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ABSTRACT

We study the gradient descent (GD) dynamics of a depth-2 linear neural network
with a single input and output. We show that GD converges at an explicit lin-
ear rate to a global minimum of the training loss, even with a large stepsize–about
2/sharpness. It still converges for even larger stepsizes, but may do so very slowly.
We also characterize the solution to which GD converges, which has lower norm
and sharpness than the gradient flow solution. Our analysis reveals a trade off be-
tween the speed of convergence and the magnitude of implicit regularization. This
sheds light on the benefits of training at the “Edge of Stability”, which induces
additional regularization by delaying convergence and may have implications for
training more complex models.

1 INTRODUCTION

Training modern machine learning (ML) models like deep neural networks via empirical risk min-
imization (ERM) requires solving difficult high-dimensional, non-convex, under-determined op-
timization problems. Although they are usually intractable to solve in theory, we train models
effectively in practice using algorithms like stochastic gradient descent (SGD). This highlights a
disconnect between the worst-case convergence rate of SGD and its convergence on specific ERM
problems that arise from training, e.g., neural networks. Even if we can solve the ERM problem,
typical minimizers of the under-determined objective will overfit and generalize poorly. That said,
the specific solutions found by SGD and its variants usually do successfully generalize. Understand-
ing how and why we are able to successfully optimize and generalize with these models is of great
interest to the ML community and could help fuel continued progress in applied ML.

A key feature of popular ML models, including neural networks, is that the model output is related
to the product of model parameters in successive layers. For instance, the output of a 2 layer feed-
forward network with ReLU activations has output W2 ReLU(W1x+b1), which is closely related
to the product of the weight matrices W2W1. Ultimately, this “self-multiplication” of different
model parameters gives rise to the non-convex and under-determined ERM problems that cause
such (theoretical) difficulties.

In this work, we distill this parameter self-multiplication property down to its simplest form and
comprehensively explain how it affects the training optimization dynamics, the “implicit regulariza-
tion” of the model parameters, and the “edge-of-stability” dynamics that arise in certain regimes. In
particular, we consider the extremely simple problem of learning a univariate linear model ŷ = mx
to minimize the squared error, except we parameterize the slope as m = m(a,b) = a⊤b in terms
of self-multiplying parameters a,b ∈ Rd. This can also be thought of as a depth-2 linear neural
network with d hidden units. For training data {(xi, yi) ∈ R× R}ni=1, this results in the loss

min
a,b∈Rd

L̄(a,b) :=
1

2n

n∑
i=1

(
a⊤bxi − yi

)2
. (1)
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This objective is equivalent—by rescaling and subtracting a constant—to the even simpler loss1

min
a,b∈Rd

L(a,b) :=
1

2

(
a⊤b− Φ

)2
. (2)

In what follows, we focus on this formulation and assume Φ ≥ 0 w.l.o.g. for simplicity and clarity.

Despite its simplicity, the objective (2), which has also been studied by prior work (Lewkowycz
et al., 2020; Wang et al., 2022; Chen & Bruna, 2023; Ahn et al., 2024; Xu & Ziyin, 2024), is
a useful object of study because it has a number of qualitative similarities to more complex and
realistic problems like deep learning training objectives. First, it has similar high-level properties—
the problem (2) is non-convex and highly under-determined because the set of minimizers constitutes
the (2d − 1)-dimensional hyperboloid in R2d that solves a⊤b = Φ. It also exhibits some of the
same symmetries as realistic neural networks; for example, a⊤b is invariant to swapping “neurons”
(ai,bi) ↔ (aj ,bj) or to rescaling (ai,bi) → (cai, c

−1bi). More importantly, the dynamics
when optimizing (2) with gradient descent are qualitatively similar to the dynamics of training more
complex models (see, e.g., Xu & Ziyin, 2024). Simultaneously, the problem (2) is simple enough
that we can provide a detailed and nearly comprehensive characterization of several different aspects
of training. Specifically, we will present the following results:

Convergence of gradient descent. Despite the non-convexity of the optimization problem (2),
prior work has shown that GD converges to a global minimum from a.e. initialization (Wang et al.,
2022). We show that, in fact, it converges at a linear rate. In addition, we identify several phases that
depend on the relationship between the stepsize, η; the scale of the parameters, λ := ∥a∥2 + ∥b∥2;
and the residuals, ε := a⊤b − Φ. Several of these phases are closely related to the so-called Edge
of Stability (EoS) phenomenon (Cohen et al., 2021), where gradient descent decreases the objective
(although non-monotonically) despite the largest eigenvalue of the objective’s Hessian matrix being
larger than the critical threshold 2/η.

Location of convergence. In addition to showing how fast gradient descent converges to some
global minimizer, we can also identify key properties of the model related to which of the many pos-
sible solutions, a⊤b = Φ, gradient descent will converge to. To do so, we show that gradient descent
implicitly regularizes the “imbalance” of the parameter vectors, quantified by Q :=

∑d
i=1

∣∣a2i − b2
i

∣∣,
with a larger stepsize generally leading to stronger regularization. This is notably different from the
behavior of Gradient Flow (GF) (the η → 0 limit of gradient descent), which conserves Q. Since
GF is often employed in the literature as an easier-to-analyze approximation of gradient descent
(e.g. Du et al., 2018; Tarmoun et al., 2021), our results highlight a potential danger of over-reliance
on this approximation. The balance of the parameters is also closely related to the “sharpness” of
the solution, i.e. the maximum eigenvalue of the Hessian, which is equal to λ := ∥a∥2 + ∥b∥2 at
solutions a⊤b = Φ. For the problem (2) specifically, the actual prediction function defined by any
solution a⊤b = Φ is the same—after all at any minimizer, ŷ = Φx regardless of the parameters—so
the sharpness is not relevant to generalization. Nevertheless, there is a large body of work in other
contexts showing that less sharp minima of the loss tend to generalize better (Hochreiter & Schmid-
huber, 1997; Keskar et al., 2016; Smith & Le, 2018; Park et al., 2019), and our analysis shows how
the self-multiplying structure of (2) tends to regularize the sharpness.

The key to our analysis is the following pair of observations. On the one hand, gradient descent
iterations change the imbalance like Q(t + 1) = |1 − η2ε(t)2|Q(t), so the imbalance decreases
throughout optimization for 0 < η <

√
2/|ε(t)|. At the same time, the objective L does not globally

satisfy the Polyak-Łojasiewicz (PL) condition (Polyak, 1963) because the origin is a saddle point,
but it does satisfy a version of the PL condition along the GD trajectory (see Definition 2), which
is sufficient to prove linear convergence of GD to a global minimizer. Interestingly, the PL constant
along the GD trajectory, which controls the speed of convergence, is equal to the smallest value
of λ(t) encountered along the way, which is itself approximately equal to the value of Q(t) at the
first time that a(t)⊤b(t) > 0. Thus, the stronger the implicit regularization of Q, the slower the
convergence of GD, and vice versa, which puts these goals directly at odds with each other.

1See Lemma 4 in Appendix A for a simple proof.
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RELATED WORK

A large body of research has shown empirically that training neural networks with larger learning
rates tends to lead to better generalization (LeCun et al., 2002; Bjorck et al., 2018; Li et al., 2019;
Jastrzebski et al., 2020). However, in classical settings, convergence can only be guaranteed when
the stepsize is small enough that λmax(∇2L) < 2/η throughout optimization (Bottou et al., 2018).
Nevertheless, a recent line of work starting with Cohen et al. (2021) observed that when training
neural networks, the maximum eigenvalue of the Hessian, or “sharpness”, tends to grow throughout
training until it reaches, or even surpasses the critical 2/η threshold. But rather that diverging, the
loss continues to decrease (non-monotonically) while the sharpness continues to hover around 2/η,
which is referred to as the Edge of Stability (EoS) phenomenon. Understanding more deeply the
training of neural networks with large stepsizes is of great interest.

Problems closely resembling (2) have been studied previously. Ahn et al. (2024) study losses of
the form ℓ(ab) with a, b ∈ R and ℓ any convex, Lipschitz, and even function. The assumption
that ℓ is even means it is minimized at zero (this is analogous to Φ = 0 in our case), and they
prove convergence to zero from any initialization with any stepsize, but without a rate. However,
this result relies crucially on both the loss being Lipschitz and minimized at zero—and this is not
surprising, we know that GD diverges on realistic objectives when the stepsize is too large. They
also show that the limit point of gradient descent satisfies |a2∞ − b2∞| ≈ min{2/η, |a20 − b20|}, i.e. the
imbalance between the weights is implicitly regularized down to the level of 2/η. Chen & Bruna
(2023) study (2) with scalar a, b ∈ R and prove that the limit point of GD satisfies a− b → 0 when
the stepsize is chosen slightly too large for convergence to any minimizer ab = Φ to be possible.
This is qualitatively similar to our work, but they intentionally choose a too-large stepsize in order
to highlight the implicit regularization of the imbalance, while we provide conditions on η under
which convergence to a minimizer and some amount of regularization happen simultaneously.

In a related study, Xu & Ziyin (2024) explore the continuous dynamics of gradient flow using the ex-
act same model discussed here. They demonstrate that the dynamics unfold along a one-dimensional
curve, with the location of convergence distinctly defined by conserved quantities. Contrary to their
findings, our research reveals this is not the case for gradient descent, highlighting the danger of re-
lying excessively on continuous models to understand discrete non-convex optimization dynamics.

In the most closely related work, Wang et al. (2022) study the exact objective (2) and show that
gradient descent using any stepsize up to η ≲ 4/sharpness—approximately twice as large as the classi-
cal threshold of 2/sharpness—eventually converges to a minimizer, but without a rate. They also show
some level of implicit regularization of λ, e.g. at convergence λ ≤ 2

η . In comparison, we provide
an explicit convergence rate for GD and give a more detailed connection between this rate and the
implicit regularization.

