural networks
for input of non-uniform density. In ICML, pp. 685–694,
2020.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions Neural Networks and
Learning Systems, 35(6):7499–7519, 2024.

Breiman, L. Random forests. Machine Learning, 45(1):
5–32, 2001.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In NeurIPS, pp. 1877–1901,
2020.

Cao, L. and Tay, F. E. H. Financial forecasting using support
vector machines. Neural Computing and Applications,
10(2):184–192, 2001.

Chen, J., Liao, K., Wan, Y., Chen, D. Z., and Wu, J. Danets:
Deep abstract networks for tabular data classification and
regression. In AAAI, pp. 3930–3938, 2022.

Chen, J., Liao, K., Fang, Y., Chen, D., and Wu, J. Tabcaps:
A capsule neural network for tabular data classification
with bow routing. In ICLR, 2023a.

Chen, J., Zhang, A., Shi, X., Li, M., Smola, A., and Yang, D.
Parameter-efficient fine-tuning design spaces. In ICLR,
2023b.

Chen, J., Yan, J., Chen, Q., Chen, D. Z., Wu, J., and Sun,
J. Can a deep learning model be a sure bet for tabular
prediction? In KDD, pp. 288–296, 2024.

Chen, K.-Y., Chiang, P.-H., Chou, H.-R., Chen, T.-W., and
Chang, T.-H. Trompt: Towards a better deep neural
network for tabular data. In ICML, pp. 4392–4434, 2023c.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In KDD, pp. 785–794, 2016.

Demsar, J. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7:
1–30, 2006.

den Breejen, F., Bae, S., Cha, S., and Yun, S. Why in-
context learning transformers are tabular data classifiers.
CoRR, abs/2405.13396, 2024.

Dietterich, T. G. and Bakiri, G. Solving multiclass learning
problems via error-correcting output codes. Journal of
Artificial Intelligence Research, 2:263–286, 1995.

Feuer, B., Hegde, C., and Cohen, N. Scaling tabpfn: Sketch-
ing and feature selection for tabular prior-data fitted net-
works. CoRR, abs/2311.10609, 2023.

Feuer, B., Schirrmeister, R. T., Cherepanova, V., Hegde,
C., Hutter, F., Goldblum, M., Cohen, N., and White, C.
Tunetables: Context optimization for scalable prior-data
fitted networks. CoRR, abs/2402.11137, 2024.

Fu, Z., Yang, H., So, A. M., Lam, W., Bing, L., and Collier,
N. On the effectiveness of parameter-efficient fine-tuning.
In AAAI, pp. 12799–12807, 2023.

Gardner, J., Perdomo, J. C., and Schmidt, L. Large scale
transfer learning for tabular data via language modeling.
CoRR, abs/2406.12031, 2024.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting deep learning models for tabular data. In
NeurIPS, pp. 18932–18943, 2021.

Gorishniy, Y., Rubachev, I., and Babenko, A. On embed-
dings for numerical features in tabular deep learning. In
NeurIPS, pp. 24991–25004, 2022.

Gorishniy, Y., Rubachev, I., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., and Babenko, A. Tabr: Tabular deep
learning meets nearest neighbors in 2023. In ICLR, 2024.

Gorishniy, Y., Kotelnikov, A., and Babenko, A. Tabm:
Advancing tabular deep learning with parameter-efficient
ensembling. In ICLR, 2025.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on typical
tabular data? In NeurIPS, pp. 507–520, 2022.

Han, Z., Gao, C., Liu, J., Zhang, J., and Zhang, S. Q.
Parameter-efficient fine-tuning for large models: A com-
prehensive survey. CoRR, abs/2403.14608, 2024.

Hassan, M. R., Al-Insaif, S., Hossain, M. I., and Kamruz-
zaman, J. A machine learning approach for prediction
of pregnancy outcome following IVF treatment. Neural
Computing and Applications, 32(7):2283–2297, 2020.

He, H., Cai, J., Zhang, J., Tao, D., and Zhuang, B.
Sensitivity-aware visual parameter-efficient fine-tuning.
In ICCV, pp. 11791–11801. IEEE, 2023.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F.
Tabpfn: A transformer that solves small tabular classifi-
cation problems in a second. In ICLR, 2023.

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A.,
Körfer, M., Hoo, S. B., Schirrmeister, R. T., and Hutter,
F. Accurate predictions on small data with a tabular
foundation model. Nature, 01 2025.

Holzmüller, D., Grinsztajn, L., and Steinwart, I. Better
by default: Strong pre-tuned mlps and boosted trees on
tabular data. In NeurIPS, 2024.

Hoo, S. B., Müller, S., Salinas, D., and Hutter, F. The
tabular foundation model tabpfn outperforms specialized
time series forecasting models based on simple features.
CoRR, abs/2501.02945, 2025.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In ICML, pp. 2790–2799, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In ICLR, 2022.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. S.
Tabtransformer: Tabular data modeling using contextual
embeddings. CoRR, abs/2012.06678, 2020.

Jiang, X., Margeloiu, A., Simidjievski, N., and Jamnik, M.
Protogate: Prototype-based neural networks with global-
to-local feature selection for tabular biomedical data. In
ICML, 2024.

Kasneci, G. and Kasneci, E. Enriching tabular data with
contextual LLM embeddings: A comprehensive ablation
study for ensemble classifiers. CoRR, abs/2411.01645,
2024.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In NIPS, pp. 3146–3154,
2017.

Kim, M. J., Grinsztajn, L., and Varoquaux, G. CARTE:
pretraining and transfer for tabular learning. In ICML, pp.
23843–23866, 2024.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.
Self-normalizing neural networks. In NIPS, pp. 971–980,
2017.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In EMNLP (1), pp.
3045–3059. Association for Computational Linguistics,
2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. In ACL/IJCNLP (1), pp. 4582–
4597. Association for Computational Linguistics, 2021.

Lialin, V., Deshpande, V., and Rumshisky, A. Scaling down
to scale up: A guide to parameter-efficient fine-tuning.
CoRR, abs/2303.15647, 2023.

Liu, L., Fard, M. M., and Zhao, S. Distribution embed-
ding networks for generalization from a diverse set of
classification tasks. Transactions on Machine Learning
Research, 2022, 2022.

Liu, S., Cai, H., Zhou, Q., and Ye, H. TALENT: A tabular
analytics and learning toolbox. CoRR, abs/2407.04057,
2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Ma, J., Dankar, A., Stein, G., Yu, G., and Caterini, A. L.
Tabpfgen - tabular data generation with tabpfn. CoRR,
abs/2406.05216, 2024a.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. Tabdpt: Scaling tabular foundation
models. CoRR, abs/2410.18164, 2024b.

Ma, J., Thomas, V., Yu, G., and Caterini, A. L. In-context
data distillation with tabpfn. CoRR, abs/2402.06971,
2024c.

Mao, Y., Mathias, L., Hou, R., Almahairi, A., Ma, H., Han,
J., Yih, S., and Khabsa, M. Unipelt: A unified framework
for parameter-efficient language model tuning. In ACL
(1), pp. 6253–6264, 2022.

