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Figure 1: ChatDeyv, our virtual chat-powered company for software development, brings together
"software agents" from diverse social identities, including chief officers, professional programmers,
test engineers, and art designers. When presented with a preliminary task by a human “client” (e.g.,
“develop a gomoku game”), the software agents at ChatDev engage in effective communication and
mutual verification through collaborative chatting. This process enables them to automatically craft
comprehensive software solutions that encompass source codes, environment dependencies, and user
manuals.
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Abstract

Software engineering is a domain characterized by intricate decision-making pro-
cesses, often relying on nuanced intuition and consultation. Recent advancements in
deep learning have started to revolutionize software engineering practices through
elaborate designs implemented at various stages of software development. In this
paper, we present an innovative paradigm that leverages large language models
(LLMs) throughout the entire software development process, streamlining and
unifying key processes through natural language communication, thereby elimi-
nating the need for specialized models at each phase. At the core of this paradigm
lies ChatDey, a virtual chat-powered software development company that mirrors
the established waterfall model, meticulously dividing the development process
into four distinct chronological stages: designing, coding, testing, and document-
ing. Each stage engages a team of "software agents", such as programmers, code
reviewers, and test engineers, fostering collaborative dialogue and facilitating
a seamless workflow. The chat chain acts as a facilitator, breaking down each
stage into atomic subtasks. This enables dual roles, allowing for proposing and
validating solutions through context-aware communication, leading to efficient
resolution of specific subtasks. The instrumental analysis of ChatDev highlights
its remarkable efficacy in software generation, enabling the completion of the
entire software development process in under seven minutes at a cost of less than
one dollar. It not only identifies and alleviates potential vulnerabilities but also
rectifies potential hallucinations while maintaining commendable efficiency and
cost-effectiveness. The potential of ChatDev unveils fresh possibilities for inte-
grating LLMs into the realm of software development. Our code is available at
https://github.com/OpenBMB/ChatDev,

1 Introduction

“Collaboration allows us to know more than we are capable of knowing by
ourselves. It empowers us to think differently, access information we wouldn’t
have otherwise, and combine ideas as we work together towards a shared goal.”

——Paul Solarz

Software engineering entails a methodical and disciplined approach to the development, operation,
and maintenance of software systems [4]. However, the complexity of software intelligence often
leads to decisions based on intuition and limited consultation with senior developers [14]. Recent
advancements in deep learning techniques have prompted researchers to explore their application in
software engineering, aiming to improve effectiveness, efficiency, and cost reduction . Prior studies
in deep learning-based software engineering have addressed various tasks, categorized as software
requirements, design, implementation, testing, and maintenance [34}|29]]. The software development
process involves multiple roles, including organizational coordination, task allocation, code writing,
system testing, and documentation preparation. It is a highly complex and intricate activity that
demands meticulous attention to detail due to its long development cycles [[17} 14].

In recent years, large language models (LLMs) have achieved significant milestones in the field of
natural language processing (NLP) [5] and computer vision (CV) [35]. After training on massive
corpora using the “next word prediction” paradigm, LLMs have demonstrated impressive performance
on a wide range of downstream tasks, such as context-aware question answering, machine translation,
and code generation. In fact, the core elements involved in software development, namely codes
and documents, can both be regarded as “language” (i.e., sequences of characters) [7]. From this
perspective, this paper explores an end-to-end software development framework driven by LLMs,
encompassing requirements analysis, code development, system testing, and document generation,

aiming to provide a unified, efficient, and cost-effective paradigm for software development.

Directly generating an entire software system using LLMs can result in code hallucinations to a
certain extent, similar to the phenomenon of hallucination in natural language knowledge querying
[2]. These hallucinations include incomplete implementation of functions, missing dependencies,
and potential undiscovered bugs. Code hallucinations arise primarily due to two reasons. Firstly,
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the lack of task specificity confuses LLMs when generating a software system in one step. Granular
tasks in software development, such as analyzing user/client requirements and selecting programming
languages, provide guided thinking that is absent in the high-level nature of the task handled by
LLMs. Secondly, the absence of cross-examination in decision-making poses significant risks [9].
Individual model instances propose a diverse range of answers, throwing the requirements to debate
or examine the responses from other model instances to converge on a single and more accurate
common answer [12], such as code peer-review and suggestion feedbacks.

To address the aforementioned challenges, we “establish” a virtual chat-powered software technology
company — ChatDev. It follows the classic waterfall model [3] and divides the process into four phases:
designing, coding, testing, and documenting. At each phase, ChatDev recruits multiple "software
agents" with different roles, such as programmers, reviewers, and testers. To facilitate effective
communication and collaboration, ChatDev utilizes a proposed chat chain that divides each phase into
atomic subtasks. Within the chat chain, each node represents a specific subtask, and two roles engage
in context-aware, multi-turn discussions to propose and validate solutions. This approach ensures
that client requirements are analyzed, creative ideas are generated, prototype systems are designed
and implemented, potential issues are identified and addressed, debug information is explained,
appealing graphics are created, and user manuals are generated. By guiding the software development
process along the chat chain, ChatDev delivers the final software to the user, including source code,
dependency environment specifications, and user manuals.

The experiment analyzed all the software produced by ChatDev in response to 70 user requirements.
On average, ChatDev generated 17.04 files per software, alleviated potential code vulnerabilities
caused by code hallucinations 13.23 times, had a software production time of 409.84 seconds, and
incurred a manufacturing cost of $0.2967. Discussions between a reviewer and a programmer led to
the identification and modification of nearly twenty types of code vulnerabilities, while discussions
between a tester and a programmer resulted in the identification and resolution of more than ten types
of potential bugs. In summary, our main contributions are as follows:

e We propose ChatDev, a chat-based software development framework. By merely specifying a task,
ChatDev sequentially handles designing, coding, testing, and documenting. This new paradigm
simplifies software development by unifying main processes through language communication,
eliminating the need for specialized models at each phase.

e We propose the chat chain to decompose the development process into sequential atomic subtasks.
Each subtask requires collaborative interaction and cross-examination between two roles. This
framework enables multi-agent collaboration, user inspection of intermediate outputs, error diag-
noses, and reasoning intervention. It ensures a granular focus on specific subtasks within each chat,
facilitating effective collaboration and promoting the achievement of desired outputs.

o To further alleviate potential challenges related to code hallucinations, we introduce the thought
instruction mechanism in each independent chat process during code completion, reviewing, and
testing. By performing a “role flip”, an instructor explicitly injects specific thoughts for code
modifications into instructions, thereby guiding the assistant programmer more precisely.

e The experiments demonstrate the efficiency and cost-effectiveness of ChatDev’s automated software
development process. Through effective communication, proposal, and mutual examination
between roles in each chat, the framework enables effective decision-making.