Finally, many papers have studied other models such as matrix factorization or linear neural net-
works (Saxe et al., 2014; Arora et al., 2019; Gidel et al., 2019; Tarmoun et al., 2021; Xu et al., 2023;
Nguegnang et al., 2024), which are more faithful representations of realistic neural networks, but
they are also much more difficult to analyze. Due to this difficulty, these results often only apply
to gradient flow, or to GD with a very small learning rate, or to GD under additional, hard to inter-
pret assumptions. In this work, we focus on the problem (2) in order to obtain a simpler, easier to
interpret set of results.

2 NOTATIONS AND SETTING

The gradient descent dynamics of the parameters are described by[
a(t+ 1)
b(t+ 1)

]
=

[
a(t)
b(t)

]
− η∇L(a(t),b(t)) =

[
a(t)
b(t)

]
− η(a(t)⊤b(t)− Φ)

[
b(t)
a(t)

]
(3)

However, tracking the dynamics of a and b is somewhat unwieldy due to the overparametrization
of the model a⊤b. Therefore, it will be convenient to reparametrize the dynamics in terms of the
following three quantities, rather than the parameters themselves.

Residuals. We define the residuals, ε := a⊤b − Φ = ±
√

2L(a,b), which measure the distance
to the manifold of minima. We will control the magnitude of ε in order to prove convergence.

3
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Norm of the parameters. We denote by λ := ∥a∥2 + ∥b∥2 the squared Euclidean norm of the
parameter vectors. This quantity is relevant because the Hessian of the loss at a solution a⊤b = Φ is

∇2L(a,b) =

[
b
a

] [
b
a

]⊤
+ ε

[
0 I
I 0

]
=

[
b
a

] [
b
a

]⊤
(4)

so it is rank-1 and has top eigenvalue, or “sharpness”, equal to λ. Also, by the Cauchy-Schwarz and
Young inequalities, at any solution Φ = a⊤b ≤ ∥a∥∥b∥ ≤ 1

2

(
∥a∥2 + ∥b∥2

)
= 1

2λ, with equality
occurring when a = b. Therefore, the minimum sharpness of any solution is 2Φ. Moreover, this
shows that on this model the lowest norm and the flattest solutions coincide.

The scale λ is also useful in our analysis because the evolution of the residuals due to (3) is closely
related to λ:

ε(t+ 1) = ε(t)
(
1− ηλ(t) + η2ε(t)

(
ε(t) + Φ

))
. (5)

Thus, the term −ηλ is the main cause of the decrease in the magnitude of ε. Finally, the GD
dynamics of ε and λ are completely determined by each other

λ(t+ 1) =
(
1 + η2ε(t)2

)
λ(t)− 4ηε(t)

(
ε(t) + Φ

)
. (6)

The imbalance. To complement the above, we also define Qi := a2i − b2
i and Q :=

∑d
i=1 |Qi|.

The gradient descent dynamics on the Qi’s due to (3) is described by

Qi(t+ 1) =
(
1− η2ε(t)2

)
·Qi(t) =⇒ Q(t+ 1) =

∣∣1− η2ε(t)2
∣∣ ·Q(t). (7)

From the lack of a term linear in η, we can see that the Qi’s are conserved by gradient flow, see
Eq. 8, but not by gradient descent, which decreases their magnitude for any η <

√
2/|ε|. This is the

essential cause of GD’s implicit regularization effect. In our analysis, we use Q in two ways: (i)
the lower bound λ ≥ Q is key our the proof of GD’s convergence speed, and (ii) we use Q to help
characterize the location of convergence.

3 LOCATION OF CONVERGENCE

Our first result concerns which solution is reached by gradient descent:

Theorem 1. For η < min

{
1

2|ε(0)| ,
2√

λ(0)2+4Φ2

}
, at the limit point of gradient descent 2

0 < |Qi(0)| exp
(
−
√
ηε(0)2

Φ

)
< |Qi(∞)| < |Qi(0)| exp

(
−η2

∞∑
t=0

ε(t)2

)
< |Qi(0)|.

Theorem 1 follows from the iteration of Eq. (7) to describe the evolution of Qi with gradient descent.
The first bound on the step size is needed to prove the lower bound on |Qi(∞)|, and the second to
show rapid convergence, as detailed in Theorem 2. A full proof is located in Appendix H. For a
geometric intuition on why gradient descent reduces the imbalance compared to gradient flow, see
Figure 1. Indeed, gradient flow conserves the quantities Qi by curving away from the origin, indeed:

Q̇i = 2(aiȧi − biḃi) = 2(ai(−εbi)− bi(−εai)) = 0. (8)

The discretization error, introduced by the fact that gradient descent moves along the parallel vector
to the curve, results in GD moving “inward” towards the line a = b, resulting in a smaller imbalance.
Theorem 1 thus implies the following message:

Takeaway 1: Gradient descent converges to a solution with lower imbalance than gradient flow,
although the imbalance always remains non-zero.

Theorem 1 unveils and describes an implicit regularization effect which is only due to the action
of discretizing the dynamics. Given that GF is frequently used as a simpler analytical stand-in for
gradient descent in the literature, Takeaway 1 underscores the risks associated with over-relying on
this approximation, potentially leading to inaccurate predictions about real-world behaviors.

2A similar result holds for larger stepsizes, at the cost of a more complicated statement. See Appendix H.
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Furthermore, Eq. (7) and Theorem 1 allow us to roughly quantify this implicit regularization effect
when the product between the learning rate and the residuals is small:

Q(∞) = Q(0)

∞∏
t=0

∣∣1− η2ε(t)2
∣∣ ≈ exp

(
−η2

∞∑
t=0

ε(t)2

)
. (9)

This demonstrates that the degree of regularization on Q is determined by the rate of loss reduction.
If the loss decreases quicker, then

∑∞
t=0 ε(t)

2 is smaller and Q(∞) is closer to Q(0). Conversely,
if the loss decreases at a slower pace then

∑∞
t=0 ε(t)

2 is larger and Q(∞) is much smaller. In the
next section, we will show that for the stepsize described in Theorem 1, the loss actually converges
to zero at a linear rate, so

∑∞
t=0 ε(t)

2 ≈ ε(0)2/ηµ for an certain value of µ.

GF Trajectory

GD step

a = b =
√
Φ

a

b

Figure 1: The GF trajectory curves away from
the origin, so the discretization error of each GD
step brings it closer to the line a = b.

B

B

A

A

C

C

C

C

a

b

Figure 2: The qualitative behavior of GD steps
differs in each of the three regions.

4 SPEED OF CONVERGENCE

Our second result is a characterization of the convergence speed of gradient descent.

Theorem 2. Let η < min

{
1

2|ε(0)| ,
2√

λ(0)2+4Φ2

}
, denote η̄ := min

{
η, 2√

λ(0)2+4Φ2
− η

}
. Then

if Q(0) ̸= 0, for any δ > 0, gradient descent reaches a point L(a(T ),b(T )) ≤ δ with

T ≤ O
(

max{log |ε(0)|, 0}
η̄Q(0) exp(min{−a(0)⊤b(0), 0})

+
log 1

δ

η̄Q(0) exp(min{−a(0)⊤b(0), 0}) + η̄Φ

)
.

If min

{√
2
ε , 2√

λ(0)2+4Φ2

}
< η < min

{
2
ε ,

2
λ + 2ε(ε+Φ)

λ3

}
we have convergence but it could be

logarithmically slow.

A full proof can be found in Appendix F. The key idea of the proof is to show from the update
equation of the residuals, (5), that roughly speaking

ε(t+ 1) ≈ (1− ηλ(t))ε(t). (10)

Since we also show that 0 < ηλ(t) < 2 for all t, this means that GD will converge at a linear rate
(1 − ηmint λ(t)). However, care must be taken to lower bound the smallest parameter norm λ(t)
visited by GD because if the iterates stray too close to the origin, where λ = 0, then this linear
convergence could be arbitrarily slow. Therefore, the main technical challenge is to bound the GD
iterates away from the origin. The key observation is that λ ≥ Q, and we can easily track the
evolution of Q using (7) (the updates on λ, (6), are more difficult to control).

To lower bound λ along the trajectory, we break the parameter space into three regions, as depicted in
Figure 2. In region A, by the Cauchy-Schwarz and Young inequalities, 2Φ < 2a⊤b ≤ 2∥a∥∥b∥ ≤

5
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∥a∥2 + ∥b∥2 = λ. So, within region A we have linear convergence with rate (1− 2ηΦ). Region B
contains points where λ is arbitrarily small, but since ε < 0 but a⊤b > 0 here, by (6)

λ(t+ 1) =
(
1 + η2ε(t)2

)
λ(t)− 4η ε(t)︸︷︷︸

<0

a(t)⊤b(t)︸ ︷︷ ︸
>0

≥
(
1 + η2ε(t)2

)
λ(t). (11)

Thus, within region B, GD increases the value of λ, so we can lower bound λ(t) ≥ λ(τ), where τ
is the time that the GD iterates entered region B. Furthermore, we always have λ(τ) ≥ Q(τ), so all
that is needed is to control Q(τ) at the time that GD enters region B. Finally, to address region C, the
Q updates (7) show Q(t+1) = (1−η2ε(t)2)Q(t) while we prove that ε(t+1) ≈ (1−ηQ(t))ε(t).
We use this to argue that the time it takes to substantially decrease Q scales with η−2 while the time
to exit region C by making ε(t+1) > −Φ scales with only η−1. So at the time that GD exits region
C, Q(τ) remains only slightly smaller than Q(0).