Margeloiu, A., Bazaga, A., Simidjievski, N., Liò, P., and
Jamnik, M. Tabmda: Tabular manifold data augmenta-
tion for any classifier using transformers with in-context
subsetting. CoRR, abs/2406.01805, 2024.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

McElfresh, D. C., Khandagale, S., Valverde, J., C., V. P.,
Ramakrishnan, G., Goldblum, M., and White, C. When
do neural nets outperform boosted trees on tabular data?
In NeurIPS, pp. 76336–76369, 2023.

Nagler, T. Statistical foundations of prior-data fitted net-
works. In ICML, pp. 25660–25676, 2023.

Nederstigt, L. J., Aanen, S. S., Vandic, D., and Frasincar,
F. Floppies: a framework for large-scale ontology pop-
ulation of product information from tabular data in e-
commerce stores. Decision Support Systems, 59:296–311,
2014.

Popov, S., Morozov, S., and Babenko, A. Neural oblivious
decision ensembles for deep learning on tabular data. In
ICLR, 2020.

Prokhorenkova, L. O., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. Catboost: unbiased boosting with
categorical features. In NeurIPS, pp. 6639–6649, 2018.

S., M., P., R., and P., C. Bank Marketing. UCI Machine
Learning Repository, 2014.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E. L., Ghasemipour, S. K. S., Lopes, R. G., Ayan,
B. K., Salimans, T., Ho, J., Fleet, D. J., and Norouzi, M.
Photorealistic text-to-image diffusion models with deep
language understanding. In NeurIPS, pp. 36479–36494,
2022.

Schwartz, L. M., Woloshin, S., and Welch, H. G. The drug
facts box: providing consumers with simple tabular data
on drug benefit and harm. Medical Decision Making, 27
(5):655–662, 2007.

Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., and
Tang, J. Autoint: Automatic feature interaction learning
via self-attentive neural networks. In CIKM, pp. 1161–
1170, 2019.

Subasi, A. Medical decision support system for diagnosis
of neuromuscular disorders using dwt and fuzzy support
vector machines. Computers in Biology and Medicine,
42(8):806–815, 2012.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. CoRR, abs/2406.05207,
2024.

Valipour, M., Rezagholizadeh, M., Kobyzev, I., and Ghodsi,
A. Dylora: Parameter-efficient tuning of pre-trained mod-
els using dynamic search-free low-rank adaptation. In
EACL, pp. 3266–3279, 2023.

van Breugel, B. and van der Schaar, M. Position: Why
tabular foundation models should be a research priority.
In ICML, 2024.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Wang, R., Fu, B., Fu, G., and Wang, M. Deep & cross
network for ad click predictions. In ADKDD, 2017.

Wang, R., Shivanna, R., Cheng, D. Z., Jain, S., Lin, D.,
Hong, L., and Chi, E. H. DCN V2: improved deep &
cross network and practical lessons for web-scale learning
to rank systems. In WWW, pp. 1785–1797, 2021.

Wang, Z. and Sun, J. Transtab: Learning transferable tabular
transformers across tables. In NeurIPS, pp. 2902–2915,
2022.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alternative
approach to efficient ensemble and lifelong learning. In
ICLR, 2020.

Wu, J., Chen, S., Zhao, Q., Sergazinov, R., Li, C., Liu, S.,
Zhao, C., Xie, T., Guo, H., Ji, C., Cociorva, D., and Brun-
zell, H. Switchtab: Switched autoencoders are effective
tabular learners. In AAAI, pp. 15924–15933, 2024.

Xu, D., Cirit, O., Asadi, R., Sun, Y., and Wang, W. Mixture
of in-context prompters for tabular pfns. In ICLR, 2025.

Yan, J., Zheng, B., Xu, H., Zhu, Y., Chen, D. Z., Sun, J.,
Wu, J., and Chen, J. Making pre-trained language models
great on tabular prediction. In ICLR, 2024.

Yang, Y., Wang, Y., Liu, G., Wu, L., and Liu, Q. Unitabe:
A universal pretraining protocol for tabular foundation
model in data science. In ICLR, 2024.

Ye, H., Zhou, Q., and Zhan, D. Training-free generalization
on heterogeneous tabular data via meta-representation.
CoRR, abs/2311.00055, 2023.

Ye, H., Fan, W., Song, X., Zheng, S., Zhao, H., dan Guo, D.,
and Chang, Y. Ptarl: Prototype-based tabular representa-
tion learning via space calibration. In ICLR, 2024a.

Ye, H., Liu, S., Cai, H., Zhou, Q., and Zhan, D. A closer look
at deep learning on tabular data. CoRR, abs/2407.00956,
2024b.

Ye, H.-J., Yin, H.-H., and Zhan, D.-C. Modern neighbor-
hood components analysis: A deep tabular baseline two
decades later. In ICLR, 2025.

Zhang, J. O., Sax, A., Zamir, A., Guibas, L. J., and Malik, J.
Side-tuning: A baseline for network adaptation via addi-
tive side networks. In ECCV (3), volume 12348 of Lecture
Notes in Computer Science, pp. 698–714. Springer, 2020.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

Zhou, Q.-L., Ye, H.-J., Wang, L., and Zhan, D.-C. Unlock-
ing the transferability of tokens in deep models for tabular
data. CoRR, abs/2310.15149, 2023.

Zhu, B., Shi, X., Erickson, N., Li, M., Karypis, G., and
Shoaran, M. Xtab: Cross-table pretraining for tabular
transformers. In ICML, pp. 43181–43204, 2023.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

The Appendix consists of four sections:

1. Appendix A: Related work.

2. Appendix B: Preliminary.

3. Appendix C: Datasets and implementation details.

4. Appendix D: Hardware and limitations.

5. Appendix E: Additional experiments

A. Related Work
A.1. Tabular Data Learning

Tabular data is one of the most widely used dataset types in machine learning. Gradient-boosted decision trees
(GBDTs) (Chen & Guestrin, 2016; Prokhorenkova et al., 2018; Ke et al., 2017), remain a strong baseline for tabular tasks
due to their efficiency and high performance. As an ensemble-based method, GBDTs construct multiple decision trees to
iteratively minimize the residual loss. With the advancement of deep learning, an increasing number of studies have explored
using deep learning methods for tabular data prediction. These approaches include MLP variants (Klambauer et al., 2017;
Gorishniy et al., 2021; 2022; Holzmüller et al., 2024), neural networks specifically designed for tabular structures (Wang
et al., 2017; 2021; Chen et al., 2023a), attention-based models (Song et al., 2019; Huang et al., 2020; Gorishniy et al., 2021;
Chen et al., 2024), methods incorporating regularization (Ye et al., 2024a; Alan et al., 2023; Wu et al., 2024), tree-mimic
methods (Arik & Pfister, 2021; Popov et al., 2020; Badirli et al., 2020), and context-based methods (Gorishniy et al., 2024;
Ye et al., 2025). Despite these advancements, recent benchmarks (Grinsztajn et al., 2022; McElfresh et al., 2023; Ye et al.,
2024b) have consistently demonstrated that gradient-boosted decision trees (GBDTs) outperform deep learning in tabular
prediction tasks. The superior performance of GBDTs can be attributed to two main factors: (1) their ability to handle
heterogeneous tabular datasets, which often describe high-frequency target functions (Basri et al., 2020; Grinsztajn et al.,
2022), and (2) the ensemble nature of GBDTs. Prior attempts to introduce ensemble-like mechanisms into tabular deep
learning (Badirli et al., 2020; Popov et al., 2020; Chen et al., 2023c), have not been widely successful (Grinsztajn et al.,
2022; Ye et al., 2024b). However, recent works like TabM (Gorishniy et al., 2025) integrate Batch Ensemble (Wen et al.,
2020) techniques into the tabular domain, showing how efficient ensembling can be achieved with deep learning models.