2 ChatDev

Similar to hallucinations encountered when using LLMs for natural language querying [2]], directly
generating entire software systems using LLMs can result in severe code hallucinations, such as
incomplete implementation, missing dependencies, and undiscovered bugs. These hallucinations
may stem from the lack of specificity in the task and the absence of cross-examination in decision-
making. To address these limitations, as Figurel|shows, we establish a virtual chat-powered software
technology company — ChatDev, which comprises of recruited agents from diverse social identities,
such as chief officers, professional programmers, test engineers, and art designers. When presented
with a task, the diverse agents at ChatDev collaborate to develop a required software, including an
executable system, environmental guidelines, and user manuals. This paradigm revolves around
leveraging large language models as the core thinking component, enabling the agents to simulate



the entire software development process, circumventing the need for additional model training and
mitigating undesirable code hallucinations to some extent.

2.1 Chat Chain

ChatDev employs the widely adopted waterfall model, a prominent software development life cycle
model, to divide the software development process into four distinct phases: designing, coding,
testing, and documenting. In the designing phase, innovative ideas are generated through collab-
orative brainstorming, and technical design requirements are defined. The coding phase involves
the development and review of source code, while the testing phase integrates all components into
a system and utilizes feedback messages from interpreter for debugging. The documenting phase
encompasses the generation of environment specifications and user manuals. Each of these phases
necessitates effective communication among multiple roles, posing challenges in determining the
sequence of interactions and identifying the relevant individuals to engage with.

To address this, we propose a generalized architecture by breaking down each phase into multiple
atomic chats, each with a specific focus on task-oriented role-playing involving two distinct roles.
Through the exchange of instructions and collaboration between the participating agents, the desired
output for each chat, which forms a vital component of the target software, is achieved. An illustration
of this process is depicted in Figure[2] where a sequence of intermediate task-solving chats, referred to
as a “chat chain”, is presented. In each chat, an instructor initiates instructions, guiding the dialogue
towards task completion, while the assistant follows the instructions, provides suitable solutions,
and engages in discussions regarding feasibility. The instructor and assistant cooperate through
multi-turn dialogues until they reach a consensus and determine that the task has been successfully
accomplished.

The chat chain provides a transparent view of the software development process, shedding light on the
decision-making path and offering opportunities for debugging when errors arise, which enables users
to inspect intermediate outputs, diagnose errors, and intervene in the reasoning process if necessary.
Besides, chat chain ensures a granular focus on specific subtasks within each phase, facilitating
effective collaboration and promoting the attainment of desired outputs.
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Figure 2: The proposed architecture of ChatDev consists of phase-level and chat-level components.
At the phase level, the waterfall model is used to break down the software development process into
four sequential phases. At the chat level, each phase is further divided into atomic chats. These atomic
chats involve task-oriented role-playing between two agents, promoting collaborative communication.
The communication follows an instruction-following style, where agents interact to accomplish a
specific subtask within each chat.

2.2 Designing

In the designing phase, ChatDev receives an initial idea from a human client. This phase involves
three predefined roles: CEO (chief executive officer), CPO (chief product officer), and CTO (chief
technology officer). The chat chain then breaks down the designing phase into sequential atomic
chatting tasks, including decisions regarding the target software’s modality (CEO and CPO) and the
programming language (CEO and CTO).
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Figure 3: Three key mechanisms utilized in each chat. Role specialization ensures that each agent
fulfills their designated functions and contributes effectively to the task-oriented dialogue. The
memory stream maintains a comprehensive record of previous dialogues within the chat, enabling
agents to make informed decisions. Self-reflection prompts the assistant to reflect on proposed
decisions when both parties reach a consensus without triggering predefined termination conditions.

Role Assignment System prompts/messages are used to assign roles to each agent during the
role-playing process. In contrast to other conversational language models, our approach to prompt
engineering is restricted solely to the initiation of role-playing scenarios. The instructor is denoted as
‘Pz, while the assistant’s system prompt/message is denoted as P 4. These prompts assign roles to
the agents before the dialogues begin. Let L7 and £ 4 represent two large language models. Using
the system message, we have 7 «+ £7IDI and A < £54, which serve as the instructor and assistant
agents (Figure [3(a)), respectively. In our framework, the instructor initially acts as a CEO, engaging
in interactive planning, while the assistant assumes the role of CPO, executing tasks and providing
responses. To achieve role specialization, we employ inception prompting [23l], which has proven
effective in enabling agents to fulfill their roles. The instructor and assistant prompts encompass vital
details concerning the designated task and roles, communication protocols, termination criteria, and
constraints aimed at preventing undesirable behaviors (e.g., instruction redundancy, uninformative
responses, infinite loops, etc.).

Memory Stream  The memory stream [32] is a mechanism that maintains a comprehensive record
of an agent’s previous dialogues, assisting in subsequent decision-making in an utterance-aware
manner. Formally, the instructor’s message at time ¢ is denoted as Z;, the assistant’s message as A,
and the related decisions as S;. Equation [[|encapsulates the collection of conversational messages up
to time ¢.

My = ((Th, Ar), (L2, A2), - -, (Ty, Ar)) Sp — (I, Ay) (D

where 1) represents a LLM-based decision extractor which can be implemented via communication
protocol detection or self-reflection (detailed below). In the succeeding time step ¢ + 1, the instructor
leverages the historical dialogue message set M, to impart a fresh instruction, Z; 1, which is then
conveyed to the assistant along with M, as illustrated in Figure[3(b)] The assistant responds with a
solution or message, denoted as .A;; in Equation Q

Tiv1 = AMy, S) App1 =IZ( M4, L1, Sh) ()

Following the acquisition of the solution .4; 1 in response to the instruction Z; 1, the message stream
undergoes an update process utilizing Equation [3}

Mip1 = MU (Zigr, Argr) Si+1 =S U (Zy41, Arg1) 3)

We establish communication protocols through prompts. For example, an ending message satisfying
specific formatting requirements (e.g., “<MODALITY >: Desktop Application™) is generated when
both parties reach a consensus. The system monitors communication to ensure compliance with the
designated format, allowing for the conclusion of the current dialogue.

Self-Reflection  Occasionally, we have observed dialogues where both parties reach a consensus
but do not trigger the predefined communication protocols as termination conditions. In such cases,
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Figure 4: The thought instruction mitigates code hallucinations during the coding and testing phases.
Instead of providing generic instructions, thought instruction involves role swapping to inquire about
unimplemented methods or explain feedback messages caused by bugs. This step allows for a clearer
understanding of the existing code and identifies the specific gaps that need to be addressed. By
gaining this awareness, the roles can then switch back, and the instructor can provide more specific
instructions to guide the programmer accurately.

we introduce a self-reflection mechanism, which involves extracting and retrieving memories. To
implement this mechanism, we enlist a “pseudo self” as a new questioner and initiate a fresh chat. The
pseudo questioner informs the current assistant of all the historical records from previous dialogues
and requests a summary of the conclusive information from the dialogue, as shown in Figure
This mechanism effectively encourages the assistant to reflect upon the decisions proposed and
discussed during the dialogue.

