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Abstract

The manifold hypothesis (real-world data concentrates near low-dimensional manifolds)
is suggested as the principle behind the effectiveness of machine learning algorithms in
very high-dimensional problems that are common in domains such as vision and speech.
Multiple methods have been proposed to explicitly incorporate the manifold hypothesis as
a prior in modern Deep Neural Networks (DNNs), with varying success. In this paper,
we propose a new method, Distance Learner , to incorporate this prior for DNN-based
classifiers. Distance Learner is trained to predict the distance of a point from the underlying
manifold of each class, rather than the class label. For classification, Distance Learner then
chooses the class corresponding to the closest predicted class manifold. Distance Learner
can also identify points as being out of distribution (belonging to neither class), if the
distance to the closest manifold is higher than a threshold. We evaluate our method on
multiple synthetic datasets and show that Distance Learner learns much more meaningful
classification boundaries compared to a standard classifier. We also evaluate our method on
the task of adversarial robustness and find that it not only outperforms standard classifiers
by a large margin but also performs at par with classifiers trained via well-accepted standard
adversarial training.
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1. Introduction

Most real world classification problems involve very high dimensional data inputs. However,
learning in high dimensions suffers from what is popularly known as the curse of dimension-
ality. Consider, for example, a simple nearest neighbor based-classifier. For a new point to
be “reasonably” close to a point in the training dataset, the number of points in the dataset
need to be exponential in the data dimension. This can become prohibitive very quickly.
Fortunately, as per the manifold hypothesis, real world data is believed to concentrate near
low-dimensional manifolds even though the data is represented in much higher dimensions.
Domingos (2012) calls this the “blessing of non-uniformity” as learners can implicitly or
explicitly take advantage of the much lower effective dimension.

Deep Neural Networks (DNNs) have been extremely successful in achieving state-of-
the-art performance on high dimensional classification tasks across multiple domains —
e.g, image (Yu et al., 2022), text (Devlin et al., 2019; Raffel et al., 2020) and speech (Shen
et al., 2018). A remarkable property of DNNs is their ability to generalize well on unseen test
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data. Understanding the generalization properties of DNNs is an open area. The famous
“no free lunch” theorems (Wolpert and Macready, 1997; Wolpert, 1996, 2002) state that on
an average no learner can beat random guessing over all the possible learnt functions. Then,
what makes DNNs so successful? Fortunately, the underlying functions for these real world
tasks are not sampled randomly from the set of all possible functions. What makes learning
work is incorporating some prior knowledge about the underlying function into the learning.
Even simple priors such as smoothness can do very well. For example, neural networks
encode the smoothness prior via construction of the network where all building blocks
are smooth. Convolutional Neural Networks (CNN) encode the prior knowledge that the
underlying classification function should be translation invariant. Similarly, attention based
architectures (Vaswani et al., 2017) encode prior knowledge about semantic understanding
in natural languages. A whole new field — geometric deep learning — looks at encoding
symmetry contraints of the underlying domain into the network architecture (Cohen and
Welling, 2016; Bronstein et al., 2021; Bietti et al., 2021). Incorporating these priors have
shown significant improvements in accuracy as well as sample complexity (number of data
points needed to achieve a given accuracy).

Given the importance of incorporating prior knowledge into learning, and the strong
prior provided by the manifold hypothesis, multiple methods have been proposed to incor-
porate this geometric knowledge into learners, either explicitly or implicitly. Traditional
machine learning saw a collection of very successful methods, termed as manifold learn-
ing (Tenenbaum et al., 2000; Roweis and Saul, 2000; Zhang and Zha, 2004b), which aimed
to directly learn the manifold. For incorporating manifold prior into modern DNNs, the
most popular and commonly used method is domain aware augmentation, where new sam-
ples are generated via manifold preserving transformations known from domain knowledge
(e.g. translation, scaling, rotation, etc. for image classification). Other methods such as
Manifold Tangent Classifier (Rifai et al., 2011) which encourage network invariance along
learnt tangent spaces have also been proposed. However, other than augmentations, such
methods have seen limited adoption.

In this paper, we propose a new method, Distance Learner , to incorporate the manifold
prior for DNN-based classifiers. While standard classifiers are trained to learn the class
label for each input point, Distance Learner is trained to predict the distance of an input
point from the underlying manifold of each class. This is enabled by generating points
(similar to augmentation) at a known distance to the underlying manifold. We do this by
approximating the local manifold near each training point and adding controlled pertur-
bations to the point in both the tangent space and normal space (orthogonal compliment
of the tangent space). The Distance Learner is then trained via an MSE loss to minimize
the error between predicted and actual distance of these generated points, as well as the
original training points (which have a distance of zero to the manifold). During inference,
Distance Learner , chooses the class corresponding to the closest predicted class manifold.