A.2. Tabular Foundation Models

While tabular foundation models (TFMs) are not as developed as foundation models in other domains, such as computer
vision (Saharia et al., 2022) and natural language processing (Brown et al., 2020), recent efforts have introduced various
architectures to bridge this gap (van Breugel & van der Schaar, 2024). Some approaches aim to explore model components
that can be shared across datasets (Liu et al., 2022; Zhu et al., 2023), while others focus on utilizing the semantic information
inherent in tabular datasets (Wang & Sun, 2022; Yan et al., 2024; Gardner et al., 2024; Kim et al., 2024; Yang et al.,
2024; Kasneci & Kasneci, 2024). As a Transformer-based model, TabPFN (Hollmann et al., 2023; 2025) stands out
for its exceptional performance and efficiency on small datasets. By leveraging the in-context learning capability of
transformer (Brown et al., 2020), it can make predictions for unseen instances without parameter updates. However, TabPFN
faces limitations related to dataset size and feature dimensionality. To address these challenges, some studies have explored
improvements in its architecture and training paradigm (den Breejen et al., 2024; Ma et al., 2024b), while others focus
on adaptation techniques that expand TabPFN’s applicability to a broader range of downstream tabular datasets (Feuer
et al., 2024; Thomas et al., 2024). Our work falls into the latter category, offering a straightforward, efficient, and effective
approach to align TabPFN with downstream datasets.

A.3. Parameter-efficient Fine-Tuning

Some approaches for adapting Tabular Foundation Models (TFMs) to downstream tasks simply fine-tune the entire
model (Thomas et al., 2024; den Breejen et al., 2024), which leads to performance improvements but incurs high computa-
tional and storage costs. Parameter-efficient fine-tuning (PEFT) offers a solution to the challenge by enabling adaptation
with a minimal number of trainable parameters (Lialin et al., 2023). Based on their operational mechanisms, PEFT methods
can be broadly categorized into four paradigms (Han et al., 2024):

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

• Additive Methods. These methods incorporate additional lightweight modules into the model architecture, such as
adapters (Houlsby et al., 2019; Zhang et al., 2020; Xu et al., 2025) or soft prompts (Li & Liang, 2021; Feuer et al., 2024).

• Selective Methods. Instead of introducing new parameters, selective methods strategically identify and update the most
relevant parameters while freezing the rest (Fu et al., 2023; He et al., 2023).

• Reparameterized Methods. These methods employ low-rank decomposition or equivalent transformations to reduce the
parameter space during fine-tuning (Aghajanyan et al., 2021; Hu et al., 2022; Valipour et al., 2023).

• Hybrid Methods. By combining the strengths of multiple PEFT strategies, hybrid methods create a unified framework
that enhances fine-tuning performance while maintaining efficiency (Mao et al., 2022; Chen et al., 2023b).

Our proposed method adopts parameter-efficient tuning focused on input feature adaptation. This design is motivated by the
unique characteristics of tabular data: Tabular datasets are inherently heterogeneous, with varying structures and feature
distributions across different datasets (Zhou et al., 2023; Ye et al., 2023; Borisov et al., 2024). Adapting TabPFN through
input feature alignment effectively mitigates the constraints on input dimensionality, enhancing its applicability across a
wider range of tasks. By employing parameter-efficient fine-tuning, we align TabPFN with downstream datasets, addressing
its existing limitations (Hollmann et al., 2023).

B. Preliminary
In this section, we provide a brief overview of TabPFN and analyze its properties, while also revisiting existing variants.

B.1. TabPFN

We consider a tabular dataset consisting of N examples and d features. Each instance xi ∈ Rd is represented by d feature
values, where xi,j denotes the j-th feature of instance xi. These features can be numerical (xnum

i,j ∈ R) or categorical (xcat
i,j),

with categorical values often encoded as integers. Each instance is associated with a label yi, where yi ∈ [C] = {1, . . . , C}
for classification task, and yi ∈ R for regression task. Given a training dataset, Dtrain = {(x(i)

train,y
(i)
train)}

Ntrain
i=1 , and test

samples, Xtest = [x
(i)
test]

Ntest
i=1 , the goal is to predict the corresponding labels, Ytest = [y

(i)
test]

Ntest
i=1 , as accurately as possible.

TabPFN follows a two-stage process: a pre-training stage, where the model is trained on synthetic datasets by minimizing
the discrepancy between the predicted label of the test instance and its true label, and an inference stage, where it directly
predicts the labels of test samples given a set of labeled training examples.

Following pre-training, TabPFN takes the entire training dataset Dtrain = (Xtrain,ytrain) and the features of query points Xq
as context to make predictions. This is done using PFN-Style Batching (Hollmann et al., 2023), where Ntest test samples are
batched into a single “prompt,” as illustrated in Figure 4. Since TabPFN is trained with a fixed input dimensionality, typically
set to a predefined value dmax (e.g., 100), datasets with fewer features (d < dmax) need to be extended via zero-padding
before being processed. Formally, given an input instance xi ∈ Rd, the padded input x̃i ∈ Rdmax is obtained as:

x̃i = [xi,0] ∈ Rdmax , (6)

where 0 ∈ Rdmax−d represents the zero-padding applied to match the required input dimensionality. However, if a
dataset exceeds this limit (d > dmax), TabPFN cannot directly process such datasets, as its architecture is not designed to
accommodate higher-dimensional inputs.

TabPFN outputs a probability distribution over possible labels yq ∈ {1, . . . , C}. Specifically, let qθ denote the logits
produced by TabPFN, where θ represents the parameters of the pre-trained model. The posterior predictive distribution is
given by:

pθ(yq | Xq, Dtrain) =
exp(qθ(X̃q, D̃train)[yq])∑C
c=1 exp(qθ(X̃q, D̃train)[c])

, (7)

where D̃train denotes the zero-padded training dataset, acting as the support set for the context composition. Since TabPFN
performs inference directly, the model typically applies multiple rounds of feature shuffling on the original features, followed
by prediction. The final prediction is obtained by averaging the results from these multiple inferences. For more details
about how the model processes inputs, please refer to Appendix C.5.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

d

Ntrain

Ntest

X

Ntrain

Y

TabPFN

Training Set

Test Set

Y

Figure 4: The prediction process of TabPFN. The training set and test set are concatenated, with the training labels added to
the input sequence. TabPFN then performs a single forward pass to generate predictions for all test samples.