2.3 Coding

The coding phase involves three predefined roles: CTO, programmer, and art designer. The chat chain
decomposes the coding phase into sequential atomic chatting tasks, such as generating complete codes
(CTO and programmer) and devising a graphical user interface (designer and programmer). Based on
the main designs discussed in the previous phase, the CTO instructs the programmer to implement a
software system using markdown format. The programmer generates codes in response and extracts
the corresponding codes based on markdown format. The designer proposes a user-friendly graphical
user interface (GUI) that uses graphical icons for user interaction instead of text-based commands.
Then, the designer creates visually appealing graphics using external text-to-image tools [35], which
the programmer incorporates into the GUI design using standard toolkits.

Code Management To handle complex software systems, ChatDev utilizes object-oriented pro-
gramming languages like Python. The modularity of object-oriented programming allows for self-
contained objects, aiding troubleshooting and collaborative development. Reusability enables code
reuse through inheritance, reducing redundancy. We introduce the “version evolution” mechanism to
restrict visibility to the latest code version between roles, discarding earlier code versions from the
memory stream. The programmer manages the project using Git-related commands. Proposed code
modifications and changes increment the software version by 1.0. Version evolution gradually elimi-
nates code hallucinations. The combination of object-oriented programming and version evolution is
suitable for dialogues involving long code segments.

Thought Instruction  Traditional question answering can lead to inaccuracies or irrelevant informa-
tion, especially in code generation, where naive instructions may result in unexpected hallucinations.



This issue becomes particularly problematic when generating code. For instance, when instructing
the programmer to implement all unimplemented methods, a naive instruction may result in hal-
lucinations, such as including methods that are reserved as unimplemented interfaces. To address
this, we propose the “thought instruction” mechanism, inspired by chain-of-thought prompting [44].
It involves explicitly addressing specific problem-solving thoughts in instructions, akin to solving
subtasks in a sequential manner. As shown in Figure [4(a)| and d(b)] thought instruction includes
swapping roles to inquire about which methods are not yet implemented and then switching back
to provide the programmer with more precise instructions to follow. By incorporating thought in-
struction, the coding process becomes more focused and targeted. The explicit expression of specific
thoughts in the instructions helps to reduce ambiguity and ensures that the generated code aligns
with the intended objectives. This mechanism enables a more accurate and context-aware approach
to code completion, minimizing the occurrence of hallucination and resulting in more reliable and
comprehensive code outputs.

2.4 Testing

Even for human programmers, there is no guarantee that the code they write on the first attempt
is always error-free. Rather than discarding incorrect code outright, humans typically analyze and
investigate code execution results to identify and rectify implementation errors [8]. In ChatDeyv,
the testing phase involves three roles: programmer, reviewer, and tester. The process consists of
sequential atomic chatting tasks, including peer review (programmer and reviewer) and system testing
(programmer and tester). Peer review, or static debugging, examines source code to identify potential
issues. System testing, a form of dynamic debugging, verifies software execution through tests
conducted by the programmer using an interpreter. This testing focuses on evaluating application
performance through black-box testing.

In our practice, we observed that allowing two agents to communicate solely based on feedback
messages from an interpreter does not result in a bug-free system. The programmer’s modifications
may not strictly follow the feedback, leading to hallucinations. To address this, we further employ the
thought instruction mechanism to explicitly express debugging thoughts in the instructions (Figure
M(c)|andA(d)). The tester executes the software, analyzes bugs, proposes modifications, and instructs
the programmer accordingly. This iterative process continues until potential bugs are eliminated and
the system runs successfully.

In cases where an interpreter struggles with identifying fine-grained logical issues, the involvement
of a human client in software testing becomes optional. ChatDev enables the human client to provide
feedback and suggestions in natural language, similar to a reviewer or tester, using black-box testing
or other strategies. ChatDeyv, based on human input, can understand and utilize this feedback to refine
the software system.

2.5 Documenting

After the designing, coding, and testing phases, ChatDev employs four agents (CEO, CPO, CTO, and
programmer) to generate software project documentation. Using large language models, we leverage
few-shot prompting [S]] with in-context examples for document generation. The CTO instructs
the programmer to provide configuration instructions for environmental dependencies, resulting in
a document like requirements.txt. This document allows users to configure the environment
independently. Simultaneously, the CEO communicates requirements and system design to the CPO,
who generates a user manual.

3 Experiments

Our experimental setup employs the “ChatGPT-turbo-16k” version of ChatGPT to simulate multi-
agent software development. The language model temperature is set to 0.2 for controlled generation.
In the coding phase, we allow a maximum of 5 attempts for code completion. The reviewer is
permitted 5 chats to propose modifications, and a maximum of 5 software system tests are conducted
in the testing phase. For Python-based systems, we use Python 3.8.16 as the interpreter for testing.
Camel [23]] has curated an instruction-following dialogue dataset, which spans across 20 programming
languages, 50 domains, and 50 tasks per domain. From this extensive task set, we randomly selected
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Figure 5: The documenting phase involves generating relevant documents, such as external depen-
dency specifications and user instructions. The user manual provides comprehensive information
about the software’s technical architecture, installation instructions, and features, serving as a valuable
resource for users. Once the dependencies are installed, a human client can execute the software
using a suitable interpreter.

70 taskﬂ including both specific and relatively abstract cases, to serve as the basis for analysis in our
ChatDev software development.

Software Statistics We performed a statistical analysis on the software systems generated by
ChatDev. Key metrics, including the total dialogue turns, consumed tokens, software files, image
assets, and version updates, were examined. Table [T] presents these metrics, providing valuable
insights into the communication-based software development process. It offers a comprehensive
overview of ChatDev’s development, covering aspects such as versioning, file composition, code
complexity, and development iterations.

Table 1: The statistical analysis of ChatDev’s software development, including minimum (Min),
maximum (Max), and average (Avg.) values for various aspects.

Min Max Avg.

# Code Files 2.00 8.00 4.26
# Asset Files 0.00 21.00 8.74
# Document Files 4.00 5.00 4.04
# Lines of Source Codes 39.00 359.00 131.61
# Lines of Dependencies 1.00 5.00 2.90
# Lines of User Manual 31.00 232.00 53.96
# Version Updates 5.00 4200 13.23

# Software Re-development 1.00 5.00 1.40

The generated software typically includes 2 to 8 code files, with an average of 4.26 files. Asset
files, created by the art designer using external tools [35], range from O to 21, with an average
of 8.74 files. Here are some examples of concise text descriptions through which programmers
request the designer to create images, such as “The text entry field where the user can
input their data”, “The background image for the financial dashboard”, and “The
image representing the player character in the game”. The software is accompanied
by 4 to S document files on average, such as dependency requirements specifications, user manuals,

development logs, and software meta information.