Distance Learner has many advantages. First, it can learn much more meaningful de-
cision regions (Figure 1), as classification is now based on distances to the class manifolds.
By providing a distance along with the class label, our method is able to take advantage of
the richer geometric information per sample. Second, Distance Learner can identify points
that are out of distribution (belonging to neither class), as their predicted distance to all
class manifolds will be very high. Standard classifiers on the other hand, are forced to give
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(a) Separated Spheres (b) Swiss Roll (c) Concentric Spheres

Figure 1: Decision Regions. Side-by-side comparison of decision regions for the Distance
Learner (left) and Standard Classifier (right). For easy visualization, only mani-
fold dimensions of m = 1 are used. The two rows correspond to experiments with
different values of embedding dimension n. Dark solid lines correspond to the
actual class-manifolds, while dots correspond to samples in the test set. The blue
and red dots are color-coded with the color of the predicted class, while green dots
in the Distance Learner plots correspond to points identified as out-of-domain.

an output for any input. For example, a standard classifier trained to classify images of
cats and dogs, will classify images of unrelated objects, say a car or even random noise, as a
cat or a dog. DNNs often make such predictions with a high confidence (Hein et al., 2019)
making identification of these cases hard. Third, learning meaningful boundaries can help
make Distance Learner more robust to adversarial attacks. Vulnerability to adversarial
attacks (Goodfellow et al., 2014; Huang et al., 2017; Akhtar and Mian, 2018; Chakraborty
et al., 2018; Madry et al., 2018) has been attributed by many researchers to the high dimen-
sionality of the representation space as well as that of the underlying data manifold (Gilmer
et al., 2018; Stutz et al., 2019). Providing more structured geometric information about the
manifold, can help alleviate these issues.

We perform experiments with multiple synthetic datasets to evaluate Distance Learner .
We first visualize the distance boundaries learnt by Distance Learner and standard classi-
fier on low-dimensional datasets, for a qualitative evaluation. Our experiments show that
Distance Learner is able to learn much more meaningful boundaries, corresponding to the
actual distance to underlying class manifolds. For experiments with high dimensional data,
we build on the concentric spheres dataset proposed in Gilmer et al. (2018). We evaluate on
the task of adversarial robustness, and show that Distance Learner not only outperforms
the standard classifier significantly, but also performs comparable to classifiers trained via
the standard adversarial training (Madry et al., 2018).

The contributions of our work can be summarized as follows:

1. A new learning paradigm, Distance Learner , which incorporates geometric informa-
tion about the underlying data manifold by learning distances from class manifolds.

2. An efficient method to generate points at a known distance to the class manifolds,
enabled by learning the local manifold near each training point.
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3. Evaluation of the proposed approach on multiple synthetic datasets. In particu-
lar, we demonstrate that Distance Learner has adversarial robustness comparable
to adversarial training (Madry et al., 2018). Our code is open-sourced at https:

//github.com/microsoft/distance-learner.

2. Distance Learner

The manifold hypothesis states that real world high-dimensional data lies on or near low-
dimensional manifolds. Consider a classification dataset consisting of C ∈ Z+ classes:
D = {(xi, yi)|xi ∈ Rn, yi ∈ Z+, 1 ≤ yi ≤ C}, where xi ∈ Rn is an input point and yi is the
corresponding class label. Let Dc be the set of all points in class c, i.e. Dc = {xi|(xi, yi) ∈
D, yi = c}. The manifold hypothesis then states that the set Dc lies on a topological
manifold, say Mc, of dimension m much lower than n. Our aim is to incorporate geometric
information about these manifolds, Mc, into learning. For ease of exposition, we will use
M to denote Mc.

We propose to incorporate this geometric information via learning a model which can
predict the distance of a given point to the manifold1. That is, we want the model to learn a
function f(x) = d, where x ∈ Rn and the output d ∈ RC contains the predicted distance to
each class manifold. We call such a learner, which captures the distance field of a manifold,
the Distance Learner . We note that the distance field of a manifold captures the entire
manifold information since one can fully recover the actual manifold as its zero level-set.
Thus distance learning can be a powerful way of incorporating manifold information.

For training Distance Learner , we propose a simple augmentation-based strategy. For
each point in the dataset D, we generate augmented points that are at a known distance to
the underlying manifold. We discuss our augmentation method in section 2.1. Generating
these augmented points, however, requires knowledge of the local manifold around each
data point, which is not always available. We discuss a strategy to infer the local manifold
for a given dataset D in section 2.2. Finally, Distance Learner is trained via an MSE loss
to minimize the error between predicted and actual distances of the augmented points, as
well as the original training points, which are at a distance of zero to the manifold. We
discuss this further in section 2.3.

2.1. Off-manifold Point Sampling

We need to generate augmented points that are at a known distance to the underlying
class manifold. Näıvely generating points via random sampling will be very expensive as
computing distance to class manifolds will require brute-force comparison to all points in D.
Moreover, such a method will be very sample inefficient — we want to sample points close
to class manifolds to learn fine-resolution distance fields near the manifolds, but randomly
sampled points will be uniformly distributed in the entire domain of interest. Here, we
propose an efficient sampling method which generates sample points close to the manifold,
and at a known distance. For this, we take a point x from the training set D (points in D
are assumed to be on the class manifold), and add a small perturbation to it. To perturb the
point to a given distance from the manifold, we will need information about the manifold

1. Distance of a point p to a manifold M is defined as the minimum distance of p to any point on M.

https://github.com/microsoft/distance-learner
https://github.com/microsoft/distance-learner


Distance Learner

Tangential Perturbation Normal Perturbation
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Figure 2: (a) Off-manifold sampling. x ∈ M is first perturbed in the tangent space
TxM by a magnitude of δ⊤ to obtain xτ . Next, a perturbation of magnitude δ⊥
is added in the normal space, NxM, to obtain an off-manifold point xγ . The
distance of xγ from M is then ∼ δ⊥ (b) Failure case at high curvature. The
closest manifold point to xγ is now z, which is at a distance of less than δ⊥.

locally near x. For ease of exposition, we will assume in this section that this information
is available. This assumption will be relaxed in section 2.2.