B.2. TabPFN Variants

Existing research to improve the performance of TabPFN has primarily focused on two different strategies, stemming from
its dependency on qθ and Dtrain in Equation 7. One approach optimizes context selection, refining Dtrain to provide more
informative support examples. The other concentrates on fine-tuning TabPFN, improving qθ to better adapt to downstream
tasks. These two strategies offer complementary solutions for enhancing TabPFN’s overall performance. Context Selection
for Scaling TabPFN. The transformer architecture in TabPFN inherently leads to quadratic growth in memory usage as the
context length increases. As a result, the size of the support set used as context in each prediction is limited. Meanwhile,
a well-chosen Dtrain provides more relevant support examples, improving generalization. A simple approach is random
subsampling (McElfresh et al., 2023), but this can degrade performance, especially on large datasets (Ma et al., 2024c).
More structured methods include sketching techniques, such as CoreSet, K-Means, and Data Distillation (Ma et al., 2024c),
which aim to compress large datasets into representative subsets while preserving essential information (Feuer et al., 2023).
TuneTables (Feuer et al., 2024), on the other hand, attempts to encode the dataset into a compact learned representation,
reducing memory overhead. Another class of methods selects sample-specific contexts instead of a fixed support set. For
instance, MixturePFN (Xu et al., 2025) partitions the training set into multiple subsets and assigns the most relevant one to
each test sample. Similarity, LocalPFN (Thomas et al., 2024) and TabDPT (Ma et al., 2024b), instead use nearest neighbors
to dynamically construct the support set Dtrain for each query (KNN-based selection). While these approaches improve
TabPFN’s performance by refining Dtrain, they disrupt PFN-style batching, significantly reducing inference efficiency.

Fine-tuning Strategies for Enhancing TabPFN Performance. The second approach to improving TabPFN’s performance
focuses on fine-tuning the pre-trained model to better adapt to downstream datasets. As shown in Equation 7, the predictive
distribution pθ(yq | Xq, Dtrain) depends on both the training set Dtrain and the model parameters θ. While optimizing Dtrain
improves the quality of support examples, fine-tuning enhances qθ, enabling better alignment with downstream tasks. A
straightforward approach is to fine-tune all model parameters, as seen in TabForestPFN (den Breejen et al., 2024) and
LocalPFN (Thomas et al., 2024), which improves performance by adapting TabPFN’s learned prior to specific datasets.
However, full fine-tuning incurs substantial computational costs due to the large number of model parameters. To mitigate
this, TuneTables (Feuer et al., 2024) offers a more efficient alternative by either fine-tuning the entire model or applying
prompt-tuning (Lester et al., 2021), which adjusts only a small set of parameters, reducing resource consumption. Another
efficient approach is adapter-based fine-tuning, as employed in MixturePFN (Xu et al., 2025), which fine-tunes additional
adapter layers (Houlsby et al., 2019) rather than modifying the entire model. This strategy provides a balance between
computational efficiency and performance improvement, allowing the model to adapt while preserving the efficiency of
the original pre-trained TabPFN. A detailed related work is presented in Appendix A.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

200 400 800 1000 1600 3200 6400 12800
Size

0.095

0.100

0.105

0.110

0.115

0.120

0.125
Lo

ss

(a) Generalization error on the Adult Dataset.

200 400 800 1000 1600 3200 6400 12800
Size

0.094

0.096

0.098

0.100

0.102

0.104

0.106

Sq
ua

re
 o

f B
ia

s

(b) Bias on the Adult Dataset.

200 400 800 1000 1600 3200 6400 12800
Size

0.000

0.005

0.010

0.015

0.020

Va
ri

an
ce

TabPFN
TabPFN-1000
TabPFN-Bagging
KNN-PFN
TabPFN-en-16
TabPFN-finetune
Ours

(c) Variance on the Adult Dataset.

200 400 800 1000 1600 3200 6400 12800
Size

0.065

0.070

0.075

0.080

0.085

Lo
ss

(d) Generalization Error on the Bank Dataset.

200 400 800 1000 1600 3200 6400 12800
Size

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

Sq
ua

re
 o

f B
ia

s

(e) Bias on the Bank Dataset.

200 400 800 1000 1600 3200 6400 12800
Size

0.000

0.002

0.004

0.006

0.008

0.010

Va
ri

an
ce

(f) Variance on the Bank Dataset.

Figure 5: Generalization Error, Bias, and Variance for different methods on the Adult and Bank datasets. The methods shown
include TabPFN-1000 (subsample size = 1000), TabPFN, TabPFN-en-16, TabPFN-Bagging, KNN-PFN, TabPFN-finetune,
and Ours (BETA). The legend is located in the top-right plot for clarity.

B.3. Generalization Analysis of TabPFN Variants

While various TabPFN variants have been proposed to enhance performance, their underlying mechanisms remain insuffi-
ciently understood. In this section, we leverage the bias-variance decomposition framework, as described in Equation 12,
which is introduced by Nagler (2023), to analyze the generalization error of TabPFN and its variants on two real-world
datasets: Adult (Barry & Ronny, 1996) and Bank (S. et al., 2014). To assess the impact of different strategies, and based on
our previous analysis, we evaluate the original TabPFN (without context length restrictions) alongside several representative
variants. These include TabPFN-1000 (random subsampling of 1000 samples), TabPFN-en-16 (randomly sample once and
perform feature shuffling 16 times to form an ensemble of 16 predictions), TabPFN-KNN (KNN-based context selection),
TabPFN-finetune (full model fine-tuning), and TabPFN-Bagging (bootstrapped sampling with 16 varying contexts). TabPFN-
Bagging, unlike ensemble methods that require training multiple independent models, employs bootstrapped sampling to
construct diverse support sets within a single inference process. A detailed description of its implementation is provided in
Appendix C.6.

To further contextualize these findings, we compare all evaluated methods against our proposed approach, BETA. The
experimental results, presented in Figure 5, reveal several key trends in the bias-variance tradeoff across different TabPFN
variants. As shown in Figure 5 (b,c,e,f), increasing context length reduces variance while bias plateaus, consistent with prior
findings (Nagler, 2023). Similarly, KNN-based context selection reduces bias but increases variance compared to using the
full dataset, as it relies on localized subsets. Since these trends align with previous work, we focus on additional findings.

1) Fine-Tuning and its Impact: Figure 5 (b,e) shows that fine-tuning (TabPFN-finetune) effectively reduces bias by aligning
the model’s prior with the characteristics of the dataset. However, it also increases variance, especially when the training set
is small, where overfitting amplifies prediction variability, as shown in Figure 5 (c,f). These results suggest that fine-tuning
requires careful regularization to balance bias and variance.

2) Ensemble Strategy and Bias-Variance Tradeoff: Figure 5 (b,c) indicates that ensemble-based methods (TabPFN-en-16)
reduce variance but may increase bias due to unsupervised feature transformations. This observation highlights that ensemble
methods, while helpful in reducing variance, may require additional bias-reducing strategies to optimize overall model
performance.

3) Effectiveness of Bagging: As shown in Figure 5 (c,f), Bagging significantly reduces variance while maintaining stable

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

Table 1: Comparison of TabPFN and related methods in terms of their impact on bias and variance, as well as their effective-
ness in handling large datasets, high-dimensional features, adaptability to multiclass classification, and inference efficiency.
The compared methods include TabPFN (Hollmann et al., 2023), TuneTables (Feuer et al., 2024), TabForestPFN (den
Breejen et al., 2024), LocalPFN (Thomas et al., 2024), and MixturePFN (Xu et al., 2025). Our proposed method (BETA)
is distinguished for its ability to balance bias and variance while maintaining efficient scaling, adaptability to multiclass
classification, and lightweight fine-tuning. Different row colors indicate the strategies used for improving performance (),
scalability (), and efficiency ().