The software developed by ChatDeyv typically ranges from 39 to 359 lines of code, with an average of
131.61 linesﬂ The data suggests that ChatDev tends to produce software with relatively small-scale
code. This is partly because the design of object-oriented programming, whose reusability enables
code reuse through inheritance, reducing redundancy. We also noted that when the user specified a
less specific task, the resulting source code generated by ChatDev tended to be shorter, averaging
around 110.97 lines. This is primarily attributed to ChatDev employing high-level logic to fulfill
non-specific tasks, often generating code that focuses on providing print information for interface
representation. Therefore, we recommend providing ChatDev with specific instructions, such as
desired software features, system rules, UI design, and other detailed specifications. By providing

"For exmaple, “Implement a Gomoku game using Python, incorporating an Al opponent with varying
difficulty levels” or “Create a Python program to develop an interactive weather dashboard”.
2This count includes only lines that contain meaningful code, excluding blank lines.



clearer and more specific instructions, users can guide ChatDev to produce more comprehensive and
tailored codes that aligns with their specific requirements. The number of environment dependencies,
which indicates the external software components required, ranges from 1 to 5, with an average
of 2.90 dependencies. ChatDev’s software environment typically includes numpy, matplotlib,
pandas, tkinter, pillow, or flask. The user manual for the software consists of 31 to 232 lines,
with an average of 53.96 lines. Based on our experience, the user manual commonly covers sections
such as Introduction, Quick Install, Main Features, Usage Instructions, etc,.

The number of version updates for the software ranges from 5 to 42, with an average of 13.23 updates.
This indicates that the source code undergoes approximately 13 modifications on average, reflecting
the collaborative effort among agents in alleviating code hallucination issues throughout the software
development process, including code completion, coding, and testing. In exceptional cases where the
software fails to pass the maximum number of tests, ChatDev takes proactive measures by engaging
in full-scale software re-engineering. In most cases, the software development process involves 1 to 5
development cycles, with an average of 1.40 cycles.

In our experiments, we effortlessly set up the sandbox environment by directly installing the required
software dependencies. Subsequently, we executed the generated software using the main function.
Remarkably, approximately 86.66% of the software systems executed flawlessly, showcasing the
robustness and reliability of our developed software. However, a small fraction, 13.33% of the
software, encountered execution failures. Upon analyzing the failed software creations, we identified
two primary contributing factors. Firstly, in 50% of the cases, the failure was attributed to the
token length limit of the API. This limitation prevented obtaining the complete source code within
the specified length constraint for code generation. Such challenges are particularly evident when
dealing with complex software systems or scenarios requiring extensive code generation. The
remaining 50% of the failed software creations were primarily affected by external dependency
issues. These challenges emerged when certain dependencies were either unavailable in the cloud or
incorrectly versioned, resulting in conflicts and unavailability of specific application programming
interfaces (APIs) in the current version. These external dependency-related issues underscore the
significance of meticulous management and coordination of the required software components to
ensure smooth execution and functionality. Overall, despite encountering a small percentage of
failures, our experimental findings demonstrate the feasibility and effectiveness of ChatDev in
generating executable software systems, with the majority of the systems successfully executing.

Duration Analysis We conducted a duration analysis to examine the software production time
for different request prompts using ChatDev. The variability in development times across prompts
reflects the varying complexity and clarity of the assigned tasks. The graph in Figure [f] provides a
visual representation of this distribution. The longest software production duration, represented by
the tallest bar on the left side of the graph, was 1030.00 seconds. This extended time was due to
extensive dialogue and communication between the reviewer and programmer, leading to a detailed
modification scheme. In contrast, the shortest bar on the right end of the graph indicates a minimum
software development time of 169.00 seconds. This shorter duration was attributed to the absence of
significant bugs and fewer dialogues during coding and testing stages. On average, the development
of small-sized software and interfaces using ChatDev took 409.84 seconds, less than 7.00 minutes. In
comparison, traditional custom software development cycles, even within agile software development
methods, typically require 2 to 4 weeks or even several months per cycle [22;[10]].

Dialogue Statistics - In ChatDev, we employed a chat chain mechanism to facilitate software
development. Each chat chain represents the production of software for a specific task and consists of
multiple multi-utterance chat rounds. During these rounds, agents engage in discussions to address
predefined subtasks, such as language choices, proposing solutions, and making final decisions. After
completing all subtasks, a chat chain concludes with the development of the software product. For
our case study tasks, we analyzed the chat chains and collected statistics, including the total number
of utterances and prompt tokens used. These statistics are presented in Table

‘We noticed occasional instances of repetitive expressions of gratitude in the dialogue, even after
reaching a consensus and making decisions. However, this phenomenon does not significantly
impact the final outcome. The self-reflection mechanism effectively allows agents to extract decision
results and conclusions from the dialogue using text summarization-like abilities. This mechanism
helps agents avoid unnecessary dialogue and focus on extracting meaningful information. The
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Table 2: The statistical analysis of all dialogues in chat chains.

Min Max Avg.
# Self-Reflection 1.00 4.00 1.24
# Utterances 24.00 104.00 45.60
# Prompt Tokens 11,119.00 91,208.00 36,902.23
# Completion Tokens 3,161.00 27,162.00 11,567.37
# Total Tokens 15,294.00 111,019.00 48,469.60

self-reflection number in the dialogue ranges from 1 to 4, with an average of 1.24. In most cases,
agents can autonomously conclude the dialogue based on predefined communication protocols.

On average, a chat chain contains 45.60 utterances, ranging from a minimum of 24 to a maximum of
104. The count of utterances encompasses discussions related to achievability of subtasks, evaluations
of generated code quality, feedback on testing, advice for improvements, and the actual writing and
generation of software code files and documents. Likewise, we have observed that ChatDev tends
to engage in less communication through utterances for abstract tasks compared to specific tasks,
averaging around 34.40 utterances. Analysis of the dialogues revealed that during the design and
coding stages, agents conducted multiple rounds of discussions to delve into the details of numerous
requirements or propose modification suggestions. These discussions aimed to make informed
decisions regarding the specific tasks at hand. This phenomenon aligns with real-world practices,
where addressing specific tasks often involves more detailed discussions and deliberations.

We monitored API interactions and token usage during software production in ChatDev. On average,
ChatDeyv requires 36,902.23 prompt tokens, 11,567.37 completion tokens, and a total of 48,469.60
tokens to develop a single software. The average total cost in software production is approximately
$0.156qﬂ To determine the overall cost of software development with ChatDev, we also consider the
cost of designer-produced images. The average designer cost is $0.1398 per software for each software
production involving 8.74 graphics creations on average. Thus, the average software development cost
at ChatDev is $0.2967, significantly lower than traditional custom software development companies’
expenses [18 1215 31]].