Putting this all together, if GD is initialized in region C, it takes O(η−1) steps to leave, at which point
it enters region B with Q(τ) ≈ Q(0), which serves as a lower bound on λ(t) until convergence,
assuming that the remaining iterates stay in region B. If GD is initialized and remains in region A,
then λ(t) ≥ 2Φ throughout optimization. To complete the argument, we account for the case where
the GD trajectory leaves and/or re-enters a region more than once.

The structure of the proof—which relies on lower bounding the imbalance, Q(τ), of the GD iterate
closest to the origin—is essentially a mirror image of the proof of Theorem 1, and leads to another
key takeaway:

Takeaway 2: The stronger the implicit regularization of the imbalance, Q,
the slower the convergence and vice versa.

The trade-off between the convergence speed and implicit regularization of Q is illustrated by Figure
3. This experiment also indicates that in the EoS regime where the stepsize is larger than what is
allowed by Theorem 2 but smaller than approximately 4/λ(0), GD still converges to a solution,
but both the rate of convergence and the amount of regularization of Q have a intricate and chaotic
dependence on the initialization and stepsize. Nonetheless, also in this EoS regime we see that that
the convergence rate and amount of regularization have a generally negative relationship.

Figure 3: We used GD to minimize the problem (2) with Φ = 1 using different stepsizes from
various initializations with ε(0) = −2 held constant. The x-axis corresponds to the initial scale
λ(0) of the initialization, while the y-axis corresponds to the ηλ(0). For stepsizes η ≲ 2/λ(0),
the amount of regularization Q(T )/Q(0) is limited, but convergence is quick, and quickest around
η ≈ 1/λ(0). On the other hand, for very large stepsizes η > 2/λ(0), convergence is more chaotic; the
convergence rate and regularization have a negative relationship but depend on η and λ(0).

5 ON THE STEP SIZE AND THE EDGE OF STABILITY

We characterize here the regime of the dynamics of ε given the size of the learning rate and we
sketch a proof for that. We conclude that for some learning rate higher than the bound of Theorem

6
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2 convergence still happens, although logarithmically fast. This may shed light on what happens at
the edge of stability: Convergence happens but slow, the imbalance gets zeroed out.

5.1 THE STABLE REGIME

We know from Theorem 2 that η < 2/λ along the all trajectory implies linear convergence and we
manage to bound λ along the whole trajectory thanks to the following lemma and a characterization
of the effect of discretization. These two lemmas are proved in Appendix C3.

Lemma 1. Let η ≤ 1/ε(0) and assume that |ε(t)| is monotonically decreasing along the trajectory
of GD. Then λ(t) is bounded for all steps t by

λ ≤
√
λ(0)2 + 4Φ2.

Analogously, along the trajectory of GF, λ(t) is bounded for all steps t by the same quantity.

Instrumental to prove this theorem is the observation that:

Lemma 2. The quantity λ2 − 8ε(ε + Φ) + 4ε2 is conserved by the gradient flow on L, and it is
reduced by gradient descent as long as η ≤ min{1/ε(0), 2/λ}.

5.2 THE CASE OF EDGE OF STABILITY

Recent findings by Cohen et al. (2021) demonstrate that during the training of neural networks
with full batch gradient descent at a step size of η, the largest eigenvalue of the Hessian stabilizes
right above 2/η. This is somewhat surprising as when the gradients are a linear function of the
parameters, if η > 2

λ , gradient descent diverges. A very good exemplification of this fact is the
case of one dimensional parabola, see Cohen et al. (2021). However, neural networks, surprisingly,
convergence even if η ≥ 2

λ . Our results here show that the reason my be the product structure
and its interaction with discrete dynamics. Indeed, our results show how convergence happen also
for η > 2/λ but slower. This implies that training happens even though at the edge of stability.
Moreover, we prove that the slower the training and the bigger the learning rate, the lower the
parameter norm of the solution gradient descent will eventually converge to. This suggests that
training at the edge of stability may induce increased implicit regularization.

In the case in which the learning rate is slightly bigger than threshold above η > 2√
λ(0)2+4Φ2

we

show that convergence still happen but at a lower speed. This can be noticed in the case of Figure 3.
Precisely, define η̃ as

Definition 1. Let a,b ∈ Rn, denote by η̃(a,b) the value

η̃(a,b) :=
2

λ

(
1 + α+ 4α2 + 20α3 + 112α4 +O(α5)

)
with α :=

ε(ε+Φ)

λ2 .

Then we have that

Proposition 1. Let 2√
λ(0)2+4Φ2

≤ η < η̃ gradient descent on L converges. However, convergence

may happen at only logarithmic speed.

In the case in which η is even bigger and approaches 4/λ, Theorem 1 of Wang et al. (2022) suggests
that there exists a time in which η ≤ 2√

λ(0)2+4Φ2
. Just applying our result then we ensure linear

convergence, although from that time on. As we showed above, this initial oscillatory phase may,
however, last for arbitrarily long time.

6 CONVERGENCE ANALYSIS

In this section we present the notion we introduced to prove Theorem 2 and connect the speed of
convergence with a lower bound on λ along the trajectory.

3Lemma 1 is a direct consequence of Lemmas 7 and 9, Lemma 2 of Lemmas 6 and 8.
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6.1 PL CONDITION ALONG THE TRAJECTORIES

To assess convergence rates, we introduce a convergence criterion we call the Polyak-Łojasiewicz
Condition Along the Trajectories (PLAT Condition). This criterion serves as a generalization of the
traditional PL condition. Specifically adapted to non-convex settings where empirical data indicate
quick convergence although the problem itself is not necessarily PL.
Definition 2 (PL Condition Along the Trajectories (PLAT)). Consider the optimization problem
minimizexf(x) for f : S ⊆ Rd → R, paired with an optimization algorithm A. This problem-
algorithm pair satisfies the PLAT at x0 ∈ Rd if there exists a constant µ(x0) > 0 and a stationary
point f∗ such that for all points x visited by A, 1

2∥∇xf(x)∥ ≥ µ(x0) ·
(
f(x)− f∗).

While a function f satisfying the traditional PL condition implies it meets the PLAT criteria when
equipped with gradient descent (GD) and gradient flow (GF) for every initialization. Notably, how-
ever, if a function is PLAT with GD and GF almost everywhere, it may admits saddle points. Almost
everywhere linear convergence to global minima is anyway ensured.

6.2 DYNAMICS AND IMPLICATIONS

The introduction of the PLAT criterion facilitates a nuanced understanding of optimization trajec-
tories. In the context of gradient descent with step size η, satisfying PLAT at x0 means that the
function, when restricted to the trajectory of the algorithm,{

x s.t. ∃n ∈ N s.t. x = Xn where X0 = x0 and Xk+1 := Xk − η∇f(Xk)
}

adheres to the PL condition: 1
2∥∇xf(x)∥ ≥ µ(x0) ·

(
f(x)− f∗(x0)

)
.

This, thus, primarily concerns the speed of linear convergence which we lower bound by µ, not
whether convergence happen. Note also that the proof of the fact that PL-condition implies expo-
nential convergence for gradient flow and linear convergence for gradient descent is actually subtly
using the weaker assumption of PL-condition along trajectories, see, e.g., (Karimi et al., 2016, The-
orem 1).

6.3 WARM UP: GRADIENT FLOW ON OUR PROBLEM

We illustrate that the loss function L(a,b) we take into consideration when equipped with gradient
flow (GF), satisfies PLAT almost everywhere. As a first step, note that for any a,b ∈ Rd we have
Lemma 3 (L is locally PL). L admits local PL constant µ(a,b) = ∥a∥2 + ∥b∥2 = λ.

1

2
∥∇L(a,b)∥2 = (∥a∥2 + ∥b∥2) · 1

2

(
a⊤b− Φ

)2
= λ · L(a,b).

However, L does not meet the PL condition globally as λ = 0 at the saddle point α, β = 0.

Next note that gradient flow conserves the quantity Q(a,b) :=
∑n

i=1 |a2i − b2i | which is always
smaller than λ, and the equality is reached only if for all i ∈ {1, 2, . . . , n} at least one between ai
and bi is equal to zero, more formally Q = λ if and only if

∑
i min{|ai|, |bi|} = 0. This implies

that if at initialization a,b satisfy Q(a,b) > 0, then L and gradient flow are PLAT with constant Q.
However, we can reach to similar conclusions also if Q(a,b) = 0, so we are on the one dimensional
manifold a = ±b. Note that, in this case, if a = −b then the problem becomes L = (∥a∥2 + Φ)2

and it converges to the minimum a = b = 0 with µ(a,a) = (∥a∥2 + Φ)2 > Φ2 > 0. If,
instead, a ̸= −b and there exists a component i such that ai = bi instead the components n1 < n
components satisfying ai = −bi will converge to ai = bi = 0, the the n−n1 ≥ 1 other components
will converge to the global minimum of L with PL constant given by their norm at initialization
2
∑

i s.t. a1 ̸=−bi
a21. This implies that the manifold where the algorithms converge to the saddle is

not just of measure zero, but it is just 1 dimensional. This argument proves that
Proposition 2. The loss L(a,b) equipped with gradient flow is PLAT almost everywhere.

This proposition demonstrates that L equipped with GF, reliably conforms to the PLAT, showcasing
linear convergence, although with a clear differentiation of behavior based on initial conditions and
trajectory dynamics. Note that analysis of gradient flow on this model were already present in

8
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the literature: Xu & Ziyin (2024) characterizes the dynamics except for the speed of convergence,
and Chatterjee (2022) for a proof technique which, however, only works within a neighborhood
of the manifold of minima. Instead, our machinery allows us to complete a proof of global linear
convergence very easily, see Appendix D.1.