Let the underlying data manifold corresponding to x be M of dimensionality m. The
manifold can be thought of as embedded in Rn. The tangent space TxM at the point
x ∈ M is then informally defined as the m-hyperplane passing through x and tangent to
M. We assume that TxM is known, along with an orthonormal spanning basis BTx. Let
NxM be the (n−m)-dimensional normal -space at x, defined as the orthogonal complement
of the tangent space w.r.t the embedded space. Let BNx be a corresponding orthonormal
spanning basis.

Once the tangent and normal spaces of the manifold near x are known, we generate an
augmented point as follows. We first sample two random vectors t and n from the tangent
and normal spaces, respectively. For sampling t, we simply sample m scalars uniformly
at random from [0, 1] and use them as coefficients of the basis BTx. Sampling n proceeds
similarly. The tangent and normal vectors are then combined to generate an off-manifold
point via:

xγ = x + δ⊤
t

∥t∥
+ δ⊥

n

∥n∥
. (1)

That is, we perturb the on-manifold point x in the tangent space by an amount δ⊤ and in
the normal space by δ⊥. δ⊤ and δ⊥ are sampled uniformly at random from [0,max tangent]
and [0,max norm], where max tangent and max norm are hyperparameters.

If we assume δ⊤, δ⊥ to be reasonably small, then the distance of xγ from manifold M
can be approximated to be δ⊥ (see Figure 2(a)). Since the tangential perturbation δ⊤ is
small, the tangentially perturbed point xτ = x + δ⊤

t
∥t∥ can be assumed to stay on the

manifold. Also, we can assume that the tangent space and thus the normal space at xτ

is the same as that at x. Then, since the augmented point xγ is generated by adding a
small perturbation perpendicular to the tangent space at xτ , the closest on-manifold point
to xγ will be xτ , and thus the distance of the augmented point from the manifold will be
∥xγ−xτ∥ = δ⊥. Note, however, that if the manifold has a very high curvature relative to δ⊤
and δ⊥, this assumption may break (see Figure 2(b)). Thus, max tangent and max norm
need to be chosen reasonably. Figure 6 shows a few examples of the generated points.
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To summarize, given a point x ∈ D and the tangent, normal spaces of the class manifold
M at x, we can generate an augmented point at a distance of δ⊥ from M using equation 1.
Multiple augmentations can be generated for each x by random sampling of t,n, δ⊤ and δ⊥.

2.2. Inferring the Local Manifold

In section 2.1, we assumed availability of the local manifold information near each point
x ∈ D. In this section we relax this assumption, and discuss how we can infer the local
manifold from the dataset D. We use a simple method based on finding k nearest neighbors
and principal component analysis (Jolliffe, 1986), similar to the method in Zhang and Zha
(2004a). Note that Distance Learner is agnostic to the specific choice of method used to
infer the local manifold, and one can use more complex methods, such as the ones discussed
in Lin and Zha (2008); Rifai et al. (2011).

To infer the local manifold near a point x ∈ D, we first find the k nearest neighbors
(kNNs) of x in the dataset D. We denote this set of kNNs as NNM(x, k), where M is the
underlying class manifold of x. Note that for nearest neighbor search, we use the Euclidean
distance in the embedded space Rn, and not the geodesic distance on M. As a result, even
though the neighbors are close in Rn, they may not be close in M. However, if M satisfies
certain properties (e.g. bounded curvature), we can assume closeness w.r.t geodesic distance
as well. See Lin and Zha (2008) for a discussion on these properties and failure cases.

Locally, a manifold is isomorphic to Rm, where m is the manifold dimensionality. We
assume the close neighbors, NNM(x, s), to lie on this local Rm subspace, or equivalently in
the span of the tangent space. The tangent space TxM can then be constructed as follows.
Let LM(x) = {xj − x|xj ∈ NNM(x, k)}. The tangent space, TxM, is then the span of
vectors in LM (as long as the number of independent vectors in LM is ≥ m). However, note
that because of the discrete nature of D, the nearest neighbors of x may not lie exactly in the
span of the tangent space TxM. Thus, the span of LM may include components outside the
tangent space. The severity of this problem will depend on the sampling density of D. To
remove these noisy components, we do a Principal Component Analysis on LM, and extract
the top-m most important principal components (based on their explained variance). These
components then form the orthonormal basis, BTx, of the tangent space TxM.

Finally, we need to compute an orthonormal basis BNx of the (n − m)-dimensional
normal -space, NxM, at x. Since all vectors in NxM are orthogonal to the vectors in TxM
(i.e., n · t = 0, ∀n ∈ NxM, t ∈ TxM), the normal-space NxM is the null-space of TxM.
The basis, BNx, of this null-space can thus be computed by SVD of a matrix whose rows
are elements of BTx.

Note that here we have assumed knowledge of the intrinsic dimensionality of the manifold
M, to choose the number of principal components, as well as to choose the minimum number
of neighbors, k. There are multiple methods to compute the intrinsic dimensionality of a
manifold (e.g., (Lin and Zha, 2008)) which can be used for the purpose.

2.3. Learning Distance

The augmented points generated above can now used to train our Distance Learner . How-
ever, note that our generated point xγ has its distance known to only one class manifold
— the manifold on which the point x lies. But we want our Distance Learner to predict
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distances to all class manifolds. To enable this, we simply set the distance of the generated
point to all other-class manifolds at a fixed high value, high distance. This is reasonable,
since the different class manifolds can be assumed to be well separated and points on (or
near) one manifold will be far from all other manifolds. Setting a high value for distances
to other-class manifolds captures the coarse distance information. Similarly, points in the
dataset D itself have their distance set to zero for the class manifold they belong to, and to
high distance for all other classes.