Reviewer-Programmer Dialogue Analysis In this section, we delve into the primary exchanges
between the reviewer and the programmer, specifically concerning code-related matters during the
coding phase. We summarize the reviewer’s evaluations of the programmer’s source code at the
coding stage. Figure[7] provides a visual representation of the reviewer’s suggestions in the form of
pie charts. As depicted in the figure, the most frequently discussed issue in the reviewer-programmer
communication during code review is “methods not implemented” (34.85%). This challenge
commonly arises in code generation for complex models, where core functionalities often receive

3Based on official API prices for July 2023.
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Figure 7: Distribution of Reviewer’s Suggestions. Each color in the pie chart represents a specific
category of suggestions provided by the reviewer.

placeholder labels (such as “pass” in Python) to be further completed. Additionally, the dialogue
frequently addresses the topic of “modules not imported” (19.70%). This issue emerges from
the nature of code generation, where the generated code tends to overlook minor details. However, in
the context of code generation, ensuring the code’s executability becomes crucial. Fortunately, the
thought instruction mechanism proposed in this paper effectively tackles these issues by compelling
the reviewer to identify incomplete methods and requiring the programmer to fill them. This
mechanism can be applied to other scenarios where tasks are completed based on large models
but with certain parts missing. Interestingly, the reviewer also emphasizes the importance of code
robustness. They underscore considerations for handling potential exceptions in the future and offer
hints on avoiding duplicate categories (3.03%). Additionally, the reviewer provides suggestions
regarding unused classes in the code (1.52%), identifies infinite loops (1.52%), and emphasizes the
necessity of proper environment initialization (1.52%).

Tester-Programmer Dialogue Analysis In a similar fashion, we analyze the debug dialogue
between the tester and the programmer during the testing phase and categorize the main types of
bugs encountered. The results are presented in Figure[§] As observed in the figure, the most frequent
debug issue between the tester and the programmer is “module not found” (45.76%), accounting
for nearly half of the cases. This reflects the model’s tendency to overlook very fine details, despite
their simplicity. Fortunately, with the thought instruction mechanism proposed in this paper, such
bugs can often be easily resolved by importing the required class or method. The second most
common types of errors are “attribute error” and “unknown option”, each accounting for
15.25% of the cases. “attribute error” refers to errors in the usage of class attributes, while
“unknown option” indicates errors in the parameters of method calls. Another common type of
error is “import error” which is similar to “module not found” and is primarily caused by
mistakes in the import statements, such as importing the wrong class or using an incorrect import
path. In addition to these common error types, ChatDev has the capability to detect relatively rare
error types such as improperly initialized GUI (5.08%), incorrect method calling (1.69%), missing
file dependencies (1.69%), unused modules (1.69%), decorator syntax errors (1.69%), and more.

Case Study  Figure[9showcases an example of ChatDev developing a Gomoku game (a.k.a. also
known as “Five in a Row” and “Gobang”). In the left, we see the result of a naive software created
without GUI. This version of the game can only be played through a command terminal, limiting
its interactivity and overall enjoyment. In contrast, by incorporating GUI design, ChatDev can

B Not Properly Initialized

6.78%
B Module Not Found B Not Packed Correctly
B Attribute Error 2 [ Method Not Correctly Called
& Unknown Option [ Method Not Found

B Import Error ' Missing Files
[ Others B Module Not Used
B Typo in Decorator Names

Figure 8: Distribution of Tester’s Suggestions. Each color in the pie chart represents a specific
category of bugs provided by the tester.
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Figure 9: The producted software of the task: “design a basic Gomoku game”.

create a visually appealing small game. This version surpasses the interface-less version in terms of
interactivity and user experience, providing a more enjoyable and engaging gameplay environment.
Furthermore, ChatDev’s designer can assist the programmer in creating additional graphics to enhance
the GUT’s aesthetics and usability, without compromising its functionality. These graphics, carefully
crafted by the designer, contribute to making the GUI more visually pleasing and user-friendly.

Additionally, if human users are unsatisfied with the images created by the art designer, they have
the flexibility to manually replace the original images after ChatDev completes the software. This
allows for further customization according to users’ preferences, without affecting the software’s
core functionality. Users can tailor the visual elements to their liking, resulting in a personalized
software experience that aligns with their individual preferences.

For a more comprehensive understanding, we exemplify the dialogue processes that make program-
ming language choices in designing. More exemplary dialogues extracted from the chat chain of
the Gomoku game are shown in Appendix [A] including the prompts we designed and the dialogue
process between agents at each phase. Please note that, due to space constraints, we only display key
information during the dialogue, omitting overly fine-grained details.

Designing: Programming Language

g: CEO (Chief Executive Officer) @: CTO (Chief Technology Officer)

%: To satisfy the new user’s demand and make a desktop application realizable,
you should propose a concrete programming language.

gz Python with the Pygame library is a suitable choice for implementing a
basic Gomoku game.

g: Great! Python is a versatile and widely-used programming language that
will be suitable for implementing a basic Gomoku game. Its simplicity
and readability make it a popular choice for beginners and experienced
developers alike.

%: Let’s get started with the development of the basic Gomoku game in Python
using the Pygame library!

%: <END> Python.
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Figure 10: The three-stage process of NLDD creation. We only show the generated names of software
and the prompt in the figure is for example only.

4 NLDD Dataset

We collect and open-sourceE] a large and diverse dataset named NLDD (Natural Language Dataset for
Dev), which contains 1,200 software prompt data for the Natural Language to Software (NL2Software)
task. Each sample in NLDD includes the name, description, and category of the software.

NLDD is created by prompting ChatGPT with a three-stage strategy and well-designed rules. We
collect the main software category from four prominent software store platforms including Ubuntu
Snap Shop, Google Play Store, Microsoft Store, and Apple App Store. We further sorted out five
major categories with 40 subcategories and asked ChatGPT to generate software data for these
categories. See Figure[TT]in the appendix for all the category details.

To circumvent the generation of repetitive content, NLDD is created with a Query Prompt-based
three-stage strategy, including random sampling, prompt sampling, and check. As shown in Figure
[I0] this strategy initially establishes datasets by random sampling some software data, then records
existing data, granting ChatGPT autonomy to produce novel entries.

1. Random Sampling: First, ChatGPT is independently inquired multiple times to obtain
software information under a certain category, and then the duplication is removed at the
token granularity of the software name.

2. Sequential Sampling: Then we add the generated software information in sequence in
the form of negative prompts, requiring ChatGPT to continue generating unique software
information.