6.4 GRADIENT DESCENT CONVERGES LINEARLY

We show here the analogous version of Proposition 2 for gradient descent now, which is a qualitative
version of the first part of Theorem 2.
Proposition 3. L(a,b) equipped with gradient descent satisfies the PLAT-condition with every step

size in 0 < η < min

{√
2
ε , 2√

λ(0)2+4Φ2

}
for every initialization a,b ∈ Rn.

Indeed, if Q(0) = 0 then we are in the same cases as above and we anyways have linear conver-
gence, if Q(0) ̸= 0 then the proof can be found in Appendix D.3. We can thus prove that no matter
the initialization and the step size (smaller than a certain value) we have linear convergence some-
where. However, the location of this linear convergence exhibit particular sensitivity to this hyper
parameters and in some cases can be a saddle point, see Appendix D.2.

7 CONCLUSION

In this paper, we analyzed the gradient descent dynamics of a depth-2 linear neural network, offering
a simplified model to explore training behaviors observed in more complex neural networks. Our
key technical contributions are:

1. Linear convergence with large step sizes: We demonstrated that gradient descent con-
verges at a linear rate to a global minimum, even with larger-than-expected step sizes—up
to approximately 2/sharpness. For even larger step sizes, convergence can still occur, but
slows down significantly. See Section 4.

2. Location of convergence: We characterized the solution reached by gradient descent,
showing that it implicitly regularizes the parameter imbalance and sharpness, leading to
a lower norm solution compared to gradient flow. Notably, as the step size increases, the
implicit regularization effect strengthens, flattening the solution. See Section 3.

The key implications of our results are that

i. GD always regularizes more than GF: Gradient descent converges to a solution with
lower imbalance than gradient flow, but the imbalance always remains non-zero. The solu-
tion is still suboptimal from this perspective. See Section 3.

ii. GF is not always a good approximation of GD: We prove that even in a very simple
model, gradient flow dynamics are inherently different from gradient descent. In particular,
our results can be used as a proof that the common use of GF as a theoretical tool for
understanding GD is not always well founded. See Section 3.

iii. Trade-off Between Speed and Regularization: Our analysis uncovered a trade-off be-
tween the convergence rate and the degree of implicit regularization. See Section 4. Train-
ing at the edge of stability, while slower, induces additional regularization, which may be
beneficial for generalization. See Section 5.

Our findings thus provide insight into different step sizes affect neural network training dynamics
and its potential benefits for regularization in more complex models.

Future work: In this work, we studied the model (2) because its simplicity allows for a detailed
analysis that leads to the useful conclusions detailed above. However, there are several possible
extensions of these results that could lend additional insights. For example, it would be interesting
to study the case of vector-valued inputs, deeper models, and non-linear models that use ReLU or
other activation functions. In addition, we are interested to know how our results would be impacted
by using stochastic gradient descent in rather than exact gradient descent.

9
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A ON THE OBJECTIVE

Lemma 4. For any a,b, {(xi, yi)}ni=1,

L̄(a,b) =

∑n
i=1 x

2
i

2n
(a⊤b− c)2 + Const =

[
1

n

∑
i

x2
i

]
L(a,b) + Const.

where c =
∑n

i=1 xiyi∑n
i=1 x2

i
and Const = 1

2n

(∑n
i=1 y

2
i −

(
∑n

i=1 xiyi)
2∑n

i=1 x2
i

)
does not depend on a,b.

Proof. Let x denote the vector whose ith entry is xi, and let y denote the vector whose ith entry is
yi. Then we can write

L̄(a,b) =
1

2n

∥∥a⊤bx− y
∥∥2 =

1

2n

(
(a⊤b)2∥x∥2 − 2a⊤b ⟨x, y⟩+ ∥y∥2

)
=

∥x∥2

2n

(
(a⊤b)2 − 2a⊤b

⟨x, y⟩
∥x∥2

+
∥y∥2

∥x∥2

)
=

∥x∥2

2n

((
a⊤b− ⟨x, y⟩

∥x∥2

)2

+
∥y∥2

∥x∥2
− ⟨x, y⟩2

∥x∥4

)
(12)

Rewriting this in terms of the xi’s and yi’s completes the proof.

11

https://proceedings.mlr.press/v97/park19b.html
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1710.06451
https://openreview.net/forum?id=3tbDrs77LJ5
http://arxiv.org/abs/2401.07085


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Note, thus, that all our proofs work on L̄, we thus have to rescale ε,λ, Q, η accordingly. Precisely,

λ ↶

[
1

n

∑
i

x2
i

]
λ, Q ↶

[
1

n

∑
i

x2
i

]
Q, ε ↶

[
1

n

∑
i

x2
i

]
ε, and η ↶

[
1

n

∑
i

x2
i

]
η.

(13)

Analogously, note that if Φ < 0 nothing changes in the analysis of the dynamics. When a ̸= −b
just change a to −a and apply the same analysis as before.

B FROM THE RESIDUALS TO THE LOSS

First note that if ε converges exponentially to zero, then loss L converges exponentially to its mini-
mum.
Lemma 5. Assume |ε(k)| converges linearly fast with rate (1−ηµ) < 1. Then L converges linearly
fast with rate (1− ηµ)2. In particular, let δ > 0, the loss L is smaller than δ in a number of steps t
that satisfies

t ≤ logL0 − log(δ)

ηµ
.

Indeed note that for how we defined ε we have that L = ε2, thus L(k + 1) = |ε(k + 1)| ≤
(1 − ηµ)|ε(k)|2. Note that this lemma allows us to deal with the convergence of ε instead of the
convergence of L and infer the convergence of L. Indeed, if the residuals ε converge linearly with
rate (1− ηµ) < 1, then the time it takes to converge is such that

√
δ ≥ (1− ηµ)t

√
L0 which is

t ≤ logL0 − log(δ)

− log(1− ηµ)
≤ logL0 − log(δ)

ηµ
. (14)

From now on we will deal with convergence of residuals only.

C BOUNDING THE FINAL SHARPNESS

C.1 SIZE OF λ FOR GRADIENT FLOW

Note that we can characterize the norm λ∞ found by gradient flow by noticing that
Lemma 6. Along the gradient flow trajectory, the following quantity is conserved

λ2 − 8ε(ε+Φ) + 4ε2.

Proof. The gradient flow dynamics are described by[
ȧ

ḃ

]
= −∇L(a,b) = −ε

[
b
a

]
(15)

First, we compute

λ̇ =
d

dt

[
∥a∥2 + ∥b∥2

]
(16)

= 2 ⟨a, ȧ⟩+ 2
〈
b, ḃ

〉
(17)

= −2ε ⟨a, b⟩ − 2ε ⟨b, a⟩ (18)
= −4ε(ε+Φ) (19)

and

ε̇ =
d

dt
[⟨a, b⟩ − Φ] (20)

=
〈
a, ḃ

〉
+ ⟨ȧ, b⟩ (21)

= −ε∥a∥2 − ε∥b∥2 (22)
= −λε (23)
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Finally, straightforward calculation confirms:

d

dt

[
λ2 − 8ε(ε+Φ) + 4ε2

]
= 2λλ̇− 8εε̇− 8ε̇(ε+Φ) + 8εε̇ (24)

= 2λλ̇− 8ε̇(ε+Φ) (25)
= 2λ(−4ε(ε+Φ))− 8(−λε)(ε+Φ) (26)
= 0 (27)

which completes the proof.

Lemma 7. λ(t) along the whole GF trajectory satisfies

λ(∞) ≤
√
λ(0)2 + 4Φ2.

Proof. Note that
λ(∞) = λ(0)2 − 8ε(0)(ε(0) + Φ) + 4ε(0)2.

Note that the maximum over λ = λ(0) of −8ε(0)(ε(0) + Φ) + 4ε(0)2 is

4 max
λ=λ(0)

−ε(ε+ 2Φ) (28)

Is at ε = −Φ. This implies that for all the points with fixed λ the one with highest λ2 − 8ε(ε +
Φ) + 4ε2 is the one with ε = −Φ. Whatever was the initialization with a certain fixed scale, the
solution found will have lambda smaller than λ2 − 8ε(ε+Φ) + 4ε2, thus of

√
λ(0)2 + 4Φ2. Next

note that λ has positive derivative only when ε ∈ [−Φ, 0). This implies that the sup for λ along the
trajectory is either initialization or the solution.

C.2 SIZE OF λ FOR GRADIENT DESCENT

Surprisingly, we show here that if switch to gradient descent the quantity λ2 − 8ε(ε + Φ) + 4ε2

actually decreases to the second order in η.

Lemma 8. One step of gradient descent trajectory with step size η > 0, induces the following
change in the quantity λ2 − 8ε(ε+Φ) + 4ε2:

λ2
1 − 8ε1(ε1 +Φ) + 4ε21 ↶ λ2 − 8ε(ε+Φ) + 4ε2 − 2η2ε2Q2(1− η2ε2).

Proof. Note that

λ2
1 =

(
(a− ηεb)2 + (b− ηεa)2

)2
=
(
λ(1 + η2ε2)− 4ηε(ε+Φ)

)2
= λ2 − 8ηελ(ε+Φ) + 2η2ε2λ2 + η4ε4λ2 + 16η2ε2(ε+Φ)2 − 8η3ε3λ(ε+Φ).