BETA (Ours) TabPFN TuneTables TabForestPFN LocaLPFN MixturePFN

Reduces Bias ✓ ✗ ✓ ✓ ✓ ✓
Reduces Variance ✓ ✗ ✗ ✗ ✗ ✗
Scales to Large Datasets ✓ ✗ ✓ ✗ ✓ ✓
Handles High-Dimensional Data ✓ ✗ ✗ ✗ ✗ ✗
Adapts to More Than 10 Classes ✓ ✗ ✓ ✗ ✗ ✗
No Additional Inference Cost ✓ ✓ ✓ ✓ ✗ ✗
Fine-Tuning lightweight encoder ✗ prompt & backbone backbone backbone adapter

bias. By introducing diversity through bootstrapped sampling, it achieves variance reduction comparable to ensemble
methods but at a lower computational cost. These results highlight Bagging as a simple yet effective approach for improving
TabPFN’s performance.

The results above, based on additional findings not covered in (Nagler, 2023), indicate that TabPFN variants typically impact
either bias or variance, but rarely both simultaneously. For instance, KNN-based context selection reduces bias but increases
variance, while the original ensemble strategy in Hollmann et al. (2023) (TabPFN-en-16) lowers variance but may increase
bias. These observations highlight the need for a method that jointly optimizes both aspects, motivating the development
of BETA.

Existing approaches to improving TabPFN focus on context selection or fine-tuning, but often introduce trade-offs in
computational efficiency, scalability, and adaptability. A comparison in Table 1 highlights how different strategies affect
bias, variance, and their ability to handle large datasets and high-dimensional features efficiently.

C. Datasets and implementation details
In this section, we outline the descriptions of the datasets used in the experiments and the preprocessing steps applied to
them before training. Additionally, we will describe the implementation details of BETA and the comparison methods.

C.1. Experiment Setup

Datasets. In our experiments, we evaluate BETA on one of the largest publicly available tabular benchmark TALENT (Ye
et al., 2024b), which includes 120 binary classification datasets and 80 multi-class classification datasets. These datasets are
collected from various sources such as UCI, OpenML, Kaggle, and others. To ensure fairness, we remove two datasets,
“PizzaCutter3” and “PieChart3,” as they overlap with TabPFN’s validation set. In addition, to validate the ability of BETA to
handle high-dimensional feature datasets, we also include 20 high-dimensional datasets sourced from the scikit-feature
repository.

Evaluation. For the TALENT datasets, we follow the evaluation protocol from (Gorishniy et al., 2021). Each dataset is
randomly split into training, validation, and test sets with proportions of 64%, 16%, and 20%, respectively. For each dataset,
we train each model using 15 different random seeds and calculate the average performance on the test set. We report
accuracy as the evaluation metric, where higher accuracy indicates better performance. For a more detailed comparison with
other TabPFN variants, we separately evaluate datasets with fewer than 10 classes, those with more than 10 classes, and
high-dimensional datasets. Further details on the experimental setup, are provided in Appendix C.

Methods Compared. We compare BETA against five categories of methods to evaluate its effectiveness comprehensively:
(1) Classical Machine Learning Algorithms: This category includes widely used classical approaches such as Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), and tree-based methods like Random Forest (RForest) (Breiman,
2001), XGBoost (XGB) (Chen & Guestrin, 2016), CatBoost (CatB) (Prokhorenkova et al., 2018), and LightGBM

13

https://jundongl.github.io/scikit-feature/datasets
https://jundongl.github.io/scikit-feature/datasets

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

(LightG) (Ke et al., 2017). (2) Tabular Deep Learning Models: We consider state-of-the-art deep learning models for
tabular data, including MLP, ResNet, FT-Transformer (FT-T) (Gorishniy et al., 2021), MLP-PLR (Gorishniy et al., 2022),
DCNv2 (Wang et al., 2021), AutoInt (Song et al., 2019), SNN (Klambauer et al., 2017), ExcelFormer (ExcelF) (Chen
et al., 2024), DANets (Chen et al., 2022), TabTransformer (TabT) (Huang et al., 2020), and TabNet (Arik & Pfister, 2021).
(3) Neighborhood-Based Methods: To explore neighbor-based strategies, we evaluate TabR (Gorishniy et al., 2024) and
ModernNCA (MNCA) (Ye et al., 2025). (4) Ensemble-Based Methods: We include methods that leverage ensemble
strategies, such as TabM (Gorishniy et al., 2025), NODE, and GrowNet. (5) TabPFN and Its Variants: Lastly, we
compare with TabPFN and its recent variants, including knnPFN (Thomas et al., 2024), LocalPFN (Thomas et al., 2024),
MixturePFN (Xu et al., 2025), and TuneTables (Feuer et al., 2024).

Implementation Details. All datasets are pre-processed following the methodology outlined in Gorishniy et al. (2021).
For deep learning-based methods, we set the batch size to 1024. Hyper-parameters for the compared methods are tuned
using Optuna (Akiba et al., 2019), performing over 100 trials. The search ranges for hyper-parameters are determined
based on Gorishniy et al. (2021); Liu et al. (2024) and the official implementations of each method. Once the optimal
hyper-parameters are identified, they are fixed for the final evaluation using 15 random seeds. To ensure a fair comparison,
all TabPFN variants, including BETA, are evaluated using their default hyper-parameters without additional tuning.
More details can be found in Appendix C.

C.2. Datasets information

For both the main experiments and the classification tasks with more than 10 categories, we use the current largest tabular
benchmark (Ye et al., 2024b), which includes 120 binary classification datasets and 80 multiclass classification datasets,
spanning diverse domains such as healthcare, biology, finance, education, and physics. For more detailed information about
these datasets, please refer to Ye et al. (2024b).

For each dataset, we randomly select 20% of the instances to form the test set. The remaining 80% is further split, with 20%
reserved as a validation set. This validation set is used for hyperparameter tuning (for the comparison methods) and early stop-
ping. The hyperparameters that yield the best performance on the validation set are selected for final evaluation on the test set.

Remark: BETA are based on pre-trained models TabPFN (Hollmann et al., 2023). To ensure a fair comparison, we do
not perform hyperparameter search, and instead use the default hyperparameters for all methods.

For high-dimensional datasets, we obtained the data from scikit-feature repository, and excluded those with more than
10 classes. This resulted in a final set of 20 datasets, as shown in Table 2. The dataset splitting follows the same approach
as in the main experiments, but due to the smaller number of instances in these datasets, we use the default hyperparameters
for the experiments and do not perform hyperparameter search. The validation set is only used for early stopping. For
each dataset, we perform five random splits and run all methods three times on each split using three different seeds (0,
1, 2), resulting in a total of 15 runs per dataset. The final results are reported as the mean of these 15 runs.

Table 2: Dataset Information for High-Dimensional Data Experiments: A collection of 20 datasets with varying numbers of
instances, features, and classes used in our high-dimensional experiments.