Also note that since the normal perturbation δ⊥ ∈ [0,max norm], our augmented points
are only generated in max norm thick bands around each class manifold (see Figure 6).
However, since these bands contain fine distance information, it is enough to encode the
manifold structure (the manifold can still be recovered as the zero level-set). Moreover, the
other-class manifolds provide samples at a high distance, which encourages the model to
predict high values for points far outside these bands. In our experiments, we observe that
even outside these bands, Distance Learner is able to learn a smoothly increasing function
(Figure 7). We note that it is a common practice in level-sets based surface representation
methods (e.g. liquid surface representation for simulating fluids on a grid), where only small
bands around the surface store the actual signed distance function (Osher and Sethian, 1988;
Osher and Fedkiw, 2001; Enright et al., 2002).

Our method is agnostic to the specific architecture of the model. The model should have
C outputs, corresponding to the predicted distance to each of the C classes. While training
we minimize the mean squared error between the predicted and ground-truth distances.

2.4. Classification using Distance Learner

For classification using Distance Learner , we use two variants. In the first variant, we
classify input points as belonging to one of the C classes. This is done by outputting
the class with the closest predicted class manifold. In the second variant, we also allow
classifying points as being out-of-domain (i.e., belonging to neither class), if the distance to
the closest manifold is higher than a tolerance threshold, say tol. The tolerance corresponds
to the distance from the class manifold which is considered close enough to still belong to
that class. It can be determined from domain knowledge or empirically from a validation
set. Since Distance Learner learns fine-grained distances only in max norm bands around
the class manifolds, we should choose max norm > tol during training, so that Distance
Learner has high fidelity predictions in the tolerance region. Note that standard classifiers
have to classify all points (even unrelated points far from any class manifold) to one of the
C classes the classifier was trained on. Distance Learner does not have this limitation.

3. Experiments

We evaluate Distance Learner on multiple synthetic datasets and tasks. Each dataset
consists of m-dimensional manifolds embedded in Rn (m < n). For robust evaluation we
experiment with m ranging from 1 to 50 and n ranging from 1 to 500. First, we do a set of
qualitative evaluations to visualize the distance function and decision boundaries learnt by
Distance Learner . To allow visualization, we only consider manifolds of 1 and 2 dimensions
during the qualitative analysis. The manifolds can be embedded in much higher dimensions,
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and we visualize using appropriate 2D slices. This is followed by quantitative experiments to
evaluate 1) distance prediction accuracy, and 2) adversarial robustness of Distance Learner .

Model Architecture Our Distance Learner is based on a simple MLP-based architec-
ture, inspired by works on learning neural implicit fields for 3D shapes, e.g. Park et al.
(2019). Figure 5 gives a detailed description of the architecture.

Datasets We evaluate on three sets of synthetic data — separated spheres, intertwined
swiss rolls and concentric spheres (see appendix A.2). In each, m-dimensional manifolds are
embedded in Rn (m < n). We experiment with multiple values of m and n for each dataset.
Details of dataset generation and our embedding method are discussed in appendix C.

A note on accuracy In a test set of 20 million samples, Gilmer et al. (2018) observed
no errors on the concentric spheres dataset. As a result, the true error rate of the model was
unknown, and only a statistical upper bound was available. We observed similar behavior
for all our datasets with both Distance Learner and Standard Classifier . However, in spite
of this, we find adversarial examples, similar to Gilmer et al. (2018). Thus, we focus on
adversarial robustness for quantitative evaluation.

Distance Prediction Accuracy Distance Learner is able to predict distances of points
to the class manifolds with high accuracy. Table 1 (in appendix B.1) shows that even
for high dimensions of manifold (m) and embedding space (n), the Distance Learner is
able to achieve very low test losses. For example, in the case of m = 1, n = 50 for
the concentric spheres dataset, we obtain test and train losses of 5.114 (±0.523) × 10−9

and 4.757 (±0.478) × 10−9, respectively. Similarly, even for higher manifold dimensions,
e.g., m = 50 and n = 500, we obtain test and train losses of 1.380 (±0.547) × 10−5 and
1.132 (±0.047)× 10−6, respectively. Although there is an increase in losses as the dimensions
increase (reflecting the hardness of learning at higher dimensions), the errors stay reasonably
small. Note that we only use points sampled on the manifold itself and in max norm bands
around the manifold to compute these losses (full details in appendix D). Figure 7 (in
appendix B.1) shows a visualization of the learnt distances as a heatmap. Here, we also
include points outside the max norm bands. Note that even though there are no augmented
points outside the max norm bands during training, the network is able to learn a smoothly
increasing function for these points (e.g. see the plot boundaries). The observations hold
even when the embedded dimension is very high (n = 500 in the 2nd row of Figure 7).

Out-of-domain Classification & Decision Boundaries Since Distance Learner is
able to predict distances to the class manifolds with good accuracy, we can use it to identify
points that are out-of-domain (i.e., belonging to neither class). As discussed in section 2.4,
points whose predicted distance to the closest manifold is higher than a tolerance threshold,
tol, are classified as out-of-domain. Figure 1 shows a visualization (over 2D slices) of the
classification done by Standard Classifier and Distance Learner . While the decision regions
learned by Standard Classifier are very coarse and include even points very far from the
manifold, Distance Learner is able to learn fine regions containing only points close the
class manifolds. The observation holds true for both low and high dimensions.