3. Check: Although ChatGPT has been required to follow certain rules when generating, LLM
is more likely to be overconfident when generating according to rules than when judging
based on rules. Therefore, our last step is to let ChatGPT determine whether the generated
software follows the rules.

NLDD is created with human-designed rules that make the created software easy for researchers to
evaluate, for example, the collected software does not need internet or multi-player participation. It is
curated to facilitate research in NL2Software. We also give a visualization and analysis of the created
software description in the appendix (see Figure[T2]and [T3).

*The data is available at https://github.com/OpenBMB/ChatDev/tree/main/NLDD.
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5 Discussion

Even though ChatDev offers a novel paradigm for software development that is training-free, efficient,
and cost-effective, we recognize the presence of potential risks and limitations that require further
investigation and resolution.

Even when we set the temperature parameter of the large language model to a very low value,
we observe inherent randomness in the generated output. Consequently, each software produced
may vary between different runs. As a result, this technology is best suited for open and creative
software production scenarios where variations are acceptable. Moreover, there are instances where
the software fails to meet the users’ needs. This can be attributed to unclear user requirements and
the inherent randomness in text or code generation.

While the designer agent is capable of creating images [35]], it is important to acknowledge that the
directly generated images may not always enhance the GUI’s aesthetics. At times, they may introduce
excessive complexity, which can hinder user experience. This is primarily because each image is
generated independently, lacking direct visual correlation. To address this, we have provided the
option for users to customize the GUI as a system hyperparameter, allowing them to decide whether
to enable this feature or not.

Additionally, the large language model may exhibit inherent biases [30]], leading to the generation of
code patterns that do not necessarily align with the problem-solving thinking of real programmers.
Regarding risks, it is important to note that existing large language models are not fully tuned to
be harmless, making them vulnerable to potential misuse by malicious users for harmful purposes.
Furthermore, the generated software currently lacks malicious intent identification for sensitive file
operations. Therefore, users are advised to conduct their own code review before running the software
to prevent any unnecessary data loss.

Additionally, the assessment of our ChatDev framework’s software-level task completion capabilities
presents formidable challenges, owing to the vast scope and heterogeneous nature of the generated
tasks. This mandates the active participation of a multitude of domain experts.

Although the study may potentially help junior programmers or engineers in real world, it is challeng-
ing for the system to generate perfect source code for high-level or large-scale software requirements.
This difficulty arises from the agents’ limited ability to autonomously determine specific implemen-
tation details, often resulting in multiple rounds of lengthy discussions. Additionally, large-scale
software development proves challenging for both reviewers and testers, as it becomes difficult to
identify defects or vulnerabilities within the given time constraints.

6 Related Work

Deep-Learning-based Software Engineering Software engineering (SE) is the process of de-
signing, developing, testing and maintaining software in a methodical, rigorous, and measurable
mannerP} Due to the complexity of software engineering, a significant number of decisions are made
based on intuition and, at best, consultation with senior developers With the rapid development of
the deep learning (DL) technique, many researchers are devoted to apply DL into SE to improve
the effectiveness and efficiency of software development, reducing labor cost. Existing DL-based
SE work focuses on five SE stages of the life cycle in software engineering separately [14]: (1)
Software requirements is to analysis the user demands and specify the requirements for the soft-
ware [34;146; 13]. (2) Software design involves the specification of the software framework, modules,
protocols, and other features that are necessary for the development of a software [27; [38} |47]].
(3) Software implementation is the detailed creation procedure of the software to implement the
design [16; |15 165 1295 [11]. (4) Software testing is to verify that the software can provide expected
behaviors on a set of test cases [42}40; 43 139]]. (5) Software maintenance is to provide necessary
support for software users, e.g., documentation generation [19;!40; 28 |20]]. Despite the impressive
performance by adapting DL method into SE, these approaches are isolated, which is only able to
accomplish a specific step of the whole procedure of software engineering. Not to mention these
DL-based methods require large-scale task-specialized training data to achieve the certain goal, which
is unpractical to collect extensive data for the whole procedure of software engineering.

5Iwww.cornputer.org/ sevocabl
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Multi-Agent Collaboration Large language models (LLMs) have exhibited remarkable proficiency
across a wide range of domains. Recently, there exist several work has explored that utilizing the
interactions between LLMs to achieve several goals. (1) Behaviour simulation: Park et al. [33] create
multiple generative agents with a sandbox environment to simulate believable human behavior. Wang
et al. [41]] use multiple agents to simulate the user behaviours in the recommendation scenario. (2)
Data construction: Wei et al. [43]] assign agents with different roles to collect and evaluate multi-party
conversations. Li et al. [24] propose a role-playing framework which leverages agents to generate
diverse and detailed instructions for complicated tasks. (3) Performance improvement: Salewski et
al. [36] find that asking the agent to take on different roles can improve their performance. Du et
al. [12] improve the factual correctness and reasoning accuracy by leveraging multi-agent debate.
Liang et al. [25] use multiple agents to debate each other to solve the degeneration-of-thought problem
in self-reflection. Fu et al. [[15] find that multiple agents can improve each other in a negotiation
game like buyer-seller dealing by role-playing and learning from the agent feedback. Liu et al. [26]
design a simulated social interaction sandbox to achieve social alignment for LLMs. Talebirad et
al. [37] introduce multiple agents with unique attributes and roles to handle complex tasks in a black
box environment.

7 Conclusion

In this study, we have presented ChatDeyv, a chat-based end-to-end software development framework
that leverages LLMs to facilitate effective communication and collaboration among multiple roles
involved in the software development process. By decomposing the development process into
sequential atomic subtasks through the use of the chat chain, ChatDev enables granular focus and
promotes desired outputs for each subtask. Additionally, the thought instruction mechanism alleviates
challenges related to code hallucinations by guiding programmers through specific code modifications
during code completion, reviewing, and testing. Our experimental results demonstrate the efficiency
and cost-effectiveness of the automated software development process driven by ChatDev. By
employing multiple software agents with different roles, we have proposed a new paradigm in
generating software systems, alleviating code vulnerabilities, and identifying and resolving potential
bugs. The collaborative interactions and mutual examination between roles within each chat have
contributed to effective decision-making for each subtask.

Moving forward, further research can focus on refining the communication protocols and optimizing
the interaction dynamics within each chat to enhance the performance and effectiveness of ChatDeyv.
Additionally, exploring the integration of other emerging technologies, such as reinforcement learning
and explainable Al, could provide valuable insights into addressing challenges and improving the
overall software development process. Our research will persist in exploring enhancements and ad-
vancements in ChatDev agents, workflow, and development environments. The overarching objective
is to achieve even greater efficiency in software production by improving various characteristics, such
as reducing the length of chat chains or optimizing subtask solving logic and strategies, ultimately
leading to more streamlined and effective software production processes. We hope the potential of the
proposed natural-language-to-software framework can illuminate fresh possibilities for integrating
LLMs into software development and mark the dawn of a new frontier in the field of natural language
processing, software engineering, and collective intelligence.
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A Appendix

Role Specialization

g: I am the CEO of ChatDev. My main responsibilities include being an active decision-
maker on users’ demands and other key policy issues, leader, manager, and executor. My
decision-making role involves high-level decisions about policy and strategy; and my com-
municator role can involve speaking to the organization’s management and employees.