(29)

Analogously

4ε21 = 4
(
ε(1− ηλ) + η2ε2(ε+Φ)

)2
= 4ε2 − 8ηε2λ+ 4η2ε2λ2 + 8η2ε3(ε+Φ)− 8η3ε3λ(ε+Φ) + 4η4ε4(ε+Φ)2,

(30)

and

−8ε1(ε1 +Φ) = −8
(
ε(1− ηλ) + η2ε2(ε+Φ)

(
Φ+ ε(1− ηλ) + η2ε2(ε+Φ)

)
= −8ε(ε+Φ) + 8ηελ(2ε+Φ)− 8η2ε2λ2

− 8η2ε2(ε+Φ)
(
(2ε+Φ)− 2ηλε+ η2ε2(ε+Φ)

)
.

(31)

This (Lemma 6) implies that the monomials of degree 1 in η zeroes out, the monomial of degree 3
zeroes out too:

η3ε3 ·
(
− 8λ(ε+Φ)− 8λ(ε+Φ) + 16λ(ε+Φ)

)
= 0. (32)
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The monomials of degree 2 in η are

η2ε2 ·
(
λ2(2 + 4− 8) + (ε+Φ)2(16− 8) + ε(ε+Φ)(8− 8)

)
= −2η2ε2(λ2 − 4(ε+Φ)2).

(33)

This is exactly equal to
−2η2ε2Q2.

Analogously the monomial of degree 4 in η is

2η4ε4Q2

which completes the proof.

Lemma 9. Let η < 1/|ϵ(0)| and assume |ϵ(t)| is monotonically decreasing, along the GD trajectory

λ(t) ≤
√
λ(0)2 + 4Φ2.

The proof follows as the one of Lemma 7 by exchanging the equalities given by Lemma 6 with the
inequalities given by Lemma 8.

Definition 3 (Maximal Sharpness λ̄). We denote by λ̄ and we call maximal sharpness the value

λ̄ :=
√

(∥a∥2 + ∥b∥2)2 + 4Φ2.

D SPEED OF CONVERGENCE

D.1 CONTINUOUS DYNAMICS: PROOF OF PROPOSITION 2

In the case of gradient flow the pairs (a,b) along the trajectory satisfy a PL condition with µ(a,b) =
∥a∥2 + ∥b∥2, indeed note that L(a,b) satisfies(

a⊤b− Φ
)2

(∥a∥2 + ∥b∥2) = ∥∇L(a,b)∥2 = µ(t) · L(a,b).

Note that for all i the quantity Qi = a2i − b2
i is conserved along the trajectory, indeed

d

dt

(
ai(t)

2 − bi(t)
2
)

= 2ε(aibi − aibi) = 0.

Thus we have that Q(0) ̸= 0 is a lower bound to µ along the whole trajectory, we thus proved that

Lemma 10. Let a,b such that Q ̸= 0. The gradient flow starting from a, b converges exponentially
fast with rate at least Q to the point a(∞),b(∞) which satisfies that (i) a(∞)⊤b(∞) = Φ and (ii)
for all i that Qi(0) = Qi(∞) and sign

(
ai(∞)− bi(∞)

)
= sign

(
ai(0)− bi(0)

)
.

This lemma and the observation of what happens in the case of Q = 0 in Section D.2, prove
Proposition 2.

D.2 COMMENT ON PROPOSITIONS 2 AND 3

Note that for a fixed initialization where Q ̸= 0, if η is such that there exists a step k along the
trajectory where η · (a⊤b−Φ) = 1 exactly, convergence happen to a = b = 0 instead of the global
minimum. Indeed, in this case, on the next step we have a(k + 1) = −b(k + 1) = a(k) − b(k).
This implies that when Q ̸= 0, for almost every η in the allowed range we have Q ̸= 0 along the
whole trajectory, and as we prove, linear convergence to a global minimum.

We characterize below what happens in the case in which Q = 0 at some point along the trajectory.

For both GD and GF if at a certain point during the training (or at initialization) a and b are such
that Q(a,b) = 0, then we are on the one dimensional manifold in which for every neuron i we have
ai = ±bi.
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• If a = −b then the problem becomes L = (∥a∥2 + Φ)2 and it converges to the minimum
a = b = 0 of the modified loss L̃ = ∥a∥2. The gradient is such that

∥∇L(a,b)∥2 =
(
∥a∥2 +Φ

)2 · 2∥a∥2 = µ(t) · L̃(a,b).
with µ(a,a) = 2(∥a∥2 + Φ)2 ≥ 2Φ2 > 0. Thus restricted to the manifold where the
trajectory lies, we have a function satisfying the PL condition with µ ≥ 2Φ2 > 0. In this
case both GD and GF converge linearly fast to the minimum along this manifold, i.e., the
saddle point at the origin.

• If a ̸= −b and there exists a component i such that ai = bi instead the components
n1 < n components satisfying ai = −bi will converge to ai = bi = 0, the the n−n1 ≥ 1
other components will converge to the global minimum of L with PL constant given by their
norm at initialization 2

∑
i s.t. a1 ̸=−bi

a21. This implies that in this case we have convergence
to 0 for the neurons in which ai = bi and the dynamics is as described in the rest of the
manuscript for the other neurons in which ai = −bi.

This implies that the manifold where the algorithms converge to the saddle is not just of measure
zero, but it is precisely a = −b. Even in this case, we have linear convergence to the saddle, when
the learning rate is smaller than 2/λ. In all the other cases, if Q = 0, we have a sub network where
a = b ̸= 0, thus the loss satisfies

∥∇L(a,b)∥2 =
(
∥a∥2 − Φ

)2 · 2∥a∥2 = µ(t) · L̃(a,b).
with PL-condition 2∥a∥22, which is positive and bounded below by 2∥a(0)∥22 if initialized in Area
B, and by 2Φ2 > 0 if we initialized in Area A.

We thus have linear convergence either to the saddle at the origin or to a global minimum for Q = 0.
In the rest we abnalyze the case Q ̸= 0.

D.3 LOWER BOUND TO µ(t) IN THE DISCRETE CASE.

Note that the derivative in time of µ(a(t),b(t)) is

µ̇ = −4

[
1

n

∑
x2
i

]2 (
a⊤b− Φ

)
a⊤b. (34)

It thus decreases when a⊤b > Φ and when a⊤b < 0 and a⊤b < Φ, it grows when a⊤b > 0 and
a⊤b < Φ. This means that

Area A) When a(0)⊤b(0) > Φ, in Area A of Figure 2, we can bound

µ(t) ≥ inf
a⊤b>Φ

[
1

n

∑
x2
i

]
(∥a∥2 + ∥b∥2) = 2Φ.

Thus in this area we have that 2Φ ≤ λ ≤ λ̄.
Area B) When a(0)⊤b(0) > 0 and a(0)⊤b(0) < Φ, in Area B of Figure 2, we can bound

µ(t) ≥ µ(0) =

[
1

n

∑
x2
i

] (
∥a(0)∥2 + ∥b(0)∥2

)
.

Thus in this area we have that λ(0) ≤ λ ≤ 2Φ ≤ λ̄, where λ(0) ≥ Q0 > 0 is the norm of
the first step in this area, when Q ̸= 0.

Note that this implies that our loss equipped with gradient descent is PLAT in Area A and Area B.

Area C) When a(0)⊤b(0) < 0, in Area C of Figure 2, the residuals decreases until a⊤b = 0. Thus
the lowest point for Q will be at the step τ that is the first step in which a⊤b ≥ 0. This
implies that the quantity λ will be at its minimum either at time τ or τ − 1

µ(t) ≥ min{µ(τ − 1), µ(τ)} where τ = min
t∈N

{a(t)⊤b(t) > 0}.

In particular µ(t) ≥ min{µ(τ − 1), µ(τ)} ≥ Q(τ1), we need to show that when Q ̸= 0
then Q(τ1) ̸= 0. Thus in this area we will prove in the next section that we have that
Q(τ1) ≤ λ ≤ 2Φ ≤ λ̄.

This concludes the argument for all the cases except for a(0)⊤b(0) < 0,. We will now bound∣∣Qi(τ1)
∣∣ in terms of

∣∣Qi(0)
∣∣, the learning rate η > 0, and a(0)⊤b(0).
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E LOWER BOUND ON µ IN AREA C

We prove in this section that

1. The loss equipped with gradient descent is PLAT also in Area C.

2. That GD escapes Area C very quickly, precisely see Proposition 4.

Precisely, in Subsection E.1 we show the two points above for η ≥ 1
2|ε| at initialization. In Sub-

section E.2 we show it for the case of smaller step size, precisely, we show there the following
Proposition:

Proposition 4. If a(0)⊤b(0) < 0 and Φ > 0, there exists τ such that a(τ)⊤b(τ) > 0 and

2
√
ηΦ < Q(τ) = O (exp(−η)) · Q(0).

• If
∑

i |a2i (0)− b2
i (0)| ≥ 2|a(0)⊤b(0)| then τ ≤ O

(
η−1

)
and

• If
∑

i |a2i (0)− b2
i (0)| < 2|a(0)⊤b(0)| then τ ≤ O

(
1

log(1+2η)

)
.

Analogously if a(0)⊤b(0) > 0 and Φ < 0, after the same τ , we have a(τ)⊤b(τ) < 0 and∑
i |a2i (τ)− b2

i (τ)| is the same as above.

E.1 BIGGER STEP SIZE

Note that if

η ≥ 1

|ε|
|a⊤b|

∥a∥2 + ∥b∥2
≥ 1

2|ε|
then in the next step we are landing directly in Area B or A. Precisely, this implies that a⊤b >
0 after one step. In these cases gradient descent makes one step in Area C and leaves, so the
convergence analysis continues with the ones in Areas B and A.

E.2 SMALLER STEP SIZES

The difficult case to deal with analytically is the one where the dynamics stays in Area C for long.