Unlike Standard Classifier , where all points in the domain are assigned to one of the
classes, Distance Learner only classifies points truly close to a class. This allows Distance
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(a) Standard Classifier (b) Distance Learner

Figure 3: Far region predictions for swiss roll dataset with m = 1, n = 500. (a)
Heatmap of prediction confidence for Standard Classifier in a large domain. Even
points very far from the manifolds are assigned a class with high confidence of
∼1. Only for points close to the class manifolds (see inset), meaningful confidence
scores are predicted. (b) Distance Learner decision region in a large domain. Far
points are correctly predicted as out-of-domain, while accurate decision bound-
aries are obtained in the closer region (inset).

Learner to learn much more meaningful decision boundaries as can be seen in Figure 1.
Another problem with standard classifiers is that, not only do they assign a class to out-of-
domain points, but they can do so with high confidence (Hein et al., 2019). We demonstrate
this problem in Figure 3, which shows the confidence (softmax probability) heatmap for
points in a 2D slice. As shown, even for points far from any class, Standard Classifier
classifies them as one of the classes with high confidence.

Adversarial Robustness We now evaluate the robustness of Distance Learner to adver-
sarial attacks. Here, we use an additional baseline, Robust Classifier , which is the Standard
Classifier but trained via the adversarial training method (or robust-training) proposed
by Madry et al. (2018). In robust-training, the model is trained by optimizing the min-
max problem: minθ E(x,y)∈D

[
max∥δ∥2<η L(f(xi + δ; θ), yi)

]
, where θ denotes the network

parameters, f denotes the network function, and η is the search radius for the adversarial
perturbation in the inner loop. In our experiments, the inner loop is run for 40 iterations.

For a sample (x, y) ∈ D, we find an adversarial point by maximizing the loss L(f(x +
δ; θ), y) in an ϵ neighborhood around the point. For Standard Classifier L corresponds to
the cross-entropy loss. For Distance Learner we maximize the predicted distance to class y
minus the predicted distance to the other class, to drive towards misclassification. We solve
this constrained optimization problem via the white-box projected gradient descent (PGD)
method (Madry et al., 2018). We run 100 PGD iterations with a step size of 5e−3.

We focus on the Concentric Spheres and Intertwined Swiss Rolls datasets for analysis
of adversarial robustness. Our analysis is inspired by Gilmer et al. (2018), which used
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(b) Intertwined Swiss Rolls

Figure 4: Adversarial Robustness. Comparisons of Distance Learner (DL), Standard
Classifier (SC), and Robust Classifier (RC) over different values of ϵ (maximum
adversarial perturbation). Distance Learner outperforms Standard Classifier and
is comparable to Robust Classifier .

the concentric spheres dataset to extensively analyze the connection between adversarial
robustness and high dimensional geometry. We focus on the case of m = 50 to mimic real
image datasets. This is motivated by the findings of Pope et al. (2021), where for all popular
image datasets (e.g. ImageNet), their highest estimate of intrinsic dimensionality was < 50.

Our results are shown in Figure 4. We evaluate adversarial robustness for multiple
values of the attack neighborhood radius, ϵ. For Robust Classifier , we show results with
η ∈ {5e−2, 8e−2} for Concentric Spheres and η ∈ {1.1e−1, 1.8e−1} for Intertwined Swiss
Rolls. We use tol = 0.14 for Concentric Spheres, while for Intertwined Swiss Rolls, we
classify using minimum predicted distance. For higher values of η, we found the performance
of Robust Classifier to significantly degrade. As shown in the figure, Distance Learner
not only outperforms the standard classifier significantly but also performs at par with
adversarially trained classifiers. Since Distance Learner incorporates manifold geometry
information into training, we suspect that it learns smoother and more meaningful decision
boundaries, making it more robust to adversarial attacks.

4. Conclusion

The well known no free lunch theorems drive the point that incorporating prior knowledge
about underlying learning problem can significantly improve outcomes. In this paper, we
propose a novel method, Distance Learner , to incorporate the manifold prior while training
DNNs. Distance Learner is trained to predict the distance of a point from the underlying
class manifolds. We do this by efficiently generating augmented points at a known distance
to the class manifolds. Our evaluation reveals that Distance Learner is robust to adversarial
attacks, and is able to predict distances accurately. Moreover, Distance Learner is able to
identify out-of-domain points and learn much more meaningful decision regions.
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Appendix A. Experimental Setup

A.1. Model Architecture
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Figure 5: Distance Learner model architecture. The boxes denote tensors and the arrows
denote operations. FC refers to a fully-connected layer, and FCB refers to a
fully-connected layer followed by batch normalization and ReLU activation.

Figure 5 shows the architecture of our model. The first two layers of our model consist of
FCB blocks (fully connected layers of 512 neurons, followed by batch normalization (Ioffe
and Szegedy, 2015) and a ReLU activation). After this, the network branches into multiple
pathways, one for each manifold. Each branch consists of two more FCB blocks, followed by
a fully connected layer (FC) and finally a sigmoid activation (σ). The output of each branch
gives the distance of the point from the branch’s corresponding manifold. We collect the
outputs of each branch into a single tensor which is then used for computing MSE loss. The
branched network architecture was inspired by hard parameter-sharing techniques used in
multi-task learning (Ruder, 2017). In our experiments, we found the branched architecture
to improve the quality of the learnt distance function.