Dataset #Instances #Features #Classes Dataset #Instances #Features #Classes

BASEHOCK 1993 4862 2 lung_discrete 73 325 7
PCMAC 1943 3289 2 warpPIE10P 210 2420 10
RELATHE 1427 4322 2 orlraws10P 100 10304 10
ALLAML 72 7129 2 Prostate_GE 102 5966 2
CLL_SUB_111 111 11340 3 SMK_CAN_187 187 19993 2
colon 62 2000 2 warpAR10P 130 2400 10
GLI_85 85 22283 2 arcene 200 10000 2
GLIOMA 50 4434 4 gisette 7000 5000 2
leukemia 72 7070 2 madelon 2600 500 2
lung 203 3312 5 TOX_171 171 5748 4

14

https://jundongl.github.io/scikit-feature/datasets

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

C.3. Dataset Pre-processing

Unless otherwise specified, we adopt the data preprocessing pipeline outlined by Gorishniy et al. (2021). For numerical
features, we standardize by subtracting the mean and scaling the values to unit variance. Categorical features are converted
into a model-compatible format using one-hot encoding.

C.4. Implementations

BETA. For all experiments except for the ablation study, we set the context size to 1000 and fixed the number of bootstrap
sampling iterations to 16. For the feature transformation encoder, the main structure is a two-layer MLP, with both the
hidden and output dimensions set to 100, using the ReLU activation function. In addition, to enhance the expressive power
of the encoder, we also apply periodic activation (Gorishniy et al., 2022). The initialization of Batch Ensemble is inspired
by Gorishniy et al. (2025). During fine-tuning, we use the pre-trained model checkpoint1, and fine-tuning is performed
using the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 0.003, weight decay of 1e-5, and a batch
size of 1024. In the fine-tuning phase, only the encoder parameters are updated, while the pre-trained TabPFN parameters
are frozen. For experiments on high-dimensional datasets, due to the large number of features and the limitations of device
memory, we do not use periodic activation. In the classification experiments with more than 10 classes, we use a code
length of 32, which means there are 32 paths in the encoder. Additionally, we observed that for certain datasets, simply
adjusting the output dimension of the pre-trained model and fine-tuning it can yield strong results (Feuer et al., 2024). Based
on validation set performance, we choose between ECOC and fine-tuning the output layer MLP approaches.

TabPFN and its variants. For TabPFN, we use the implementation from TALENT (Liu et al., 2024); For TuneTables, we
adopt the official code2 and use the prompt tuning mode without performing full model fine-tuning; For LocalPFN, since the
code has not been released, we replicate the hyperparameters provided in the original paper. Specifically, we set the number
of neighbors k = 1000. During our experiments, we found that fine-tuning LocalPFN with a smaller learning rate yields
better performance, so we set the learning rate to 1e-5; For MixturePFN, we reproduce the model using the hyperparameters
recommended in the original paper. The number of training samples in the prompt is set to B = 3000, and the number of
experts is set to the training set size divided by B, rounded up to the nearest integer.

Other Methods from TALENT. For the other methods in TALENT, we either use the results provided (Ye et al., 2024b) or
perform a hyperparameter search using the hyperparameters provided by TALENT. In the case of hyperparameter tuning, we
conduct 100 trials of hyperparameter search for each method3. For each search, we run the experiments using 15 different
seeds and report the average results across these runs.

C.5. Details of TabPFN

In the original TabPFN approach, the model processes the input data in two phases: pre-training and inference. The
pre-training phase involves training the model on synthetic data, while the inference phase is used to make predictions on
new, unseen data.

For the input, we consider a training dataset Dtrain = (Xtrain, ytrain), where Xtrain ∈ RNtrain×d represents the feature matrix,
and ytrain ∈ RNtrain represents the corresponding labels. Here, Ntrain denotes the number of training samples, and d is the
number of features. For datasets with fewer features than the fixed input dimensionality dmax, zero-padding is applied to
extend the feature vectors to the required size dmax. Specifically, each feature vector Xi ∈ Rd is padded with zeros to form
X̃i ∈ Rdmax , as follows:

X̃i = [Xi,0] ∈ Rdmax .

The zero-padded feature matrix X̃train is then used during inference for making predictions.

For inference, we consider a support set S containing the training examples and a query set Q containing the new, unseen
instances for which we wish to make predictions. The query set Q consists of Ntest test samples, and the goal is to predict
the corresponding labels ytest.

1https://github.com/automl/TabPFN/blob/tabpfn_v1/tabpfn/models_diff/prior_diff_real_checkpoint_n_0_epoch_42.cpkt
2https://github.com/penfever/TuneTables
3https://github.com/qile2000/LAMDA-TALENT/tree/main/LAMDA_TALENT/configs

15

https://github.com/automl/TabPFN/blob/tabpfn_v1/tabpfn/models_diff/prior_diff_real_checkpoint_n_0_epoch_42.cpkt
https://github.com/penfever/TuneTables
https://github.com/qile2000/LAMDA-TALENT/tree/main/LAMDA_TALENT/configs

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

TabPFN uses PFN-style batching for inference, where both the support set S and query set Q are batched together into a
single prompt, which is then fed into the pre-trained model for prediction. This batching process allows the model to utilize
the support set as context for making predictions on the query set.

During the processing, the features of both the support set and the query set are transformed into token representations. The
support tokens Lsupport are obtained as:

Lsupport = X̃supportWx + ysupportw
T
y ,

where X̃support ∈ R|S|×dmax is the zero-padded feature matrix of the support set, Wx ∈ Rdmax×dtoken is the embedding matrix
for the features, and wy ∈ Rdtoken is the embedding matrix for the labels. The query tokens Lquery are similarly transformed
as:

Lquery = XqueryWx,

where Xquery ∈ R|Q|×dmax represents the query set of test samples.

These token representations are then passed through a standard transformer model, which includes a special attention
mechanism. The attention mask ensures that the support tokens can only attend to other support tokens, and query tokens
can attend to both the support tokens and themselves. Query tokens do not attend to other query tokens, preventing any
information leakage between query samples during inference. Finally, the output tokens corresponding to the test instances
are extracted and mapped to 10-class logits for classification.

C.6. Implementation of TabPFN-Bagging

TabPFN-Bagging is a variance reduction technique that leverages bootstrapped sampling to create diverse support sets
for model inference. Unlike standard ensemble approaches, which require training multiple independent models, TabPFN-
Bagging generates multiple resampled versions of Dtrain within a single inference process, reducing variance without
additional computational overhead.

Bootstrapped Sampling in TabPFN. Given a training dataset Dtrain = {(xi,yi)}Ntrain
i=1 , we generate K bootstrapped support

sets D(k)
train, where each set is constructed by randomly sampling Nsub instances with replacement:

D
(k)
train =

{(
x
(k)
i ,y

(k)
i

)}Nsub

i=1
, k = 1, . . . ,K. (8)

Each D
(k)
train serves as an alternative context set for model inference, introducing diversity into the prediction process.

Prediction Aggregation. For each test instance xq, we compute the posterior predictive distribution using the bootstrapped
support sets. Given the pre-trained TabPFN model parameterized by θ, the predictive probability for label yq is computed as:

p
(k)
θ (yq | xq, D

(k)
train) =

exp(qθ(xq, D
(k)
train)[yq])∑C

c=1 exp(qθ(xq, D
(k)
train)[c])

. (9)

where qθ denotes the logits produced by TabPFN for the given support set D(k)
train.