We compute here a lower bound on |Qi(τ)|. The idea here is that the residuals a⊤b−Φ will converge
as exp(−ηt) and the quantity Qi(t) at most as exp(−η2t), thus a(t)⊤b(t) crosses 0 before |Qi(t)|
gets too small.

Note that at every step of gradient descent we have the following updates on the following quantities

a(t+ 1)⊤b(t+ 1)− Φ =
(
1− η

(
∥a(t)∥2 + ∥b(t)∥2

)) (
a(t)⊤b(t)− Φ

)
+ η2

(
a(t)⊤b(t)− Φ

)2
a(t)⊤b(t)︸ ︷︷ ︸

positive

(35)

and

ai(t+ 1)2 − bi(t+ 1)2 =
(
1− η2

(
a(t)⊤b(t)− Φ

)2) (
ai(t)

2 − bi(t)
2
)
. (36)

Thus we have that

a(t+ 1)b(t+ 1)− Φ >
(
1− η

(
∥a(t)∥2 + ∥b(t)∥2

)) (
a(t)⊤b(t)− Φ

)
(37)

when a(t)⊤b(t) < 0.

Bounding Sequences. We define here two coupled sequences which serve as bounds to the evolu-
tion of ε and Q along then trajectory. We study their behavior and we infer bounds on the behavior
of our system.
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Definition 4. Let a(0),b(0) ∈ Rn. Define η < min
{

1
2|ε| ,

2
λ̄

}
. Define the sequence {zk, wk}∞k=0

such that z0 = ε(0) < −Φ, w0 = Q0 > 0, and for all k ∈ N we have

zk+1 =
(
1− ηmax

{
wk,−2zk − 2Φ

})
zk

wk+1 =
(
1− η2z2k

)
wk.

(38)

Define τ1 := mink∈N{zk > −Φ}.

Note that we have

Lemma 11 (Bounding with the sequences). For all 1 ≤ k < τ1 such that zk < 0 we have

zk ≤ εk and wk < Qk.

Moreover, wk,−zk ≥ 0 are strongly monotone decreasing for k < τ1 and a(τ1)
⊤b(τ1) > 0, thus

for all k ≤ τ1 we have η < 2/max{−2zk, wk}.

Proof. Note that this is the case for k = 0. As for the inductive step, Eq. 37, Cauchy-Schwartz
inequality, and Eq. 38 estblish the first point. Note that zτ1−1 + Φ < a(τ1 − 1)b(τ1 − 1) < 0,
then the first point and the definition of τ imply that 0 < zτ1 + Φ < a(τ1)

⊤b(τ1). Note that after
the first step w1 < w0 and z1 > z0 since Cauchy-Schwartz implies that η < 2/max{−2z0, w0}.
Inductively, for all i we have η < 2/max{−2zi, wi}, thus fact that zi < 0 for all k < τ1 implies
that wi+1 < wi is strongly monotonically decreasing, that zi+1 > zi is strongly monotonically
increasing, and that η < 2/max{−2zi+1, wi+1}.

As explained before, for all t we have µ(t) ≥ max{µ(τ1), µ(τ1 − 1)} and µ(t) ≥
∑

i |a2i (t) −
b2i (t)| ≥ wt ≥ wt+1. Thus for all t we have µ(t) ≥ wτ1 . This and the lemma above show that

Lemma 12. We have that a(τ)⊤b(τ) > −Φ and for all t ∈ N we have µ(t) ≥ wτ .

Behavior of the sequence: Case 1. We assume in this paragraph that w0 ≥ −2z0 − 2Φ. We
characterize τ and Q(τ) in this case.

Lemma 13 (Rate of convergence 1 - Sequence.). If w0 ≥ −2z0 − 2Φ, define c1 := w0

2 −√
w0(w0−4ηz2

0)

2 > 0, then

c1 < wτ1 < w0 − η2 (Φ)
2

(
a(0)⊤b(0)

)2
w0

(39)

and
1

η(w0)3/2
< τ1 <

a(0)⊤b(0)

ηc
3/2
1

(Φ)
−1

+ 1. (40)

Proof. Note that for all k < τ1 we have

(zk+1 − zk)
2

wk+1 − wk
=

η2w2
kz

2
k

−η2z2kwk
= −wk. (41)

Note that zτ1−1 − z0 < |a(0)⊤b(0)| ≤ zτ1 − z0. We thus obtain that

a(0)⊤b(0) ∼ z0 − zτ1 =

τ1−1∑
k=0

zk − zk+1 =

τ1−1∑
k=0

√
wk − wk+1 · wk = η

τ1−1∑
k=0

zk(wk)
3/2

(42)

This implies that

η(τ1 − 1)Φ(wτ−2)
3/2 < a(0)⊤b(0) ≤ ητ1z0(w0)

3/2. (43)
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Next we proceed bounding wτ1 so that we can bound τ1. Note that the fact that zk < −Φ < 0 for
all k < τ1 and Sedrakyan’s lemma imply that

w0 − wτ1 =

τ1−1∑
i=0

wk − wk+1 =

τ1−1∑
k=0

(zk+1 − zk)
2

wk
>

(zτ1 − z0)
2∑τ1−1

i=0 wk

>

(
a(0)⊤b(0)

)2∑τ1−1
i=0 (1− η2z2τ1−1)w0

= η2z2τ1

(
a(0)⊤b(0)

)2
w0

>
a(0)⊤b(0)

τ1w0
.

(44)

And this implies that

wτ1 = w0 + (wτ1 − w0) < w0 − η2 (Φ)
2

(
a(0)⊤b(0)

)2
w0

(45)

Moreover, we have

w0 − wτ1 =

τ1−1∑
k=0

wk − wk+1 = η2
τ1−1∑
i=0

z2kwk < η2
τ1−1∑
i=0

z2k(1− η2z2τ1)
kw0

< η2z20w0

τ1−1∑
i=0

(1− ηwτ1)
k(1− η2z2τ1)

k < ηz20w0
1

wτ1 + ηz2τ1 − η2wτ1z
2
τ1

< η
z20w0

wτ1

.

(46)

This implies with 0 < wτ1 < w0 that wτ1(w0 − wτ1) < ηz20w0, thus

w2
τ1 − w0wτ1 + ηz20w0 > 0. (47)

Note that w0 > −2z0 and η < −2/z0 implies that w0 ≥ ηz20 then, solving, we obtain

0 < c1 :=
w0

2
−
√
w0(w0 − 4ηz20)

2
< wτ1 < w0 − η2 (Φ)

2

(
a(0)⊤b(0)

)2
w0

(48)

wτ1 > w0

2 −
√

w0(w0−4ηz2
0)

2 Thus, opportunely bounding wτ−2 we obtain

η(τ1 − 1)Φc
3/2
1 < a(0)⊤b(0). (49)

That we can reorganize as

τ1 <
a(0)⊤b(0)

ηc
3/2
1

(Φ)
−1

+ 1. (50)

Thus
1

η(w0)3/2
≤ τ1 ≤ a(0)⊤b(0)

ηc
3/2
1

(Φ)
−1

+ 1. (51)

Lemma 14 (Rate of convergence 1.). If
∑

i |a2i (0) − b2
i (0)| ≥ −2a(0)⊤b(0) > 0, define c1 :=

w0

2 −
√

w0(w0−4ηz2
0)

2 > 2
√
ηΦ as above, then

c1 <
∑
i

|a2i (τ1)− b2i (τ1)| <
∑
i

|a2i (0)− b2
i (0)| − η2 (Φ)

2

(
a(0)⊤b(0)

)2∑
i |a2i (0)− b2

i (0)|
, (52)

a(0)⊤b(0) > 0, (53)
and

1

η (
∑

i |a2i (0)− b2
i (0)|)

3/2
< τ1 <

a(0)⊤b(0)

ηc
3/2
1

(Φ)
−1

+ 1. (54)

Proof. One bound comes from Lemma 13 and Lemma 11. The other one comes by just following
the proof of Lemma 13.
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Behavior of the sequence: Case 2. We assume in this paragraph that w0 ≤ −2z0 − 2Φ. We
characterize τ2 and Q(τ2) such that after time τ2 the sequences are in the Case 1 analyzed above.