Our model was implemented using PyTorch (Paszke et al., 2019). All experiments
were performed on a V100 GPU with 16GB memory. We have open-sourced our code at
https://github.com/microsoft/distance-learner.

A.2. Datasets

In this section, we provide details about the synthetic datasets used in our experiments.

Separated Spheres This is a simple dataset consisting of two hyperspheres of the same
radius r = 1, where each sphere belongs to a different class (Figure 6(a)). The sphere
centers are separated by a distance of 2.5 to prevent overlap.

Intertwined Swiss Rolls Swiss roll (Marsland, 2009) is a commonly used benchmark
dataset for manifold learning techniques. A 2D Swiss roll embedded in R3 can be parameter-
ized as: x(ϕ, ψ) = (ϕ sinϕ, ϕ cosϕ, ψ). This can be generalized for an m dimensional Swiss
roll embedded in Rm+1 as, x(ϕ, ψ1, ψ2, . . . ψm−1) = (ϕ sinϕ, ϕ cosϕ, ψ1, ψ2, . . . , ψm−1).

https://github.com/microsoft/distance-learner
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(a) Separated Spheres (b) Intertwined
Swiss Rolls

(c) Concentric
Spheres

Figure 6: Synthetic datasets. Representative plots with manifold dimension m = 1, and
embedded dimension n = 2. Dark red and blue points lie on the manifold, while
lightly colored points are the augmentations generated to train Distance Learner .

Embedding in dimensions higher than m+ 1 and other details are discussed in appendix C.
Our complete dataset consists of two intertwined Swiss rolls (Figure 6(b)), where each Swiss
roll corresponds to a different class.

Concentric Spheres This dataset consists of two concentric hyperspheres, with each
sphere belonging to a different class (Figure 6(c)). The dataset is based on Gilmer et al.
(2018), where they used this dataset extensively to analyze the connection between adver-
sarial examples and high dimensional geometry. As in Gilmer et al. (2018), the inner and
outer spheres’ radii are set to 1.0 and 1.3, respectively. However, unlike Gilmer et al. (2018),
where they used m = 499, n = 500, we used settings with m much lower than n. We do this
to more closely model real-world datasets where the intrinsic dimensionality of the underly-
ing data is much smaller than the embedded space dimension. In section 3, we focus on the
case m = 50. This is motivated by the findings of Pope et al. (2021), where for all popular
image datasets (e.g. ImageNet), their highest estimate of intrinsic dimensionality was less
than 50. Experiments with other values of m are discussed in section 3 and appendix B.2.
We use n = 500 in all experiments.

Appendix B. Results

In this section, we provide the complete results shared in the main paper in section 3, along
with some additional results.

B.1. Distance Prediction Accuracy

As discussed in section 3, Distance Learner is able to predict accurate distances of points
from the manifold. In Table 1, we report the test/train losses with mean and standard
deviation computed over three runs started with different random seeds.

Heatmap of Learnt Distances In Figure 7, we show the heatmap of learnt distances
talked about in section 3. For visualization, we only consider relevant 2D slices. Note that
even though there are no points outside the max norm bands during training, the network
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Table 1: Train and test loss of Distance Learner

Dataset m n Train Loss (av) Test Loss (av) # Test Examples

Separated Spheres

1 2 2.450 (±0.157) × 10−8 2.719 (±0.185) × 10−8 20,000
1 50 1.268 (±0.049) × 10−6 3.151 (±0.265) × 10−7 20,000
1 500 2.287 (±0.143) × 10−6 3.151 (±0.231) × 10−7 20,000
2 500 2.729 (±0.093) × 10−7 2.973 (±0.058) × 10−6 20,000

Intertwined Swiss Rolls
1 2 3.700 (±0.289) × 10−7 3.884 (±0.317) × 10−7 20,000
1 50 9.792 (±1.657) × 10−7 2.256 (±0.550) × 10−6 20,000
1 500 9.470 (±0.984) × 10−6 1.843 (±0.248) × 10−5 20,000

Concentric Spheres

1 1 4.757 (±0.478) × 10−9 5.114 (±0.523) × 10−9 200,000
1 50 2.754 (±0.053) × 10−7 3.506 (±0.208) × 10−7 200,000
2 50 5.118 (±0.230) × 10−8 1.283 (±0.215) × 10−7 200,000
25 500 1.163 (±0.024) × 10−6 2.641 (±2.198) × 10−6 200,000
50 500 1.132 (±0.047) × 10−6 1.380 (±0.547) × 10−5 200,000

is able to learn a smoothly increasing function for these points (e.g. see the plot boundaries).
The observations hold even when the embedded dimension is very high (n = 500 in the 2nd

row). Since the other-class manifold points are trained to have a high distance value (1.0
in these experiments), the predicted values near the blue class manifolds are close to 1.0.
To enable enough color resolution in the heatmaps, in Figure 7(b), we remove points with
a predicted distance of > .5 in the 1st and > .25 in the 2nd and 3rd rows. These points
correspond to the blank white region. In Figure 7(a) we plot the full region (log scale), and
in Figure 7(c), the complement of the point set plotted in Figure 7(b). For points closer to
the other (blue) manifold, we can see that the Distance Learner predicts a very high value,
as intended.