To obtain the final prediction, we aggregate the results across all bootstrapped support sets using either uniform averaging:

pθ(yq | xq, Dtrain) =
1

K

K∑
k=1

p
(k)
θ (yq | xq, D

(k)
train), (10)

or a weighted aggregation method, where weights wk are assigned based on the confidence of each individual model:

pθ(yq | xq, Dtrain) =

K∑
k=1

wkp
(k)
θ (yq | xq, D

(k)
train),

K∑
k=1

wk = 1. (11)

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

0 25 50 75 100 125 150 175

Dataset Index
0.98

1.00

1.02

1.04

1.06

1.08

1.10

R
el

at
iv

e
Im

pr
ov

m
en

t Beta
LocalPFN
MixturePFN
TabPFN

Figure 6: The relative improvement of LocalPFN (Thomas
et al., 2024), MixturePFN (Xu et al., 2025), and BETA (Ours)
over TabPFN across 173 tabular datasets sorted by dataset
size (number of rows). The curves represent smoothed results
to better illustrate trends in performance improvement as
dataset size increases.

KNN MLP RForest XGB TabM MNCA Beta
Method

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

M
ea

n
A

cc
ur

ac
y

0.6194 0.6216

0.6401

0.6647 0.6691
0.6800

0.6934

Figure 7: Comparison of the mean accuracy across 12 classifi-
cation datasets with more than 10 classes. Since the original
TabPFN cannot process classification tasks with more
than ten categories, we compare BETA against alternative
methods, including TabM, KNN, MLP, XGBoost (XGB),
RandomForest (RForest), and ModernNCA (MNCA).

Computational Efficiency. Since bootstrapped sampling only modifies the selection of Dtrain without altering the model
architecture, TabPFN-Bagging incurs no additional computational cost beyond standard inference with ensemble. Unlike
ensemble-based methods that require multiple independent model evaluations, all computations occur within a single
forward pass of the pre-trained TabPFN. This makes TabPFN-Bagging an efficient and scalable variance reduction strategy.

D. Hardware and limitations
D.1. Hardware

Most of the experiments were performed with four NVIDIA 4090 GPUs and four NVIDIA A6000 GPUs.

D.2. Limitations

While our approach significantly improves the scalability and adaptability of TabPFN, it has certain limitations that present
opportunities for future research. Due to the current design of TabPFN, our method has been evaluated solely on classification
tasks, and extending it to regression tasks remains an open challenge. As tabular foundation models continue to evolve, we
anticipate that our approach can be adapted to support regression, broadening its applicability to a wider range of real-world
problems. Additionally, our experiments assume that training and test instances are drawn from the same underlying
distribution. However, in practical applications, distribution shifts such as covariate shift or concept drift may occur, which
could impact model performance. Addressing such shifts requires robust adaptation strategies or specialized training
techniques, which are beyond the scope of this work. Importantly, we emphasize that handling non-IID scenarios is not a
trivial extension of existing methods but rather a distinct challenge that necessitates dedicated research efforts. Future work
should explore how TabPFN-based models can be adapted to regression tasks and how their robustness to distributional
shifts can be enhanced to ensure broader applicability in real-world settings.

E. Additional Experiments
Scale to Large Datasets. We evaluated BETA and the variants of TabPFN on 173 tabular datasets, excluding those with
more than 100 features, which TabPFN cannot handle. These datasets were sorted by the number of rows in ascending
order, and the relative improvement of these methods over TabPFN was shown in Figure 6. The results clearly show that

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

the performance improvement by BETA becomes more pronounced as the dataset size increases, highlighting the scalability
and effectiveness of our approach in handling larger datasets. Notably, on the largest datasets in the benchmark, LocalPFN
slightly outperforms BETA in terms of accuracy. However, on more other datasets, BETA demonstrates superior performance.

E.1. Performance on MultiClass Classification Tasks with More Than 10 Classes.

In addition, we further investigated the performance of BETA on classification tasks with more than 10 categories. We
selected 12 classification datasets with more than 10 classes from TALENT (Ye et al., 2024b) and compared BETA with other
methods. We report the mean accuracy of each method across the 12 datasets in Figure ?? and find that BETA outperforms
the compared methods, demonstrating its superiority on multiclass classification tasks with a larger number of categories.

E.2. Bias-Variance Analysis, Ablation Study, and Efficiency Comparison

To evaluate the effectiveness of BETA in addressing bias and variance, we conduct comprehensive experiments across
diverse dataset sizes. Our findings reveal that BETA consistently achieves lower generalization error than existing methods,
demonstrating robust performance regardless of dataset scale. Bias is effectively reduced through encoder-based fine-tuning,
aligning TabPFN with downstream data distributions, while variance reduction is achieved via Bagging and the introduction
of multiple encoders. Importantly, our method remains effective even on small datasets, where excessive fine-tuning may
otherwise increase bias. In addition, we perform an ablation study to examine the contributions of key components, including
the number of encoder paths, periodic activation, Batch Ensemble, and partial parameter tuning. Our results indicate that
each of these design elements plays a crucial role in enhancing BETA’s performance. Lastly, we compare the inference time
and parameter count of BETA against other methods to highlight its efficiency. A comprehensive analysis of bias-variance
trends, ablation experiments, and efficiency comparisons, including inference time and parameter count, is provided in
Appendix E.4, Appendix E.5, and Appendix E.6.

E.3. Performance on MultiClass Classification Tasks with More Than 10 Classes

To evaluate the effectiveness of BETA on multiclass classification tasks, we conducted experiments on 12 datasets containing
more than 10 classes, sourced from TALENT(Ye et al., 2024b). These datasets were selected to assess the scalability
and adaptability of different methods in handling more complex classification problems beyond the 10-class limitation of
TabPFN. Figure 7 presents the mean accuracy of each method across these datasets. We compare BETA against several
strong baselines, including KNN, XGBoost (Chen & Guestrin, 2016), RandomForest (Breiman, 2001), MLP (Gorishniy
et al., 2021), ModernNCA (Ye et al., 2025), and TabM (Gorishniy et al., 2025). All methods, including BETA, were evaluated
using their default hyperparameters without any tuning, ensuring a fair comparison of out-of-the-box performance.

From the results, BETA achieves the highest mean accuracy across all datasets, demonstrating superior generalization ability
in high-category classification settings. This advantage stems from our integration of the Error-Correcting Output Codes
(ECOC) framework, which effectively decomposes multiclass problems into multiple binary subproblems. This enables
TabPFN to handle classification tasks with more than 10 classes efficiently, without requiring significant modifications or
additional computational overhead. Notably, tree-based methods like XGBoost and RandomForest exhibit a decline in
performance as the number of categories increases.