Lemma 15 (Rate of convergence 2 - Sequence.). Let c2 :=
∣∣w0/a(0)

⊤b(0)
∣∣. If w0 < −2z0 − 2Φ

then by time τ2 as below we are under the assumptions of Lemma 13, so we have wτ2 > −2zτ2 −2Φ
and we have

|c2|
2η|z0|

< τ2 <
|c2|

log (1 + 2ηΦ)
+ 1, (55)

w0(1− η2z20) exp

(
−η|c2|

2

z20
∑

x2
i∑

xiyi

)
< wτ2 < w0 exp

(
−η|c2|

2

[
∑

xiyi]
2

z0 [
∑

x2
i ]

2

)
, (56)

(z0 +Φ) (1− 2η|z0|) exp
(
−|c2|

|z0|
∑

x2
i∑

xiyi
(1− ηΦ)

−1

)
− Φ < zτ2 , (57)

and

zτ2 < (z0 +Φ) exp

(
−|c2|

∑
xiyi

|z0|
∑

x2
i

)
− Φ. (58)

Proof. Note that the quantity zk + Φ is shrinking exponentially as Ẋt = −2η|zk|Xt and wk is
shrinking exponentially as Ẋt = −η2z2kXt. We have that η < 2

|z0| < 2
|zk| , thus the rate at which

zk + Φ is decreasing is faster than wk, this implies that at a certain point we will have wk >
−2zk − 2Φ. Let us study this time τ2. Note that the fact that |z0| > |zk| > Φ implies that
2η|zk| > 2ηΦ and η2|zk| > η2 (Φ)

2

2η|z0| > 2η|zk| > 2

∑
xiyi

|z0|
∑

x2
i

(59)

and

η2|z0|2 > η2|zk|2 >
(Φ)

2

z20
. (60)

By the time τ2 = mink {w0 ≥ −2z0 − 2Φ, zk > −Φ} we have the thesis. Note that definition of
τ2 and the iterative formulas

wτ1 = w0

τ2∏
k=1

(1− η2z2k), and

zτ1 +Φ = (z0 +Φ)

τ2∏
k=1

(1− 2ηzk)

(61)

imply that

τ2−1∏
k=0

(1− η2z2k)

∣∣∣∣ w0

z0 +Φ

∣∣∣∣ =

∣∣∣∣ wτ2

z0 +Φ

∣∣∣∣ > 2
zτ2 +Φ

z0 +Φ
= 2

τ2−1∏
k=0

(1− 2ηzk). (62)

This implies∣∣∣∣ w0

z0 +Φ

∣∣∣∣ > 2

τ2−1∏
k=0

1− 2ηzk
1− η2z2k

> 2

(
1− 2ηz0

1− η2 (Φ)
2

)τ2

> 2 (1− 2ηz0)
τ2 . (63)

Analogously we have∣∣∣∣ w0

z0 +Φ

∣∣∣∣ < 2

τ2−2∏
k=0

1− 2ηzk
1− η2z2k

= 2

τ2−2∏
k=0

1− 4η2z2k
1− η2z2k

1

1 + 2η|zk|
< 2

τ2−2∏
k=0

(1 + 2ηΦ)
−1

. (64)

Thus defining c2 := log
(

1
2

∣∣∣ w0

z0+Φ

∣∣∣) < 0 we obtain

−c2 < 2η|z0|τ2
−c2 > log (1 + 2ηΦ) (τ2 − 1).

(65)
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Thus we conclude that
|c2|

2η|z0|
< τ2

|c2|
2ηΦ

(1− ηΦ)
−1

+ 1 >
|c2|

log (1 + 2ηΦ)
+ 1 > τ2

(66)

This implies that

(z0 +Φ) exp

(
−|c2|

∑
xiyi

|z0|
∑

x2
i

)
− Φ > zτ2 (67)

and

(z0 +Φ) (1− 2η|z0|) exp
(
−|c2|

|z0|
∑

x2
i∑

xiyi
(1− ηΦ)

−1

)
− Φ < zτ2 . (68)

Analogously

w0(1− η2z20)
|c2|

log(1+2ηΦ)
+1 < wτ2 < w0

(
1− η2 (Φ)

2
) |c2|

2η|z0|
. (69)

This means approximately that

w0(1− η2z20) exp

(
−η|c2|

2

z20
∑

x2
i∑

xiyi

)
< wτ2 < w0 exp

(
−η|c2|

2

[
∑

xiyi]
2

z0 [
∑

x2
i ]

2

)
. (70)

Lemma 16 (Rate of convergence 2.). Let c2 :=
∣∣∑

i |a2i (0)− b2
i (0)|/a(0)⊤b(0)

∣∣. If 0 <∑
i |a2i (0) − b2

i (0)| ≤ −2a(0)⊤b(0), then by time τ2 as below we are under the assumptions
of Lemma 13, so we have

∑
i |a2i (τ2)− b2i (τ2)| ≥ −2a(τ2)

⊤b(τ2) > 0 and we have

• |c2|
2η|a(0)⊤b(0)−Φ| < τ2,

• τ2 < |c2|
log(1+2ηΦ) + 1,

•
∑

i |a2i (0)− b2
i (0)|(1− η2z20) exp

(
−η|c2|

2
z2
0

∑
x2
i∑

xiyi

)
<

∑
i |a2i (τ2)− b2i (τ2)|,

•
∑

i |a2i (τ2)− b2i (τ2)| <
∑

i |a2i (0)− b2
i (0)| exp

(
−η|c2|

2
[
∑

xiyi]
2

z0[
∑

x2
i ]

2

)
,

• (z0 +Φ) (1− 2η|z0|) exp
(
−|c2| |z0|

∑
x2
i∑

xiyi
(1− ηΦ)

−1
)

< a(τ2)
⊤b(τ2), and

• a(τ2)
⊤b(τ2) < (z0 +Φ) exp

(
−|c2|

∑
xiyi

|z0|
∑

x2
i

)
.

Proof. One bound comes from Lemma 15 and Lemma 11. The other one comes by just following
the proof of Lemma 15.

This concludes the proof of Proposition 4 and shows that the Qi are lower bounded for all i when
initialization is in Area C and η < min

{
1

2|ε| ,
2
λ̄

}
.

F CONVERGENCE SPEED CASE BY CASE

This section serves as merger for all the theory made before. Precisely, here we use the analysis
developed to prove Theorem 2 and Proposition 1.

We prove below and in Appendix E that in the three different regions of the landscape we have
different PL constants µ for ε-and then for L. Precisely, if ε ≥ 0 then µ > 2Φ, if ε < −Φ/2 then
µ = Q(τ), and if −Φ/2 ≤ ε < 0 then µ = Φ. This implies that we have convergence with the
minimum of Q(τ) and 2Φ as PL constant until |ε| > Φ/2, then we have convergence with Φ as PL
constant from then on.
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F.1 POSITIVE RESIDUALS

First note that ηλε > η2ε2(ε + Φ), indeed λ > 2(ε + Φ) by Cauchy Schwartz and η ≤
√
2
ε < 2

ε .
This implies that when η is infinitesimal, the gain is at least

ε(k + 1) = (1− ηλ)ε(k) + η2ε(ε+Φ)

≤ ε(k)− ηλε(k)
(
1− η

2
ε(k)

)
≤

(
1− 2−

√
2

2
ηλ

)
ε(k).

(71)

Next note that x√
x2+y2

=
√
1− y2

x2+y2 ≤ 1− 1
2

y2

x2+y2 . When η ∼ 2
λ̄
(1− δ), δ > 0 we have that

|ε(k + 1)| =
∣∣(1− ηλ)ε(k) + η2ε2(k)(ε(k) + Φ)

∣∣
≤

∣∣∣∣∣ε(k)− 2λ(1− δ)√
λ2 + 4Φ2

ε(k) +
4(1− δ)2

λ2 + 4Φ2
ε(k)2(ε(k) + Φ)

∣∣∣∣∣
≤
∣∣∣∣(−1 + 2δ)ε(k) +

4Φ2(1− δ)

λ2 + 4Φ2
ε(k) +

4(1− δ)

λ2 + 4Φ2
ε(k)2(ε(k) + Φ)

∣∣∣∣
≤ (1− 2δ)ε(k).

(72)

This implies that within our learning rate boundaries we have exponential convergence with rate
either controlled by η or δ at power 1.

In case 2
λ̄

≤ η ≤ 2
λ (1 − δ) then convergence happens exponentially but in time O

(
η−2

)
. For

instance η ∼ 2
λ̄

we have that

|ε(k + 1)| =
∣∣(1− ηλ)ε(k) + η2ε2(k)(ε(k) + Φ)

∣∣
≤

∣∣∣∣∣ε(k)− 2λ√
λ2 + 4Φ2

ε(k) +
4

λ2 + 4Φ2
ε(k)2(ε(k) + Φ)

∣∣∣∣∣
≤
∣∣∣∣−ε(k) +

4Φ2

λ2 + 4Φ2
ε(k) +

4

λ2 + 4Φ2
ε(k)2(ε(k) + Φ)

∣∣∣∣
≤ (1− η2Φ2)ε(k).

(73)

In case η ≥ 2
λ but convergence happen, then convergence happens only at most logarithmically fast

at least for a first phase, precisely

|ε(k + 1)| =
∣∣(1− ηλ)ε(k) + η2ε2(k)(ε(k) + Φ)

∣∣
≤
∣∣∣∣−ε(k) +

4

λ2 ε(k)
2(ε(k) + Φ)

∣∣∣∣
≤
(
1− 4

λ2Φε(k)

)
ε(k).

(74)

F.2 NEGATIVE RESIDUALS −Φ/2 < ε < 0

When the residuals are small negative we have exponential convergence, precisely, for very small
η ≪ 1 we have rate at least (1− ηΦ):

|ε(k + 1)| =
∣∣(1− ηλ)ε(k) + η2ε2(k)(ε(k) + Φ)

∣∣
≤
∣∣∣∣(1− ηλ) +

η2

4
Φ2

∣∣∣∣ |ε(k)|
≤ (1− ηΦ) |ε(k)|.

(75)
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For bigger η = 2
λ̄

, we have convergence with rate about ∼ 2. The maximum over λ(0), ε(k) in the
region in which ε(k) = −cΦ2 with c ∈ (0, 1]

max |ε(k + 1)| = max |(1− ηλ)ε(k) + η2ε2(k)(ε(k) + Φ)|

≤ max

∣∣∣∣∣ε(k)− 2λ√
λ(0)2 + 4Φ2

ε(k) +
4

λ(0)2 + 4Φ2
ε(k)2(ε(k) + Φ)

∣∣∣∣∣ . (76)

Note that the minimum in λ(0) of this last equation is for
√
λ(0) + 4Φ2 = δ + 2Φ for some δ > 0

which satisfies δ ≪ 1. This is independent of the size of ε. Along this trajectory, a⊤b = (1−c/2)Φ
and λ ≤ (2− c)Φ + δ This implies

max
λ(0),ε(k)

|ε(k + 1)| ≤ max
ε(k)

∣∣∣∣ε(k)− 2(2− c)Φ

δ + 2Φ
ε(k) +

4

(δ + 2Φ)2
ε(k)2(ε(k) + Φ)

∣∣∣∣
≤ max

ε(k)

∣∣∣∣− (2− 2c)Φ + δ

δ + 2Φ
+

c(2− c)

(δ + 2Φ)2
Φ2

∣∣∣∣ |ε(k)|
≤
∣∣∣∣−1 + c

2Φ

δ + 2Φ
+ c(2− c)

Φ2

(δ + 2Φ)2

∣∣∣∣ |ε(k)| ≤
∣∣∣∣c− 1− c2

4
+

c

2

∣∣∣∣ |ε(k)|
≤
c=1

1

4
|ε(k)| =

1

8
Φ.