@: I am the CPO of ChatDev. I am responsible for all product-related matters in ChatDeyv.
Usually includes product design, product strategy, product vision, product innovation, project
management and product marketing.

%: I am the CTO of ChatDev. I am very similar to information technology. I will make
high-level decisions for the overarching technology infrastructure that closely align with the
organization’s goals, while I work alongside the organization’s information technology staff
members to perform everyday operations.

@: I am a professional programmer of ChatDev. I can write/create computer software or
applications by providing a specific programming language to the computer. I have extensive
computing and coding experience in many varieties of programming languages and platforms,
such as Python, Java, C, C++, HTML, CSS, JavaScript, XML, SQL, PHP, etc,.

@: I am a code reviewer of ChatDev. I can help programmers to assess source codes for
software troubleshooting, fix bugs to increase code quality and robustness, and offer proposals
to improve the source codes.

%: I am a code tester of ChatDev. I can use the software as intended to analyze its functional
properties, design manual and automated test procedures to evaluate each software product,
build and implement software evaluation test programs, and run test programs to ensure that
testing protocols evaluate the software correctly.

@: I am a artistic designer of ChatDev. I direct ChatDev’s creative softwares and develop
the artistic design strategy that defines the company’s brand. I create the unique image or
music of our producted softwares and deliver this distinctive design to consumers to create a
clear brand image which is a fundamental and essential work throughout the company.
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Designing: Modality and Language

g: CEO (Chief Executive Officer) @: CPO (Chief Product Officer)

g: To satisfy the new user’s demand and the product should be realizable via
the python programming language, you should keep discussing with me to
decide which product modality do we want the product to be? Once we all
have expressed our opinion(s) and agree with the results of the discussion
unanimously, any of us must actively terminate the discussion by replying
with a single word <END>, followed by our final product modality, e.g.,
“<END> PowerPoint”.

g: I suggest we design the Gomoku game as a desktop application. This
modality will allow us to implement a visualized game that can be played
on a computer. It will provide a user-friendly interface and an interactive
gaming experience. Additionally, developing the game as a desktop ap-
plication will leverage our expertise in programming and ensure that the
product is realizable using the Python programming language.

g: I appreciate your initiative and I agree with your suggestion to design the
Gomoku game as a desktop application. This modality aligns with our
expertise and allows us to create a visually appealing and interactive game
for our users. By leveraging the object-oriented programming language, we
can ensure that the product is realizable and maintainable in the long run.
Let’s proceed with developing the Gomoku game as a desktop application.

Great! I'm glad we’re aligned on developing the Gomoku game as a
desktop application.

<END> Desktop Application.

0 1 9

To satisfy the new user’s demand and make a desktop application realizable,
you should propose a concrete programming language.

Python with the Pygame library is a suitable choice for implementing a
basic Gomoku game.

3

Great! Python is a versatile and widely-used programming language that
will be suitable for implementing a basic Gomoku game. Its simplicity
and readability make it a popular choice for beginners and experienced
developers alike.

Let’s get started with the development of the basic Gomoku game in Python
using the Pygame library!

3 ¥

<END> Python.
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Designing: Brainstorm (via Self-Reflection)

%
g: CEO (Chief Executive Officer) Q; CPO (Chief Product Officer)  %#: Pseudo Self

g: To satisfy the new user’s demand and let our designed software further
surprizes the user, you should propose three fantastic ideas to make the
desktop application more creative and imaginative via Python.

g: Here are three fantastic ideas to make the Gomoku game software more
creative and imaginative:

e Theme Customization: Allow users to customize the theme of the
game board and pieces.

e Avatar Selection: Introduce a feature that allows users to select and
customize their own avatars to represent them in the game.

e Special Moves: Incorporate special moves that players can unlock or
earn during the game.

g: To implement these ideas, we can incorporate the following features into the
software: providing a theme selection menu where users can choose from a
variety of visually appealing themes; and allowing users to customize their
avatars’ appearance, such as changing hairstyles, outfits, and accessories.
By incorporating these features, we can create a Gomoku game software
that not only provides an engaging gameplay experience but also allows
users to express their creativity and imagination.

Q: To proceed with the implementation, we will need to assign a development
team to work on the software. We will create a project plan, allocate
resources, and set milestones to track the progress. Once the software
is developed, we can conduct thorough testing to ensure its functionality,
performance, and user experience meet the highest standards. We will also
create documentation to users to ensure a seamless experience.

%: I appreciate your thorough approach to the implementation of the proposed
features.

Here is a dialogue between CPO and me: 2. 6. 2. @
-7, Conclude three most creative and imaginative brainstorm ideas from
the whole discussion.

g: 1. Theme Customization: Allow users to customize the theme of the
game board and pieces.
2. Avatar Selection: Introduce a feature that allows users to select and
customize their own avatars to represent them in the game.
3. Power-Ups and Special Moves: Incorporate power-ups and special
moves that players can unlock or earn during the game.
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Coding: Code Generation

g: CTO (Chief Technology Officer) @: Programmer

g: We have decided to complete the task through a executable software with
multiple files implemented via Python. You should write one or multiple
files and make sure that every detail of the architecture is implemented as
code. The software should be equiped with graphical user interface (GUI);
so you must choose a suitable GUI framework. Think step by step and
reason yourself to the right decisions to make sure we get it right. You will
first lay out the names of the core classes, functions, methods that will be
necessary, as well as a quick comment on their purpose.

%: To design a basic Gomoku game in Python with a GUI, we will need the
following core classes, functions, and methods:

e Board: This class represents the game board and handles the logic for
placing and checking moves.

e Game: This class manages the game flow and user interactions.

e GUI: This class handles the graphical user interface using a GUI
framework (e.g., tkinter).