E.4. Performance on Real Datasets: Bias and Variance

The generalization error of TabPFN can be attributed to two primary components: bias and variance. These components
are influenced by the model’s architecture, pretraining assumptions, and dataset characteristics. Mathematically, the
generalization error can be decomposed by analyzing the discrepancy between the model’s predictions, qθ(y | x,Dn), and
the true conditional distribution, p0(y | x). Specifically, it can be expressed as:

qθ (y | x,Dn)− p0(y | x) = qθ (y | x,Dn)− EDn∼pn
0
[qθ (y | x,Dn)]︸ ︷︷ ︸

Variance

+EDn∼pn
0
[qθ (y | x,Dn)]− p0(y | x)︸ ︷︷ ︸

Bias

.
(12)

Here, E[·] denotes the expectation over training datasets Dn sampled from the true distribution p0. Understanding these
error components is crucial for addressing the limitations of TabPFN and improving its performance across diverse tabular
datasets.

Revisiting the results shown in Figure 2, we observe several key phenomena that highlight the effectiveness of BETA in

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

reducing generalization error across varying dataset sizes:

Lowest Generalization Error Across All Dataset Sizes: Our method consistently achieves the smallest generalization
error, demonstrating robust performance regardless of dataset size.

Impact of Fine-Tuning on Small Datasets: For small datasets (e.g., with only a few hundred samples), fine-tuning the
encoder may slightly increase bias. This occurs because the limited data volume can lead to overfitting during fine-tuning.

Mechanisms of Bias and Variance Reduction: The bias reduction is primarily attributed to the fine-tuned encoder, which
aligns TabPFN with the downstream dataset distribution, improving compatibility between the pre-trained model and the
target task. Variance reduction, on the other hand, is not solely due to Bagging. The learning of multiple encoders also
contributes significantly. When dataset sizes are small (e.g., fewer than 1000 samples), where each bootstrap sample covers
the entire training set, training multiple encoders still introduces diversity in representations, further reducing variance.

These findings highlight the effectiveness of BETA in addressing the bias-variance tradeoff, making it a robust and scalable
solution for real-world tabular learning.

E.5. Ablation Study

Influence of Encoder Path Count on Performance Improvement over TabPFN. Figure 6 (a) presents the results of an
ablation experiment designed to investigate the impact of different encoder path counts on the performance of the model.
The primary goal is to explore how the number of encoder paths influences the model’s relative improvement over TabPFN.
We display the relative improvement for various methods with different encoder path configurations. From the plot, we
observe that as the number of encoder paths (denoted by K) increases, the relative performance improvement of BETA over
TabPFN becomes more pronounced. This trend indicates that a higher number of encoder paths contributes positively to the
model’s ability to outperform TabPFN, suggesting that more encoder paths enhance the model’s expressive power and its
ability to capture more complex patterns in the data.

Impact of Periodic Activation, Batch Ensemble, and Partial Parameter Tuning on Model Performance. Figure 6 (b)
visualizes the effect of three key components—periodic activation, Batch Ensemble, and partial parameter tuning—on
the relative performance improvement of BETA over TabPFN. In this experiment, we compare the original BETA with
three variations: one without periodic activation, one without Batch Ensemble, and one with full parameter tuning. The
plot reveals that each of these components contributes positively to the model’s performance. Specifically, removing
any of these elements leads to a noticeable decline in relative improvement over TabPFN, highlighting that all parts are
essential for achieving the best performance. Notably, the variation without partial parameter tuning (PPT) shows the
highest upper-bound improvement, but it also incurs significantly higher computational costs. Moreover, the median relative
improvement decreases compared to BETA , further emphasizing the superior efficiency of our approach. This suggests
that periodic activation, Batch Ensemble, and partial parameter tuning each play a crucial role in enhancing the model’s
ability to outperform TabPFN, and the absence of any of these components compromises the model’s ability to leverage
its full potential while also increasing computational resource usage.

E.6. Comparison of inference time and the number of learnable parameters.

We compared the inference time (in seconds) of BETA with other methods, as well as the average rank in the main experiment.
Additionally, the number of learnable parameters was roughly estimated by the size of the stored checkpoint. The results
confirm that BETA not only delivers state-of-the-art classification accuracy but also maintains low inference time and reduced
memory overhead, making it highly scalable and efficient for various tabular classification tasks.

Table 3: Comparison of Inference Time, Average Rank, and Number of Learnable Parameters. All metrics are computed as
the mean values across multiple datasets.

Metric BETA TabPFN LocalPFN MixturePFN FT-T TabR
Inference Time (s) 0.91 0.78 12.51 3.24 0.36 0.38
Average Rank 6.76 15.63 12.15 12.86 13.27 9.26
Checkpoint Size (MB) 0.60 0 98.65 21.42 7.15 14.07

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

0.01 0.00 0.01 0.02 0.03 0.04 0.05
Relative improvement over TabPFN

TabPFN

1

2

4

8

16

K

(a) Infulence of K

0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06
Relative improvement over TabPFN

TabPFN

w/o BE

w/o PA

w/o PPT

Beta

(b) Influence of some important components

Figure 8: (a) The box plot demonstrates the effect of varying the number of encoder paths, K, on the relative improvement
over TabPFN. The horizontal axis represents the relative improvement in performance, while the vertical axis lists numbers
of different encoder path settings; (b) This box plot illustrates the effect of different components—periodic activation
(PA), Batch Ensemble (BE), and partial parameter tuning (PPT)—on the relative improvement of BETA over TabPFN.
The plot compares the original BETAmodel with three variations: (1) BETA with partial parameter tuning (w/o PPT),
(2) BETA without periodic activation (w/o PA), and (3) BETA without Batch Ensemble (w/o BE).

E.7. Visialzation results

To gain deeper insights into the properties of BETA, we visualize the learned embeddings EΦ(x) for BETA, MLP, Mod-
ernNCA, and TabR using T-SNE (Van der Maaten & Hinton, 2008). As shown in Figure 9, we present the embeddings of
three datasets (Bank, KDD, and Spambase), comparing different methods as well as the representations learned by different
encoder paths within BETA.

All deep tabular methods effectively transform the feature space, making it more conducive for classification compared to
raw input features. MLP produces well-separated clusters, grouping same-class samples into distinct, compact regions. In
contrast, TabR and ModernNCA form multiple clusters for the same class, positioning similar samples closer to each other
while maintaining local class separability. Unlike these methods, BETA does not enforce strict clustering of same-class
samples into single compact groups. This behavior aligns with TabPFN’s pretraining paradigm, where the model does not
require fully separable embeddings to make accurate predictions.

Moreover, we observe that different encoder paths in BETA map raw features into diverse representation spaces, contributing
to variance reduction and improved robustness. The variation among encoder paths enhances the diversity of the
learned representations, which is a key factor in BETA’s superior generalization. The visualization further confirms
that BETA preserves the flexibility of the feature space while effectively adapting to downstream classification tasks.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems

(a) Bank Raw Feature (b) Bank MLP (c) Bank ModernNCA (d) Bank TabR

(e) Bank BETA 1 (f) Bank BETA 2 (g) Bank BETA 3 (h) Bank BETA 4

(a) KDD Raw Feature (b) KDD MLP (c) KDD ModernNCA (d) KDD TabR

(e) KDD BETA 1 (f) KDD BETA 2 (g) KDD BETA 3 (h) KDD BETA 4

(a) Spambase Raw Feature (b) Spambase MLP (c) Spambase ModernNCA (d) Spambase TabR

(e) Spambase BETA 1 (f) Spambase BETA 2 (g) Spambase BETA 3 (h) Spambase BETA 4

Figure 9: Visualization of the embedding space of different methods.

21