B.2. Adversarial Robustness

In section 3, we discussed the robustness of Distance Learner to adversarial attacks. In
this section, we expand upon our experimental setup and present the results from our
experiments.

Specifically, we evaluate the robustness of Distance Learner against white-box projected
gradient descent (PGD) attacks. For this task, we compare Distance Learner against Stan-
dard Classifier , and a new baseline, the Robust Classifier . Robust Classifier is trained
using robust-training proposed by Madry et al. (2018). Robust-training is a well-accepted
standard method for making Standard Classifier robust to PGD attacks.

In a standard PGD attack, given a sample (x, y) ∈ D, we find an adversarial example
by maximizing the loss L(f(x + δ; θ), y) in an ϵ neighborhood around the point. For the
Standard Classifier and Robust Classifier , we maximize the cross-entropy loss used in clas-
sification. For Distance Learner we maximize the predicted distance to the class manifold
for the correct class y minus the predicted distance to the incorrect class. This would drive
the Distance Learner towards misclassification.

In our experiments, we focus on the Concentric Spheres and the Intertwined Swiss Rolls
datasets. For each of these datasets, we generate points and perform training using the
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(a) All points (b) Lower Distance Points (c) Higher Distance Points

Figure 7: Learnt Distances: Heatmap of predicted distance from the red class manifold. (a)
Heatmap with all points, where the colors are decided by mapping the predicted
distances to colors on a log scale.
For higher fidelity visualization we also show heatmaps on subsets of points:
(b) points where the predicted value of distances are ≤ .5 (1st row) and ≤ .25
(2nd & 3rd rows). (c) Heatmap of points complementary to those shown in (b),
i.e. points with predicted distances > .5 (1st row) and > .25 (2nd & 3rd rows).

method described in section 2 and appendix C. For the Intertwined Swiss Rolls dataset, we
used the analytic form of the normals at each point instead of inferred normal directions for
computing off-manifold points, as the inferred manifold was not a good approximation of
the actual manifold. We set the intrinsic dimensionality of the datasets, m = 50. This is to
mimic real-world datasets, based on the findings of Pope et al. (2021), where for all popular
image datasets like ImageNet, their highest estimate of m was ≤ 50. We evaluate adversarial
robustness for multiple values of the attack neighborhood radius, ϵ. For the classification of
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(a) (b)

Figure 8: (a) Illustration of a plane used for plotting decision regions for concentric spheres
dataset with m = 2, n = 500. (b) Decision regions for Distance Learner (top)
and Standard Classifier (bottom).

adversarial examples with the Distance Learner , we use tol = 0.14 for Concentric Spheres,
while for Intertwined Swiss Rolls, we classify using the minimum predicted distance.

Figure 4 shows our results. We can observe that Distance Learner not only outperforms
Standard Classifier significantly but also performs at par with Robust Classifier . We suspect
that due to priors about manifold geometry incorporated by the Distance Learner , it is able
to learn a smoother and more meaningful decision boundary, which makes it more robust
to adversarial attacks.

B.3. Out-of-domain Classification & Decision Boundaries

Figure 3 shows the confidence heatmap of far-off regions for the Standard Classifier as well
as the decision boundaries learned by the Distance Learner as discussed in section 3. As
discussed earlier, the Standard Classifier provides high-confidence predictions even for far-
off regions, while the Distance Learner is able to use its learnt distance predictions to learn
more accurate decision boundaries, labeling far-off regions as out-of-domain.

In Figure 1, we visualized decision regions only for m = 1 dimensional manifolds. Here
we show decision regions for Concentric Spheres with m = 2 (Figure 8). Since a sphere
of dimension, 2 has a canonical embedding in 3D space, in order to visualize the decision
regions, we consider a 2D plane passing through the center of the two concentric spheres.
Figure 8(a) shows an illustration of the place used for our visualization. Then, we visualize
the predicted classes of points sampled on this plane using the Distance Learner and Stan-
dard Classifier . These decision regions are visualized in Figure 8(b). As we can observe,
even for a higher intrinsic dimension m = 2, Distance Learner learns accurate decision
regions, not only correctly identifying the two classes but also identifying out-of-domain
points.
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Appendix C. Synthetic Data Generation

In this section, we discuss the steps we followed to generate our synthetic datasets. To
generate our synthetic datasets, we need to first sample points on the m-dimensional man-
ifold, and then embed these points in the n-dimensional space Rn. We perform this task in
three successive steps – 1) sampling the m-dimensional manifold in an m + 1-dimensional
embedding (we call this the canonical embedding), 2) embedding these points in Rn via
what we call trivial embedding and 3) applying a random transformation.

C.1. Sampling Canonical Embeddings

We first sample points on the m-dimensional manifold embedded in Rm+1 (we call this the
canonical embedding). This process depends on the dataset that we are using.

Separated Spheres Sampling the canonical embeddings amounts to sampling points
uniformly from an m-sphere of required radius r and center cm in Rm+1. As a first step,
we sample points uniformly from a unit-sphere centered at the origin using the steps de-
scribed in Gilmer et al. (2018), i.e., sampling a point z ∈ Rm+1 from the standard normal
distribution, N (0, I), and the scaling z, as follows: y = r z

∥z∥ . Finally, to centre the sphere
at cm apply a translation, x = y + cm. We generate centers by first sampling a random
center for one of the spheres, and then perturbing it using a random perturbation of size dc
for the other sphere. We choose dc so that there is no overlap between the two spheres.