(77)

The maximum of |c2/4− 3c/2 + 1| over c ∈ (0, 1] is c = 1.

In the case of c = 1, on the next step, in this case, we are in the positive residuals setting with λ as
follows 2 · a⊤b = 9

4Φ+ δ. Here, then

|ε(k + 2)| ≤
∣∣∣∣−5

4
+

1

4Φ2
ε(k + 1)(ε(k + 1) + Φ)

∣∣∣∣ ε(k + 1)

≤ 1

16

(
5− 1

16

)
|ε(k)|.

(78)

So after 2 steps, we had a linear shrink of 5/16 and the linear convergence with constant µ = Φ
restarts, this is the plus 2 of the theorem.

F.3 NEGATIVE RESIDUALS ε ≤ Φ/2

This case is taken care of in Appendix E until ε = 0. With the same µ > 0 we have exponential
convergence until Φ/2. As we said in Appendix E as ε crosses Φ, the norm λ restarts increasing.
This implies that a good lower bound remains Q of the time of crossing. The evolution of ε

ε(k + 1) = (1− ηλ)ε(k) + η2ε(k)2(ε(k) + Φ) ≥ (1− ηQ)ε(k). (79)

The time t taken to ε to go from Φ to Φ/2 is thus

Φ/2 ≥ (1− ηQ)tΦ (80)

so we have

t ≤ log(Φ)− log(Φ/2)

− log(1− ηQ)
≤ log(Φ)− log(Φ/2)

ηQτ
. (81)

F.4 CLOSING UP: TIGHT RATE

The previous sections and Lemma 5 allow us to conclude that we have loss convergence, i.e., L ≤ δ,
in a number of steps which is

t ≤ τ +
log(Φ)− log(Φ/2)

ηmin{Qτ , 2Φ}
+ 2 +

log(Φ/2)− log(δ)

ηmin{Qτ ,Φ}
, (82)

where τ is the τ1 defined in Definition 4 and evaluated in Proposition 4. This establishes Theorem
2.
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G CURIOSITY: JUMPS BETWEEN REGIONS

Note that if the dynamics does not jump from one side to the other of the landscape, then we have
a clean exponential convergence and we can control the implicit regularization. We will see under
which hypothesis on the learning rate this happens.

Note that Equation 5 tells us that after one step ε does not change sign (thus you remain in the same
region in which you started) if and only if we have the following bound on the learning rate.

Definition 5. For all a,b ∈ Rn, let α = ε(ε+Φ)
λ3 , define

η1 :=
1

λ

(
1 + α+ 2α2 + 5α3 + 14α8 + . . .

)
, (83)

η2 :=
2

λ

(
1 + 2α+ 8α2 + 40α3 + 224α4 + . . .

)
. (84)

The way we obtain η1 is by seeing for what η we have that ε(t+ 1) = 0. Precisely,
Lemma 17. If η = η1, we have that the residuals at the next steps are 0. If η = η2, then the
residuals at the next steps are the same but changed of sign. Moreover,

• If η ∈ (0, η1) then sign(ε(1)) = sign(ε) and |ε(1)| < |ε|.

• If η ∈ (η1, η2) then sign(ε(1)) ̸= sign(ε) and |ε(1)| < |ε|.

Proof of Lemma 17. Note that the residuals after one step are the same sign as the previous residuals
if and only if

1− ηλ+ η2ε(ε+Φ) ≥ 0. (85)
Solving this one as a second degree equation gives

η ≤
λ−

√
λ2 − 4ε(ε+Φ)

2ε(ε+Φ)
or η ≥

λ+
√

λ2 − 4ε(ε+Φ)

2ε(ε+Φ)
(86)

Now expanding in Taylor the square root, we obtain that

η1 ≤ 1

2ε(ε+Φ)

(
4ε(ε+Φ)

2λ
+

16ε2(ε+Φ)2

8λ3 + . . .

)
=

1

λ
+

ε(ε+Φ)

λ3 + . . . (87)

This implies that the residuals are the same sign as the starting ones if

η ≤ η1 or η ≥ λ

ε(ε+Φ)
− η1. (88)

Analogously, for η2 we have that the absolute value of the residuals is smaller than the absolute
value of the residuals one step before, if and only if

2− ηλ+ η2ε(ε+Φ) ≥ 0. (89)

This implies that

η ≤
λ−

√
λ2 − 8ε(ε+Φ)

2ε(ε+Φ)
or η ≥

λ+
√

λ2 − 8ε(ε+Φ)

2ε(ε+Φ)
(90)

and analogously to before

η ≤ η2 or η ≥ λ

ε(ε+Φ)
− η2. (91)

Also note that for ε > 0 we have that ε(1) < ε or for ε < 0 we have that ε(1) > ε if and only if

1− ηλ+ η2ε(ε+Φ) ≤ 1. (92)

This solves when
η ≤ λ

ε(ε+Φ)
(93)
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Note that what we did here implies that if η ≤ η2 and η ≤
√
2
ε for all the λs along the trajectory we

thus always have exponential convergence if such PL condition holds. We know from the previous
section that in this setting λ is always smaller than λ̄. So if such a µ exists and η ≤ η2 with λ̄ and
we converge and we can properly bound the implicit regularization.

H LOCATION OF CONVERGENCE - PROOF OF THEOREM 1

We will bound here the final Q for two reasons:

• Understanding the location of convergence.
• Picking the right learning rate.

Note that assuming η ≤
√
2
ε along the whole trajectory we have that Q strictly monotonically shrinks

along the trajectory. This means that the dynamics may seem to oscillate around in an uncontrollable
way, but every time it oscillates is landing on a trajectory that takes to a global minimum with lower
Q.

Note that this is true almost everywhere, indeed if the trajectory is such that at a certain point in time
t satisfies η = ε(t)−1 exactly, then the trajectory would land on the trajectory taking to the saddle,
indeed

a(t+ 1) = −b(t+ 1) = a(t)− b(t). (94)
Luckily, fixing a learning rate size, the set of starting points for which this is the case has measure
zero. Observe also that η = −ε−1 is instead optimal and results in a(t + 1) = b(t + 1), implying
convergence to a balanced solution. This means that assuming η ≤

√
2
ε implies that the dynamics

may diverge or converge, but for sure at every step is getting closer and closer to the subspace in
which a = b. Moreover, note that all the Qi change sign if and only if η|ε| > 1.

Regarding the proof of the upperbound of Theorem 1 note that for all t

Qi(t) = Qi(0) ·
t−1∏
k=0

(1− η2ε2k) = Qi(0) · exp

(
t−1∑
k=0

log(1− η2ε2k)

)
. (95)

In absolute value, we can thus upperbound the RHS as follows, by applying the Taylor expansion
whenever η|ε| < 1

Lemma 18 (Upperbound to the inbalance, 1). Let η|ε(t)| < 1 for all t ∈ N, then for all t ∈ N we
have

|Qi(t)| < |Qi(0)| · exp

(
−η2

t−1∑
k=0

ε2k

)
.

By combining this lemma and Lemma ?? we obtain
Lemma 19 (Upperbound to the inbalance, 2). Let η|ε(0)| < 1 and η ≤ η̃, then for all t ∈ N

|Qi(t| < |Qi(0)| · exp

(
−η2

t−1∑
k=0

ε2k

)
.

This establishes the upper bound of Theorem 1. Regarding the proof of the lower bound, notice that
we have from Appendix D.3 that the rate of convergence of ε is at least Q(τ1) in Area B and at
least 2Φ in Area A, once adding the right assumption on the learning rate. This implies that if the
initialization is in Area B or C, then
Lemma 20 (Lower bound to the imbalance). Assume there exists t̃ such that for all t ≥ t̃ we have
η|ε(0)| < 1/2 then

Qi(t)

Proof. Note that the fact that η|ε(k)| < 1/2 for all k makes sure that

Qi(t) = Qi(0) ·
t−1∏
k=0

(1− η2ε2k) ≥ Qi(0) · exp

(
−

t−1∑
k=0

η2ε2k − η4ε4k

)
(96)
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since for x ∈ [0, 1/2] we have 1− x > e−x−x2

. Next note that in these hypothesis, by Theorem 2,
we ahve exponential convergence, thus

Qi(t) ≥ Q(0) · exp

(
−η2ε(0)2

∞∑
k=1

(1− ηQ(τ))2k − η4ε40

∞∑
1

(1− ηQ(τ))4k

)

≥ Q(0) · exp
(
− ηε(0)2

Q(τ)(2− ηQ(τ))
− η3ε(0)4

Q(τ)(8− ηQ(τ))

)
≥ Q(0) · exp

(
−
√
ηε(0)2

2Φ

(
1 +

η2ε(0)2

8

))
≥ Q(0) · exp

(
−
√
ηε(0)2

Φ

)
.

(97)

By plugging in the lower bound in Lemma 14. This concludes the proof of the lemma.

This concludes the proof of Theorem 1.
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