Now, let’s proceed with the implementation of each file.

class Game:
def __init__(self):
self.board = [[0] * 15 for
self.current_player = 1
self.game_over = False
def make_move(self, row, col):
if self.board[row] [col] != 0 or self.game_over:
return
self.board[row] [col] = self.current_player
if self.check_win(row, col):
self.game_over = True
elif self.is_board_full():
self.game_over = True
self.current_player = 3 - self.current_player

in range(15)]

class GUI:
def create_board(self):
self.board_frame = tk.Frame(self.window)
self .board_frame.pack()
for row in range(15):
row_buttons = []
for col in range(15):
button = tk.Button(width=50, height=50)
button.grid(row=row, column=col)
row_buttons.append (button)
self.buttons.append(row_buttons)
self.update_board_gui()
def is_game_over(self, result):
pass
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Coding: GUI Design

%: Programmer @: Designer

@: To equip the software with a beautiful graphical user interface, we will
discuss and design many decorative images for GUI decoration. Now, we,
according to the codes, keep discussing the GUI beautification by listing
some functionally independent elements in GUI that are being considered
to be decorated by different pictures.

class GUI:
def __init__(self, game):
player_o = str("0")
player_x = str("X")
def make_move(self, row, col):
self.game.play_move(row, col)
self.buttons[row] [col].config("X"

if self.game.current_player == ’X’ else "0")
def is_game_over(self, result):
pass
@: board.png: The game board where players make their moves.

button.png: The button used to make a move on the game board.
player_X.png: The image representing player X.

player_0.png: The image representing player O.

win.png: The message displayed when a player wins.
game_over.png: The message displayed when the game is over. use

@: I have created all the pictures in the same directory as the Python files.
Now, use some or all of the them into the GUI to make it more beautiful
and creative.

g: To incorporate the designed images into the GUI, I have modified the ‘GUI’
class as follows:

class GUI:
def __init__(self, game):
player_o = Image.open("player_0.png")
player_x = Image.open("player_X.png")
def make_move(self, row, col):
self.game.play_move(row, col)
self .buttons[row] [col].config(image=self.player_x
if self.game.current_player == X’ else self.player_o)
def is_game_over(self, result):
pass

The modified ‘GUI class will load and resize the images, convert them to
Tkinter-compatible format, and use them to create the GUI elements.

24



Testing: Code Review (via Thought Instruction)

@: Programmer @: Reviewer

g: Review the codes detailedly, propose one comment with the highest priority
about the codes, and give me instructions on how to fix.

@: The highest priority comment is regarding the incomplete implemen-
tation of the check_winner () and is_board_full() methods in the
GameBoard class. These methods are marked with a TODO comment and
need to be implemented to determine the winner of the game and check
if the game board is full. To fix this, you need to implement the logic for
both methods. Here are the instructions to do so:

1. In the check_winner () method, you need to implement the logic to
check if there is a winning condition on the game board. This can
be done by checking for five consecutive stones in a row, column, or
diagonal. You can use nested loops to iterate through the board and
check for these conditions. Once a winner is found, you can return
the player number (1 or 2) or any other value to indicate the winner. If
no winner is found, you can return None or any other value to indicate
no winner.

2. Inthe is_board_full () method, you need to implement the logic to
check if the game board is full. This can be done by iterating through
the board and checking if any cell is empty (i.e., has a value of 0). If
all cells are filled, you can return True to indicate that the board is
full. Otherwise, you can return False.

Once you have implemented these methods, make sure to remove the pass
statement from both methods.

Modify corresponding codes according to the above-mentioned comments.

809

This modified file contains the GameBoard class that represents the game
board and handles the logic of the game.

board.py

class GameBoard:
def check_winner(self):
for row in range(15):
for col in range(11):
if check_winner():
return self.board[row] [col]
for col in range(15):
for row in range(11):
if check_winner():
return self.board[row] [col]
return None
def is_board_full(self):
for row in range(15):
for col in range(15):
if self.board[row] [col] ==
return False
return True
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Testing: Code Execution (via Thought Instruction)

g: Programmer

g: Here is the test report of the software:

Traceback (most recent call last):

File "main.py", line 19, in <module>
game = GomokuGame ()
NameError: name ’GomokuGame’ is not defined

g: According to the test reports, please locate and summarize the bugs that
cause the problem.

ﬁ: Based on the test report, the bug causing the problem is a NameError. The
error message indicates that the name GomokuGame is not defined. This
suggests that there is a missing import or definition for the GomokuGame
class in the source code. To resolve this issue, you need to import or define
the GomokuGame class in the source code before it is used. This can be
done by adding the necessary import statement or by defining the class
within the same file or in a separate module that is imported.

g: To make the software execute smoothly and robustly, you should modify
the problematic code segments based on the test report and my suggestions.

g: This modified file has imported the GameBoard class that represents the
game board and handles the logic of the game.

import tkinter as tk

from tkinter import messagebox as tkmessagebox

from board import GameBoard

class GameGUI:

def __init__(self):

self.root = tk.Tk()
self.root.title("Gomoku")
self.game_board = GameBoard()
self.buttons = [[None] * 15 for
self.create_widgets()

in range(15)]

g: The code is well-structured and follows good coding practices. It passed
the test successfully.
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%z CTO @: Programmer g: CEO @: CPO

g: To specify the dependencies or packages required for the project to run
properly, write a requirements . txt file according to the codes to specify
the dependencies or packages required for the project to run properly.

g: Here is the environment dependence file:

requirements.txt

numpy==1.24.3
pandas>=1.1.4
pygame==2.5.0
requests==2.31.0
tkinter==8.6
tqdm==4.65.0

g: According to the user demands, codes, requirements, and file format listed
above, write a manual .md file to provide detailed introduction to the uses
of the software.

g: Here is the user manual:

Gomoku Game User Manual

Introduction
Welcome to the Gomoku Game!

Installation
1. Install Python on your computer.
2. Open a terminal and run:

pip install -r requirements.txt

Running the Game

1. Open a terminal and run:
python main.py

2. Click on the empty cells.

3. The game will continue until one

player gets five stones in a row.
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N Development
M- Security

I Office

\-Data

~Action Game

|~ Strategy Game
\~Racing Game

I~ Role Playing Game
|~ Sport Game

N Management Game
I Shooter Game

- Puzzle Game

- Board Game

‘- Simulation Game

Figure 11: The category of NLDD.
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COUNTER

LENGTH

Figure 12: The distribution of description length in NLDD.It can be seen from the figure that the
length presents an approximate mixed Gaussian distribution, mainly concentrated around the lengths
of 17 and 77, which represents the long and short software descriptions in the NLDD.
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Figure 13: We transform the software description into embeddings with the OpenAl Ada model and
then perform dimensionality reduction and visualization. As shown in the figure, it can be observed
that 1) software descriptions of the same category are distributed in clusters, indicating that the
generated descriptions are highly related to their categories. 2) Descriptions in different subcategories
under the same category are clustered together, such as the eight game subcategories in the lower
right corner. 3) Some subcategories of different categories also show overlaps in the figure, such as
Tools & Utilities and Graphics, Schedule and Business, Sports and Sports Game. Such an overlap is
comprehensible given the multi-functionality of some software applications that may not be confined
to a single classification.

29



	Introduction
	ChatDev
	Chat Chain
	Designing
	Coding
	Testing
	Documenting

	Experiments
	NLDD Dataset
	Discussion
	Related Work
	Conclusion
	Appendix