Intertwined Swiss Rolls We discussed how the Swiss Roll is parameterized in the main
text (see section 3). In order to obtain intertwined Swiss Rolls, we generate the inner
Swiss Roll by changing the parameterization to x(ϕ, ψ1, ψ2, . . . ψm−1) = ((ϕ− µ) cosϕ, (ϕ−
µ) sinϕ, ψ1, ψ2, . . . ψ3), where µ controls the gap between the Swiss Rolls, and is chosen
appropriately to prevent overlap. For our experiments, we use ϕ ∈ [1.5, 4.5], ψ ∈ [0, 21],
and µ = 1.

Concentric Spheres We follow the same process as Separated Spheres, except that only
one common centre is sampled for both the spheres, and the difference between the radii of
the two spheres is chosen suitably to prevent overlap.

C.2. Generating Trivial Embeddings

Let the canonical embeddings of the samples be stored as rows of a matrix Pc with (m+ 1)
columns. Once Pc is obtained, we embed the points trivially in Rn by concatenating
the points with (n − m − 1) 0’s. That is, the trivial embedding Ptr can be obtained as
Ptr =

[
Pc 0

]
, where 0 is a zero matrix.

C.3. Random Transformations

Note that the embedding of the manifold in Rn is a trivial one, obtained by concatenating
the canonical embeddings with 0’s. To make this embedding more generalized, we apply
random translation and rotation transforms to the data. In order to generate a random
rotation transform, Q ∈ Rn×n, we sample a random matrix M ∈ Rn×n, and decompose it
using QR factorization to obtain an orthogonal matrix Q and a residual matrix R. The
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orthogonal matrix Q can be used as the rotation transform. We sample a random vector,
T ∈ Rn as a translation transform. We obtain the final transformed samples matrix P by
applying these transforms row-wise to Ptr. For training, we normalize these points so that
they lie in a unit-hypercube. This helped significantly with training stability.

Appendix D. Hyperparameters

In this section we describe the various hyperparameter settings used in our experiments.
Table 2 shows the hyperparameter values used for training. For all our experiments, we used
the Knee learning rate schedule (Iyer et al., 2020), and increase the learning rate linearly
from zero to its maximum value till epoch 10, and then decrease linearly to zero from epoch
700 to 1000. All models were trained for 1000 epochs.

Table 2: Values of hyperparameters for Distance Learner . ⋆ denotes that a hyperparameter
sweep was conducted for this dataset. Non/off denote to the number of on-/off-
manifold points respectively.

Dataset m n max norm Non
(×106)

Noff
(×106)

Learning Rate Batch Size

Separated
Spheres

1 2 0.10 0.50 1.00 1.0 × 10−5 512
1 50 0.10 0.50 1.00 1.0 × 10−5 512
1 500 0.10 0.50 1.00 1.5 × 10−5 4096 ⋆
2 500 0.10 0.05 1.00 1.0 × 10−5 512

Intertwined
Swiss Rolls

1 2 0.40 0.05 0.05 1.0 × 10−5 512 ⋆
1 50 0.40 0.05 0.05 1.0 × 10−5 512
1 500 0.40 0.05 1.00 1.0 × 10−6 4096 ⋆

Concentric
Spheres

1 2 0.10 0.50 1.00 1.5 × 10−5 4096
1 50 0.10 0.50 1.00 1.5 × 10−5 4096
2 50 0.14 0.50 2.00 1.5 × 10−5 4096
25 500 0.14 0.50 6.00 1.5 × 10−5 4096
50 500 0.14 0.50 6.00 1.5 × 10−5 4096 ⋆

Typically, if the dataset has a high value of n, we sampled a higher number of off-
manifold augmentations (Noff) for the same number of on-manifold points (Non). This is
because the volume of an off-manifold band of width max norm in n dimensions would
roughly be of the order of max norm(n−m). Although the volume increases exponentially
in (n−m), because of small max norm, we required only modest increases in the number
of off-manifold augmentations, Noff. For instance, for Intertwined Swiss Roll with m = 1,
as we go from n = 2 to n = 500, we are able to obtain extremely low classification error
rates with just a 20× increase in Noff.

In almost all cases, we obtained low error rates from the first set of parameters that we
chose. However, we have performed hyperparameter tuning for a few settings (marked by
⋆ in Table 2) and found that it is possible to improve loss statistics further. We searched
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for the optimal values of Noff (∈ [0.05, 6.00] × 106), learning rate (∈ [0.01, 8.00] × 10−5),
and batch size (∈ {512, 2048, 4096}). Due to resource and time constraints, we could not
tune hyperparameters for the other settings. Further hyperparameter tuning may improve
performance in the other settings as well.

Appendix E. Limitations and Future Work

We acknowledge a few limitations of our current work. Firstly, we have evaluated Distance
Learner only on synthetic datasets. Although it reveals important insights and promise of
the current work, we would like to extend our evaluation to real-world datasets. This may
require further work on accurately estimating local manifolds from training data. Also, in
our current method, augmented points are sampled uniformly in small bands around the
manifold. However, this may not be the most sample-efficient. We want to explore more
efficient sampling techniques by incorporating ideas similar to Goyal et al. (2020). Finally,
we would like to extend our method to also incorporate unsupervised data. Since inferring
local manifold and sampling off-manifold points, only relies on nearest neighbors, unsuper-
vised data can be easily incorporated for these steps. Given the abundant availability of
unsupervised data for many tasks, this can provide significant gains.
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